第六章 配位化合物

合集下载

配位化合物的结构和性质

配位化合物的结构和性质

2
3
sp
sp2
直线形
平面三角形
[Ag(NH3)2]+
[CuCl3]2-
4
sp3
d3s dsp2
四面体
四面体 平面正方形 三角双锥形 四方锥形
[Ni(NH3)4]2+
MnO4[Ni(CN)4]2Fe(CO)5 [TiF5]2-
5
dsp3 d4s
6
d2sp3
八面体
[Fe(CN)6]3-
6.2 价键理论
(3) 平行正方形场
在平行正方形配合物中,四个配体沿x,y轴正负方向与
中心离子接近。 在平行正方形配合物中,dx2-y2轨道的电子云极大值方向 指向配体,因此能级最高,高于Es能级;dxy 轨其也在xy平面上,所以
也要受到较大的排斥故能级也高于Es能级;dz2 轨道的能级 较低,低于Es能级;dyz和dxz轨道受到的排斥作用相同,是 简并的,能级最低。这样,在平面正方形场中,能级分裂为 四组。
由于△值通常从光谱确定,故称这个顺序为光谱化学序列。
分裂能和成对能
b) 当配体固定时,分裂能随中心离子的不同而不同,其
大小次序为:
Pt 4 Ir 3 Pd 4 Rh3 Mo3 Ru3 Co3 Cr 3 Fe 3 V 2 Co2 Ni 2 Mn2
中正负离子的静电作用;
中心离子在配体的静电作用下,使原来简并的d轨道分 裂成能级不同的几组轨道;
d电子在分裂的d轨道上重新排布,优先占据能量较低
的轨道,往往使体系的总能量有所降低,形成强场低自 旋、弱场高自旋的配合物。
二、d轨道在晶体场中的分裂
d原子轨道的角度分布图

结构化学第六章..

结构化学第六章..

二、d轨道的能级分裂
配体所形成的负电场对中心d电子起作用,消除d轨道的简并。
分裂的根源:(1)d轨道具有明显的角度分布。
(2)d轨道所在的配位场不是球形对称的。
1、正八面体配位场(Oh):
在正八面体配合物中,金属离子位于八面体中心,六 个配位体分别沿着三个坐标轴正负方向接近中央离子。
z y 3 2 4 5 6 1 x
四碘合汞(ll)酸 六氟合硅(IV)酸钾 二硫酸根合钴(II)酸钾 氯化二氨合银(I) 二水合一氯化二氯四氨合铬 (III) 三氯一氨合铂(II)酸钾 三氯五氨一水合钴(III) 四硫氰根· 二氨合铬(Ⅲ)酸铵
五、配合物和配体的分类
MLn 称单核配合物
中心原子(离子)M: MmLn 称多核配合物
M—M 称原子簇合物
配位数 5--三角双锥或四方锥形
配位数 6--八面体或三棱柱
表6.1
配位化合物 配位数 [Hg(NH3)2]2+ [Au(CN)2] [CuCN3]2Ni(CO)4 [Zn(NH3)4]2 [Ni(CN)4]2[PtCl4]2Os(CO)5

若干配位化合物所采取的几何构型
几何构型 直线型 直线型 平面三角形 四面体 四面体 平面正方形 平面正方形 三角双锥 对称性 配位化合物 配位数 几何构型 对称性 Dh Dh D3h Td Td D4h D4h D3h [Ni(CN)5]3[SbF5]2[CoF6]3- [Fe(CN)6]3Cr(CO)6 [ZrF7]3Re(S2C2Ph2)3 [Mo(CN)8]45 5 6 6 6 7 6 8 三角双锥 四方锥 八面体 八面体 八面体 五角双锥 三棱柱 十二面体 D3h C4v Oh Oh Oh D5h D3h D2d

结构化学第六章配位化合物结构

结构化学第六章配位化合物结构

结构化学第六章配位化合物结构6001试述正八而体场中,中心离子d轨道的分裂方式6002试用分子轨逍理论阐明X , NH3和CN-的配体场强弱的次序。

6003按配位场理论,在Oh场中没有高低自旋络合物之分的组态是:----------- ()(A)d3 (B)d4 (C) d5 (D) d6 (E) d76004凡是中心离子电子组态为d6的八而体络合物,苴LFSE都是相等的,这一说法是否正确?6005络合物的中心离子的d轨道在正方形场中,将分裂成几个能级:-------------- ()(A) 2 (B)3 (C)4 (D)56006Fe(CN)63-的LFSE= ________________ 「6007凡是在弱场配位体作用下,中心离子d电子一立取高自旋态:凡是在强场配位体作用下,中心离子d电子一立取低自旋态。

这一结论是否正确?6008Fc(CN)6#中,CN-是强场配位体,FJ+的电子排布为心,故LFSE为________________ 。

6009尖晶石的一般表示式为AB2O4,其中氧离子为密堆积,当金属离子A占据正四而体门空隙时,称为正常尖晶石,而当A占据Oh空隙时,称为反尖晶石,试从晶体场稳左化能计算说明NiAl2O4晶体是什么型尖晶石结构(Ni?+为於结构)。

6010在Fe(CN)64-中的F2+离子半径比Fe(H2O)62+中的F2+离子半径大还是小?为什么?6011 作图证明CO是个强配位体。

6012CoFf啲成对能为21? 000cm1,分裂能为13? 000cnr1,试写出:(l)d电子排布⑵LFSE值(3)电子自旋角动捲⑷ 磁矩6013已知ML6络合物中(M%为的,>1,尸20? 000 cm-1, P= 25? 000 cm1,它的LFSE 绝对值等于多少? ----------------------- ()(A)0 (B) 25? 000 cnr1 (C) 54? 000 cnr1 (D) 8000 cnr16014四角方锥可认为是正八而体从z方向拉长,且下端没有配体L的情况。

无机化学-第六章 配位化合物

无机化学-第六章 配位化合物

正四面体构型
同样是四配位,但对配合物[Ni(CN)4]2–就成了另一回事 3d 4s 4p
中心离子Ni2+的结构
3d [Ni(CN)4]2–的结构 CN CN dsp2杂化
平面正方形构型
CN CN

[FeF6]3–的结构?
sp3d2杂化
八面体构型
[Fe(CN)6]3-的结构?
d2sp3杂化
八面体构型
↑↓ ↑↓ ↑↓ ↑ ↑ 3d
↑↓ ↑↓ ↑↓ ↑↓ _ 3d
_
_
_ _ _ 4s 4p
_ _ _ 4s 4p dsp2杂化,四方形
同一中心原子的内轨型配合物比外轨型配合物稳定
(3)内外轨型取决于 ♦ 配体的强弱
配体 (主要因素) 中心离子(次要因素)
(1)电负性小的配位原子易给出孤对电子,如:CN-, CO, NO2-(配位原子:C,N) 。对中心离子(n-1)d轨道影响较 大,内轨型,配体的配位能力强; (2) 电负性大的配位原子(如卤素X-和氧O),不易给出孤 对电子,对中心离子影响不大。外轨型,配体的配位能
力弱 。
配体的强弱——光谱化学系列: I- <Br-<S2-<SCN-≈Cl-<NO3-<F-<OH-<C2O42-<H2O<NCS<NH3<en≈SO32-<o- phen<NO2-<CO(羰基),CNH2O以前:弱场; H2O ~ NH3:中间场;NH3以后:强场
♦ 中心离子的价层电子数
(1) d10型,无空(n-1)d轨道, 易形成外轨型 (2) d4 ~d8型, 需根据配体强弱判断内外轨型 (3) d0~d3型,有空的(n-1)d轨道,形成内轨型

第六章配位化合物

第六章配位化合物

第六章配位化合物【学习目标】● 掌握配位化合物的组成和命名● 熟悉配位平衡常数及有关离子浓度的计算● 知道螯合物的形成条件,能分辨出螯合物● 了解配合物在医学上的意义交流研讨1799年塔萨厄尔(Tassaert)往CoCl2溶液中加入氨水,先有粉红色沉淀生成,继续加入氨水则沉淀消失,放置一天后析出橙色晶体。

经分析知粉红色沉淀是Co(OH)2,橙色晶体是CoCl3·6NH3,Co(OH)2在过量的氨水的存在下被氧化成3价。

起初,人们把这种橙色的晶体看成是稳定性较差的CoCl3和6个NH3分子加成物;但将这种橙色晶体加热至150℃时,却无法释放出氨;用稀硫酸溶解后,回流数小时也不生成硫酸铵。

那么这种橙色晶体到底是什么类型的化合物,化合物结构式是什么样的呢?这种橙色的晶体属于配位化合物,简称配合物,是组成复杂、应用十分广泛的一类重要化合物,过去称为络合物,其原意是指复杂的化合物。

随着科学技术的发展,它在科学研究和生产实践中显示出越来越重要的作用,已经形成了一门独立的学科──配位化学。

配合物不仅在化学领域里得到广泛的应用,而且和医学关系极为密切。

例如与呼吸有密切关系的血红素就是含有亚铁的配位物,人体内大多数酶(生物催化剂)分子含有配合状态存在的金属元素,有些药物本身就是配合物或通过在体内形成配合物才能发生药效。

利用金属配合物的形成进行金属中毒治疗,体内某些金属元素缺乏所引起的疾病的诊断和治疗等都涉及到配位化学的理论和方法。

因此学习有关配合物的基本知识,对学习医学来说也是十分必要的。

第一节 配位化合物的基本概论一、配合物的定义在硫酸铜溶液中加入Ba 2+离子,会有白色BaSO 4沉淀生成,加入稀NaOH 溶液则有浅蓝色Cu(OH)2沉淀生成,这说明在硫酸铜溶液中存在着游离的Cu 2+离子和SO 42-离子。

在硫酸铜溶液中加入过量氨水,可得一深蓝色溶液,再向溶液中加入稀NaOH 溶液后得不到浅蓝色Cu(OH)2沉淀,但加入Ba 2+则有白色BaSO 4沉淀生成。

第六章 配位化合物和簇合物的结构与性质

第六章 配位化合物和簇合物的结构与性质

配位体: 配位体: 具有孤对电子或π 具有孤对电子或 π 键电子并能与金属离子进行配位的原子 或分子 原子主要是: Cl, 原子主要是: N,O,C,P,S,Cl,F
配位体分子分为: 配位体分子分为: 单啮配位体:只有一个配位点的配位体, 单啮配位体:只有一个配位点的配位体, 如NH 3 非螯合多啮配位体:一个配位体有多个配位点, 多个金属 非螯合多啮配位体: 一个配位体有多个配位点, 与多个金属 离子配位,但不能直接与同一金属离子配位。 离子配位,但不能直接与同一金属离子配位。 螯合配位体:有多个配位点,且能直接与同一金属 螯合配位体:有多个配位点,且能直接与同一金属 同一 离子配位,形成螯合配位化合物,如乙二胺, 离子配位,形成螯合配位化合物,如乙二胺, 三联吡啶 芳香烃, π配位体:含有π电子的烯、炔、芳香烃,与过渡金属形成配 配位体:含有π电子的烯、 位化合物
③ ∆ 随配位原子半径的减小而增大: 如 I < Br < Cl < S < F < O < N < C p :电子成对能。使体系能量升高。 2、 d轨道中d电子的排布:要从 ∆ 和 p 综合考虑。 ① ∆< p 配体是弱场,∆ 较小 d电子尽量采取高自旋态。 ② 如: Fe2+
∆> p
配体是强场,∆ 较大 d电子尽量采取低自旋态。
按微扰理论, d轨道的平均能量不变,并令Es=0
2 Eeg + 3Et2 g = 0 ∴ Eeg − Et2 g = 10 Dg

Eeg = 6 Dg Et2 g = −4 Dg
3、正四面体场的作用:配体从四面体的四个顶点接近中心离子
L
L
一种 d xy , d yz , d zx

第六章 配位化合物(新)

第六章 配位化合物(新)

三、配合物的命名
1. 配合物的特征部分内界的命名方法
[Cu(NH3)4]2+ 四 氨 合 铜 (II) 离子
配体数(以汉字数码表示) 配体名称(不同配体之间有时以圆点(·)分开) 合(表示配位结合) 中心原子名称 中心原子氧化数(加括号,以罗马数字表示)。
注意
• 配阴离子和配阳离子的命名:
CN-、CO中,哪些可以作为中心原子?哪些可以作 为配位体?
中心原子:Fe3+、Cu2+、Zn2+、Ag+ 配位体:H2O、NH3、F-、CN-、CO
练习2:向下列配合物的水溶液中加入AgNO3溶液,不
能生成AgCl沉淀的是( )。
A、[Co(NH3)4Cl2]Cl B、[Co(NH3)3Cl3]
C、[Co(NH3)6]Cl3
两可配体,异性双基配体:配体虽有两个配位原子,
由于两个配位原子靠得太近,只能选择其中一个与中心
原子成键,故仍属单齿配体,如:
-SCN- 硫氰根 以S配位
-NCS- 异硫氰根 以N配位
-ONO- 亚硝酸根 以O原子配位
-NO2- 硝基
以N原子配位
(四)配位数——直接与中心原子成键的配位原子总数
配位个体 [Cu(NH3)4]2+ [CoCl3(NH3)3]
配位键:共价键的一种。构成配位键的两原子依旧共享一 对电子,但这对电子由一方单独提供,另一方只提供空轨 道来容纳这对电子。
带正电荷的配离子称为配阳离子:
[Cu(NH3)4]2+、[Ag(NH3)2]+ 带负电荷的配离子称为配阴离子:
[HgI4]2-、[Fe(NCS)4]含有配离子的化合物和配位分子统称为配合物。
硫酸五氨·一水合钴(III)、

第六章--配合物的结构和性质

第六章--配合物的结构和性质

• VBT的基本要点: 的基本要点: 的基本要点
和配体L之间 (A)配合物的中心离子 和配体 之间,是由中心离子提供 )配合物的中心离子M和配体 之间, 与配位数相图的空轨道来接受配体提供的孤对电子, 与配位数相图的空轨道来接受配体提供的孤对电子,形成配 位键。 位键。 有空轨道,: 3有孤对电 ,:NH 如:在[Cu(NH3)4]2+中,Cu2+有空轨道,: ( 故可以形成配位键: 子,故可以形成配位键:见P69。 。 (B)为了形成稳定的配合物,中心离子采取杂化轨道与配位 )为了形成稳定的配合物, 原子形成σ配键, 原子形成σ配键,杂化轨道的类型与配位个体的配位键型和 空间构型相对应。 P71表 空间构型相对应。见P71表。
●单核配位化合物:一个配位化合物分子(或离子)中只含有一 单核配位化合物:一个配位化合物分子(或离子) 单核配位化合物 个中心原子。 个中心原子。 ●多核配位化合物:含两个或两个以上中心原子。 多核配位化合物:含两个或两个以上中心原子。 ●金属原子簇化合物:在多核配位化合物中,若M—M之间有键 金属原子簇化合物:在多核配位化合物中, 之间有键 合称为金属原子簇化合物 金属原子簇化合物。 合称为金属原子簇化合物。 ●配位化合物是金属离子最普遍的一种存在形式。 配位化合物是金属离子最普遍的一种存在形式。 ●金属离子和不同的配位体结合后,性质不相同,可以进行溶解、 金属离子和不同的配位体结合后,性质不相同,可以进行溶解、 沉淀、萃取,以达到合成制备、分离提纯、分析化验等目的。 沉淀、萃取,以达到合成制备、分离提纯、分析化验等目的。
内轨型配合物: 内轨型配合物: 为外轨型配合物, 如[FeCN6]3- 为外轨型配合物,见P69。 。 特点: 轨道参与杂化; 特点:(n-1)d轨道参与杂化;配体的孤对电子部分 轨道参与杂化 进入中心离子的( ) 轨道中 轨道中; 进入中心离子的(n-1)d轨道中;配体一般为电负 性小的原子, 性小的原子,如C,P,因电负性小,易给出电子, ,因电负性小,易给出电子, 对中心离子的价层电子结构有强烈的影响。 对中心离子的价层电子结构有强烈的影响。因此内 轨型配位键形成时打乱了中心离子的外层电子排布。 轨型配位键形成时打乱了中心离子的外层电子排布。

结构化学基础-6配位化合物的结构和性质

结构化学基础-6配位化合物的结构和性质

4 t 0 9 ☻ 立方体场( Oh, 8 配位):
☻ 平面正方形场(D4h):
4 8 = 2 t 2 0 0 9 9
x y2
Ed 2
Ed xy Eb1 g Eb2 g 10 Dq
所以,d 8 结构形成平面正方形结构者甚多。但当 Dq 较小时 (弱场),也可能形成正四面体配位化合物。
• N2的HOMO(3g)能量比CO低,而LUMO轨道又比 CO的高 • 即 N2 较 CO 来说,既不易给出电子,又不易 接受电子。 • 所以 N2 分子配合物不易合成。
磷配体
金属不饱和烃配合物
• 1825年, Zeise(蔡斯)盐:PtCl3(C2H4)]–K+
金属不饱和烃配合物
• 这样既可防止由于形成配键使电荷过分集 中到金属原子上,又促进成键作用。
核磁共振
研究对象:原子核的磁矩在磁场中对电磁波的吸收和发射
• 第1次,美国科学家Rabi发明了研究气态原子核磁性的共振方法,获 l944年诺贝尔物理学奖。 • 第2次,美国科学家Bloch(用感应法)和Purcell(用吸收法)各自独 立地发现宏观核磁共振现象,因此而获1952年诺贝尔物理学奖。 • 第3次,瑞士科学家Ernst因对NMR波谱方法、傅里叶变换、二维谱技 术的杰出贡献,而获1991年诺贝尔化学奖。 • 第4次,瑞士核磁共振波谱学家Kurt Wüthrich,由于用多维NMR技术在 测定溶液中蛋白质结构的三维构象方面的开创性研究,而获2002年诺 贝尔化学奖。同获此奖的还有一名美国科学家和一名日本科学家。 • 第5次,美国科学家Paul Lauterbur于1973年发明在静磁场中使用梯度 场,能够获得磁共振信号的位置,从而可以得到物体的二维图像;英 国科学家Peter Mansfield进一步发展了使用梯度场的方法,指出磁共 振信号可以用数学方法精确描述,从而使磁共振成像技术成为可能, 他发展的快速成像方法为医学磁共振成像临床诊断打下了基础。他俩 因在磁共振成像技术方面的突破性成就,获2003年诺贝尔医学奖。

无机化学简明教程第6章 配位化合物

无机化学简明教程第6章 配位化合物

配位数 空间 构型 四方锥 例
2 SbCl 5
5
6
三角双锥
八面体
Fe(CO)5
Fe(CN)
3 6
无机化学
19
二、配合物的磁性
磁性:物质在磁场中表现出来的性质。 磁矩: n(n 2) (B.M.)玻尔磁子 n — 未成对电子数 顺磁性:物质内部有单电子,被磁场吸引 µ > 0 , n > 0 例:O2,NO,NO2 反磁性:物质内部无单电子,被磁场排斥 µ = 0 , n =0 铁磁性:被磁场强烈吸引。例:Fe,Co,Ni
µ =3.18
µ =2.40
n=2
n=1
21
无机化学
6.3 配合物的化学键理论
一、价键理论
价键理论要点:
1、中心体M有空的价电子轨道,配位体L有孤对
电子,二者形成配位键ML;
2、中心体采取杂化轨道成键;
3、配离子空间构型与中心体的杂化类型有关。
无机化学
22
1、 配位数为 2的配合物
[Ag(NH3)2]+ Ag+的结构 [Ag(NH3)2]+的结构
原则—遵循一般无机物命名原则
1) 配合物:阴离子在前,阳离子在后; 2) 配位数目(大写) 名称(氧化数); 配体名称 合 中心体
3) 配体间用“ · ”隔开,配体数用一、二等表示;
4) 中心体氧化数用罗马数字表示。
无机化学
15
类型
配位 酸
化学式
H[BF4]
H3[AlF6]
命名
四氟合硼(III)酸 六氟合铝(III)酸 氢氧化四氨合锌(II) 氢氧化一羟基 五水合铬(III) 四羟基合铝 (III)酸钾

第六章配位化合物结构与性质习题答案

第六章配位化合物结构与性质习题答案

第六章配位化合物结构与性质习题答案6150(1) [RhCl6]3-(2) [Ni(H2O)6]2+6001分裂成两组, d22yx 和2zd处于高能级,d xy,d yz,d xz处于低能级。

6002X-为弱场配体,CN-为强场配体, NH3介于两者之间。

6003(A)6004否6005(C)6006-2△06007此结论仅在O h场中,中心离子d 电子数n=4--7 时才成立。

6008-0.4△0×6 =-2.4△06009假设填T d空隙LFSE(Td)=[4×(-0.267△)+4×0.178△] = -0.356△假设填O h空隙LFSE(Oh)=[6×(-0.4△)+2×0.6△] = -1.2△Ni2+倾向填入稳定化能大的空隙中,所以NiAl2O4为反尖晶石。

6010小6011参看《结构化学基础》 (周公度编著) p.275 6012(1) t 2g 4 e g 2(2) - 0.4△ (3) │M s │=6π2h(4) μ= 26μβ6013(D) 6014能级次序: d 22y x -最高, 2d z 次之,d xy 再次之,d yz ,d xz 最低。

理由:①因z 方向拉长,相应xy 平面上的 4 个L 靠近,所以d 22y x -能级升高,d z2能级下降; ②因为 d xy 在xy 平面内,受L 的影响大,所以d xy 能级上升,而d yz , d xz 受xy 平面上的 4 个L 排斥小,所以能级下降。

③但因z 方向上方还有 1 个L,加之2z d 的"小环"在xy 平面上,可受到L 的直接作用,所以2d z 能级高于 d xy 能级。

6015O h 点群,说明Jahn-Teller 效应为 0,按强场排:( t 2g )6(e g )0LFSE =-2.4△0 6016(B), (D) 6017否 6018(B)6019(1) [Fe(CN)6]3-: μ= [n(n+2)]1/2μβ; n1= 1[FeF6]3-: n2= 5(2) 中心离子Fe3+为d5结构,配位场为八面体场。

结构化学课件6第六章 配位化合物的结构和性质

结构化学课件6第六章 配位化合物的结构和性质

八面体场,d轨道分裂成 eg 轨道(dz2 ,dx2-y2), t2g 轨道(dxy ,dxz ,dyz)。 将eg和t2g这两组轨道间的能量差用△o或10Dq来表 示, △o或10 Dq称为分裂能, 根据重心守恒原理, 则
2E(eg)+3E(t2g)=0 E(eg)-E(t2g)=△o 由此解得 E(eg)=0.6△o = 6Dq E(t2g)=-0.4△o =-4Dq
H2[HgI4]
K2[SiF6] K2[Co(SO4)2] [Ag(NH3)2]Cl [CrCl2(NH3)4]· 2H2O Cl· K[PtCl3NH3] [Co(NH3)5H20]Cl3
[Pt(NO2)(NH3)(NH2OH)(Py)]Cl
四碘合汞(ll)酸
六氟合硅(IV)酸钾 二硫酸根合钴(II)酸钾 氯化二氨合银(I) 二水合一氯化二氯四氨合铬(III) 三氯一氨合铂(II)酸钾 三氯五氨一水合钴(III)

K3[Fe(CN)6]
Fe3+:
3d5
µ =2.40
n=1
配合物的空间构型
配合物分子或离子的空间构型与配位数的 多少密切相关。 配位数
4 2 6 4 4 6 2
空间构型 直线形
四面体 平面正方形 八面体
NiCl 2 4
Ni(CN ) 2 4

Ag(NH3 ) 2
Fe(CN) 3 6
空间构型 例
[BeX4]2-四面体
Ni2+形成配位数为4的配合物时,既有四面体构型,也有平面正 方形构型的,前者,Ni2+采用的是dsp2杂化,后者,Ni2+采用的 是sp3 杂化。
四 配 位 的 配 平面正方形,μ=0 合 物
四面体,μ=2.83B.M.

06配位化合物的结构和性质

06配位化合物的结构和性质

06配位化合物的结构和性质【6.1】写出下列配合物中各配位体提供给中心金属原子的电子数目,计算中心原子周围的价电子总数:(a )()5552C H Feη- (b )24()Ni CN -(c ) []3242K PtCl C H H O ⋅⋅ (d ) ()22Co en Cl +⎡⎤⎣⎦ 解:(a )每个555C H η配位体提供给Fe 原子5个电子,Fe 原子周围18个电子。

(b )每个CN -提供给Ni+2个电子,Ni 周围18个电子。

(c )每个Cl 原子提供1个电子,24C H 提供2个电子,Pt 原子周围16个电子。

(d )每个en 提供4个电子,每个Cl -提供2个电子,3Co +周围18个电子。

【6.2】计算下列配合物中金属原子的配位数:(a ) ()5522Ti C H Cl (b ) ()34Ag NH +(c )()()663Cr C H CO (d ) ()22Co en Cl +⎡⎤⎣⎦ 解:(a )8, (b )4, (c )6, (d )6【6.3】判断下列配位离子是高自旋还是低自旋型,画出d 电子排布方式,计算LFSE (用0∆表示):(a ) ()226Mn H O + (b )()46Fe CN -(c ) 36FeF -解:兹将各项结果列于下表: 配位离子()226Mn H O +()46Fe CN -36FeF -d 电子排布↑↑↑↑↑自旋情况 HS LS HS LFSE (0∆) 0 2.4【6.4】试给出()336Co NH +配位离子的分子轨道能级图,指出配位离子生成前后电子的配布,并在能级图上表明分裂能位置。

解:【6.5】已知()336Co NH +的0∆为123000cm -,P 为122000cm -;()326Fe H O +上午0∆为113700cm -,P 为130000cm -,试说明这两离子的d 电子排布。

解:()336Co NH +()326Fe H O +()10cm -∆2300013700 ()1p cm -2200030000 HS 或LS LS ()0p ∆>HS ()0p ∆<d 电子排布()()03#2gg t e()()23#2gg t e【6.6】解释为什么水溶液中八面体配位的3Mn +不稳定,而八面体配位的3Cr +却稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制作:张思敬等
理学院化学系
13
Example 2
写出下列配合物的化学式:
(1)羟基· 水· 草酸根· 乙二胺合铬(Ⅲ)
(2) 氯· 硝基· 四氨合钴配阳离子(Ⅲ)
Solution
(1) [Cr(OH)(H2O)(C2O4)(en)]; (2) [Co(NH3)4(NO2)Cl]+
制作:张思敬等
理学院化学系
图6-3 [Cu(en)2]2+的结构
如果配位化合物的形成体是中性原子,配位体是CO分 子,这类配合物称为羰合物。如Ni(CO) 4, Fe(CO)5 。
制作:张思敬等
理学院化学系
7
3. 价键理论 基本要点
中心离子
中心离子(或原子)有空的价电子轨道可接受由配位 体的配原子提供的孤对电子而形成配位键。
Cu2+
H3N NH3
图6-2 [Cu(NH3)4]2+离子的结构
制作:张思敬等 理学院化学系 6
2. 特殊配合物(螯合物和羰合物)
每一个配位体只能提供一 个配位 原子的配位体称为单齿配体,而含有 两个或两个以上配位原子的配位体称 为多齿配体。能提供多齿配体的物质 称为螯合剂。由多齿配体形成的环状 结构的配合物称为螯合物,如 [Cu(en)2]2+。
{c(Cu 2+ ) / cQ }{c(NH 3 ) / cQ }4 - 14 K 解离 = = 4.78 ? 10 c{Cu(NH 3 )4 }2+ / cQ
当忽略浓度量纲时,可简化为:
c(Cu 2+ ){c(NH 3 )}4 - 14 K 解离 = = 4.78 ? 10 + c{Cu(NH 3 )2 4 }
制作:张思敬等 理学院化学系 15
1. 配离子的组成
可解离的配合物也称配盐,配盐由两部分组成:
配离子 由中心原子(或中心离子)与配位体以配位键结合的、带电荷 的原子团。配离子不再具有简单离子原有的性质; 带有与配离子异号电荷的离子 该部分仍保留其原有的性质。 配盐在水中可完全解离:如 Cu(NH3)4]SO4 → [Cu(NH3)4]2++SO42-
配位体
配位体的配位原子必须有孤对电子可提供,常见的配 位原子有C、N、S、O、Fˉ、Clˉ、Brˉ、Iˉ等。
在形成配位化合物时,中心离子所提供的空轨道进行杂化, 形成多种具有一定方向的杂化轨道,从而使配合物具有一 定空间构型。
制作:张思敬等 理学院化学系 8
空间构型
表6.1 配合物的杂化轨道与空间构型
制作:张思敬等 理学院化学系 17
配离子的稳定常数
对于同一类型的配离子,K解离越大,配离子越易解离即 越不稳定。因此,配离子的解离平衡常数又称作不稳定常数, 用K i (K 不稳)表示。
{c(Cu 2+ )}{c(NH 3 )}4 Ki = K 解离 = + c{Cu(NH 3 )2 4 }
配离子的稳定性可以用稳定常数Kf (Formation Constant 或K生成)表示,定义:
Co2(CO)8
八羰合二钴
制作:张思敬等
理学院化学系
12
Example 1
命名下列配合物和配离子: (1)(NH4)3[SbCl6]; (2)[Co(en)3]Cl3 (3)[Cr(H2O)4Br2]Br· 2H2O
Solution
(1)
(2) (3)
六氯合锑酸铵(Ⅲ)
三氯化三(乙二胺)合钴(Ⅲ) 二水合溴化二溴· 四水合铬(Ⅲ)
o 无机配体先于有机配体; o 无机配体中,先负离子后中性分子; o 同类配体的名称,按配原子元素符号的英文字母顺序排列。
制作:张思敬等 理学院化学系 10
配合物命名
服从一般化合物的命名原则。若与配位阳离 子结合的负离子是简单酸根,则该配合物叫做“某 化某”;若与配合物阳离子结合的负离子是复杂 酸根如SO42-、Ac-等叫做“某酸某”。若配合物 含有配阴离子(即配离子是负离子),则配阴离 子后加“酸”字,也叫做“某酸某”。
d2sp3 6 sp3d2 正八面体
[FeF6]3ˉ, [Cr(NH3)6]3+, [Ni(NH3)6]2+
理学院化学系 9
制作:张思敬等
6.1.2 配位化合物的命名
配离子命名
配位体名称列在中心离子 ( 或中心原子) 之前,用“合” 字将二者联在一起。每种配位体前用二、三、四等数字表示 配位体数目。对较复杂的配位体则将配位体均写在括号中, 以避免混淆。在中心离子之后用带括号的罗马字表示其氧化 值。例如:[Ag(NH3)2]+命名为二氨合银(I)配离子。 若配体不止一种,不同配体名称之间以中圆点“·”分开。 配体列出的顺序按如下规定:
第6章 配位化合物
Chapter 6 Coordination Compounds
本章教学要求
(1)了解配合物的组成、命名。 (2)了解配离子的解离平衡及其移动。
(3)了解配合物价键理论的基本要点以及配合 物的某些应用。
制作:张思敬等
理学院化学系
2
6.1 6.2
配合物概述 配合物在水中的解离与应用
理学院化学系 4
6.1.1 配合物的组成和结构
配合物是由中心离子(或中心原子)通过配位键与配 位体形成的化合物。根据配位体的不同,配合物分为简 单配合物和特殊配合物两类。
简单配合物
由单齿配体和中心离子(或中心原子)配位的配合物 称为简单配合物。
特殊配合物
配位体中至少有一个多齿配体和中心离子(或中心原 子)配位形成环状结构的配合物称为螯合物。还有中性金 属原子为配合物形成体,CO为配体的羰合物。
K3[Fe(CN)6]鉴定Fe2+ —— Fe3[Fe(CN)6]2(滕氏蓝沉淀) 近代通过结构分析普鲁士蓝和滕氏蓝为组成和结构 相同的同一种物质,分子式为 KFe [Fe(CN)6]•H2O
制作:张思敬等
理学院化学系
21
利用螯合剂与某些金属离子生成有色难溶的螯合物,作 为检验这些离子的特征反应。例如丁二肟是 Ni2+ 的特效试 剂,它与Ni作用,生成鲜红色的二(丁二肟)合镍内配盐。
制作:张思敬等
理学院化学系
3
6.1
配合物概述
配位化学是无机化学 的一个重要研究方向。由 于配位化学与生命科学的 结合,以及具有特殊功能 配合物的良好前景等,使 配位化学获得很大的发展。
配位化学的研 究对象是配位化合物, 也称为配合物。
制作:张思敬等
图6-1 Cu(DABT)Cl2配合物的分子结构, 配体DABT为2,2’-二氨基-4,4’-联噻唑 的简称
配位数 杂化轨道 2 sp sp3 4 dsp2 空间构型 直线形 实例 [Ag(NH3)2]+, [AuCl2]ˉ [Zn(NH3)4]2+, [Cu(CN)4]2-, [HgI4]2ˉ, [Ni(CO)4]
四面体形
平面四边形
[Ni(CN)4]2-, [Cu(NH3)4]2+, [AuCl4]ˉ, [PtCl4]2ˉ [Fe(CN)6]3ˉ, [PtCl6]2ˉ, [Cr(CN)6]3ˉ
降低中心离子的浓度
[Cu(NH3)4]2+ Cu2+ + 4NH3 + Na2S→ Na+ + S2- → CuS↓
降低配体的浓度
[Cu(NH3)4]2+ Cu2++4NH3 + HCl→ Cl- + H+ = NH4+
理学院化学系 19
制作:张思敬等
3 配合物及配位化学的应用
配合物及配位化学在以下几个方面有非常广泛的应用。
+ {c(Cu(NH 3 ) 2 4 } Kf = {c(Cu 2+ )}{c(NH3 )}4
显然,
Kf = 1/ Ki
制作:张思敬等 理学院化学系 18
2. 配离子解离平衡的移动
思考:在什么情况下可以促使配离子解离? 加入可以与配离子中的中心离子或配体生成更难解离 的化合物降低溶液中中心离子或配体的浓度,使配离子不 断解离。
离子的定性鉴定 电镀工业 冶金工业 生物医学
制作:张思敬等
理学院化学系
20
1. 离子的定性鉴定
浓氨水鉴定Cu2+ ——[Cu(NH3)4]2+ (深蓝色) KSCN鉴定Fe3+——[Fe(SCN)]2+ (血红色)
K4[Fe(CN)6]鉴定Fe3+ —— Fe4[Fe(CN)6]3(普鲁士蓝沉淀)
图6-4 二(丁二肟)合镍配合物的结构
制作:张思敬等
理学院化学系
22
2. 电镀工业方面
在电镀工艺中,为了使金属离子保持恒定的低浓度水 平。一般利用配合物的特性使金属离子形成配离子。
在电镀铜工艺中,一般不直接用CuSO4溶液作电镀液, 而常加入配位剂焦磷酸钾(K2P2O7),使形成[Cu(P2O7)2]6-配离 子。电镀液中存在下列平衡: [Cu(P2O7)2]6ˉ = Cu2++ 2P2O74- Cu2+的浓度降低,在镀件(阴极)上Cu的析出电势代数值减小, 同时析出速率也可得到控制,从而有利于得到较均匀、较光 滑、附着力较好的镀层。
配离子类似于弱电解质,是难解离的物质,在水溶液中仅 少量解离,并存在着解离平衡。 [Cu(NH3)4]2+ Cu2+ + 4NH3
制作:张思敬等 理学院化学系 16
配离子的解离平衡常数
[Cu(NH3)4]2+配离子总的解离平衡可简单表示为: [Cu(NH3)4]2+ Cu2+ + 4NH3 其总的解离常数K解离或Ki (Instability Constant)为
相关文档
最新文档