四边形辅助线专题

合集下载

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版数学八年级下期第十八章平行四边形含辅助线证明题训练1.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.2.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.3.如图,在平行四边形ABCD中,AC,BD交于点O,且AO=BO,∠ADB的平分线DE交AB于点E.(1)求证:四边形ABCD是矩形.(2)若AB=8,OC=5,求AE的长.4.如图,在正方形ABCD中,E是边AB上一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC,CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG,CG,DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.6.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:DP=BF;(2)若正方形ABCD的边长为4,求DP的长;(3)求证:CP=BM+2FN.7.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.8.在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.AC,将菱形ABCD绕着点B (3)如图3,若E是线段AC延长线上的一点,CE=12顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.9.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.10.如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC的中点.求证:AF=BC+CF.11.已知:如图(1),点E、F分别为正方形ABCD的边BC、DC上的点,线段AE和AF分别交BD于点M和点N,连接MF,MF⊥AE于点M.(1)求证:∠EAF=45°;(2)如图(2),连接EF,当AD=5,DF=1时,求线段EF的长度;BD.(3)如图(3),作FR⊥BD于R.求证:RM=12BC,CE⊥AB于点E,F是AD的中点,连接12.如图,在平行四边形ABCD中,AB=12EF,CF.求证:(1)EF=CF;(2)∠EFD=3∠AEF.13.如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.14.已知:如图,G为平行四边形ABCD中BC边的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,得∠3=∠2,求证:CD=BF+DF.15.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF:(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形.并证明你的结论(请先补全图形,再解答):(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.16.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍等腰三角形1、作底边上的高,构成两个全等的直角三角形,这就是用得最多的一种方法;2、作一腰上的高;3 、过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1、垂直于平行边2、垂直于下底,延长上底作一腰的平行线3、平行于两条斜边4、作两条垂直于下底的垂线5、延长两条斜边做成一个三角形菱形1、连接两对角2、做高平行四边形1、垂直于平行边2、作对角线——把一个平行四边形分成两个三角形3、做高——形内形外都要注意矩形1、对角线2、作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD、、、、这类的就就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折瞧,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试瞧。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往就是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点与一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试瞧。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

相似四边形中几种常见的辅助线作法(有辅助线)

相似四边形中几种常见的辅助线作法(有辅助线)

相似四边形中几种常见的辅助线作法(有
辅助线)
相似四边形中常见的辅助线作法(有辅助线)
相似四边形是指具有相同比例关系的四边形。

在研究相似四边形时,可以利用一些常见的辅助线作法来简化问题的分析和解决。

以下是几种常见的辅助线作法:
1. 完全相似定理:如果两个四边形的所有对应角相等,并且对应边的比例相等,那么这两个四边形是相似的。

根据这个定理,我们可以直接判断两个四边形是否相似,而无需计算其边长和角度。

2. 高度定理:相似的五边形(包括四边形)中,对应的高度之比等于对应边的比例。

通过测量两个四边形的高度,我们可以推导出它们的边长比例。

3. 中线定理:相似的五边形(包括四边形)中,对应的中线之比等于对应边的比例。

通过测量两个四边形的中线,我们可以推导出它们的边长比例。

4. 角平分线定理:相似的五边形(包括四边形)中,对应的角平分线之比等于对应边的比例。

通过测量两个四边形的角平分线,我们可以推导出它们的边长比例。

这些辅助线作法可以帮助我们在研究相似四边形时更加简化问题,减少计算量,并且提供了直接判断相似性的方法。

在实际应用中,可以根据具体问题的需求选择合适的辅助线作法。

希望以上内容对您有帮助!如有其他问题,请随时提问。

苏科版八年级数学下册有关四边形添加辅助线的综合练习试题

苏科版八年级数学下册有关四边形添加辅助线的综合练习试题

有关四边形添加辅助线的综合练习题1.如图1,在梯形ABCD中,AB∥CD,AD=BC.求证:∠A=∠B.2.已知:如图2,在梯形ABCD中,AB∥CD,∠A=60°,AD=BC=DC.3.已知:如图3,在梯形ABCD中,AB∥CD,AC=BD.求证:梯形ABCD是等腰梯形.4.已知:如图4,在梯形ABCD中,AD∥BC,E是CD的中点,且AE⊥BE.求证:AD+BC =AB.5.已知:如图5,在梯形ABCD 中,AD ∥BC ,M 、N 分别是BD 、AC 的中点.证:MN ∥BC ,MN =12(BC-AD ).6.已知:如图6,在梯形ABCD 中,AD ∥BC ,AD +BC =AB ,E 是CD 的中点.求证:AE ⊥BE .7.已知:如图7,在梯形ABCD 中,AB ∥CD ,∠A +∠B =90°,M 、N 分别是DC 、AB 的中点.求证:MN =12(AB -CD ).8.已知等腰梯形的一个内角为60°,它的上底是3cm,腰长是4cm,求下底的长。

9.如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD+BC=30,BD平分∠ABC,求梯形的周长.10.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1各边中点,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……,如此进行下去,得到四边形A n B n C n D n,求证下列结论:①四边形A4B4C4D4是菱形;②四边形A5B5C5D5的周长是;③四边形A n B n C n D n的面积是。

11.如图,过正方形ABCD的顶点B作BE∥CA,且作AE=AC又CF∥AE,求证∠BCF=1∠AEB212.如图,在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点.求证:MN与PQ互相垂直平分参考答案1.如图1,在梯形ABCD中,AB∥CD,AD=BC.求证:∠A=∠B.证明:分别过D、C作AB的垂线,垂足分别为E、F.∵AB∥CD,∴DE=CF.又AD=BC,∴Rt△ADE全等于Rt△BCF.∴∠A=∠B.2.已知:如图2,在梯形ABCD中,AB∥CD,∠A=60°,AD=BC=DC.求证:AB=2CD.证明:过D作DE∥CB,交AB于E.∵AB平行于CD,且BC=DC,∴四边形DEBC是菱形.∴DE=BC=AD.又∠A=60°,∴△DAE为等边三角形.∴AE=DE,又DE=EB=CD,∴AE=EB=CD,∴AB=2CD.3.已知:如图3,在梯形ABCD中,AB∥CD,AC=BD.求证:梯形ABCD是等腰梯形.证明:过D作DE∥CA,交BA延长线于E.则四边形DEAC是平行四边形.∴DE=AC=DB,∴∠E=∠DBA.又∠CAB=∠E,∴∠DBA=∠CAB.于是,可得△DAB≌△CBA,∴AD=BC,∴梯形ABCD是等腰梯形.4.已知:如图4,在梯形ABCD中,AD∥BC,E是CD的中点,且AE⊥BE.求证:AD +BC=AB.证明:取AB的中点F,连结FE.则AD+BC=2EF,∵∠AEB=90°,∴AB=2EF.∴AD+BC=AB.5.已知:如图5,在梯形ABCD中,AD∥BC,M、N分别是BD、AC的中点.求证:MN∥BC,MN=12(BC-AD).证明:连结并延长AM,交BC于E.则△AMD≌△EMB.∴AM=ME,AD=BE,又N是AC的中点,∴MN=12 EC,故MN∥BC, MN=12(BC-AD).6.已知:如图6,在梯形ABCD中,AD∥BC,AD+BC=AB,E是CD的中点.求证:AE⊥BE.证明:延长AE、BC相交于点F.易证△AED≌△FEC.∴AD=CF,AE=EF,∵AD+BC=AB,∴CF+BC=AB,即BF=BA.∴BE是等腰△BAF底边上的高.∴AE⊥BE.7.已知:如图7,在梯形ABCD中,AB∥CD,∠A+∠B=90°,M、N分别是DC、AB的中点.求证:MN=12(AB-CD).证明:过M作ME∥DA、MF∥CB,分别交AB于E、F.则∠MEF=∠A,∠MFE=∠B.而∠A+∠B=90°,∴∠MEF+∠MFE=90°,∴∠EMF=90°,又AE=DM=MC=FB,AN=NB,∴EN=NF,MN=12 EF,即MN=12(AB-CD)8.如图,梯形ABCD中,∠B=∠C=60°,AD=3cm,AB=DC=4cm,过点A、D分别作AE⊥BC,DF⊥BC,垂足分别为E、F则有∠BAE=∠CDF=30°,BE=FC=AB=2 cm。

初中数学特殊四边形的辅助线做法及口决

初中数学特殊四边形的辅助线做法及口决

特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.一、和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.1.利用一组对边平行且相等构造平行四边形例1 、如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.求证:OE与AD互相平分.分析:因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证.证明:连结AE、OD,因为是四边形OCDE是平行四边形,所以OC//DE,OC=DE,因为0是AC的中点,所以A0//ED,AO=ED,所以四边形AODE是平行四边形,所以AD与OE互相平分.说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.2.利用两组对边平行构造平行四边形例2、如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH.证明:过点E作EH//BC,交AC于H,因为ED//AC,所以四边形CDEH是平行四边形,所以ED=HC,又FG//AC,EH//BC,所以∠AEH=∠B,∠A=∠BFG,又AE=BF,所以△AEH≌△FBG,所以AH=FG,所以FG+DE=AH+HC=AC.说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.3.利用对角线互相平分构造平行四边形例3 、如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形.证明:延长AD到G,使DG=AD,连结BG,CG,因为BD=CD,所以四边形ABGC是平行四边形,所以AC=BG,AC//BG,所以∠1=∠4,因为AE=EF,所以∠1=∠2,又∠2=∠3,所以∠1=∠4,所以BF=BG=AC.图3 图4说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.二、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例4 、如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF 是菱形.分析:要证明四边形CDEF是菱形,根据已知条件,本题有量种判定方法,一是证明四边相等的四边形是菱形,二是证明对角线互相垂直平分的四边形是菱形.根据AD是∠BAC的平分线,AE=AC,可通过连接CE,构造等腰三角形,借助三线合一证明AD垂直CE.求AD平分CE.证明:连结CE交AD于点O,由AC=AE,得△ACE是等腰三角形,因为AO平分∠CAE,所以AO⊥CE,且OC=OE,因为EF//CD,所以∠1=∠2,又因为∠EOF=∠COD,所以△DOC可以看成由△FOE绕点O旋转而成,所以OF=OD,所以CE、DF互相垂直平分.所以四边形CDEF是菱形.例5、如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC 上一个动点,求证EF+BF的最小值等于DE长.分析:要证明EF+BF的最小值是DE的长,可以通过连结菱形的对角线BD,借助菱形的对角线互相垂直平分得到DF=BF,然后结合三角形两边之和大于第三边解决问题.证明:连结BD、DF.因为AC、BD是菱形的对角线,所以AC垂直BD且平分BD,所以BF=DF,所以EF+BF=EF+DF≥DE,当且仅当F运动到DE与AC的交点G处时,上式等号成立,所以EF+BF的最小值恰好等于DE的长.说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.三、与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.例6、如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.分析:要利用已知条件,因为矩形ABCD,可过P分别作两组对边的平行线,构造直角三角形借助勾股定理解决问题.解:过点P分别作两组对边的平行线EF、GH交AB于E,交CD于F,交BC于点H,交AD于G.因为四边形ABCD是矩形,所以PF2=CH2=PC2-PH2,DF2=AE2=AP2-EP2,PH2+PE2=BP2,所以 PD2=PC2-PH2+AP2-EP2=PC2+AP2-PB2=52+32-42=18,所以 PD=3.说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD与PA、PB、PC之间的关系,进而求到PD的长.四、与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.例7、如图8,过正方形ABCD的顶点B作BE//AC,且AE=AC,又CF//AE.求证:∠BCF=∠AEB.分析:由BE//AC,CF//AE,AE=AC,可知四边形AEFC是菱形,作AH ⊥BE于H,根据正方形的性质可知四边形AHBO是正方形,从AH=OB= AC,可算出∠E=∠ACF=30°,∠BCF=15°.证明:连接BD交AC于O,作AH⊥BE交BE于H.在正方形ABCD中,AC⊥BD,AO=BO,又BE//AC,AH⊥BE,所以BO⊥AC,所以四边形AOBH为正方形,所以AH=AO=AC,因为AE=AC,所以∠AEH=30°,因为BE//AC,AE//CF,所以ACFE是菱形,所以∠AEF=∠ACF=30°,因为AC是正方形的对角线,所以∠ACB=45°,所以∠BCF=15°,所以∠BCF=∠AEB.说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO,进一步得到菱形,借助菱形的性质解决问题.三角形中两中点,连结则成中位线。

平行四边形几何辅助线专题详解

平行四边形几何辅助线专题详解

平行四边形几何辅助线专题详解1 平行四边形知识框架{分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果 (1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C、D在线段AB上移动(C、D两点在AB中),会出现2种情况:①点C在点D的左侧;②点C在点D的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。

例2.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB的长。

二、高的位置的讨论解题技巧:在平行四边形中作高,会出现2种情况:①在图形内;②在图形外。

(1)过点作下(上)侧边的高如下图,过点A作▱ABCD下侧的边CD上的高AE。

因▱ABCD倾斜方向的变化,高会存在两种情况,具体见例1(2)过点右(左)侧边的高如下图,过点B作▱ABCD的右侧边AD上的高AE。

因▱ABCD倾斜大小的变化,高会存在两种情况,具体见例2上述两种情况实质是同一种情况经过翻折后得到的,为同一种情况。

例1.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,若AB=5,BC=6,求CE的值。

例2.在▱ABCD中,AD=BD=4,BE是AD边上的高,∠EBD=30°,求△ABD的面积。

初中几何辅助线(全面)

初中几何辅助线(全面)

三角形辅助线一、 补全图形1. 把残缺图形补全为我们熟悉的图形例1、如图,在四边形ABCD 中,//,45,120,5,10,AB CD A B AB BC ∠=︒∠=︒==则CD 的长为 。

图12. 我们熟悉的图形(1) 等腰三角形性质:等边对等角:两底角相等,两腰的边长相等三线合一:底边的垂线=顶角的角平分线=底边的中线(2) 直角三角形性质:勾股定理:两直角边平方的和等于斜边的平方斜边的中线:斜边的中线等于斜边的一半两个特殊的直角三角形:等腰直角三角形;有一个角为30度的直角三角形; 面积:两直角边的乘积的一半=底边与底边的高的乘积的一半二、 构造全等三角形1. 全等三角形的性质与判定全等三角形的性质:全等三角形的证明:2. 倍长中线/平行(涉及中点)例1、 如图1,AD 是△ABC 的中线,求证:AB +AC >2AD 。

例2、如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长交AC于点F,且AF=EF,求证:AC=BE。

3.截长补短(两边之和等于一条边)例1、如图甲,AD∥BC,点E在线段AB上,,∠=∠∠=∠ADE CDE DCE ECB 求证:CD=AD+BC。

例3、如图,△ABC中,∠ACB=2∠B,∠1=∠2。

求证:AB=AC+CD(截长法与补短法)⊥于点G,将△ABG 例3、在正方形ABCD中,点E和F分别在BC和CD上,AE BF∠交BF的延长线于点N,连接CN。

沿AG对称至△AMG,AM平分DAM∆≅∆;(1)求证:ABE BCF(2)求证:AG=NG;(3)试探究线段AG,BN和CN之间的数量关系。

4.折叠(作角平分线,题目中出现二倍角)例1、如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。

求证:AB+BD=AC。

例2、如图,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。

求证:AB>AC。

5.旋转例1、如图11,正方形ABCD中,∠1=∠2,Q在DC上,P在BC上。

2020春浙教版八年级数学下册课件:四边形中常用辅助线专题训练(共43张PPT)

2020春浙教版八年级数学下册课件:四边形中常用辅助线专题训练(共43张PPT)

(2)作 AH⊥BD 于点 H,由题意知∠AGB=60°,
∠ABG=45°,∴△ABH 为等腰直角三角形,
△AGH 为含 30°角的直角三角形,∵AB=1,
∴AH=BH=
2 2
,HG=
6 6
,∴BG=
2 2

6 6
.
14.在正方形ABCD中,对角线BD所在的直线 上有两点E,F满足BE=DF,连接AE,AF, CE,CF,如图所示. (1)求证:△ABE≌△ADF; (2)试判断四边形AECF的形状, 并说明理由.
8.如图,点E,F,G,H分别在矩形ABCD的 边AB,BC,CD,DA(不包括端点)上运动,且 满足AE=CG,AH=CF. (1)求证:△AEH≌△CGF; (2)试判断四边形EFGH的形状,并说明理由.
(3)请探究四边形EFGH的周长一半与矩形 ABCD一条对角线长的大小关系,并说明理由 .
14.证明:(1)∵正方形ABCD,∴AB=AD, ∴∠ABD=∠ADB,∴∠ABE=∠ADF,可证 △ABE≌△ADF(SAS);
(2)连接AC,四边形AECF是菱形. 理由:∵正方形ABCD,∴OA=OC, OB=OD,AC⊥EF,∴OB+BE=OD+DF, 即OE=OF,∵OA=OC,OE=OF, ∴四边形AECF是平行四边形,∵AC⊥EF, ∴四边形AECF是菱形.
八年级数学(下)——测试卷(二十四)
四边形中常用辅助线专题训练
一、平行四边形有关的辅助线作法 1.如图,已知点O是平行四边形ABCD的对角 线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分.
1.证明:连结AE、OD, 因为四边形OCDE是平行四边形, 所以OC∥DE,OC=DE,因为O是AC的中点 ,所以AO∥ED,AO=ED,所以四边形 AODE是平行四边形,所以AD与OE互相平分 .

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)初中几何辅助线―克胜秘籍等腰三角形1.作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2.作一腰上的高;3.将底边的一端作为底边的垂直线交叉,并与另一条腰部的延长线相交,形成直角三角形。

梯形1.垂直于平行边2.垂直于下底,将上底延伸为一条平行于两条斜边的腰部3的平行线4使两条垂直于底部的垂直线5延伸两条斜边,形成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.按对角线将平行四边形分成两个三角形,高度为3-注意形状内外的矩形1.对角线2.作垂线很简单。

无论是哪一个主题,第一个都应该考虑主题的要求,例如Ab= AC+BD,这样的方法是找到另一个与AB长度相同的线段的方法,然后证明A+BD=另一个AB。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形的中点连接成一条中线。

三角形中有中线、延长中线和其他中线。

解几何题时如何画辅助线?① 在中点处看到中线,并将中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

② 在证明比例线段时,通常使用平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③ 对于梯形问题,添加辅助线的常用方法有:1。

穿过上底的两个端点用作下底的垂直线;2.穿过上底的一个端点用作一条腰部的平行线;3.穿过上底部的一个端点用作对角线的平行线;4.穿过一根腰部的中点用作另一根腰部的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形的平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

四边形辅助线的经典例题

四边形辅助线的经典例题

四边形辅助线的经典例题1.问题描述在几何学中,我们通常使用辅助线来帮助解决问题,特别是在研究四边形时。

本文将介绍一些经典的四边形辅助线例题,并提供解答和解题思路。

2.题目一题目描述如图所示,在四边形A BC D中,连结A C和B D的交点为P。

证明:四边形AB CD是平行四边形的充分必要条件是A P=CP。

A_______B||||D__|_______|__C解答和解题思路解答设四边形AB CD为平行四边形,即AB∥CD,AD∥B C。

通过观察可以发现,△A PC与△CP D相似(共边、共角、共角),因此我们有:A P/P C=AC/C D=AB/BC同理,△AP B与△B CP相似,可得:A P/P B=AB/B C=AC/CD由上述两个等式可知:A P/P C=AP/P B即A P=CP,得证。

解题思路在证明这个结论时,我们需要利用平行四边形的性质和相似三角形的性质。

通过观察和推理,我们可以发现△A P C与△C PD相似,△A PB与△B CP相似。

利用相似三角形的性质,我们可以得出A P=CP的结论。

3.题目二题目描述如图所示,在四边形A BC D中,连结A C和B D的交点为P。

证明:当且仅当四边形AB CD的对角线互相平分时,四边形AB CD为矩形。

A_______B||||D__|_______|__C解答和解题思路解答设四边形AB CD的对角线AC和B D相交于P点。

先证明四边形A BC D 是矩形的充分条件是A P=CP且B P=DP。

由题意可知,四边形A BC D是矩形,则A B∥C D且AD∥B C。

根据平行线性质,我们可以得到以下结论:A D/D C=AP/P C(1)A B/B C=BP/P D(2)由(1)式得到A P/PC=A D/DC,即AP/P C=A D/B D,再结合(2)式得到:A P/P C=AD/B D=AB/BD=AB/B C即A P/PC=A B/BC,从而得到AP=C P。

初中几何辅助线大全(很详细哦)

初中几何辅助线大全(很详细哦)

初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。

梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。

无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。

还有一些关于平方的考虑勾股,A字形等。

三角形图中有角平分线,可向两边作垂线(垂线段相等)。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。

②在比例线段证明中,常作平行线。

作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。

③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

特殊四边形的辅助线之欧阳音创编

特殊四边形的辅助线之欧阳音创编

特殊四边形的辅助线时间:2021.03.11 创作:欧阳音一、分割面积1.(2005•郴州)附加题:E是四边形ABCD中AB上一点(E不与A、B重合).(1)如图,当四边形ABCD是正方形时,△ADE、△BCE和△CDE的面积之间有着怎样的关系?证明你的结论.(2)若四边形ABCD是矩形时,(1)中的结论是否仍然成立?为什么?ABCD是平行四边形呢?(3)当四边形ABCD是梯形时,(1)中的结论还成立吗?请说明理由.二、补全线段补全线段,如三角形中的五线(角平分线,中线,中垂线,垂线,中位线),四边形的对角线。

2.(2008•山西)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由;(3)若AB=6,BD=2DC,求四边形ABEF的面积.3.(2007•常州)已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.4.(2007•莆田)在正方形ABCD中,点E是AD上一动点,MN⊥AB分别交AB,CD于M,N,连接BE交MN于点O,过O作OP⊥BE分别交AB,CD 于P,Q.探究:(1)如图①,当点E在边AD上时,请你动手测量三条线段AE,MP,NQ的长度,猜测AE与MP+NQ之间的数量关系,并证明你所猜测的结论;探究:(2)如图②,若点E在DA的延长线上时,AE,MP,NQ之间的数量关系又是怎样请直接写出结论;再探究:(3)如图③,连接并延长BN交AD的延长线DG于H,若点E分别在线段DH和射线HG上时,请在图③中完成符合题意的图形,并判断AE,MP,NQ之间的数量关系又分别怎样?请直接写出结论.中线5.在□ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,∠AEF=54°,则∠B=.6.(2011•鞍山)已知如图,D是△ABC中AB边上的中点,△ACE和△BCF分别是以AC、BC为斜边的等腰直角三角形,连接DE、DF.求证:DE=DF.中位线7.(2013•沙坪坝区模拟)如图,□ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E.(1)若∠ADB=25°,求∠BAE的度数;(2)求证:AB=2OE.垂线8.(2013•宁夏)在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?角平分线9.(2007•哈尔滨)如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD 于点F.(1)求证:EF+AC=AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1,A1C1与AB三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.正方形对角线10.(2005•湖州)如图,四边形ABCD和BEFG均为正方形,则=.(结果不取近似值)11.(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.12.(2011•防城港)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.13.(2014•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.三、制造全等三角形14.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.15.(2014•南平)在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.16.已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且AF=DE.(1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;(2)如图2,对角线AC与BD交于点O.BD,AC分别与AE,BF交于点G,点H.①求证:OG=OH;②连接OP,若AP=4,OP=,求AB的长.17.已知Rt△ABC和Rt△ADE,∠ACB=∠AED=90°,∠BAC=∠DAE=30°,P为线段BD的中点,连接PC,PE.(1)如图1,若AC=AE,C、A、E依次在同一条直线上,则∠CPE=;PC与PE存在的等量关系是;(2)如图2,若AC≠AE,C、A、E依次在同一条直线上,猜想∠CPE的度数及PC与PE存在的等量关系,并写出你的结论;(不需要证明);(3)如图3,在图2的基础上,若将Rt△ADE绕点A逆时针任意旋转一个角度,使C、A、E不在一条直线上,试探究∠CPE的度数及PC与PE存在的等量关系,写出你的结论并说明理由.18.(2009•临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.19.(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7.四、构造四边形,等腰三角形构造平行四边形20.(2008•旅顺口区)两个全等的三角形如下图所示放置,点B、A、D在同一直线上.操作:在图中,在CB边上截取CM=AB,连接DM,交AC 于N.请探究∠AND的大小,并证明你的结论.21.则在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()A.30°B.45°C.60°D.75°22.如图,已知□ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.23.(2010•本溪)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.参考答案一、分割面积7.(2005•郴州)附加题:E是四边形ABCD中AB 上一点(E不与A、B重合).(1)如图,当四边形ABCD是正方形时,△ADE、△BCE和△CDE的面积之间有着怎样的关系?证明你的结论.(2)若四边形ABCD是矩形时,(1)中的结论是否仍然成立?为什么?ABCD是平行四边形呢?(3)当四边形ABCD是梯形时,(1)中的结论还成立吗?请说明理由.考点:正方形的性质;矩形的性质;梯形.专题:压轴题;探究型.分析:正方形,矩形,平行四边形图形中的三个三角形都是等高的三角形,它们的面积关系,就要看底边系了,由于AE+EB=CD,所以S△ADE+S△BCE=S△CDE在这三个图形中都成立;梯形不具备这一特征不一定成立.解:①S△ADE+S△BCE=S△CDE方法1:同底同高S△ADE+S△BCE=.方法2:因为过E作EF∥BC交DC于F,则四边形AEFD和EBCF是矩形所以S△AED=S△EFD,S△EBC=S△EFC,所以S△ADE+S△BCE=S△EFD+S△EFC=S△DEC.②四边形ABCD是矩形时(1)中结论成立,方法同上当四边形ABCD是平行四边形时,结论还是成立.③当四边形ABCD是梯形时,①中结论当E点为AB中点时成立,其它情况不成立不成立.理由如下:设S△ADE=S1,S△BCE=S2,S△DEC=S3,梯形ABCD上底为a,下底为b面积为S,如图.则=如果S△ADE+S△BCE=S△DEC,则有,a(h1﹣h2)=b(h1﹣h2)如果h1=h2,则E为AB中点,如果h1≠h2,则a=b,四边形ABCD是平行四边形.二、补全线段补全线段,如三角形中的五线(角平分线,中线,中垂线,垂线,中位线),四边形的对角线。

常见四边形辅助线

常见四边形辅助线

一.和平行四边形有关的辅助线作法1.利用一组对边平行且相等构造平行四边形例1如图,已知点0是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:0E与AD互相平分.EBC2.利用两组对边平行构造平行四边形例2如图,在4ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.3.利用对角线互相平分构造平行四边形例3如图,已知人口是4ABC的中线,BE交AC于E,交AD于F,且AE二EF.求证BF二AC.二、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.例4如图,在AABC中,NACB=90°,NBAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形.CBB例5如图,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE长.(3)与矩形有辅助线作法和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题和矩形有关的试题的辅助线的作法较少.例6如图,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求PD的长.1例7如图,过正方形ABCD的顶点B作BE//AC,且AE=AC,又CF//AE.求证:NBCF=2NAEB.5.与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形;(2)作梯形的高,构造矩形和直角三角形;(3)作一对角线的平行线,构造直角三角形和平行四边形;(4)延长两腰构成三角形;(5)作两腰的平行线等.例8已知,如图,在梯形ABCD中,AD//BC,AB=AC,ZBAC=90°,BD=BC,BD交AC于点0.求证:CO=CD.例9如图,在等腰梯形ABCD中,AD//BC,AC±BD,AD+BC=10,DELBC于E.求DE的长.6.和中位线有关辅助线的作法例10如图H,在四边形ABCD中,AC于BD交于点0,AOBD,E、F分别是AB、CD中点,EF分别交AC、BD于点H、G.求证:OG=OH.1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD.BC的中点,联结EF,分别交AC、BD于点M、N,试判断^OMN的形状,并加以证明;(2)如图2,在四边形ABCD中,若AB■CD,E、F分别是AD、BC的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;图1图2图3练习1、为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能进行平面镶嵌的是..()A.正三角形B.正方形C.正五边形D.正六边形2、如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线8口重合,折痕为DG,则AG的长为()A.1 B.C.D.23、把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.4、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=x cm(x丰0),则AP=2x cm,CM=3x cm,DN=x2:m.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.题45.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BCB.CD=BFC.A A=/CD./F=/CDE6.如图,矩形ABCD中,AB=3,BC=5.过对角线交点。

初中几何辅助线——四边形辅助线大全

初中几何辅助线——四边形辅助线大全

初中几何辅助线——四边形辅助线大全题型1.平行四边形的两邻边之和等于平行四边形周长的一半.例1已知,□ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长多8cm,求这个四边形各边长.解:∵四边形ABCD为平行四边形∴AB = CD,AD = CB,AO = CO∵AB+CD+DA+CB = 60AO+AB+OB-(OB+BC+OC) = 8∴AB+BC = 30,AB-BC =8∴AB = CD = 19,BC = AD = 11答:这个四边形各边长分别为19cm、11cm、19cm、11cm.题型 2.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.(例题如上)题型3.有平行线时常作平行线构造平行四边形.例2已知,如图,Rt△ABC,∠ACB = 90o,CD⊥AB于D,AE平分∠CAB交CD于F,过F 作FH∥AB交BC于H求证:CE = BH证明:过F作FP∥BC交AB于P,则四边形FPBH 为平行四边形∴∠B =∠FP A,BH = FP∵∠ACB = 90o,CD⊥AB∴∠5+∠CAB = 45o,∠B+∠CAB = 90o∴∠5 =∠B∴∠5 =∠FP A又∵∠1 =∠2,AF = AF∴△CAF≌△P AF∴CF = FP∵∠4 =∠1+∠5,∠3 =∠2+∠B∴∠3 =∠4∴CF = CE∴CE = BH练习:已知,如图,AB∥EF∥GH,BE = GC求证:AB = EF+GH54321PHFEDCB AGHFEB AC题型4.有以平行四边形一边中点为端点的线段时常延长此线段.例3已知,如图,在□ABCD中,AB = 2BC,M为AB中点求证:CM⊥DM证明:延长DM、CB交于N∵四边形ABCD为平行四边形∴AD = BC,AD∥BC∴∠A = ∠NBA∠ADN=∠N又∵AM = BM∴△AMD≌△BMN∴AD = BN∴BN = BC∵AB = 2BC,AM = BM∴BM = BC = BN∴∠1 =∠2,∠3 =∠N∵∠1+∠2+∠3+∠N = 180o,∴∠1+∠3 = 90o∴CM⊥DM题型5.平行四边形对角线的交点到一组对边距离相等.例4如图:OE=OF题型 6.平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线所构成的三角形的面积等于平行四边形面积的一半.例5如图:S△BEC= 12S□ABCD题型7.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半.例6如图:S△AOB+S△DOC= S△BOC+S△AOD = 12S□ABCDEDCBAODCBA321NM BAD CFEODCBA题型8.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等. 例7如图:AO 2+OC 2 = BO 2 +DO 2题型9.平行四边形四个内角平分线所围成的四边形为矩形.例8如图:四边形GHMN 是矩形(题型5~题型9请自己证明)题型10.有垂直时可作垂线构造矩形或平行线.例9已知,如图,E 为矩形ABCD 的边AD 上一点,且BE = ED ,P 为对角线BD 上一点,PF ⊥BE 于F ,PG ⊥AD 于G 求证:PF +PG = AB证明:证法一:过P 作PH ⊥AB 于H ,则四边形AHPG 为矩形∴AH = GP PH ∥AD ∴∠ADB =∠HPB∵BE = DE ∴∠EBD = ∠ADB ∴∠HPB =∠EBD 又∵∠PFB =∠BHP = 90o∴△PFB ≌△BHP∴HB = FP∴AH +HB = PG +PF 即AB = PG +PF证法二:延长GP 交BC 于N ,则四边形ABNG 为矩形,(证明略)NP H G FE D C B AN M HG DCBAA DC B OO B CD A题型11.直角三角形常用辅助线方法⑴作斜边上的高例10已知,如图,若从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线交于点E 求证:AC = CE证明:过A作AF⊥BD,垂足为F,则AF∥EG∴∠F AE = ∠AEG∵四边形ABCD为矩形∴∠BAD = 90o OA = OD∴∠BDA =∠CAD∵AF⊥BD∴∠ABD+∠ADB= ∠ABD+∠BAF= 90o∴∠BAF =∠ADB =∠CAD∵AE为∠BAD的平分线∴∠BAE =∠DAE∴∠BAE-∠BAF =∠DAE-∠DAC即∠F AE =∠CAE∴∠CAE =∠AEG∴AC = EC⑵作斜边中线,当有下列情况时常作斜边中线①有斜边中点时例11已知,如图,AD、BE是△ABC的高,F是DE的中点,G是AB的中点求证:GF⊥DE证明:连结GE、GD∵AD、BE是△ABC的高,G是AB的中点∴GE = 12AB,GD =12AB∴GE = GD∵F是DE的中点∴GF⊥DE②有和斜边倍分关系的线段时例12已知,如图,在△ABC中,D是BC延长线上一点,且DA⊥BA于A,AC = 12 BD求证:∠ACB = 2∠B证明:取BD中点E,连结AE,则AE = BE = 12 BD∴∠1 =∠BGOFEDCBAFEDCBA∵AC =12BD ∴AC = AE∴∠ACB =∠2 ∵∠2 =∠1+∠B ∴∠2 = 2∠B ∴∠ACB = 2∠B题型12.正方形一条对角线上一点到另一条对角线上的两端距离相等.例13已知,如图,过正方形ABCD 对角线BD 上一点P ,作PE ⊥BC 于E ,作PF ⊥CD 于F 求证:AP = EF证明:连结AC 、PC∵四边形ABCD 为正方形∴BD 垂直平分AC ,∠BCD = 90o∴AP = CP∵PE ⊥BC ,PF ⊥CD ,∠BCD = 90o ∴四边形PECF 为矩形 ∴PC = EF ∴AP = EF 题型13.有正方形一边中点时常取另一边中点.例14已知,如图,正方形ABCD 中,M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N求证:MD = MN证明:取AD 的中点P ,连结PM ,则DP = P A =12AD ∵四边形ABCD 为正方形 ∴AD = AB , ∠A =∠ABC = 90o∴∠1+∠AMD = 90o ,又DM ⊥MN ∴∠2+∠AMD = 90o ∴∠1 =∠2 ∵M 为AB 中点∴AM = MB = 12AB∴DP = MB AP = AM ∴∠APM =∠AMP = 45o ∴∠DPM =135o ∵BN 平分∠CBE ∴∠CBN = 45o∴∠MBN =∠MBC +∠CBN = 90o +45o = 135o 即∠DPM =∠MBN ∴△DPM ≌△MBN21EDCBAP F ED CB A21P NEDCA∴DM = MN注意:把M 改为AB 上任一点,其它条件不变,结论仍然成立。

初中三角形四边形常见辅助线做法

初中三角形四边形常见辅助线做法
(1)考虑三线合一 (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶 角的度数,等边旋转60 °
►三角形中常见辅助线的添加 3. 与等腰等边三角形相关的
(1)考虑三线合一
►三角形中常见辅助线的添加 3. 与等腰等边三角形相关的
(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °
3. 和菱形有关的辅助线的作法
(1)作菱形的高 (2)连结菱形的对角线
►四边形中常见辅助线的添加 3. 和菱形有关的辅助线的作法
(1)作菱形的高
►四边形中常见辅助线的添加 3. 和菱形有关的辅助线的作法
(2)连结菱形的对角线
►四边形中常见辅助线的添加
4. 与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又 是中心对称图形,有关正方形的试题较多.解决正 方形的问 题有时需要作辅助线,作正方形对角线是解决正方形问题的 常用辅助线
►三角形中常见辅助线的添加 2. 与线段长度相关的
(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一 段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可
►三角形中常见辅助线的添加
2. 与线段长度相关的
(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长 一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段 等于那一条长线段即可
初中 三角形四边形 辅助线典型用法
►三角形中常见辅助线的添加
1. 与角平分线有关的
(1)向两边作垂线 (2)作平行线,构造等腰三角形 (3)在角的两边截取相等的线段,构造全等三角形
►三角形中常见辅助线的添加

2020中考数学二轮复习几何专题突破 四边形中常见辅助线的添加技巧(解析版)

2020中考数学二轮复习几何专题突破   四边形中常见辅助线的添加技巧(解析版)

14.(2019·青海中考真题)在中,,是的中点,是的中点,过点作交的延长线于点,连接.(1)求证:. 2020中考数学几何专题突破模块三:四边形中常见辅助线添加技巧例1.(2019·安徽中考真题)如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE ,(1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T ,求S T 的值 【答案】(1)证明略;(2)S T=2 【解析】【分析】 一. 和平行四边形有关的辅助线作法1.利用一组对边平行且相等构造平行四边形2.利用两组对边平行构造平行四边形3.利用对角线互相平分构造平行四边形(1)已知AD=BC ,可以通过证明EBC FAD ∠=∠,ECB FDA ∠=∠来证明BCE ADF ≅(ASA ); (2)连接EF ,易证四边形ABEF ,四边形CDFE 为平行四边形,则AFE FED ABE CDE AEDF S SS S T S =+=+=四边形12S =,即可得S T=2. 【详解】 (1)证明:∵四边形ABCD 为平行四边形,∴AD BC ∥,180BAD ABC ︒∴∠+∠=,又//AF BE ,180BAF ABE ︒∴∠+∠=,BAD ABE EBC FAD BAD ABE ∴∠+∠+∠=∠+∠+∠,EBC FAD ∴∠=∠,同理可得:ECB FDA ∠=∠,在BCE 和ADF 中,EBC FAD BC ADECB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩BCE ADF ∴≅(2)解:连接EF ,BCE ADF ≅,,BE AF CE DF ∴==,又,AF BE DF CE ∥∥,∴四边形ABEF ,四边形CDFE 为平行四边形,∴,ABE AFE CDE FED S S S S ==,∴AFE FED ABE CDE AEDF S S S S T S =+=+=四边形,设点E 到AB 的距离为h 1,到CD 的距离为h 2,线段AB 到CD 的距离为h ,则h= h 1+ h 2,∴()1212111222T AB h CD h AB h h =⋅⋅+⋅⋅=⋅⋅+1122AB h S =⋅⋅=, 即S T=2.【点睛】本题考查了三角形全等的判定和性质、平行四边形的判定和性质以及相关面积计算,熟练掌握所学性质定理并能灵活运用进行推理计算是解题的关键.【变式训练】1. (2018•眉山)如图,在▱ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S△EFB ;④∠CFE=3∠DEF ,其中正确结论的个数共有( )A .1个B .2个C .3个D .4个【分析】如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .想办法证明EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题;【解答】解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD=2AD ,DF=FC ,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE =S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.2.(2019·江苏省中考真题)如图,四边形ABCD 中,AD BC ∥,点E 、F 分别在,AD BC 上,AE CF =,过点A 、C 分别作EF 的垂线,垂足为G 、H .(1)求证:AGE CHF ∆≅∆;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.【答案】(1)见解析;(2)线段GH 与AC 互相平分,见解析.【解析】【分析】(1)由垂线的性质得出∠G=∠H=90°,AG ∥CH ,由平行线的性质和对顶角相等得出∠AEG=∠CFH ,由AAS 即可得出△AGE ≌△CHF ;(2)连接AH 、CG ,由全等三角形的性质得出AG=CH ,证出四边形AHCG 是平行四边形,即可得出结论.【详解】(1)证明:AG EF ⊥,CH EF ⊥,90G H ∴∠=∠=︒,AG CH ∥,AD BC ∵∥,DEF BFE ∴∠=∠,AEG DEF ∠=∠,CFH BFE ∠=∠,AEG CFH ∴∠=∠,在AGE ∆和CHF ∆中,G H AEG CFH AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AGE CHF AAS ∴∆≅∆;(2)线段GH 与AC 互相平分,理由如下:连接AH 、CG ,如图所示:∆≅∆,由(1)得:AGE CHF∴=,AG CH∥,AG CH∴四边形AHCG是平行四边形,∴线段GH与AC互相平分.【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、平行线的性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.3.(2018·湖北省中考真题)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【答案】证明见解析.【解析】分析:连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.详证明:如图,连接BD,AE,∵FB=CE,∴BC=EF ,又∵AB ∥ED ,AC ∥FD ,∴∠ABC=∠DEF ,∠ACB=∠DFE ,在△ABC 和△DEF 中,ABC DEF BC EFACB DFE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABC ≌△DEF (ASA ),∴AB=DE ,又∵AB ∥DE ,∴四边形ABDE 是平行四边形,∴AD 与BE 互相平分.点睛:本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.例1.(2019·北京中考真题)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.【答案】(1)证明见解析;(2)AO=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形有关的辅助线作法
1.利用一组对边平行且相等构造平行四边形
例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.求证:OE与AD互相平分.
2.利用两组对边平行构造平行四边形
例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.
3.利用对角线互相平分构造平行四边形
例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.
图3 图4
二、和菱形有关的辅助线的作法
和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理
解决问题.
1. 如图,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且
AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形.
2. 如图,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF 的最小值等于DE长.
三、与矩形有辅助线作法
和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.
如图,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.
四、与正方形有关辅助线的作法
正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.
1.如图,过正方形ABCD 的顶点B 作BE//AC ,且AE=AC ,又CF//AE.
求证:∠BCF= ∠AEB.
与中点有关的辅助线作法
有中线时可倍长中线,构造全等三角形或平行四边形. 1..已知:如图,AD 为中线,求证:.
ABC ∆AD AC AB 2>+2..已知:如图,AD 为的中线,AE=EF.求证:BF=AC.
ABC ∆有以线段中点为端点的线段时,常加倍此线段,构造全等三角形或平行四边形.
例2.已知:如图,在中,,M 为AB 中点,P 、Q 分别在AC 、BC 上,且
ABC ∆︒=∠90C 于M.求证:.
QM PM ⊥222BQ AP PQ +=C
2
1
有中点时,可连结中位线.
1.已知:如图,E 、F 分别为四边形ABCD 的对角线中点,AB>CD.求证:
.()CD AB
EF ->
2
1
有底边中点,连中线,利用等腰三角形“三线合一”性质证题
1.
.已知:如图,在中,,AB=AC ,D 为BC 边中点,P 为BC 上一ABC Rt ∆︒=∠90BAC 点,于F ,于E.求证:DF=DE.
AB PF ⊥
AC PE ⊥2.已知:如图,矩形ABCD
,E 为CB 延长线上一点,且AC=CE ,F 为AE 中点,求证:.
FD BF ⊥六、与梯形中点有关的辅助线:有腰中点时,常见以下三种引辅助线法
G
A
D F
E
B C
E
A
1..已知:如图,在直角梯形ABCD 中,AD∥BC,,M 为CD 的中点.求证:AM=MB.
BC AB ⊥2..已知:梯形ABCD 中,AB∥CD,E 为BC 中点,于F.求证:AD EF ⊥.
AD EF S ABCD ⋅=梯形知识验收
1、在四边形ABCD 中,E,F,G,H 分别是AB ,BC ,CD ,DA 的中点,顺次连结EF ,FG ,GH ,HE 。

(1)请判断四边形EFGH 的形状,并给予证明;
(2)试添加一个条件,使四边形EFGH 是菱形,并说明理由。

2、如图,在四边形ABC 中,AB=AD,CB=CD,点M,N,P,Q 分别是AB,BC,CD,DA 的中点,求证:四边形MNPQ 是矩形.
小结:中点四边形:
对角线 的四边形的中点四边形是菱形对角线 的四边形的中点四边形是矩形对角线 的四边形的中点四边形是正方形
对角线的四边形的中点四边形是平行四边形
(1) 顺次连接四边形各边中点所得的四边形是 .
(2) 顺次连接平行四边形各边中点所得的四边形是 .
(3) 顺次连接矩形各边中点所得的四边形是 .
(4) 顺次连接菱形各边中点所得的四边形是 .
(5) 顺次连接正方形各边中点所得的四边形是
知识演练
1、如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

已知第一个矩形的面积为1,则第n个矩形的面积为。

……
2、我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形
的中点四边形是一个矩形,则四边形可以是.
ABCD ABCD
8、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.
A
B
C
D
E
F
G
H
3、如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边
形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……,如此进行下去,
得到四边形A n B n C n D n.
(1)证明:四边形A1B1C1D1是矩形;
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;
(3)写出四边形A n B n C n D n的面积;
(4)求四边形A5B5C5D5的周长.

A1
A
A2
A3
B
B1B
2
B3
C
C2
C1
C3
D
D2D1
D3
4..如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,
AB、BC、CD、DA的中点分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论.。

相关文档
最新文档