第25章概率初步复习课件

合集下载

人教版九年级上册25概率初步复习课件

人教版九年级上册25概率初步复习课件
1
P(两枚正面向上)= 4 .
变式 向空中抛掷三枚质地均匀的硬币,三枚硬币全部 正面向上的概率呢?
枚举法Leabharlann 列表法树状图法 √
解:三枚硬币分别记为第1枚、第2枚、第3枚,可以画出如下
树状图:
第1枚


第2枚
正反
正反
第3枚
正反 正反
正反 正反
由树状图可以看出,所有可能出现的结果共有12种,这些结 果的可能性相等,三枚正面向上的有1种.
特别的, 必然事件如“通常加热到100℃时,水沸腾”概率为1; 不可能事件如“任意画一个三角形,其内角和是360°”概率为0.
问题5.如何求随机事件的概率呢?
(2)掷一枚硬币,正面向上; (3)篮球队员投篮一次,投中;
思考1.掷一枚硬币,正面向上的概率为多少? 思考2.运动员投篮一次,投中的概率约为多少?


正 (正,正) (反,正)
反 (正,反) (反,反)
由此表可以看出,同时抛掷两枚硬币,可能出现的结果有 4 个,并且它们出现的可能性相等,两枚正面向上的有1种.
1
P(两枚正面向上)= 4 .
方法三 解:两枚硬币分别记为第1枚、第2枚,可以画出如下树状图
第1枚


第2枚
正反
正反
由树状图可以看出,所有可能出现的结果共有4种,这些结果 的可能性相等,两枚正面向上的有1种.
例题精讲
例3.如图所示是四张质地相同的卡片.将卡片洗匀后,背面朝上放置在 桌面上.
小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为 这个游戏公平吗?请用列表法或画树状图法说明理由.
2236
游戏规则 随机抽取一张卡片,记下数字 放回,洗匀后再抽一张.将抽取的 第一张、第二张卡片上的数字分别 作为十位数字和个位数字,若组成 的两位数不超过 32,则小贝胜, 反之小晶胜.

人教版九年级数学上册第二十五章概率初步全章课件(共12份)

人教版九年级数学上册第二十五章概率初步全章课件(共12份)


早上,我迟到了。于是就急忙去学校上学,可是在
楼梯上遇到了班主任,她批评了我一顿。我想我真不走
运,她经常在办公室的啊,今天我真倒霉。我明天不能 再迟到了,不然明天早上我将在楼梯上遇到班主任。 中午放学回家,我看了一场篮球赛,我想长大后我 会比姚明还高,我将长到100米高。看完比赛后,我又回
到学校上学。
活动2:摸球游戏 (1)小明从盒中任意摸出一球,一定能摸到红球吗?
(2)小麦从盒中摸出的球一定是白球吗? (3)小米从盒中摸出的球一定是红球吗?
(4)三人每次都能摸到红球吗?
可能发生, 也 可能不发生
必然不会发生
必然发生
试分析:“从如下一堆牌中任意抽一张牌,可以事先 知道抽到红牌的发生情况”吗?
白 球 3
【结论】由于两种球的数量不等,所以“摸出黑
球”和“摸出白球”的可能性的大小是不一样的,
且“摸出黑球”的可能性大于“摸出白球”的可
能性.
想一想: 能否通过改变袋子中某种颜色的球的数量,使“摸 出黑球”和“摸出白球”的可能性大小相同?
答:可以.例如:白球个数不变,拿出两个黑球或黑
球个数不变,加入2个白球.
2.如果袋子中有4个黑球和x个白球,从袋子中随机摸 出一个,“摸出白球”与“摸出黑球”的可能性相 同,则x= 4 .
3.已知地球表面陆地面积与海洋面积的比约为3:7,
如果宇宙中飞来一块陨石落在地球上,“落在海洋
里”发生的可能性( A )“落在陆地上”的可能
性.
A.大于 C.小于 B.等于 D.三种情况都有可能
后,袋中有不少于8个绿球,即绿球的数量 最多,这样摸到绿球的可能性最大.
当堂练习
1.下列事件是必然事件,不可能事件还是随机事件?

人教版数学九年级上册第25章:概率初步复习课件

人教版数学九年级上册第25章:概率初步复习课件

-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为

人教版九年级数学上册精品课件第25章概率初步复习课件

人教版九年级数学上册精品课件第25章概率初步复习课件

2019/4/25
16
五.本章的内容安排和教学建议
三. 25.2用列举法求概率 抽签实验 掷骰子实验 规律:一般地,如果在一次实验中,共有n 种可能的结果,并且它们发生的可能性都 相等,事件包含其中的 m 种结果,那么事 件发生的概率为m/n。概率的古典定义
注意:此定义只适用于有限等可能 事件
2019/4/25
17
五.本章的内容安排和教学建议
三. 25.2用列举法求概率 例1.掷一个骰子,观察向上的一面的点数,求 下列事件的概率: 1.点数为2; 2. 3.点数大于2且小于5.
2019/4/25
18
五.本章的内容安排和教学建议
三. 25.2用列举法求概率
例2.图25.2—1是一个转盘,转盘分 成7个相同的扇形,颜色分为红、绿、 黄三种颜色.指针的位置固定,转动 转盘后任其自由停止,其中的某个扇 形会恰好停在指针所指的位置(指针 指向两个扇形的交线时,当作指向右
本章许多内容是以统计部分的知识为 依托、为基础的,比如利用频率估计概率等。
2019/4/25
3
一. 地位和作用
本章内容在旧版本教材中并没有涉及, 是新课标实施后的新增内容,可是近两年, 这部分知识在中考的课标卷中已经开始频频 出现。 概率的初步这部分内容几乎是课改地区 必考的知识点。可见《概率初步》这章内容 还是非常重要的,需要引起我们广大教师的 重视。
第二十五章概率初步 教材分析
2019/4/25
1
一. 地位和作用
二.本章知识结构框图 三.本章的学习目标 四. 本章的课时安排
五.本章的内容安排和教学建议
六.本章编写特点
七.几个值得关注的问题
2019/4/25

人教版九年级上册第二十五章概率初步期末复习课件

人教版九年级上册第二十五章概率初步期末复习课件
D.30
专题二:概率计算
一般地,如果在一次试验中,有n种可能的结果,并且它们发 生的可能性都相等,事件A包含其中的m种结果,那么事件A发生 的概率P(A)= m .
n
1.周末期间小美和小梅到影城看电影,影城同时在五个放映室
(1室、2室、3室、4室、5室)播放五部不同的电影,他们各自在这
2.某校举办了学生“诗词大赛”.比赛项目为:A.唐诗;B.宋词;C. 论语;D.三字经.比赛形式分“单人组”和“双人组”. (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中 “三字经”的概率是多少? (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则:同一 小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次, 则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用 画树状图或列表的方法进行说明.
1.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色 外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白 球的概率是 2 .
3
(1)求袋子中白球的个数; (2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两 次都摸到相同颜色的小球的概率.
解:(1)设袋子中白球有x个,根据题意,得 x 2 .解得x=2. x 1 3
第二十五章概率
期末考试复习
专题一:概率
在一定条件下,有些事件必然会发生,这样的事件称为必 然事件;有些事件必然不会发生,这样的事件称为不可能事件; 必然事件和不可能事件统称为确定性事件.可能发生也可能不 发生的事件,称为随机事件.
若事件A必然发生,则P(A)=1;若事件A不可能发生,则P(A)=0; 若事件A是随机事件,则P(A)的取值范围是0<P(A)<1.
五个放映室任选一个,每个放映室被选中的可能性都相同,则小美

级数学上册 第二十五章 概率初步 25.1.2 概率课件 (新版)新人教版.ppt

级数学上册 第二十五章 概率初步 25.1.2 概率课件 (新版)新人教版.ppt

阴大影区 圆域 的面的面 积积,通过旋转可知,阴影区域部分的面积
1 之和占整个大圆面积的2.
1
1
∴P(飞镖落在阴影区域)=2.(2)1-n.
3.事件概率大小: (1)如果事件A是必然事件,则P(A)= __________ . (2)如果事件A是不可能事件,则P(A)= __________ . (3)如果事件A是随机事件,则P(A)的范围是__________ .
4.几何概率的计算:目标M落4个白球、6个红球,这些球除颜色外完全相同,重复搅 匀后随机摸出一球,发现是白球. (1)如果将这个白球放回,再摸出一球,那么它是白球的概率是多少? (2)如果这个白球不放回,再摸出一球,那么它是白球的概率是多少?
2
知识点二:利用公式P(A)=计算与面积有关的概率
【 解 析 】 (1) 飞 镖 落 在 阴 影 区 域 的 概 率 =
25.1.2 概率
1.概率定义:对于一个随机事件A,我们把刻画其发生__________的数值, 称为随机事件A发生的概率,记为__________ .
2.简单事件的概率计算:一般地,如果在一次试验中,有n种可能的结果, 并且它们发生的__________都相等,事件A包含其中的m种结果,那么事件A发 生的概率P(A)= __________ .

最新人教部编版九年级数学上册《第25章 概率初步【全章】》精品PPT优质课件

最新人教部编版九年级数学上册《第25章  概率初步【全章】》精品PPT优质课件

果,并且它们发生的可能性相等,事件A包括其中
的m种结果,那么事件A发生的概率P(A)=
m n
.
在P(A)=
m n
中,由m和n的含义,可知0≤m
≤n,进而有0≤
m n
≤1.
因此,0≤ P(A) ≤1 .
不可能事件 必然事件
0
不可能 事件
0≤ P(A) ≤1 . 事件发生的可 能性越来越小
事件发生的可 能性越来越大
2.从1、2、3、4、5中任取两个数字,得到的都 是偶数,这一事件是 随机 事件.
3.下列所描述的事件: ①某个数的绝对值小于0; ②守株待兔; ③某两个负数的积大于0; ④水中捞月. 其中属于不可能事件的有 ① ④ .
4.一个口袋中装有红、黄、蓝三个大小和形状都相 同的球,从中任取一球,得到红球与得到蓝球的可 能性 相同 .
在一定的条件下, 必然会发生的事件
在一定的条件下,必 然不会发生的事件
在一定的条件下,可能发 生也可能不发生的事件
必然 事件
不可能 事件
随机 事件
确定性事件 不确定性事件
【出题角度】认识事件
下列事件中,是随机事件的是(A ) A.他坚持锻炼身体,今后能成为飞行员 还有其他因素 不可能事件 B.在一个只装着白球和黑球的袋中摸球,摸出红球 必然事件 C.抛掷一块石头,石头终将落地 不可能事件 D.有一名运动员奔跑的速度是20m/s
的是( B )
A.瓮中捉鳖
B.守株待兔
C.旭日东升
D. 夕阳西下
已知地球表面陆地面积与海洋面积的比约为 3∶7.如果宇宙中飞来一块陨石落在地球上,“落 在海洋里”与“落在陆地上”哪个可能性更大?
“落在海洋里”的可能性更大.

新人教版九年级数学上册课件《第二十五章概率初步》复习课件部编版PPT

新人教版九年级数学上册课件《第二十五章概率初步》复习课件部编版PPT
1
“只有甲、乙两位评委给出相同结果”的概率是 4 .
配套训练 某校举行“感恩老师”演讲比赛,九(1)班准备
从4名同学(分别记为E、F、G、H,其中E表示小明)中随机选
1
择两位同学参加比赛,则选中小明的概率为 2
.
专题四 用频率估计概率
例4 在大量重复试验中,关于随机事件发生的频率与概率,下列 说法正确的是( D ) A.频率就是概率 B.频率与试验次数无关 C.概率是随机的,与频率无关 D.随着试验次数的增加,频率一般会越来越接近概率


直接列举法
步 列举法求
列表法
适合于两个试验因素或分两步进行

率 画树状图法 适合于三个试验因素或分三步进行
用频率估 计概率
频率与概 率的关系
在大量重复试验中,频率具有 稳定性时才可以用来估计概率
专题复习
专题一 随机事件
例1 下列事件是随机事件的是( D ) A.明天太阳从东方升起 B.任意画一个三角形,其内角和是360° C.通常温度降到0℃以下,纯净的水结冰 D.射击运动员射击一次,命中靶心
6
表示随着抛骰子次数的增加,“朝上的点数是1”这一事件发 生的概率稳定在 1 附近
6
解析 概率是指发生的可能性大小,选项A是指明天下雨的可能性 是80%;选项B,要有前提条件,大量重复试验,平均每抛两次 就有一次正面朝上;选项C,概率是针对大量重复试验,大量重 试验反映的规律并非在每次试验中都发生.选项D,正确.
配套训练 在一个不透明的口袋中装有5个完全相同的小球,把
它们分别标号1,2,3,4,5,从中随机摸出一个小球,其标
号小于4的概率是( C)
A. 1 B. 2
5
5

第二十五章概率初步复习课件

第二十五章概率初步复习课件

球搅拌均匀后,任意摸出一个球记下颜色再
放回暗箱.通过大量反复试验后发现,摸到
红球的频率稳定在25%,则可以推算出a大约
是( )
(A)12
(B)9
(C)4
(D)3
一般地,在大量重复进行同一试验时,事件A发 生的频率m/n稳定在某个常数p的附近,则这个常数 就叫做事件A的概率(统计概率)记作P(A)=P.
当A是不可能发生的事件时,
;当A是必然发
生的事件时,
;当A是随机事件时

概率的值越大则事件发生的可能性就越大。
五.本章的内容安排和教学建议
三用列举法求概率 抽签实验 掷骰子实验
五.本章的内容安排和教学建议
五. 25.4 课题学习 键盘上字母的排列规律
教材在最后一节安排了一个具有一 定综合性和活动性的“课题学习”,这 个“课题学习”选用了与学生生活联系 密切的键盘上字母的排列规律问题。由 于本章是《课程标准》“统计与概率”部 分的最后一章,因此这个课题学习的综 合性比前面三章统计中的课题学习更强。
五.本章的内容安排和教学建议
三用列举法求概率
例2.图—1是一个转盘,转盘分成7 个相同的扇形,颜色分为红、绿、黄 三种颜色.指针的位置固定,转动转 盘后任其自由停止,其中的某个扇形 会恰好停在指针所指的位置(指针指 向两个扇形的交线时,当作指向右边
五.本章的内容安排和教学建议
三用列举法求概率
五.本章的内容安排和教学建议
九、概率初步要点归纳
利用频率估计概率 要点1.设计模拟试验 例.如图是一个黑白相间的双色转盘,你 能估计转盘指针停在黑色上的机会吗? 如果没有转盘,你有哪些方法可以用来 模拟试验?尽可能说说你的办法?
九、概率初步要点归纳

第25章 概率初步 人教版数学九年级上册章末复习课件(34张PPT)

第25章 概率初步 人教版数学九年级上册章末复习课件(34张PPT)

列举法 列表法
概率求法 面积法 画树状图法
频率估计概率
知识梳理
1.事件的概念 (1)在一定条件下,可__能__发__生__也__可__能__不__发__生_ 的事件,叫做随机事件. (2)确定事件包括_必_然_事件和_不_可_能_事件.
知识梳理
2.概率的意义 (1)一般地,如果在一次试验中,有n种可能的结 果,并且它们发生的可能性都相等,事件A包m含其中 的m种结果,那么事件A发生的概率P(A)= n .
规则如下: ①在一个不透明的袋子中装一个红球(延安)、一个白球 (西安)、一个黄球(汉中)和一个黑球(安康),这四 个球除颜色不同外,其余完全相同; ②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球, 父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小 英母亲从袋中随机摸出一球,父亲记录下它的颜色; ③若两人所摸出球的颜色相同,则去该球所表示的城市旅 游,否则,前面的记录作废,按规则②重新摸球,直到两 人所摸出球的颜色相同为止.
按照上面的规则,请你解答下列问题: (1)已知小英的理想旅游城市是西安,小英和母亲随机 各摸球一次,均摸出白球的概率是多少?
解:(1)画树状图得
延安
西安
共有16种等可能的结果,均摸出白球的只有
一种可能,其概率为 1
16
.
汉中 安康
(2)已知小英母亲的理想旅游城市是汉中,小英和母亲 随机各摸球一次,至少有一人摸出黄球的概率是多少? 解: (2)由树状图得
2.掷两枚质地均匀的骰子,下列事件中,属于 随机事件的为( B )
A. 点数的和为1 C. 点数的和大于12
B. 点数的和为6 D. 点数的和小于13
考点二:概率的意义
3.从-1,0,

九年级数学上册 第二十五章 概率初步章末复习(五)课件上册数学课件

九年级数学上册 第二十五章 概率初步章末复习(五)课件上册数学课件
第二十一页,共二十七页。
【核心素养】 13.(关注社会热点)某小区为了了解居民(jūmín)对新型冠状病毒肺炎(COVID—19) 的预防措施的了解情况,随机调查了小区部分居民,将调查结果共分为四个等 级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制 了如图所示的不完整的三种统计图表.
第二十二页,共二十七页。
第二十三页,共二十七页。
对防疫知识了解程度的统计表
对防疫知识 百分
了解程度 比
A.非常了解 5%
B.比较了解 15%
C.基本了

45%
D.不了解 n
第二十四页,共二十七页。
请结合统计图表,回答下列问题:
400
35%
(1)本次参与调查的居民共有__________人,n=____________;
第二十六页,共二十七页。
内容(nèiróng)总结
No 第二十五章 概率初步。3.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投
掷骰子的点数和大于7,则甲胜。8.(衡阳中考)为弘扬中华传统文化,某市近期举办了中小学 生“国学经典大赛”.比赛项目为:A.唐诗。B.掷一枚质地均匀的正六面体骰子,向上的面 的点数是偶数(ǒu shù)。C.先后两次掷一枚质地均匀的硬币,两次都出现反面。D.先后两次掷 一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9。126
第二十五章 概率(gàilǜ)初步
章末复习(fùxí)(五) 概率初步
第一页,共二十七页。
知识点一 事件的分类与可能性大小 1.(襄阳中考)下列语句所描述的事件是随机事件的是( A.任意画一个四边形,其内角和为180° B.经过任意两点画一条直线 C.任意画一个菱形(línɡ xínɡ),是中心对称图形 D.地平面内任意三点画一个圆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可能性的相对大小
五.本章的内容安排和教学建议
二. 25.1概率
试验 把全班同学分成10组,每组同学掷一枚硬币 50次,整理同学们获得的试验数据,并记录在表 25—2中. 第一组的数据填在第一列,第一、二组的数据之和 填在第二列?…,10个组的数据之和填在第10列.
五.本章的内容安排和教学建议
二. 25.1概率
五.本章的内容安排和教学建议
二. 25.1概率
问题1 5名同学参加讲演比赛,以抽签方式决定 每个人的出场顺序.签筒中有 5 根形状、大小相 同的纸签,上面分别标有出场的序号1,2,3,4,5.小 军首先抽签,他在看不到纸签上的数字的情况下从 签筒中随机(任意)地取一根纸签.请考虑以下问 题:(1)抽到的序号有几种可能的结果? (2)抽到的序号小于6吗?
八、再次强调的几个问题
6.列举法主要适用于解决符合古典概型概率的计算方法, 对于试验步骤较少的可以直接列举求得,如果试验包括 两步,且结果较多,利用列表法较好,若试验包括 3步, 最好使用画树形图法. 7.在一次试验中如果包含两个步骤,要注意分清有放回 和无放回的问题,两种情况的结果是不一样的.
八、再次强调的几个问题
三.本章的考试说明要求
略高要求: 3 、会运用列举法(包括列表、画树 状图)计算简单件发生的概率; 较高要求: 4 、通过实例进一步丰富对概率的认 识,并能解决一些实际问题。
四. 本章的课时安排 本章教学时间约需14课时, 具体分配如下(仅供参考):
• • • • • • 25.1概 率 25.2用列举法求概率 25.3利用频率估计概率 25.4课题学习 数学活动 小结 约4课时 约4课时 约2课时 约2课时
(4)出现的点数会是4吗?
五.本章的内容安排和教学建议
二. 25.1概率 随机事件:在一定条件下,可能发生也可能 不发生的事件。 必然事件:指一定能够发生、不可能不发生 的事件。 不可能事件:指根本不可能发生,完全没有 机会发生的事件。
五.本章的内容安排和教学建议
二. 25.1概率
问题 3 袋子中装有4个黑球2个白球,这些球的 一般地,随机事件发生的可能性有大 形状、大小、质地等完全相同.在看不到球 有小,不同的随机事件发生的可能性 的条件下,随机地从袋子中摸出一个球. 大小有可能不同 (1)这个球是白球还是黑球? (2)如果两种球都有可能被摸,那么摸出黑球 使学生能够初步判断几个事件发生的 和摸出白球的可能性一样大吗?
五.本章的内容安排和教学建议
三. 25.2用列举法求概率 抽签实验 掷骰子实验 规律:一般地,如果在一次实验中,共有n 种可能的结果,并且它们发生的可能性都 相等,事件包含其中的 m 种结果,那么事 件发生的概率为m/n。概率的古典定义
注意:此定义只适用于有限等可能 事件
五.本章的内容安排和教学建议
(3)抽到的序号会是0吗?
(4)抽到的序号会是1吗?
五.本章的内容安排和教学建议
二. 25.1概率
问题2:小伟掷一个质地均匀的正方体骰子,骰子的 六个面上分别刻有1到6的点数.请考虑以下问题: 掷一次骰子,在骰子向上的一面上 , (1)可能出现哪些点数?
(2)出现的点数大于0吗?
(3)出现的点数会是7吗?
五.本章的内容安排和教学建议
三. 25.2用列举法求概率
五.本章的内容安排和教学建议
三. 25.2用列举法求概率
例3实际是一个几何概率问题, 例:一只小狗在图中方砖上走来走去, 即:向一个可求面积的平面有界区域S 最终停在阴影方砖上的概率 内随意投掷一点M,点落在一个可求面 是积的区域A( . A包含在S中)的概率为: P(A)=A的面积/ S的面积
二.本章知识结构框图
本章的主要内容是随机事件的定义,概率的 定义,计算简单事件概率(古典概率类型)的方法, 主要是列举法(包括列表法和画树形图法),利用 频率估计概率(试验概率)。中心内容是体会随机 观念和概率思想。
三.本章的考试说明要求
基本要求: 1 、能借助频率的概念或已有的知识与 生活经验去理解、区分不可能事件、必 然事件和随机事件的含义; 2 、在具体情境中了解概率的意义,知 道大量重复实验时频率可作为事件发生 概率的估计值;
要点2.列表法和画树形图法求简单事件(出现结果 比较复杂)的概率. 例.将5个完全相同的小球分装在甲、乙两个不透明 的口袋中,甲袋中有3个球,分别标有数字2、3、4, 乙袋中有两个球,分别标有数字2、4,从甲、乙两 个口袋中各随机摸出一个球. (1)用列表法或树形图法,求摸出的两个球上数字 之和为5的概率. (2)摸出的两个球上数字之和为多少时的概率最大?
八、再次强调的几个问题
1.学生往往认为不太可能就是不可能,很有可能就是 必然,在可能发生与必然发生之间混淆;所以课堂 上要让学生辨别清楚不可能事件和不太可能的事件 及可能事件与必然事件的区别. 2.随机事件发生的可能性有大有小,即概率有大有小 .
3.必然事件发生的概率是1;不可能事件发生的概率 是0;随机事件发生的概率则介于0和1之间,也就是 说不存在概率超出0和1范围的事件.
三. 25.2用列举法求概率 例1.掷一个骰子,观察向上的一面的点数,求 下列事件的概率: 1.点数为2; 2. 3.点数大于2且小于5.
五.本章的内容安排和教学建议
三. 25.2用列举法求概率
例2.图25.2—1是一个转盘,转盘分 成7个相同的扇形,颜色分为红、绿、 黄三种颜色.指针的位置固定,转动 转盘后任其自由停止,其中的某个扇 形会恰好停在指针所指的位置(指针 指向两个扇形的交线时,当作指向右
五.本章的内容安排和教学建议
三. 25.2用列举法求概率
本题的两个事件对应的试验都包 含了3步,对于3步的试验用列表 法已经不可能,为此课本引用了 树形图法。
五.本章的内容安排和教学建议
三. 25.2用列举法求概率
当试验包含两步时,列表法比较方 便,当然,此时也可以用树形图法,
当试验在三步或三步以上时,用树 形图法方便.
九、概率初步要点归纳
25.1概率 要点1.知道什么是随机事件、必然事件、不可能 事件. 例.下列事件中,是必然事件的是( ) A.购买一张彩票中奖一百万 B.打开电视机,任选一个频道,正在播新闻 C.在地球上,上抛出去的篮球会下落 D.掷两枚质地均匀的骰子,点数之和一定大于6
九、概率初步要点归纳
要点2.对概率意义的理解. 例.在一场足球比赛前,甲教练预言说:“根据 我掌握的情况,这场比赛我们队有60%的机会 获胜”意思最接近的是( ) A.这场比赛他这个队应该会赢 B.若两个队打100场比赛,他这个队会赢60场 C.若这两个队打10场比赛,这个队一定会赢6场 比赛. D.若这两个队打100场比赛,他这个队可能会赢 60场左右.
八、再次强调的几个问题
4.概率是针对大量重复实验而言的,大量重复实验反 映的规律并非意味着在每一次实验中一定存在。即使 某事件发生的概率非常大,但在一次实验中也有可能 不发生;即使事件发生的概率非常小,但在一次实验 中也可能发生. 5.古典概型要求试验的结果是等可能的,而且试验的 结果是有限个.但基本事件未必是等可能发生的,如某 射手打靶试验中,“中靶”与“脱靶”一般不是等可 能发生的,打中10环和打中5环也不是等可能发生的, 这时,古典概率公式并不适用,可是学生却往往认为 上述例子符合古典概型,要想纠正学生的错误观念加 深学生对古典条件的理解,教师可以通过课堂上多举 实例,并指出“等可能性”是一种假设.
从随机事件发生的频率逐渐稳定到的常数可以刻 画随机事件发生的可能性的大小这一事实出发,教科 书引出了概率的定义: 一般地,在大量重复进行同一试验时,事件A发 生的频率m/n稳定在某个常数p的附近,那么这个常 数就叫做事件A的概率(统计概率)记作P(A)=P. 当A是不可能发生的事件时, ;当A是必然发 生的事件时, ;当A是随机事件时 ; 概率的值越大则事件发生的可能性就越大。
五.本章的内容安排和教学建议
四. 25.3利用频率估计概率 由 25.1节的概率定义可知,在同样 条件下,大量重复实验时,根据一个随 机事件发生的频率所逐渐稳定到的常数 可以估计这个事件发生的概率,教科书 在第 25.3 节就结合具体情境研究了如何 用频率估计概率。
五.本章的内容安排和教学建议
五. 25.4 课题学习 键盘上字母的排列规律 教材在最后一节安排了一个具有一 定综合性和活动性的“课题学习”,这 个“课题学习”选用了与学生生活联系 密切的键盘上字母的排列规律问题。由 于本章是《课程标准》“统计与概率”部 分的最后一章,因此这个课题学习的综 合性比前面三章统计中的课题学习更强。
8.现实生活中有很多事件不符合古典概率类型,比如 一些试验结果很多甚至于无限多个,或者出现的各种 结果可能性也不相同的事件,此时我们可以在相同的 条件下进行多次试验,利用频率去估测这一事件的概 率。概率与频率之间的关系:(1)频率是随试验次 数不同而变化的,而概率是唯一确定的数值。(2) 频率虽然在变化,但趋于一个稳定值。(3)频率只 能估计概率,即是概率的近似值。所说的“实验概率 稳定于理论概率而又不等于理论概率”。
约2课时
五.本章的内容安排和教学建议
一.全章引入
建议本章引入部分应该安排1课时. 教学形式可以自由选择.概率起源的故事和 “摸球游戏”与概率论的故事.也可举生活 实例,渗透随机观念,如天气预报中的降水 概率为90%的意义等.
五.本章的内容安排和教学建议
二. 25.1概率
在前两个学段已经接触到了一 些与可能性有关的初步知识,在本 节将学习更加数学化和抽象化地描 述可能性的知识——概率。
本章许多内容是以统计部分的知识为 依托、为基础的,比如利用频率估计概率等。
一. 地位和作用
本章内容在旧版本教材中并没有涉及, 是新课标实施后的新增内容,可是近两年, 这部分知识在中考的课标卷中已经开始频频 出现。 概率的初步这部分内容几乎是课改地区 必考的知识点。可见《概率初步》这章内容 还是非常重要的,需要引起我们广大教师的 重视。
相关文档
最新文档