第七章配位化合物

合集下载

第七章 配位化合物

第七章  配位化合物

第七章
配位化合物
二、螯合物的一般性质
1.具有很高的稳定性(五原子或六原子环) 很少有逐级电离现象。 2.一般具有特征颜色、难溶于水、易溶于
有机溶剂。
第七章
配位化合物
这些特性被广泛用于金属离子的沉淀、 溶剂萃取分离、比色及定量分析、医疗 上的解毒剂等。
例如: 1、10—邻二氮菲与 Fe2+形成橘红色的螯合物, 用于鉴定Fe2+ 。
第七章
配位化合物
如果内界有多种配位体时,其顺序: 简单离子—复杂离子—有机酸根离子— 中性无机分子(按配位原子在字母表中 的顺序)—有机分子。
返回本章目录
第七章
配位化合物
第二节 配位化合物的价键理论
本节为选讲内容。
返回本章目录
第七章
配位化合物
第三节 配位与离解平衡 一、配位平衡
Cu2++4NH3 [Cu(NH3)4]2+ 加 Na2S有黑色CuS↓。
第七章
配位化合物
第七章 配位化合物
第一节 配合物的基本概念
第二节 配位化合物的价键理论 第三节 配位平衡
第四节 螯合物
第七章
配位化合物
第一节 配合物的基本概念
一、配合物的定义
1. 在CuSO4溶液中加入过量的NH3· 2O,再加入酒精, H
有深兰色的晶体 [Cu(NH3)4]SO4析出。[Cu(NH3)4]2+ 能稳定存在于[Cu(NH3)4]SO4的晶体和溶液中。
第七章
配位பைடு நூலகம்合物
2. HgCl2 + 2KI = HgI2↓(橘红色)+ 2KCl HgI2 + 2KI = K2[HgI4](无色溶液) [HgI4]2-能稳定存在于K2[HgI4]的晶体和溶液中。 此外,Ni(CO)4、 [PtCl2(NH3)2]等也是配合物。

无机化学7配位化合物

无机化学7配位化合物

第七章 配位化合物
二、配位化合物的组成 1.配合物的内界和外界 配合物根据其化学键特点和在水溶液中的离解方式不同 而分成两大部分:内界和外界。内界是配位键结合的配离子 部分,通常用方括号括起。外界是与配离子以离子键结合的 带相反电荷的离子,写在方括号外面。配位分子是只有内界 没有外界的反离子,内界配离子部分是由中心离子和配位体 组成。
第七章 配位化合物
2.中心离子(或中心原子) 中心离子是在配位个体中提供空轨道的金属离子或原子, 是配合物的核心部分,是孤对电子的接受体,如[Cu(NH3)4] 2+中的Cu2+就是中心离子。常见的中心离子多是过渡元素金属 离子如Fe2+、Cu2+、Zn2+等,这些离子的半径小,电荷多,吸 引孤对电子能力强。少数金属原子和少数高氧化态的非金属 元素也可作配合物的形成体,如Fe(CO)5]、Ni(CO)4中的Fe、 Ni及[SiF6]2-、[BF4]-中的Si(Ⅳ)、B(Ⅲ)等。
第七章 配位化合物
4.配位数 配合物中直接与中心离子配位键结合的配位原子的总数 称为该中心离子的配位数,即中心离子与配体形成配位键的 数目。中心离子的配位数取决于配离子所含配体的种类和数 目。 单齿配体形成配位键的数目等于配体的个数,多齿配体 形成配位键的数目等于配体数乘以配体中所含配位原子的数 目。如[Co(en)2(NH3)2]3+ 中的Co3+ 的配位数是6而不是4, 因为每个乙二胺配体含有两个N配位原子。通常中心离子的 配位数是2、4、6。有些中心离子在特定条件下具有一定的 特征配位数。
第七章 配位化合物
根据配位体中所含有配位原子的数目和与中心离子配位情况,配位体 还可分为以下几种。 单啮配位体:在一个配位体中,能与金属离子配位的点称为配位点, 只有一个配位点的配位体叫单啮配位体,如NH3,H2O,配位后阻碍了正 负离子间的吸引而使溶解度增大。 非螯合多啮配位体:配位体有多个配位点,但由于空间位阻使同一配 位体的几个配位点不能直接与同一个金属离子配位,例如PO43-,一般情况 下,每个配位体要和一个以上金属离子配位,而每个金属离子为了满足配 位要求又要与若干个这样的配位体配位,这样形成的多核配位化合物,往 往是不溶性的沉淀,所以非螯合多啮配位体在化学中常作沉淀剂。 螯合配位体:一个配位体中的几个配位点能直接相同一个金属离子配 位,称为螯合配位体,如EDTA。不带电的单核螯合分子一般在水中的溶 解度很小,但能溶于有机溶剂中,这种配位体在水溶液中是一种沉淀剂, 在有机溶液中能起萃取络合剂的作用,如乙酰丙酮。带电的单核螯合离子 一般很难从水溶液中沉淀出来,这种配位体可作掩蔽剂,如酒石酸盐、 EDTA。

第七章 配位化合物

第七章 配位化合物

螯合物中的环称为螯环。多基配位体又 称为螯合剂。 螯合物具有特殊的稳定性,其中又以 五员环、六员环最稳定,环越多越稳定。 例:稳定性 [Cu(EDTA)]2- > [Cu(en)2]2+ >[Cu(NH3)4]2+
7.1.2 配合物的命名
1.习惯名 K4[Fe(CN)6] K3[Fe(CN)6] Fe4[Fe(CN)6]3 Na3[AlF6] [Ag(NH3)2]+ 亚铁氰化钾(黄血盐) 铁氰化钾(红血盐) 亚铁氰化铁(普鲁士蓝) 冰晶石 银氨离子
配合物 由一个离子(或原子)与几个相同的
或不同的离子(或分子)以配位键相结合的 复杂结构单元 AgCl· 3 2NH CuSO4· 3 4NH 溶于水后: AgCl· 3 → [Ag(NH3)2]+ + Cl2NH CuSO4· 3 →[Cu(NH3)4]2++SO424NH
[ NH3 Ag+ NH3 ]+
Ag+ + 2CN初始: 0 平衡: y 0 2y
[Ag (CN)2 ]0.1 0.1- y mol· -1 L
0.1-y ≈ 0.1
y3
所以
0.1 8 1 2.68 10 mol L 21 4 1.3 10
[Ag(CN)2]- 比[Ag(NH3)2]+ 稳定性
7.3.3 配位平衡的移动
1. 离解程度 内轨型配离子比外轨型配离子更稳定,
离解程度小。
2. 磁性 物质的磁性的大小可用磁矩μ来表示, 它与所含成单电子数n的近似关系如下:
B
n(n 2)B
称为Bohr(玻尔)磁子,是磁矩单位.
磁性实验可以用来测定是外轨型还是内 轨型配合物。外轨型未成对电子数不变,而 内轨型未成对电子数发生了变化。

第七章_配位化合物

第七章_配位化合物

第七章 配位化合物第一节 配合物的组成及命名一、配合物的组成 一、配合物配离子:由两种不同离子或一种离子与一种分子形成的复杂离子称之。

如:[]+23)(NH Ag 、[]+243)(NH Cu 、[]-36)(CN Fe 、[]-46)(CN Fe配合物:含配离子的化合物。

如:[]Cl NH Ag 23)(、[]443)(SO NH Cu 、[]63)(CN Fe K 、[]64)(CN Fe K 有时也把配离子笼统称为配合物。

二、配合物的组成配合物结构较复杂,但一样都有一个成份作为配合物的核心,其它部份围绕这一核心有规那么地排列。

(1)中心离子(配合物的形成体):位于配合物中心的离子或原子。

多为具有空轨道的过渡元素的金属离子(d 区、s d 区)。

少数为高氧化数非金属原子,如:[]-26SiF 、[]-6PF 。

个别为中性原子,如:[]4)(CO Ni 、[]5)(CO Fe 。

(2)配位体★含义:与中心原子结合的分子或离子。

多为含孤对电子的分子或离子。

如3NH 、O H 2、-Cl 、-CN 、-SCN 等。

★分类:依照一个配体中所含配位原子数量的不同,可将配体分为单齿配体和多齿配体。

单齿配体:一个配位体只含一个配位原子。

多齿配体:一个配位体只含两个或两个以上的配位原子。

(3)配位原子:配位体中直接与中心离子结合的原子。

配位原子大多为电负性较大的非金属原子,如:N 、O 、F 、C 、S 、x 等。

(4)配位数:★含义:直接与中心原子结合的配位原子数。

单齿配体:配位数=配位体数。

多齿配体:配位数=配位体数×一个配位体所含配位原子的个数(齿数)。

如:[]+22)(en Pt★阻碍因素中心离子正电荷:电荷数↑,配位数↑ 半径:中心离子半径↑,配位数↑配体半径↑,配位数↓外界因素:浓度,配体浓度高有利于形成高配位数。

温度,温度低有利于形成高配位数。

★体会:中心离子 +1 +2 +3 +4 配位数 2 4(6) 6(4) 6(8)(5)内界:即配离子,用“[ ]”括起。

第七章 配位化合物

第七章 配位化合物

1 1.73
2 2.83
3 3.87
4 4.90
5 5.92
如:实验测出 [FeF6]3﹣的µ= 5.9 → n = 5 可知它是外轨型配合物 再如: 再如:实验测出 [Fe(CN)6]3﹣的µ= 1.9 → n = 1 可知它是内轨型配合物 外轨型,中心离子电子结构未变, 外轨型,中心离子电子结构未变,单电子数未变 内轨型,中心离子电子结构改变, 内轨型,中心离子电子结构改变,单电子个数改变


4
7.1.2 配位化合物的组成
[Cu(N 配 [Cu(NH3)4] SO4
中 心 离 子 配 位 原 子 界 位 体
配 离 子 电 荷
2+
配 位 数
外 界
配位化合物
5
中心离子(原子) ① 中心离子(原子):位于配位化合物的中心位置的离子 或原子,是配合物的核心, 或原子,是配合物的核心, 通常是某些金属阳离子或金属原子以及高 氧化态的非金属元素
和中心离子配合的负离子或分子, ② 配位体: 和中心离子配合的负离子或分子,简称配体
③ 配位原子:直接与中心原子配位的原子。配位原子上均 配位原子:直接与中心原子配位的原子。
有孤对电子, 有孤对电子,N、O、S、Cl、C、F、Br、I等 Cl、 Br、 直接与中心离子(或原子) ④配位数:直接与中心离子(或原子)结合成键的配位原子 数目,常见的为2 数目,常见的为2、4、6。
14
§7.2 配合物的化学键理论
中心离子和配位体之间是怎样结合的? 中心离子和配位体之间是怎样结合的? 关于配合物的化学键理论主要有: 关于配合物的化学键理论主要有: 价键理论√ 晶体场理论 配位场理论 分子轨道理论
15

第七章_配位化合物

第七章_配位化合物

第七章 配位化合物
•(2)配体命名次序: • 简单负离子-复杂负离子-有机酸根离子-中性分子 (H2O - NH3 -有机分子);不同配体之间用中圆点分开。 例如:H2[PtCl6] 六氯合铂(Ⅳ)酸 [Cr(H2O)4Cl2]Cl 一氯化二氯· 四水合铬(Ⅲ) (3)配体数用中文数字“一、二、三·· ·”表示,标在配体名 · 称之前。 (4)中心离子的电荷数用罗马数字“Ⅰ、Ⅱ 、 Ⅲ 、 Ⅳ” 标明,用圆括号括起来标在中心离子名称之后。
课本220页:表7-2 杂化轨道类型与配合物
–14 –
第七章 配位化合物
第七章 配位化合物
2、d 2sp3杂化:
[Fe(CN)6]3-,Fe3+:3d 5 与CN-配位时,Fe3+采取的是d2sp3杂化。
[Zn(NH3)4]2+, Zn:3d 104s2 →Zn2+:3d 10(4s04p0) 在NH3作用下,Zn2+采取了sp3杂化,形成正四 面体型的杂化空轨道,与配体中NH3中N原子的4对 孤对电子形成四个配位键。空间构型:正四面体 再如: [Ni(NH3)4]2+、 [CoCl4]2-、 [HgI4]2-
夹心配合物示意图
Fe
根据成环原子数目,可以分成四元环、五元环、六元 环、七元环,其中五元环和六元环最稳定,而且,环数 越多越稳定,[Cu(en)2]2+中有两个五元环,[CaY]2-有五 个五元环。 大多数螯合物都有特征颜色,难溶于水,所以分析中 常用EDTA来做配位滴定,其二钠盐易溶于水。
第七章 配位化合物
第七章 配位化合物
第七章
配位化合物 P208
1、掌握配合物的定义、组成及命名
2、掌握配合物价键理论的要点,并能运用杂化轨道理 论解释配离子的空间构型;

大学化学 第七章 配位化合物''

大学化学 第七章 配位化合物''

College Chemistry
3.配体类型相同,按配位原子元素符号英文字母顺 序排列;[Co(H2O)(NH3)5]Cl3 三氯化五氨·一水合钴(Ⅲ) 4.配体类型、配原子都相同,原子数少的在前;
[Pt(Py)2(en)2]Cl2 氯化二吡啶·二乙二胺合铂(Ⅱ)
第七章 配位化合物
大 学 化 学
(二)螯合物(chelate)
多齿配体与中心离子形成的具有环状结构的 配合物。 最常见的螯合剂:en,EDTA
第七章 配位化合物
大 学 化 学
College Chemistry
五个五元环
第七章 配位化合物
大 根据成环原子数目,可以分成四元环、五元 学 环、六元环、七元环,其中五元环和六元环最稳 化 定,而且环数越多越稳定。[Cu(en)2]2+中有两个五 学 2-
元环, [CaY] 有五个五元环。分析中常用 EDTA 来做配位滴定。 大多数螯合物都有特征颜色,难溶于水。
College Chemistry
第七章 配位化合物
大 学 化 学
(三)金属有机化合物: 金属原子与有机配体中的C原子结合而形成的 配合物。
1973 年 慕 尼 黑 大 学 的 恩 斯 特 ·奥 托 ·菲舍尔及伦敦帝国学院的杰弗 里 ·威尔金森爵士被授予诺贝尔化 学奖,以表彰他们在有机金属化学 领域的杰出贡献。
2
College Chemistry
反过来,根据配离子的电荷数和配体的电荷 数,也可以推算出中心离子的电荷数。
第七章 配位化合物
大 配合物的种类非常多,主要有两大类: 学 化 (一)简单配合物(complex) 学
单齿配体与中心离子形成的配合物。
三、配合物的类型
College Chemistry

第七章 配位化合物

第七章  配位化合物
第七章 配位化合物 配位化合物是一类由中心金属原子 (离子)和配位体组成的化合物。第一 个配合物是1704年普鲁士人在染料作坊 中为寻找蓝色染料,而将兽皮、兽血同 碳酸钠在铁锅中强烈煮沸而得到的,即 KFe[Fe(CN)6]。1798年Co[(NH3)6]Cl3BE 被发现。1893年瑞士无机化学家维尔纳 首先提出配合物正确化学式和成键本质。
sp 3d 2杂杂 sp3d 2杂杂杂杂
3d
3d 7
NH3 NH3 NH3 NH 3 NH 3 NH 3
8
外轨型配合物,高自旋 µ = 3.87B.M. 八面体构型
说明 Co(CN)64–不稳定,易被氧化
4d 4p 4s 3d 7
激激 3d6
d 2 sp 杂杂 3d
CN
-
Co(CN)64 –氧化成Co(CN)63–
(3).多核配合物 一个配位原子与二个中心离子结合所成的配合物称多核 配合物,例如:
(4).金属有机配合物 有机基团与金属原子 之间生成碳—金属键 的化合物。A)金属与 碳直接以σ键合的配合 物;B)金属与碳形成 不定域配键的配合物。
7-2 配合物的化学键理论
用来解解释配合物化学键的本质,配合物的结构、稳定性以及一 般特性(如磁性、光譜等)的主要理论有①价键理论、②晶体场理 论、③分子轨道理论。 一,价键理论
4d 4p 4s
4d
CN CN - CN
-
-
CN - CN -
(3).磁性——可通过磁矩来判断内轨型配合物或外轨型的 配合物
形成外轨型的配合物,中心离子电子结构未发生变化,单电子数 与原来自由离子相同; 而形成内轨型的配合物,中心离子的成单电 子数一般会减少,比自由离子的磁矩相应降低,所以可通过磁矩来判 断内、外轨型配合物。. 物质的永磁矩主要是电子的自旋造成的,永磁矩µ与原子或分子中 未成对电子数n有如下关系式:

第七章--配位化合物PPT课件

第七章--配位化合物PPT课件

投入到中心离子的内层空轨道中,所以一般形成外轨型配
合物;CN-、CO等电负性小、变形性大的配位原子,提供
的电子易于投入到内层空轨道中,形成内轨型配合物(螯
合物一般为内轨);NH3、Cl-没有明显的规律;
.
13
• B、配合物的稳定性:指水溶液中的解离程度, 用K不稳或K稳来衡量。价键理论认为(定性): 对同一中心离子或同一配体,配位数相同时,内 轨型配合物较外轨型配合物更稳定,如Co(NH3)62+ + O2 Co(NH3)63+,解释:内轨型配合物极性小, 外轨型配合物极性大,所以外轨型配合物易为水 拆 散 而 解 离 。 例 如 FeF63- ( 外 轨 , 2×1015 ) 、 Fe(CN)63-(内轨1042),FeF63- + 6CN- Fe(CN)63+ 6F-。
.
1
第二节 配合物的基本概念
• 一、配合物的定义
• 它是由形成体(中心体)与配体以配位键结合而成的复杂化合物。
• 二、配合物的组成
• 以[Cu(NH3)4]SO4和K3[Fe(CN)6]为例说明其组成和一些基本概念。 • 1、内、外界:内界(配离子)――[Cu(NH3)42+]、[Fe(CN)6]3-;外界
.
+1
+2
+3
+4
(Ag+、Cu+) (Cu2+、Zn2+、Hg2+) (Fe3+、Co3+) (Si4+、Pt4+)
CN
2
4、6
6、4
6、8
• 6、配离子的电荷:中心离子与配体电荷的代数和,如 [Pt(NH3)4][PtCl4]、[Fe(C2O4)3]3-。

第七章配位化合物(简)案例

第七章配位化合物(简)案例

CH2—COOH
CH2—COOH
多齿配体与中心离子配位后形成的配合物具有环
状结构,例:[Cu(en)2]2+
H2C—H2N Cu NH2—CH2CO 两个五原环
O CH 2 H2C—H2N NH2—CH2 CO — CH 22 例:[Zn(EDTA)] O N (五个五原环) Zn CH2 O N CH2 CO CH2 CH2 O CO
[Ag(NH3)2]OH H2[SiF6] Na[Pt(NH3)Cl5] [Ag(NH3)2]Cl Na3[AlF6] Ni(CO)4
氢氧化二氨合银(I) 六氟合硅(Ⅳ)酸 五氯•氨合铂(Ⅳ)酸钠 氯化二氨合银(I) 六氟合铝(Ⅲ)酸钠 四羰基合镊(0)
四、 配离子的空间构型 例:[Ag(NH3)2]+ 配位数为2, 直线型 H3N——Ag——NH3
x= 1.4×10 -9
三、配位平衡的计算(略)
例:分别计算0.1mol/L [Ag(NH3)2]+中和0.1mol/L[Ag(CN)2]中Ag+ 的浓度,并说明 [Ag(NH3)2]+ 和 [Ag(CN)2]- 的稳定性。
解: Ag+ + 2NH3 初始: 0 0 平衡: x 2x [Ag (NH3)2 ]+ 0.1 mol· L-1 0.1- x x 0 . 1 7 1 . 1 10 2 x(2x)2 0.1-x ≈ 0.1
三、配合物的命名
1、习惯名称 K4[Fe(CN)6]: 黄血盐
Fe(C5H5)2: 二茂铁
K3[Fe(CN)6]: 红血盐 K[PtCl3(C2H4)]:蔡斯盐
2、系统命名
• 遵循无机化合物命名规则: 阴离子在先,阳离子在后 酸、 碱、 盐 配酸、配碱、配盐

07第七章 配位化合物

07第七章 配位化合物
Cu2+ + 4NH3 +
4H+ 4NH4+
[Cu(NH3)4]2+
溶液的酸度越强,配离子越不稳定; 保持溶液的酸度不变,配体的碱性越强,配离子 越不稳定; 配离子的Ks越大,抗酸能力越强
配位平衡与溶液酸度的关系
水解效应:因[OH-]浓度增加,金属离子与OH结合致使配离子解离的作用
在不产生氢氧化物沉淀的前提下,适当提高溶液的pH 以保证配离子的稳定性
[Cu(en)2]2+:[Cu2+]=6.3×10-8mol· -1 L CuY2-:[Cu2+]=1.4×10-10mol· -1 L
Cu2+ +
NH3
Ka1
[Cu(NH3)]2+
[Cu(NH 3 )]2 K a1 [Cu 2 ][ NH 3 ]
[Cu(NH3)]2+ +
NH3
Ka2
[Cu(NH3)2]2+
四硝基二氨合钴(Ⅲ)酸钾
NH4[Cr(NCS)4 (NH3)2] 四(异硫氰酸根) 二氨合铬(Ⅲ)酸铵 K2[Pb(SNC)2Cl4] [Ni(CO)4 ] H2[PtCl6 ] [PtNH2(NO2)(NH3)2]
四氯二(硫氰酸根)合铅(Ⅳ)酸钾
四羰基合镍(0) 六氯合铂(Ⅳ)酸 氯基硝基二氨合铂(Ⅱ)
外 层
注:内外层靠离子键结合,相当于盐。当向 [Cu(NH3)4]SO4溶液加入BaCl2时,有BaSO4 白色沉淀生成
(一)中心原子 离子—— 原子—— (二)配体和配位原子 中性分子—— 负离子——
Cu2+、Ni2+、Zn2+ Ni
中心离子或原子的价电子层有空轨道

第七章 配位化合物

第七章 配位化合物

7.1 配合物的组成
1.配合物的组成
配合物由中心离子(原子)和配体组成。 中心离子主要是金属离子。 配体是指与中心离子有化学键作用的
分子或基团。 配体与中心离子间的化学键称为配位键。
例如在右图中, Fe2+离子是中心离子, H2O分子是配体, SO42-离子NH4+离子都不是配体。 (硫酸根与配合物阳离子之间存在氢键(虚线))
每个硫酸根离子同时连接着两个Cu2+离子。 同时与两个或多个中心离子形成配位键的配体,称为桥配体, 意思是指它像桥梁连接着相邻的中心离子。
3.配体的配位方式
1)单齿配位 配体的一个配原子与一个中心离子
配位,称为单齿配位。
2)螯合配位(双齿,多齿)
吡啶与铜的单齿配位
多齿配体可采取螯合配位方式与一个中心离子配位,
实例
2
sp
直线型
A g (C N )2-
3
sp2
平面三角型
H
g
I
3
4
sp3
正四面体型
Z
Байду номын сангаас
n (N
H
) 2+
34
4
dsp2
平面正方型
P
tC
l
2 4
-
6
sp3d2
正八面体
F e(H
2O
)
2 6
6
d2sp3
正八面体
F
e (C
N
)
4 6
3)碳-金属配位键 碳原子上含孤对电子的原子轨道(杂化轨道),也可以与
金属离子的空轨道重叠,形成碳-金属配位键。 含有碳-金属配位键的化合物称为金属有机化合物
2)金属离子的杂化轨道

第七章 配位化合物

第七章 配位化合物
例如 ,测定尿中铅的含量 ,常用双硫腙与 Pb2+ 离子生成红色螯合物 ,然后进行比色分析 ;而 Fe3+可用硫氰酸盐和其生成血红色配合物来 检验。
第一节 配位化合物的基本概念 第二节 配位化合物的价键理论简介 第三节 配位平衡 第四节 螯合物 第五节 与医药学有关的配位化合物
第一节 配合物的基本概念
例如:
(1)单齿配体 NH3 Ag+ + 2NH3 → [H3N:→ Ag ←:NH3]+ (2)多齿配体 乙二胺NH2 - CH2-CH2-NH2 (en)(2
个),EDTA(6个)
有少数配体虽含有两个配原子,但两个配原 子距离太近,只能选择其中一个配原子与中 心原子形成一个配位键,故仍属于单齿配体。
如:[Ag(NH3)2]+ 、 [Cu(NH3)4]2+、 [ Fe(CN)6]3- 、Ni(CO)4 、[Co(NH3)3Cl3 ] 配离子电荷 分别为 +1、+2、-3 、0 、0
三、配合物的命名
内界的命名次序是: 配位体数—配位体名称—合—中心离子(中心离子氧化数)
配体命名原则:
(1)先无机配体,后有机配体
cis - [PtCl2(Ph3P)2] 顺-二氯 ·二 (三苯基磷)合铂(II)
(2)先阴离子配体,后中性分子配体;
K[PtCl3NH3] 三氯·一氨合铂(II)酸钾
(3) 同类配体(同为阴离子配体或同为中性分子配体) 按配位原子元素符号的英文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(III)
第七章 配位化合物
配位化合物在生命过程中的重要作用
1、生物体内各种酶都是金属螯合物 。
2、生物体内许多蛋白质是金属螯合物 。如 铁是血红蛋白和肌红蛋白的组成成份 ,在体内 参与氧的运输和贮存。铁在血红蛋白、肌红 蛋白和细胞色素分子中都以 Fe2+ 与原卟啉环 形成配合物的形式存在。

第七章 配位化合物

第七章 配位化合物
c
b
b a c c a
b
a b
a
一反二顺: 3 种
b
c b 总之,配体数目越多,种类越多,异构现象则越复杂。 -18-
2°旋光异构
配体的相互位置关系不一致形成几何异构,当相
互位置的关系一致时,也可能不重合。比如人的 两只手,各手指、手掌、手背的相互位置关系一 致,但不能重合,两者互为镜像。 配体相互位置关系相同,两者互为镜像但又 不能重合, 则互为旋光异构。
可重合,不存在旋光异构
不能重合,互为旋光异构
-19-
旋光异构体的熔点相同,但光学性质不同。
自然光
起偏镜
偏振光
旋光物
发生偏转
-20-
互为旋光异构体的两种物质, 使偏振光偏转的方向不同。使偏振光向左(逆
时针)旋转的称左旋异构体;使偏振光向右旋转(顺时针)的称左旋异构体。 例如:存在于烟草 中左旋尼古丁的毒 性要比人工合成出 来的右旋尼古丁毒 性大得多。
不同的旋光异构体在生物体内的作用不同。
顺式 Ma2b2c2 有旋光异构体,如下图所示:
b b
a a c c
a
a a c c b b
a b c b c d
-21-
4 配位的正四面体: Mabcd 旋光异构体:
d
7.1.2 配合物的命名
基本遵循一般无机化合物的命名原则
1.整体命名:先阴离子,后阳离子
配离子为阳离子 外界是简单阴离子(OH-、Cl-),“某化某” [Ag(NH3)2]OH [Pt(NH3)6]Cl4
-9-
常见单齿配体 单击此处编辑母版标题样式 中性分子 H2O NH3 CO CH3NH2 配体 水 氨 羰基 甲胺 单击此处编辑母版文本样式 O N C N 配位原子 第二级 1. 镧系、锕系元素通性 阴离子 F Cl- Br- I- OH- CN- NO2第三级 配体 氟 氯 溴 碘 羟基 氰 硝基 第四级 2. 我国稀土元素资源和提取 O C N 配位原子 F Cl Br I 第五级 SCNNCS阴离子 ONO3. 核反应类型 配体 亚硝酸根 硫氰酸根 异硫氰酸根 O S N 配位原子

基础化学第七章 - 配位化合物ppt课件

基础化学第七章 - 配位化合物ppt课件

30Zn2+
[Ar]3d104s04p0
1. [Zn(NH3)4]2+3d Zn2+:3d10
3d [Zn(NH3)4]2+:
4s
4p
sp3
NH3中N提供
[Zn(NH3)4]2+ 特点:中心原子d电子不变化 中心原子杂化情况: sp3杂化 空间构型:正四面体
[Zn(NH3)4]2+ NH3
Zn2+
配体:
NH3 ,配位原子: N
配位数:
6
K4[Fe(CN)6] 六氰合铁(Ⅱ)酸钾 配体: CN- ,配位原子: C 配位数: 6
H2[PtCl6] 六氯合铂(Ⅳ)酸 配体: Cl- ,配位原子: Cl 配位数: 6
[Co(ONO)(NH3)5]SO4 硫酸亚硝酸根•五氨合钴(Ⅲ)
配体: NH3,ONO-
[PtCl5(NH3)] 五氯•氨合铂(V) 配体 Cl-,NH3 配位原子 Cl,N 配位数 6
例题:p110,2-6
[ Pt (NH3) 4(NO2) Cl ]
氯•硝基•四氨合铂(II)
配体
Cl-,NO2 - , NH3
配位原子 Cl,N,N 配位数 6
例题:p110,2-7
[Co(ONO)(NH3)5]SO4 硫酸亚硝酸根•五氨合钴(Ⅲ) 配体 NH3 , ONO配位原子 N , O 配位数 6
2 、稳定常数Ks
Ks Cu 2+ + 4 NH3
[Cu (NH3)4]2+
Ks=
[Cu (NH3)42+] [Cu 2+] [NH3]4
例题:
请判断[Fe(H2O)6]3+( µ =5.70 ) 中 Fe3+

第七章 配位化合物

第七章  配位化合物

n(n 2)
波尔磁子(μB)。
分别测定自由离子和配合物的磁矩,确定各 自的单电子数n,若二者单电子数一致则为 从外轨型,不同则为内轨型。例如[FeF6]3配离子,实验测得磁矩为5.88μB,与根据 上式n = 5时所计算出磁矩理论值5.92μB接 近,由此可推知[FeF6]3-保留着5个单电子, 属于外轨型配离子。
1. 中心原子与配体中的配位原子之间以配位 键结合,即配位原子提供孤对电子,填入中心原 子的价电子层空轨道形成配位键。配体为电子对 给予体 ( Lewis碱 ),中心原子为电子对接受体 (Lewis酸),二者的结合物——配离子或配位分子 是酸碱配合物。
2. 为了增强成键能力和形成结构匀称的配 合物,中心原子所提供的空轨道首先进行杂化, 形成数目相等、能量相同、具有一定空间伸展 方向的杂化轨道,中心原子的杂化轨道与配位 原子的孤对电子轨道在键轴方向重叠成键。
[Ni(NH3)4]2+
3d
sp3
[Ar]
电子由 NH3 中N提供
外轨配合物
dsp2
-
[Ni(CN)4]2-
3d
4p
[Ar]
电子由 CN 中C提供
内轨配合物
4. 26Fe2+的价层电子组态为3d6,磁矩μ=4.9μB, 说明有4个单电子。形成6配位化合物时有2种不 同的杂化类型:[Fe(CN)6]4-,μ=0 μB。说明 配体CN-对中心原子d电子产生较强的排斥作用, 致使其重排,空出2个3d轨道,然后进行d2sp3杂 化,d2sp3杂化轨道接受来自CN-中C原子提供的 6对孤对电子,形成六个配位键,空间构型为正 八面体。由于该配离子无未成对电子,具有反 磁性,内轨型。过程如下所示:
3d

第七章 配位化合物

第七章  配位化合物
(4) 配分子:无外界。命名如配离子。
2. 内界命名 (1) 内界命名顺序:
配体数目+配体名称 + 合 + 中心体名称 + (中心体氧化数)
配体数目:一、二、三表示 配体名称:不同配体用“•”分开 中心体氧化数:用罗马数字I、II、III等表示。
[Ag(NH3)2 ] + 二氨合银(I)(配离子) [Fe(CN)6]3- 六氰合铁(Ⅲ)(配离子) [Cu(NH3)4] 2+ 四氨合铜(Ⅱ)(配离子) [PtCl2(NH3)(C2H4)]:???
2. d2sp3杂化 [Fe(CN)6]3-,Fe属第VIIIB 族,第四周期
Fe:3d64s2 → Fe3+:3d5(4s04p04d0)
例7.4 实验测定配合物 K3FeF6 的磁矩为5.88 B.M, 而配合物 K3Fe(CN)6 的磁矩为2.4 B.M。 判断上述两种配合物是内轨型还是外轨型。
c
配位数相同时,解离常数越大,配合物越不稳定。 为了反映配离子解离平衡的特殊性和书写方便, 把解离常数称作不稳定常数。
第六章作业
2. 分子中只存在σ键的有:SiH4、CH4、 SiO2、NH3
7. 化合物
中心原子的 杂化轨道类型
分子的空 分子有 间构型 无极性
OF2 sp3(2)不等性杂化 V型

SiH4
sp3等性杂化 正四面体

HgCl2 sp等性杂化
直线型

SiHCl3
sp3杂化
四面体

PCl3 sp3(1)不等性杂化 三角锥
1. 解离常数 K不稳 (dissociation constant)
配离子在水溶液中解离成中心体和配体两部分,

070 第七章(配位化合物)

070 第七章(配位化合物)
Fe(CO)5
硫酸四氨合铜(Ⅱ) 六氰合铁( Ⅱ )酸钾 六氯合铂(Ⅳ)酸 二氢氧化四氨合铜(Ⅱ) 五氯•一氨合铂(Ⅳ)酸钾 硝酸一羟基•三水合锌(Ⅱ) 三氯化五氨•一水合钴(Ⅲ)
五羰基合铁
三硝基•三氨合钴(Ⅲ)
乙二胺四乙酸根合钙(Ⅱ)
(1) (NH4+)3[SbCl6]; (2) [Co(en)3]Cl3;
Kf =Kf1 Kf2 Kf3 Kf4 10





12.59
多重平衡规则的运用
1.2 累积平衡常数
1 =Kf1

2 =Kf1 Kf2

……
n =Kf1 Kf2 Kf3

Kfn

等于逐级稳定常数的乘积
1.3 配离子的不稳定常数( K d 或 K不稳 )
解: AgI(s) + 2S2 O3
2
[Ag(S2O3 )2 ] I
3

K Kf

([Ag(S O ) ] 2 3 2
3
)
Ksp ( AgI )
17

2.9 10 8.3 10
13
2.4 10
3
[Ag(S2 O3 )23 ][I ] 0.01 0.01 3 K = 2.4 10 2 2 2 2 [S2 O3 ] [S2 O3 ]
因为:K=9.1×10-10,说明AgI在NH3· H2O 中的溶解度很小,即x 很小。 2
x 10 9.110 所以:6.0-2x≈6.0 则: 2 (6.0)
x 1.8 10 mol L
4
1
(2) 平衡时
K Kf

AgI(s) + 2CN 0.010-2y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 配位化合物 含有配离子或形成配分子的化合物叫配合物。 配合物和配离子无严格区分,配离子也可叫配合物。 维尔纳 Werner, Alfred 1866—1919 “无机化学中的凯库勒” “真正的雄心壮志几乎全是智慧、辛勤、 学习、经验的积累,差一分一毫也不可能达到 目的。至于那些一鸣惊人的专家学者,只是人 们觉得他们一鸣惊人。其实他们下的功夫和潜 在的智能,别人事前是领会不到的。”
三. 配合物的类型
1. 简单配合物 单齿配体与中心离子配位形成的配合物。 [Ag(NH3)2]Cl [Co(NH3)5(H2O)]Cl3 2. 螯合物 多齿配体与中心离子配位形成的具有环状结构 的配合物。 根据成环原子数目,可以分成四~七元环, 其中五元环和六元环最稳定,环数越多越稳定。 大多数螯合物都有特征颜色,难溶于水, 易溶于有机溶剂。
例7.4 实验测定配合物 K3FeF6 的磁矩为5.88 B.M, 而配合物 K3Fe(CN)6 的磁矩为2.4 B.M。 判断上述两种配合物是内轨型还是外轨型。 提示:比较杂化前后中心离子单电子数是否相同,判断杂化类型。
基态Fe3+:3d5(4s04p04d0) K3FeF6是外轨型配合物,Fe3+采取sp3d2杂化; 同理可求得K3Fe(CN)6中有1个未成对电子, 即K3Fe(CN)6中Fe3+的原子轨道发生了重排。 K3Fe(CN)6是内轨型配合物,Fe3+ 采取d2sp3杂化。
(三)配位数为6的配合物:正八面体型 1. sp3d2杂化
[FeF6]3-, Fe属第VIIIB 族,第四周期
Fe:3d64s2 → Fe3+:3d5(4s04p04d0)
2. d2sp3杂化 [Fe(CN)6]3-,Fe属第VIIIB 族,第四周期
Fe:3d64s2 → Fe3+:3d5(4s04p04d0)
① 多数中心体可用上述方法判断内、外轨型; 但中心体为d1、d2、d3时,一般为内轨型杂化。 ② 卤素离子、 OH-、 H2O配位时常成外轨型配合物; CN-、CO配位时常形成内轨型配合物。 ③ 内轨型配合物次外层d轨道参与杂化,能量较低, 内轨型配合物比外轨型配合物稳定。 如稳定性[Fe(CN)6]3- > [FeF6]3-
配合物常见杂化类型
配位数 杂化轨道 空间构型 类型 示例 2 sp 直线型 外轨型 Ag(NH3)2+ sp3 正四面体 外轨型 Ni(NH3)42+ 4 dsp2 平面四方 内轨型 Ni(CN)426 sp3d2 d2sp3 正八面体 外轨型 正八面体 内轨型 FeF63Fe(CN)63-
§7.3 配合物在溶液中的解离平衡
(2) 内界多种配体共存时命名顺序
① 先无后有 无机配体与有机配体共存时,无机在前; K[Pt PyCl3] 三氯· 一吡啶合铂(Ⅱ)酸钾 ② 先阴后中 多种无机配体共存时,阴离子配体在前; K[Pt NH3Cl3] 三氯· 一氨合铂(Ⅱ)酸钾 ③ 同类配序 配体类型相同,按配位原子元素符号的英文 字母顺序排列; [Co(H2O)(NH3)5]Cl3 三氯化五氨· 一水合钴(Ⅲ)
配体数目:一、二、三表示 配体名称:不同配体用“•”分开 中心体氧化数:用罗马数字I、II、III等表示。
[Ag(NH3)2 ] + 二氨合银(I)(配离子) [Fe(CN)6]3六氰合铁(Ⅲ)(配离子) [Cu(NH3)4] 2+ 四氨合铜(Ⅱ)(配离子) [PtCl2(NH3)(C2H4)]:???
(2) 配酸:外界是H+: 某酸
H2[PtCl6] 六氯合铂(IV)酸 (3) 配碱:外界是OH-:氢氧化某 [Ag(NH3)2]OH 氢氧化二氨合银 (4) 配分子: 无外界。命名如配离子。
2. 内界命名 (1) 内界命名顺序: 配体数目+配体名称 + 合 + 中心体名称 + (中心体氧化数)
第六章作业
2. 分子中只存在σ键的有:SiH4、CH4、 SiO2、NH3 7. 化合物 OF2 中心原子的 杂化轨道类型 sp3(2)不等性杂化 分子的空 间构型 V型 分子有 无极性 有
SiH4 HgCl2
SiHCl3 PCl3
sp3等性杂化 sp等性杂化
sp3杂化 sp3(1)不等性杂化
正四面体 直线型
1. 解离常数 K不稳 (dissociation constant) 配离子在水溶液中解离成中心体和配体两部分, 如: [Ag(NH3)2]+ = Ag+ + 2NH3
cAg

c c 解离常数: K = cAg(NH )
(
cNH3
3 2
)2
K不稳=
cAg c NH cAg(NH
二、配合物的组成
配合物一般由内界和外界两部分组成。 中性配位分子只有内界,没有外界。 外界 内界 内界 外界
Na3[AlF6]
中心离子
[Cu(en)2] SO4 配位体数 中心离子 配位体 配位体数 配位体
[Ni(CO)4] 中心原子
四羰基合镍只有内界, 称为内配盐(内络盐)。
1. 中心体 (Metal) :中心离子或原子,也称形成体。 中心离子必须具有空轨道, 一般是带正电荷的过渡金属离子, 高氧化态的非金属元素也较常见。 如:[SiF6]2-、BF4-。
§7.2 配合物的结构 ——价键理论和空间构型
Valence bond theory and geometrical structure
一、价键理论要点
配位键是中心离子通过空轨道接受配位原子 提供的孤对电子,形成的一类特殊的共价键。
中心离子空轨道
配位键
配体含孤对电子的轨道
M ←∶L
配位键的形成 1. 条件:中心体M有空轨道(主要是长周期过渡元素); 配体L至少含有一对孤对电子对。 2. 杂化:中心体所提供的空轨道 (s-p,d-s-p或s-p-d) 必须先进行杂化,形成能量相同的与配位 原子数目相等的新杂化轨道。 杂化轨道再与配位原子重叠成键, 从而产生不同空间构型的配离子。
四面体 三角锥
无 无
有 有
内轨型配合物:dsp2、d 2sp3 内层轨道参加杂化形成的配合物叫内轨型配合物; 外轨型配合物:sp、 sp2、 sp3、sp3d 2 外层轨道参加杂化形成的配合物叫外轨型配合物。 [Ni(H2O)6]2+
[Co(NH3)6]3+
二、内轨型配合物与外轨型配合物
1. 通过空间构型判断 (只适于四配位)
普鲁士蓝/柏林蓝/贡蓝/铁蓝
血红素
§7.1 配合物的基本概念
一、配合物的定义 1. 配离子 由一个简单正离子或原子与一定数目的中性 分子或负离子通过配位键结合在一起形成的 复杂离子即配位离子,简称配离子或络离子。
AgCl + 2NH3 FeCl3 + KSCN
[Ag(NH3)2]Cl K3[Fe(NCS)6]
[Zn(NH3)4]2+
Zn:属第IIB 族,第四周期
Zn:3d104s2
Zn2+:3d10(4s04p0)
sp3杂化:
2. dsp2杂化:平面四方型
[Ni(CN)4]2-,Ni属第VIIIB 族,第四周期
Ni :3d84s2 → Ni 2+ :3d8(4s04p0)
[
NC Ni
CN CN
NC
]
2-
乙二胺四乙酸 (EDTA) 六齿配体
3. 配位体数与配位数
① 配位体数:配位体的个数 ② 配位数:直接同中心离子或原子配位的原子数目。 单齿配体:配位数=配体数 [Cu(NH3)4]2+ [Ag(S2O3)2]3- [Co(H2O)2Cl4]2- 多齿配体:配位数=配体数×齿数 [Cu(en)2]2+ 2×2=4 [Ag(NH3)2]Cl 配位体数 = 2 配位数 = 2 配位数 = 6 [PtCl2(en)2]Cl2 配位体数 = 4
④ 同配先少 配体类型、配原子都相同,原子数少的在前; [Pt (Py)2 (en)2 ]Cl2 Py:C5H 5N en : C2H8N2
氯化二吡啶· 二乙二胺合铂(Ⅱ)
⑤ 同数连序 配体类型、配原子、原子数都相同, 按结构式中与配原子相连的原子的元素符号的 英文字母顺 序排列; [Pt (NH3)2(NO2) (NH2)]
NH3
3+
[Co(NH3)6]3+
H3 N Co H3 N
NH3 NH3
NH3
2. 配体 (Ligand) 与配位原子
① 配体:配离子中与中心离子或原子以配位键结合 的有孤对电子的中性分子或负离子。 含π(键)电子的化合物也可作为配体: H2C=CH2 ② 配位原子:直接与中心离子或原子键合的原子。 配位原子必须具有孤电子对, 一般为电负性较大的非金属元素原子。 如:C、N、O、S、X-。
第七章 配位化合物
The Coordination Compounds
本章要点
1. 掌握配合物的定义、组成及命名 2. 掌握配合物价键理论要点, 并能用杂化理论解释配离子的空间构型; 掌握外轨型、内轨型配合物的概念及判断方法 3. 掌握配离子稳定常数的意义及配位平衡的有关计算 4. 熟悉一些常见配合物及在分析化学中的应用
三、配合物的空间构型
(一) 配位数为2的配合物:sp杂化,直线型
[Ag(NH3)2]+
Ag:属第ⅠB 族,第五周期
Ag:4d105s1
Ag+:4d10(5s05p0)
+ [H N Ag NH ] sp 杂化: 3 3
与前面介绍的sp杂化基本相同,但杂化轨道是空轨道。
(二)配位数为4的配合物 1. sp3杂化:四面体型
常见配位数为2、4、6。 也有少数奇数的,如:Fe(CO)5、[TiF5]3-
4. 配离子的电荷
中心离子电荷和配体电荷的代数和。
[Fe (CN)6 ]
相关文档
最新文档