图像表示的变量之间的关系
用图像表示变量间的关系
⑥ 90
60 ②
⑤
⑦
20 24 时间/分
判断速度随时间的变化情况:
怎样看图:
从左往右若图象上升,表明速度增大;
若图象下降,表明速度减小;
若图象与横轴平行;则表明速度保持不变,
尝试
探究 洪峰公司根据工作需要,准备租一辆面包车,
经考察,个体车与出租车公司的月租金计算方法如图所示,请 你根据图中提供的信息,与同伴讨论一个租车方案,
__关__系_式__法__
给定一个变量的值可求出另一个变量的值
__图__象__法_
能够直观地看出变量间的变化__趋__势_
在图象中
上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小, 以上三点是打开“解决图象类问题”的一把万能钥匙 ,
y元
200 150 100 50
0
乙 1 当每月通话时间为多少时,两
A
甲
公司的收费相同 2 当每月通话时间在什么范围
时, t/分钟 应选择乙公司 100 200 300 3 当每月通话时间在什么范围
时,
应选择
甲公司
变量之间关系的三种表示方法
变量之间关系的表示 __列__表__法_
特征 能看出两个变量之间的_变__化__关系
随堂练习:
1.柿子熟了,从树上落下来.下面的那一幅图可以 大致刻画出柿子下落过程中 即落地前 的速度的 变化情况
速
速
度
度
0
时间
1
0
时间
2
速
度
正确
0 3
时间
速 度
0 4 时间
用图象表示的变量间关系(绝对经典)
度更快?
80
(3)当小明到达终点时,小亮所跑 60
的路程是多少?
40
小明 小亮
(4)小明和小亮到达终点后如果 20
各自继续以原速度往前跑,他们 能否相遇?利用图象加以解释.
0
2 4 6 8 10 12 12.5
(1)小明和小亮的百米成绩各是多少?(2)两人的速度各是多少?谁的速度更 快?(3)当小明到达终点时,小亮所跑的路程是多少?(4)小明和小亮到达终点 后如果各自继续以原速度往前跑,他们能否相遇?利用图象加以解释.
A
S D
4
B
P
C
图(1)
0
4 图(2)
6x
如图一,在长方形MNPQ中,动点R从点N出发,沿
路程相同的情况发生,所以两人不会
相遇.
0 2 4 6 8 10 12 12.5
如图(1),在长方形ABCD中,AB=2,动点P从点B出发,
沿路线B→C→D作匀速运动,图(2)是此运动过程中,
三角形PAB的面积S与点P运动的路程x之间的关系图
D 象,则BC+CD的长为 A.3 B.4 C.5 D.6
1.一个变化过程中,有变量和常量。 2.两个变量: 自变量和因变量,表示的意义,书写形式 3.变量间的关系表示法 第一表格法 第二关系式法 (1)利用公式(2)根据表格(3)实际问题 第三图像法
第三章变量之间关系
用图象表示的变量间关系
知识点1用图象表示两个变量之间的关系
1.图象法:是指用图象来表示两个变量之间 关系的方法。 2.图象的基本特征:横轴(x轴)上的点表示自 变量,纵轴(y轴)上的点表示因变量.图象上 的每个点表示自变量和因变量之间的相互 关系. 3.优点:能直观、形象地反映因变量随着自 变量变化的趋势
用图像表示变量之间的关系
图像可能无法准确地表示所有的数据细节,特别是当数据集非常大或非常复杂时 ;对于某些类型的数据或分析目的,图像可能不是最佳的表示方式,例如对于需 要精确计算或复杂统计分析的情况,图像可能无法提供足够的信息。
02
散点图与变量关系
散点图基本原理与绘制方法
散点图定义
用点的分布来表示两个变量之间 关系的图形,通常用于展示两个 连续变量之间的关系。
绘制方法
确定数据类别和数值范围;为每个类别分配一个矩形条,条 的长度与数据值成比例;在图表中添加坐标轴、标题和图例 等辅助元素。
分类数据的条形图表达
分类数据特点
分类数据是按照某种标准或属性将数 据分成不同类别的数据,如性别、职 业等。
条形图表达方法
对于分类数据,可以使用条形图来表 示各类别的频数或频率。在条形图中 ,每个矩形条代表一个类别,条的高 度或长度表示该类别的频数或频率。
气候变化趋势分析
通过折线图展示长时间序列的气候数据,分析气候变化趋势及可 能的影响因素。
销售业绩跟踪与预测
将销售业绩数据绘制成折线图,跟踪销售业绩的变化趋势,为制 定销售策略提供依据。
04
条形图与变量关系
条形图基本原理与绘制方法
条形图基本原理
条形图是一种用矩形条的长度来表示数据大小的图形,通过 不同长度的矩形条来直观展示不同类别数据的数量或比例关 系。
绘制方法
在坐标系中,以横轴表示一个变 量,纵轴表示另一个变量,将每 对数据对应的点画在坐标系中。
线性关系的散点图表达
线性关系定义
两个变量之间的关系可以近似地用一 条直线来表示。
散点图表达
在散点图中,如果点大致分布在一条 直线附近,则表明两个变量之间存在 线性关系。
变量之间的关系用图像表示变量间的关系
纵轴
横轴Leabharlann 议一议:骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(1)一天中,骆驼的体温 的变化范围是什么? 它的体温从最低上升 到最高需要多少时间?
(2)从16时到24时,骆 驼的体温下降了多少?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(3)在什么时间范围内 骆驼的体温在上升? 在什么时间范围内 骆驼的体温在下降?
(4)你能看出第二天8时 骆驼的体温与第一天 8时有什么关系吗? 其他时刻呢?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(5)A点表示的是什么? 还有几时的温度与A点 所表示的温度相同?
(6)你还知道哪些关于 骆驼的趣事? 与同伴进行交流.
海水受日月的引力而产生潮汐现象,早晨海水上涨叫做 潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活 有着密切的联系.下面是某港口从0时到12时的水深情况.
第三章 变量之间的关系 用图像表示变量间的关系
青铜峡市回民中学 李德鸿
图象是我们表示变量之间关系的又一种方法, 它的特点是可以直观的表示出自变量与因变量的 变化过程和变化趋势.
在用图象表示变量之间的关系时,通常用水平 方向的数轴(称为横轴)上的点表示自变量, 用竖直方向的数轴(称为纵轴)上的点表示因变量.
5
A
B (5)A,B两点分
4
别表示什么?还有
3
几时水的深度与A点
2
所表示的深度相同
1
0
(6)说一说这个港
0
1
2
3
4
5
用图像表示变量间的关系
折线图的解读
折线图的基本构成:横轴和纵轴分别表示变量,折线表示随时间或其他变 量的变化趋势。
解读方法:观察折线的形状、趋势和交叉点,以及折线的起点和终点,从 而判断变量之间的关系。
注意事项:注意数据的准确性和单位,以及折线图的可读性,避免误导读 者。
实际应用:折线图在各个领域都有广泛应用,如金融、医学、环境等,可 以帮助我们更好地理解数据和变量之间的关系。
实际应用案例分析
金融数据分析
描述金融市场趋势和预测未来 走势
评估投资组合的风险和回报
识别欺诈和异常交易行为
分析客户信用风险和贷款违约 概率
市场调查分析
描述市场趋势和 消费者需求
分析竞争对手的 产品和营销策略
确定目标市场和 潜在客户群体
评估市场机会和 风险
科学研究分析
医学影像分析:通过图像识别技术,分析医学影像,辅助医生诊断疾病 气象预报:利用卫星遥感图像,分析气象数据,预测天气变化 农业种植:通过卫星遥感图像,监测作物生长状况,提高种植效率和产量 军事侦察:利用无人机拍摄的图像,分析敌情,提高作战效率和安全性
添加标题
添加标题
添加标题
添加标题
折线图可以显示数据的变化趋势, 帮助我们发现变量之间的规律。
折线图在金融、经济、科研等领域 应用广泛,是表示变量间关系的重 要工具之一。
柱状图
定义:柱状图是一 种用条形长度表示 数值的图形,通常 用于比较不同类别 数据的大小。
用途:柱状图可以 直观地展示不同类 别数据之间的差异 和趋势,帮助人们 更好地理解数据。
饼状图的解读
饼状图是一种圆形 图表,用于表示不 同类别数据的比例 关系。
解读饼状图时,应 先观察各部分所占 的比例,了解各部 分在整体中的比重。
用图象表示的变量间的关系
选择合适的图表类型
根据数据的性质和目的,选择适合的折线图类型,如单变 量折线图、双变量折线图等。
绘制折线图
使用绘图软件或编程语言(如Python、Excel等)绘制折 线图,将数据点连接成线,并添加必要的图表元素(如标 题、坐标轴标签、图例等)。
04
柱状图
柱状图的定义
柱状图是一种用柱形表示数据的图表 ,通常用于展示不同类别数据的大小 比较。
柱状图的绘制方法
确定数据和分类变量
首先需要确定要展示的数据和分类变量, 例如销售数据按产品类别进行分类。
分析图表
根据柱状图的展示结果,进行数据分析, 得出结论和建议。
数据整理
将数据整理成适合绘制柱状图的形式,通 常为表格形式,包括行和列。
绘制图表
使用图表绘制软件或工具,根据数据表格 绘制柱状图,设置合适的图表标题、坐标 轴标签等元素。
图像可以轻松地解释给其他 人听,并且可以方便地分享 到社交媒体或其他平台,提 高数据的传播和影响力。
尽管图像表示变量具有很多 优点,但也存在一些局限性 ,例如对于大量数据的处理 能力有限,对于非线性关系 的表示不够精确等。因此, 在使用图像表示变量时需要 注意其适用范围和局限性。
02
散点图
散点图的定义
03
同类别的数据。
饼图的用途
01
用于展示不同类别的数据比例,如市场份额、用户分布等。
02
可用于比较不同类别的相对大小,帮助用户快速了解数据的 分布情况。
03
可用于发现异常值或突出显示某个类别的重要地位。
饼图的绘制方法
选择数据
确定要展示的数据类别和数据值。
设计布局
确定饼图的标题、图例和数据标签等元素的位 置。
《用图象表示的变量关系》变量之间的关系
实例分析
例如,在物理学中,匀速直线运动的位移与时间之间 的关系是线性的,其图像为一条直线;而自由落体运 动的位移与时间之间的关系是非线性的,其图像为一 条抛物线。再如,在经济学中,某商品的需求量与价 格之间的关系可能是非线性的,其图像可能呈现为一 条向下弯曲的曲线;而供给量与价格之间的关系可能 是线性的,其图像为一条向上倾斜的直线。
两者对比及实例分析
对比
正相关和负相关的主要区别在于变量之间的变化趋势。正相关中,变量之间变化趋势相同;负相关中,变量之间 变化趋势相反。
实例分析
例如,研究身高和体重之间的关系。随着身高的增加,体重一般也会增加,因此两者之间呈现正相关关系。再例 如,研究广告投入和销售收益之间的关系。在一定范围内,随着广告投入的增加,销售收益可能会增加,但当广 告投入过多时,销售收益可能会下降,因此两者之间呈现负相关关系。
《用图象表示的变量关系》 变量之间的关系
汇报人: 2023-12-15
目录
• 引入 • 线性关系与非线性关系 • 正相关与负相关 • 离散型数据和连续型数据 • 图像变换与变量关系解读 • 总结与展望
01
引入
变量与函数概念回顾
变量
在某一变化过程中,数值发生变化的量称为变量。
函数
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的 值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
非线性关系的图像在坐标系中呈 现为一条曲线,可能具有不同的 弯曲程度和方向。
02
03
变化速率不均等
可能有界
非线性关系中,当一个变量发生 变化时,另一个变量的变化速率 可能会随之改变。
非线性关系的图像在坐标系中可 能有界,即变量的取值范围有限 。
图像表示变量之间的关系教案
图像表示变量之间的关系教案一、教学目标:1. 让学生理解图像表示变量之间的关系的方法和意义。
2. 学会使用图表来表示两个变量之间的关系。
3. 培养学生观察、分析和解决问题的能力。
二、教学内容:1. 图像表示变量之间的关系的方法。
2. 线性关系与非线性关系。
3. 图表的制作和解读。
三、教学重点与难点:1. 教学重点:图像表示变量之间的关系的方法和意义,线性关系与非线性关系的识别。
2. 教学难点:图表的制作和解读。
四、教学方法:1. 讲授法:讲解图像表示变量之间的关系的方法和意义。
2. 案例分析法:分析线性关系与非线性关系。
3. 实践操作法:制作和解读图表。
五、教学准备:1. 教学PPT。
2. 教学案例。
3. 绘图工具(如纸、笔、尺子等)。
4. 计算机和投影仪。
六、教学过程:1. 导入:通过一个实际案例,引发学生对图像表示变量之间关系的兴趣。
2. 新课导入:讲解图像表示变量之间的关系的方法和意义。
3. 案例分析:分析线性关系与非线性关系。
4. 实践操作:学生分组制作和解读图表。
5. 总结与评价:对学生的制作和解读情况进行评价,总结图像表示变量之间的关系的方法和意义。
七、作业布置:1. 让学生运用所学知识,选择一个实际问题,制作一张图表,并表示出其中的变量关系。
八、教学反思:1. 反思教学目标的达成情况。
2. 反思教学方法的适用性。
3. 反思学生的学习效果。
九、课后辅导:1. 对学生在作业中遇到的问题进行解答。
2. 针对学生的学习情况,给予个性化的指导和建议。
十、教学评价:1. 学生作业的评价。
2. 学生课堂参与度的评价。
3. 学生对图像表示变量之间的关系的方法和意义的理解程度。
六、教学步骤:1. 回顾上节课的内容,让学生简要复述图像表示变量之间的关系的方法和意义。
2. 引入新的概念:函数关系和依赖关系。
3. 通过实际案例,讲解如何判断两个变量之间的函数关系和依赖关系。
4. 学生分组讨论,举例说明函数关系和依赖关系的区别。
用图像表示变量间的关系优质课用
直观性
图像能够直观地展示变量间的关 系,使数据更加易于理解和解释。
通过视觉感知,人们可以快速地 识别出变量之间的关系模式,从
而提高决策效率和准确性。
图像可以清晰地显示出变量之间 的趋势、异常值和分布情况,有
助于快速发现问题和异常。
可视化复杂数据
对于复杂的数据集,图像可以简化数据的呈现方式,使其更加易于分析和理解。
周期性规律
分析周期性变化的规律,了解周期的长度、峰值 和谷值等特征。
周期性变化的解释
结合实际情况,解释周期性变化的原因和影响。
06
如何选择合适的图表类型来表示变量间的关 系
CHAPTER
根据数据类型选择图表
分类数据:柱状图、 条形图、饼图等。
时间序列数据:时间 序列图。
定量数据:折线图、 散点图、箱线图等。
用图像表示变量间的关系优质 课
目录
CONTENTS
• 图像表示变量间关系的重要性 • 散点图:展示两个变量之间的关系 • 热力图:展示多个变量之间的关系 • 树状图和网络图:展示变量之间的层次和结构关系 • 时间序列图:展示变量随时间变化的关系 • 如何选择合适的图表类型来表示变量间的关系
01 图像表示变量间关系的重要性
通过将多个变量整合到一个图中,可以更全面地了解数据之间的关系,从而更好地 进行数据挖掘和预测。
图像可以清晰地展示出数据的维度和层次结构,有助于更好地理解数据的内在联系。
揭示潜在模式和关系
图像可以揭示出隐藏在数据中 的潜在模式和关系,这些模式 和关系可能难以通过其他方式 发现。
通过观察图像中的模式和趋势, 可以启发新的思考和发现,推 动科学研究的进步。
解读趋势
9.3用图像表示变量之间的关系(2)
第二课时
回顾思考:
我们已经学习了几种表示变量之间关 系的方法? 1.用表格 下表所列为一商店薄利多销的情况, 某种商品的原价为450元,随着降价的幅度 变化,日销量(单位:件)随之发生变化:
降价/元 5 10 15 20 25 30 35 日销量/件 718 787 845 895 937 973 1000
4 5 6
每辆汽车上都有一个时速表用来指示 汽车当时的速度,你会看这个表吗?
例1: 汽车在行驶的过程中,速度往往是变化 的,下面的图象表示一辆汽车的速度随时间变 思考: 化而变化的情况。
1.曲线反应了那 两个量之间的关 系 2.曲线代表了汽 车的运行轨迹么? 3..曲线上升代表 什么?曲线下降 呢?曲线水平代 表了什么?
A
64
B
12 0 8
t (s )
4、李明骑车上学,一开始以某一速度行进, 途中车子发生故障,只好停下来修车,车修 好后,因怕耽误上学时间,于是快马加鞭加 快速度,在下图中给出的示意图中(s为距离, t为时间)符合以上情况的是( )
s
s s
s
O
A
t
O B
t
O C
t
O
D
t
3 某天早晨,小强从家出发,以V1的速度前往 学校,途中在一饮食店吃早点,之后以V2的速 度向学校行进,V1>V2,下面的图象中表示小 强从家到学校的时间t(min)与路程s(km)之间的 关系是( A )
速 度
0
速 度
0
时间 速 度 速 度
0
时间
时间
0
时间
例2 小明从家步行去小亮家,聊了一段时间后回家。 小明和家的距离与他离开家以后的时间之间的关系如 图所示,根据图像回答下列问题: (1)小明用了多长时间步行到小亮家?小明家距小亮 家多远? (2)小明在小亮家停留了多长时间?回家用了多长时 间? (3)小明去小亮家和由小亮家回家的步行速度各是多 少?
专题03用图像表示的变量间关系(解析版)-2020-2021学年七年级数学下册常考题专练(北师大版)
专题03用图像表示的变量间关系知识点解析本节的教学重点是使学生能够理解变量与常量,并能与实际结合举出相应的变量关系的例子。
在充分理解常量与变量的意义的基础上再去学习变量之间关系的三种表示方法,能将三种表示方法进行转换,并能进行简单的计算。
学生学习本节时可能会在以下三个方面感到困难:1.变量与常量的意义;2.两个变量之间的关系;3.两个变量之间的三种表示方法。
题型与方法一、选择题1. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.2.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.3【答案】C【解析】解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,故①与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为:1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,故②符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4;当点P在DA上运动时,S△ABP减小,这段时间为3,故③符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选:C.3.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【答案】C【解析】试题分析:A.℃由图象可知,在凌晨4点函数图象在最低点﹣3,℃凌晨4时气温最低为﹣3℃,故本选项正确;B.℃由图象可知,在14点函数图象在最高点8,℃14时气温最高为8℃,故本选项正确;C.℃由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D.℃由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.4.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【答案】D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd【答案】C【解析】解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.二、填空题6.李小勇的爸爸让他去商店买瓶酱油,下图近似地描述了李小勇和家之间的距离与他离家后的时间之间的关系,则(1)李小勇去买瓶酱油共花了___min,其中在路上行走了____min,他走路的平均速度是_____;(2)李小勇在买酱油的过程中有_______次停顿,其中第_____次是因为买酱油付钱而停顿的;(3)李小勇在途中另一处停顿的原因是_____________.(只要写得合理都对)【答案】(1)8,6,150米/分;(2)2,2;(3)略【解析】根据图象分析判断。
北师大数学七下4-3用图像表示的变量间关系(1)
第10周第2课时七下4-3用图像表示的变量间的关系(1)【课标与教材分析】课标要求1、探索简单实例中的数量关系和变化规律,了解常量变量的意义。
2、结合实例,了解函数的概念和三种表示法,能举出函数的实例。
3、能确定简单实际问题中函数自变量的取值范围,并求出函数值。
4、能用适当的函数表示法刻画简单实际问题中变量之间的关系。
5、结合对函数关系的分析,能对变量的变化情况进行初步讨论。
教材分析:本节课的教学内容是让学生通过图象直观地表示变量之间的关系,让学生更加深刻的体会自变量,因变量和图像之间的关系,能够从图象中准确的获取所需要的信息。
【学情分析】学生已经知道的:生通过前两节课的学习已经清楚变量的含义,并学会用列表和关系式表示变量之间的关系,会利用表格和关系式解决一些实际问题。
学生想知道的:怎样利用图象深刻体会变量之间关系。
学生能自己解决的:学生在七年级上学期已经学习了折线统计图,了解折线统计图的特征,并能准确地绘制折线统计图,会利用折线统计图解决实际问题。
【教学目标】根据以上分析,确定本节课的教学目标如下:知识技能:能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会利用图象找到准确的信息。
数学思考:培养学生的观察能力,根据图像预测能力,分析能力,动手操作能力,发展学生合作交流的能力和数学表达能力。
问题解决:能用适当的函数表示方法刻画简单实际问题中变量之间的关系。
能确定简单实际问题中函数自变量的取值范围,并会求函数值。
情感态度:让学生体会数学与实际生活的紧密联系,激发学生学习数学的兴趣,培养学生的数学应用意识。
【教学重点】能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会利用图象找到准确的信息。
【教学难点】培养学生的观察能力,根据图像预测能力,分析能力,动手操作能力,发展学生合作交流的能力和数学表达能力多媒体课件【教学媒体】多媒体【教学过程】第一环节:课前准备活动内容:课前预习课本内容并且收集实际生活中的图像资料并设计好问题。
变量之间的关系(带答案)
变量之间的关系(带答案)立身以立学为先,立学以读书为本变量之间的关系、表达方法复知识要点表示变量的三种方法:列表法、解析法(关系式法)、图象法要点1变量、自变量、因变量1)在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
常量和变量往往是相对的,相对于某个变化过程。
2)在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。
例如XXX出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。
则T为自变量,路程为因变量。
要点2列表法与变量之间的关系1)列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。
2)从表格中获取信息,找出其中谁是自变量,谁是因变量。
找自变量和因变量时。
主动产生变化的是自变量,因变量随自变量的增大而增大或减小要点3用关系式表示变量之间的关系1)用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的办法之一。
2)写变化式子,实际上按照题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。
即实质是用含自变量的代数式表示因变量。
3)利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值。
实质就是求代数式的值;②对于每个确定的自变量的值,因变量都有一个确定的与之对应的值。
要点4用图像法透露表现变量的关系1)图像是刻画变量之间关系的又一重要体式格局,特性是十分直观。
2)通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。
3)从图像中能够获取良多信息,关键是找准图像上的点对应的横轴和纵轴上的位置,才能准确获取信息。
如利用图像求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判别所給图像是不是满意实际情景,所给变量之间的关系等。
4)对比看:速度—时间、路程—时间两图象若图象表示的是速度与时间之间的关系,随时间的BL—01增长即从左向右,“上升的线段”①透露表现速度在增长;“水平线段”②透露表现速度稳定。
用图像表示变量之间的关系
10 20 30 40 50 60
汽车距B城的距离/km 20 10 0
/
/
/
摩托车距B城的距离/km 25 20 15 10 5
0
第7页/共13页
某人从A城出发,前往距离A城30km的B城,现有三种车供他 选择:(1)自行车,其速度为15km/h;(2)摩托车,其速 度为30km/h;(3)汽车,其速度为60km/h.
两种套餐的费用分别是多少? 都是40元
第3页/共13页
想一想
结合图,在选择套餐上你还有上可以看 出选用乙套餐合适;
当通话时间小于100 分时,从图像上可以看 出选用甲套餐合适。
第4页/共13页
某公司根据工作需要准备租一辆面包车,经考察,捷 运公司与公交公司的月租金的计算方法如图所示观察 图象,你能得到哪些信息?
(2)设此人在行进途中距离B城的路程为s(km),行进时间为t (h),就(1)中所选出的方案,试写出s与t之间的表达式。
用摩托车关系式为:s=30-30t;用汽车关系式为:s=30-60t;
(3)根据(2)中提供的表达式,请用表格表示在1h内每隔 10min距离B城的路程s与时间为t之间的关系。
时间/min
思考并回答提出的问题:
(1)租来的车没有行驶是否也要缴租金?
缴多少金?是哪个公司?
(2)当一个月行驶约750千米的时 候,租哪家公司的车较为合算?
若一个月行驶约1250千米的时
• •
• •
候,租哪家公司的车较为合算?
•
•
•
•
第5页/共13页
(3)当一个月恰好行驶1000千米的时 候,两家公 司的租金分别是多少? (4)公司估计租的车每月行驶的路程约为2000千 米,租哪家公司的车合算? (5)在多少路程范围内 租捷运公司的车 合算? 在多少路程范围内租 捷运公司的车不合算?
《用图像表示的变量间关系》word教案 (公开课)2022年北师大版 (1)
3.3 用图象表示的变量间关系●教学目标〔一〕教学知识点1.经历从图象中分析变量之间的关系的过程,进一步体会变量之间的关系.2.结合具体情境理解图象上的点所表示的意义.3.能从图象中获取变量之间关系的信息,并能用语言进行描述.〔二〕能力训练要求1.培养学生从图象中获取信息的广泛性和准确性.2.在具体情境中锻炼学生对变量之间关系的敏感和语言描述的合理.〔三〕情感与价值观要求从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.●教学重点1.用图象表示两个变量之间的关系.2.从图象中获取变量之间关系的信息,并能用语言合理地表示,并能结合具体情境理解图象上的点所表示的数学意义.●教学难点根据图象得出事物变化的规律.●教学方法自主探索法本节课的重点是使学生获得对图象反映变量之间关系的体验,学生可借助于以前读统计图的经验发现两个变量的关系,并尽可能多地从图象中获取信息.●教学过程一、温故知新1.某河受暴雨袭击,某天此河水的水位记录为下表:时间/小时0 4 8 12 16 20 24水位/米 2 3 4 5 6 8上表中反映了个变量之间的关系,自变量是,因变量是 .强调:借助表格,我们可以表示,因变量随自变量的变化而变化的情况.2.汽车油箱中原有汽油50升,汽车每行驶1小时耗油6升,请写出油箱中剩余油量y〔升〕与行驶时间t〔小时〕之间的关系式 .强调:利用关系式,我们可以根据一个自变量的值求出相应的因变量的值.二、创设情境,导入新课以以下图是我国某天的气温分布图,你能根据此图说一说家乡的气温吗?你还能从图中看出什么?三、探究交流,获取新知1.合作与探究——气温变化的情况请你根据图象,与同伴讨论某地某天温度变化情况.〔1〕上午9时的温度是多少?12时呢?〔2〕这一天的最高温度是多少?是几时到达的?最低温度呢?〔3〕这一天的温差是多少?从最低温度到最高温度经过了多长时间?〔4〕在什么时间范围内温度在上升?在什么时间范围内温度在下降?〔5〕图中的A点表示的是什么?B点呢?〔6〕你能预测次日凌晨1时的温度吗?说说你的理由.〔学生思考,交流〕2.知识归纳图象是我们表示变量之间关系的第三种方法,它的特点是非常直观.在用图象表示变量之间的关系时,通常用水平方向的数轴〔称为横轴〕上的点表示自变量,用竖直方向的数轴〔称为纵轴〕上的点表示因变量.如何从图象中获取关于两个变量的信息?(1)要明白图象上的点所表示的意义?(2)从自变量的值如何得到因变量的值?及从因变量的值如何得到自变量的值?(3)要明白因变量如何随自变量变化而变化的?3. 议一议——骆驼的体温骆驼被称为“沙漠之舟〞,它的体温随时间变化而发生较大的变化,下面是骆驼的体温随时间变化的图象,我们根据它来分析变量之间的关系.〔图中25时表示次日凌晨1时〕〔1〕一天中,骆驼体温变化范围是什么?它的体温从最低上升到最高需要多少时间?〔2〕从16时到24时,骆驼的体温下降了多少?〔3〕在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?〔4〕你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?〔5〕A点表示的是什么?还有几时的温度与A点所表示的温度相同?〔6〕你还知道哪些关于骆驼的趣事?与同伴交流.〔学生思考交流〕四、达标检测,反响新知1.在夏天一杯开水放在桌面上,其水温T与放置时间 t 的关系大致图象为〔〕2.洗衣机在洗涤衣服时,每洗涤一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与洗涤一遍的时间x(分)之间关系的图象大致为( )3.以以下图是今年5月1日至5月6日某市旅游人数统计图:〔1〕你能从图中获得哪些信息?〔2〕你能预测5月7日的旅游人数吗?〔3〕你会选择这7天中的哪一天出游?4.下面是一位病人的体温记录图,看图答复以下问题:(1)护士每隔几小时给病人量一次体温?护士每隔6小时给病人量一次体温.(2)这位病人的最高体温是多少摄氏度?最低体温是多少摄氏度?(3)他在4月8日12时的体温是多少摄氏度?(4)图中的横线表示什么?(5)从图中看,这位病人的病情是恶化还是好转?5.下面是某港口“水上游乐场〞从0时到12时的水深情况变化图:864201234567891011121.此图反映哪两个变量之间的关系?2.假设规定水深超过6米时,不允许游客下海,图中有哪些时间段可以下海?五、知识拓展,提升能力人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,德国心理学家艾宾浩斯第一个发现了记忆遗忘规律。
北师大数学七年级下册第四章-变量之间的关系
第01讲_变量之间的关系知识图谱变量之间的关系(北师版)知识精讲变量在一个变化过程中,我们称数值发生变化的量为变量常量在一个变化过程中,有些量的数值是始终不变的,我们称它们为常量关系一般地,在一个变化过程中,如果有两个变量x与y,并且y随着x的变化而变化,x是自变量,y是因变量二.变量关系的三种表示方法表格法;关系式法;图像法.步骤列表表中给出一些自变量的值及其对应的因变量的值描点在直角坐标系中,以自变量的值为横坐标,因变量为纵坐标,描出表格中数值对应的各点连线按照横坐标由小道大的顺序把所描出的各点用平滑曲线连接起来注意事项1.表示两个变量的对应关系的点有无数个.但是实际上我们只能描出其中有限个点,同时想象出其他点的位置2.用实心点表示在曲线的点,用空心圈表示不在曲线的点四.易错点1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.3.不能认为式子中出现的字母都是变量,如π不是变量而是常量.三点剖析一.考点:1.用表格表示的变量间关系; 2.用关系式表示的变量间关系; 3.用图象表示的变量间关系.二.重难点:用图象表示的变量之间的关系三.易错点:1.确定自变量的取值范围时,不仅要考虑函数关系式有意义,而且还要注意问题的实际意义.2.解决图象有关的问题,一定要注意理解横、纵坐标所表示的实际含义,然后根据图象求出函数解析式来解题.用表格表示的变量间关系例题1、 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: 下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 根据给出的表格中数据分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.例题2、 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当易拉罐底面半径为2.4cm 时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4)粗略说一说易拉罐底面半径对所需铝质量的影响.【答案】 (1)易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量; (2)当底面半径为2.4cm 时,易拉罐的用铝量为356.cm .(3)易拉罐底面半径为2.8cm 时比较合适,因为此时用铝较少,成本低.(4)当易拉罐底面半径在1.6~2.8cm 变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8~4.0cm 间变化时,用铝量随半径的增大而增大.【解析】 本题考查函数的自变量与函数变量,根据表格理解:随底面半径的增大,用铝量的变化情况是关键. 例题3、 某校组织学生到距学校6km 的光明科技馆参观,准备乘出租车去科技馆,出租车的收费标准如表:则收费y (元)与出租车行驶里程数x (km )(x ≥3)之间的关系式为( )x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5底面 半径 1.6 2.0 2.4 2.8 3.2 3.6 4.0 用铝量 6.96.05.65.55.76.06.5里程数收费/元 3km 以下(含3km ) 8.00 3km 以上每增加1km1.80A.y=8xB.y=1.8xC.y=8+1.8xD.y=2.6+1.8x【答案】 D【解析】 由题意得,所付车费为:y=1.8(x ﹣3)+8=1.8x+2.6(x ≥3). 故选:D .随练1、 心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:(其中030x ≤≤)(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟后,学生的接受能力最强;(4)从表中可知,当时间x 在什么范围内,学生的接受能力逐步增强?当时间x 在什么范围内,学生的接受能力逐步降低?【答案】 见解析【解析】 (1)提出概念所用的时间x 和对概念接受能力y 两个变量; (2)当10x =时,59y =,所以时间是10分钟时,学生的接受能力是59;(3)当13x =时,y 的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强; (4)由表中数据可知:当213x <<时,y 值逐渐增大,学生的接受能力逐步增强;当1320x <<时,y 值逐渐减下,学生的接受能力逐步降低.用关系式表示的变量间关系例题1、 写出下列各问题中的关系式,指出其中的常量、自变量、因变量及自变量取值范围. (1)直角三角形中一锐角的度数y 与另一锐角的度数x 之间的函数关系.(2)如果水的流速量是a m/min (一个定量),那么每分钟的进水量3Q()m 与所选择的水管直径D (m )之间的函数关系. 【答案】 (1)90y x =-,90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)24aD Q π=,常量为4aπ,自变量为D ,Q 为因变量,自变量0D >【解析】 (1)直角三角形两锐角互余,所以90y x =-,其中90是常量,x 是自变量,y 是因变量,自变量x 的取值范围是090x <<;(2)由水管直径为D 可知,水管的截面积为24D π,所以24aD Q π=,其中常量为4aπ,自变量为D ,Q 为因变量,自变量0D >;例题2、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为_________. 【答案】 y=8﹣12x (0<x <8) 【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm . ∴x+2y=16, ∴y=8﹣12x (0<x <8). 例题3、 等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm ,则x 与y 之间的关系式为 .【答案】 y=8﹣12x (0<x <8).【解析】 ∵等腰三角形的周长为16cm ,底边长为x cm ,腰长为y cm .提出概念所用时间(x ) 257101213141720对概念的接受能力(y )47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55∴x+2y=16,∴y=8﹣12x(0<x<8).故答案为:y=8﹣12x(0<x<8).随练1、等腰三角形的周长为30,则腰长y关于底边长x的函数关系式为__________,其中自变量x的取值范围是__________.【答案】1152y x=-+;015x<<【解析】230y x+=,整理得,1152y x=-+,根据三角形三边关系定理,02x y<<,∴102152x x⎛⎫<<-+⎪⎝⎭,∴015x<<.随练2、以直角三角形中的一个锐角的度数为自变量x,另一个锐角的度数y为因变量,则它们的关系式是.【答案】y=90°﹣x.【解析】根据题意得y=90°﹣x.故答案为y=90°﹣x.用图象表示的变量间关系例题1、小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有13箱汽油,设油箱中所剩汽油量为V升,时间为t(分钟),则V与t的大致图象是()A.AB.BC.CD.D【答案】D【解析】A、从图象可知最后纵坐标为0,即油箱是空的,与题意不符,故本选项错误;B、图象没有显示油箱内的汽油恰剩一半时又加满了油的过程,与题意不符,故本选项错误;C、图象显示油箱的油用完以后又加满,与题意不符,故本选项错误;D、当t为0时,大巴油箱是满的,然后匀速减少至一半,又加满,到目的地是油箱中还剩有13箱汽油,故本选项正确.故选D.例题2、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相同D.在4到8秒内甲的速度都大于乙的速度【答案】C【解析】A、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加32 8=4米秒/,故B正确;C 、由于甲的图象是过原点的直线,斜率为4,所以可得v=4t (v 、t 分别表示速度、时间),将v=12m/s 代入v=4t 得t=3s ,则t=3s 前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C 错误;D 、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D 正确.随练1、 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过_____分钟,容器中的水恰好放完.【答案】 8【解析】 由04-分钟的函数图象可知进水管的速度,根据412-分钟的函数图象求出水管的速度,再求关停进水管后,出水经过的时间.进水管的速度为:2045÷=(升/分),出水管的速度为:()()53020124 3.75--÷-=(升/分),∴关停进水管后,出水经过的时间为:30 3.758÷=分钟.随练2、 上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A. B. C. D.【答案】 B【解析】 根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B 符合题意随练3、 在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_______个.【答案】 1【解析】 在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误由图可得,两人在1小时时相遇,行程均为10km ,故②正确;甲的图象的解析式为y=10x ,乙AB 段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.拓展1、 如图所示,某计算装置有一个数据输入口A 和一个运算结果输入口B ,下表给出的是小红输入的数字及所得的运算结果(1)若小红输入的数为x ,输出的结果为y ,你能用x 表示y 么?请写出来.(不需要写出x 的取值范围)(2)若输出结果为8,求小红输入的数字 【答案】 (1)1y x =-(2)81【解析】 (1)由表中数据可观察到,每个B 中数据都是在A 中数据开方后减一所得,101-=-,011=-,141=-,∴可得到函数1y x =-.(2)当8y =时,()211y x x y =-⇒=+,∴2981x ==.2、 弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg ,弹簧长度y 增加0.5cm 【答案】 C【解析】 弹簧不挂重物时的长度为10cm3、 在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( )A.22v m =-B.21v m =-C.33v m =-D.1v m =+【答案】 B【解析】 分别代入当4m =时,算出v 即可.4、 购买单价为每支1.2元的铅笔,总金额y (元)与铅笔数n (支)的关系式可表示为y =__________,其中,__________是常量,__________是变量. 【答案】 1.2n ,单价,铅笔数【解析】 总金额等于每支铅笔的价格乘以铅笔的支数,故 1.2y n =,铅笔的单价是常量,铅笔数是变量. 5、 乘坐某种出租汽车,当行驶路程小于或等于3千米时,乘车费用都是10元(即起步价10元),当行驶路程大于3千米时,超过3千米的部分每千米收费2元,若一次乘坐这种出租车行驶4千米,则应付车费__________元;若一次乘坐这种出租车付费20元,则乘车路程是__________千米. 【答案】 12,8【解析】 本题考查函数的应用。
北师大版七年级数学下册3.3《用图象表示的变量间关系(1)》习题含答案
3.3《用图象表示的变量间关系(1)》习题含答案一.填空题:1.用图象来表示两个变量之间的关系的方法叫做__________,在利用图象法表示变量之间的关系时,通常用__________方向的数轴(称为__________)上的点表示自变量,用__________方向的数轴(称为__________)上的点表示因变量.2.如图是某地春季某一天的气温随时间变化的图象,仔细观察图象并回答:(1)这一天6时的气温是__________,14时的气温是__________.(2)这一天最高气温是__________,最低气温是__________,温度差是__________.第2题图第3题图3.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧的过程,如图是夏季晴朗的白天某种绿色植物叶片光合作用强度的曲线图,观察曲线图回答下列问题:(1)大约从7时到__________时的光合作用的强度不断增强;(2)__________时和__________时的光合作用强度不断下降.4.经科学家研究,蝉在气温超过28℃时才会活跃起来,此时边吸树木的汁液边鸣叫,如图是某地一天的气温变化图象,在这一天中,听不到蝉鸣的时间是小时.第4 题第5 题5.如图,一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2;(3)当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一). 二.选择题:6.正常人的体温一般在37℃左右,在不同时刻体温也在变化;下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低 B.下午5时体温最高C.这一天中小明体温T(单位:℃)的范围是36.537.5≤≤TD.从5时至24时,小明体温一直在升高7.如图是某市某一天的气温T(℃)随时间t(时)变化的图象,那么这天的 ( ) A.最高气温是10 ℃,最低气温是2 ℃ B.最高气温是6 ℃,最低气温是2 ℃C.最高气温是6 ℃,最低气温是-2 ℃ D.最高气温是10 ℃,最低气温是-2 ℃8.如图,是某市某一天的温度随时间变化的图象;通过观察可知,下列说法不正确的是()A.这天15时温度最高 B.这天3时温度最低C.这天的温差是13℃ D.这天21时温度是32℃9.某市经常刮风,给人们出行带来很多不便,小明观测了某天连续24小时的风力情况,并绘出了风力随时间变化的图象,则下列说法中,正确的是()A.8时风力最小 B.20时风力最小C.在8时至12时,风力最大为7级 D.在8时至14时,风力不断增大第8题图第9题图第10题10.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如图,下面的说法正确的是 ( )A.每相隔1s苹果下落的路程是相同的 B.每秒钟下落的路程越来越大C.经过3s苹果下落了一半的高度 D.最后2s苹果下落了一半的高度第11题第12 题11.如图,图象记录了某地一月份某天的温度随时间变化的情况,仔细观察图象,根据图中提供的信息,判断不符合图象描述的说法是 ( )A.20时的温度约为-1℃ B.温度是2℃的时刻是12时C.最暖和的时刻是14时 D.在-3℃以下的时间约为8个小时12.一辆行驶中的汽车在某一分钟内速度的变化情况如下图,下列说法正确的是( ) A.在这一分钟内,汽车先提速,然后保持一定的速度行驶B.在这一分钟内,汽车先提速,然后又减速,最后又不断提速C.在这一分钟内,汽车经过了两次提速和两次减速D.在这一分钟内,前40s速度不断变化,后20s速度基本保持不变三.解答题:13.如图所示是某港口从上午8时到下午8时的水深情况,根据图象回答下列问题:(1)在8时到20时,这段时间内大约什么时间港口的水位最深,深度是多少米?(2)大约什么时候港口的水位最浅,是多少?(3)在这段时间里,水深是如何变化的?14.温度的变化是人们经常谈论的话题,请根据图象与同伴讨论某天温度变化的情况:(1)这一天的最高温度是多少?是在几时到达的?最低温度呢?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?15.根据下图回答问题:(1)上图表示的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)从图象中观察,哪一年的居民的消费价格最低?哪一年居民的消费价格最高?相差多少?(3)哪些年的居民消费价格指数与1989年的相当?(4)图中A点表示什么?(5)你能够大致地描述1986—2000年价格指数的变化情况吗?试试看.3.3《用图象表示的变量间关系(1)》习题答案1.图象法;水平;横轴;竖直;纵轴;2.(1)0℃;9℃;(2)10℃;2 ℃;12℃;3.(1)10;(2)10~12;14~18;4.12 5.(1)小;(2)0.5 xy;(3)大于;6.D7.D8.C9.D10.B11.B12.D 13.(1)13时,约7.5米;(2)8时,2米;(3)8时~13时,水位不断上升;13时~15时,水位不断下降;15时~20时,水位又开始上升;14.(1)37 ℃;15时;23 ℃;(2)14 ℃;12小时;15.(1)图象表示的是我国居民消费价格指数与时间之间的关系.时间是自变量,居民消费价格指数是因变量;(2)1994年最高,1999年最低,相差25;(3)1993年和1995年;(4)1998年的居民消费价格指数约为101;(5)略,只要合理即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像表示的变量之间的关系练习题
1.如图6—7,是自行车行驶路程与时间的关系图,则整个行驶过程的平均速度是 ( )
(A)20 (B)40 (C)15 (D)25
2、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行
驶时间t(时)的关系用图象表示应为图中的
3、弹簧的长度与所挂物体的质量的关系如图6-29所示,由图可知不挂重物时弹簧的长度为
A.8 cm
B.9 cm
C.10 cm
D.11 cm
4、长途汽车客运公司规定旅客能够随身携带一定重量的行李,如果超过规定,则需要购买行
李票,行李费用y(元)与行李重量x(千克)之间的图象如图6-30所示,当携带________
千克的行李不收费用.
A.20
B.30
C.40
D.50
5、土地沙漠化是人类生存的大敌,某地现有绿地4万公顷,因为人们环保意识不强,植被遭到
严重破坏.经观察土地沙化速度为0.2万公顷/年,那么t年后该地所剩绿地面积S(万公顷)
6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来
时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。
用S1、S2分别表示
乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )
7.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )
8.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( ) (1) 他们都行驶了18千米; (2) 甲在途中停留了0.5小时; (3) 乙比甲晚出发了0.5小时; (4) 相遇后,甲的速度小于乙的速度; (5) 甲、乙两人同时到达目的地。
其中,符合图象描述的说法有
A.2个
B.4个
C.3个
D.5个
9、某产品的生产流水线每小时生产100件产品,生产前没有产品积压,生产3小时后安 排工人装箱,若每小时装产品150件,则未装箱的产品数量y 与时间t 的关系示意图
是( )
10.设甲、乙两人在—次赛跑中,路程s 与时间t 的关系如图6—8所示,那么能够知道:
①这是—次_______米赛跑;②甲、乙两人先到达终点的是_________;③乙在这次赛跑中的
速度为___________m/s . 11.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫汐,合称潮汐.下面是某 港口从0时到10时的水深情况.根据图象(图6-9)回答:
(1)在_________时到_______时,港口的水深在增加;(2)大约在______时,深度最深大约________m .
A B C
D S (千米)
18
t (小时)
甲
乙 O 第8题图
0.5 1
2 2.5
12、《××晚报》2001年4月12日报道了“养老保险 执行新标准”的消息,某中学数学课外活动小组根据 消息中提供的数据,绘制出某市区企业职工养老保险 个人月缴费y (元)随个人月工资x (元)变化的图 象(如图),请你根据图象解决下列的问题:
(1)张总工程师五月份工资是3000元,这月他个人
应缴养老保险 元;(2)小王五月份工资为500元,这月他个人应缴养老保险 元。
13、有一个附有进出水管的容器,每单位时间内进水量都是一定的, 设从某时刻开始的4分钟内只进水、不出水,在随后的8分钟 内既进水、又出水,得到时间x (分)与水量y (升)关系
如图所示,每分钟进水量是 、每分钟的出水量是 。
14.如图,是甲、乙两家商店销售同一种产品的销售价y (元)与销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中准确的说法是
15.小明和小强实行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图4所示,现在小明让小强先跑 米,直线 表示小明的路程与时间的
5080t(秒)
s(米)
l 2
l 1
102030406070520
关系,大约 秒时,小明追上了小强,小强在这次赛
跑中的速度是 。
16.某港受潮汐的影响,近日每天24时港内的水深变化大体如图6—10所示.一艘货轮于上午7时在该港口码头开始卸货,计划当天卸完后离港.已知这艘货轮卸完货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港口规定:为保证航行安全,只有当船底与港内水底间的距离很多于3.5m 时,才能进出该港.
x
y
4 3 2
1 2 3
(2,4)
甲
乙
第14题图
根据题目中所给条件,回答下列问题:
(1)要使该船能在当天卸完货,并安全出港,则出港时水深不能少于_____m .(2)卸货时间最多只能用_________h
17.如图,它表示甲乙两人从同一个地点出发后的情况。
到十点时,甲大约走了13千米。
根据图象回答:
(1) 甲是几点钟出发?
(2) 乙是几点钟出发,到十点时,他大约走了多少千米? (3) 到十点为止,哪个人的速度快? (4) 两人最终在几点钟相遇?
(5) 你能将图象中得到信息,编个故事吗?
18.图7表现了一辆汽车在行驶途中的速度随时间的变化情况.
(1)A 、B 两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分到第19分的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60km/h 的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间汽车速度与时间的关系图
19.下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户. (1)该用户5月份通话的总次数为 次.
(2)已知该用户手机的通话均按0.6元/分钟计费,求该用户5月份的话费(通话时间不满1分钟按1分钟计算。
例如,某次实际通话时间为1分23秒,按通话时间2分钟计费,话费为1.2元);
(3)当地中国移动公司推出了名为“越打越便宜”的优惠业务,优惠方式为:若与其它中国移动用户通话,第1分钟为0.4元,第2分钟为0.3元。
第3分钟起就降为每分钟0.2元,每月另收取基本费10元,其余通话计费方式不变。
如果使用了该业务,则该用户5月份的话费会是多少?
时间(min)
速度(km/h)
30
60901203
6
9
1215182124273033
A
B
图7
联通
移动市话12
1
2
5
4
7
15
9
14
26
通话时间
(分钟)
通话次数
第19题图。