偏微分方程讲义
(整理)偏微分方程word电子讲义.
![(整理)偏微分方程word电子讲义.](https://img.taocdn.com/s3/m/730dd9a28bd63186bdebbc35.png)
偏微分方程偏微分方程是一个非常广泛的课题,它包含分析的许多方面内容。
就我们现在的知识水平来说,我们只了解很少一点东西。
从十八世纪初开始,人们就开始结合物理、力学问题来研究偏微分方程,最早研究的几个方程是弦振动方程、热传导方程及调和方程,这部分理论已经被彻底地研究了,而且近乎完备,把它们称为偏微分方程的古典理论。
十八世纪后期在连续介质力学中研究流体的运动规律,在考虑流体的粘性时,描述运动规律的方程称为Navier-Stokes方程组,而在不计流体的粘性时,称为Euler方程组。
在此时期,描述弹性体运动规律的方程称为Saint Venant方程组。
到了十九、二十世纪,人们发现了描述电磁场运动规律的Maxwell方程组,描述微观粒子运动规律的Schrodinger方程及Dirac方程组,广义相对论中确定引力场的基本方程Einstein方程以及基本粒子规范场理论的基本方程Yang-Mills方程,在微分几何中研究极小曲面的极小曲面方程等等。
随着科学理论变得复杂,所提出的偏微分方程就愈多而且更加变化多端,可能出现的偏微分方程和方程组类型之多是出于想象的。
我们的目的是介绍现代偏微分方程理论中用到的一些技巧和方法。
众所周知,一本偏微分方程的书只能包括已有的基本材料的一小部分,因此我们必须作出选择,如何选择不是立足于逻辑基础上的,这种选择的主观性是相当明显的。
偏微分方程的内容是研究偏微分方程解的各种性质。
通常考虑以下问题1.对单个方程或方程组,应配以怎样的初值条件与边值条件使之具有解,这是解的存在性问题。
在研究解的存在性时,要明确解赖以存在的函数类。
2.解的唯一性或究竟有几个解,要明确使解为唯一的函数类。
3.解的正则性或光滑性。
是否为古典解、强解还是弱解?解具有几阶可微性?4.解的连续依赖性,必须明确是什么空间、什么范数实现的。
通常考虑的是解关于初、边值或关于方程系数,或在方程为线性时关于自由项的连续依赖性。
5.定解区域与影响区域。
《偏微分方程》课件
![《偏微分方程》课件](https://img.taocdn.com/s3/m/3920be8aa0c7aa00b52acfc789eb172ded6399f4.png)
非线性偏微 分方程:方 程中含有偏 导数,且偏 导数项的系 数不是常数
椭圆型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数
抛物型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 不是常数
双曲型偏微 分方程:方 程中只含有 二阶偏导数, 且二阶偏导 数项的系数 是常数,但 方程的解不 是实数
边界条件:确定求解区域和边界条件,如Dirichlet边界条件、 Neumann边界条件等
初值条件:确定求解区域的初值条件,如Cauchy问题、初边值问题等
稳定性和收敛性:分析求解方法的稳定性和收敛性,确保解的准确性和 可靠性
应用实例:通过具体实例,展示求解方法的应用和效果
课件结构
课件目录
偏微分方程的应用
物理领域:描述 流体力学、热力 学、电磁学等现 象
工程领域:解决 结构力学、材料 力学、电子工程 等问题
生物领域:模拟 生物系统的生长、 扩散、反应等过 程
经济领域:用于 金融、经济模型、 风险管理等方面
偏微分方程的求解方法
分析法:通过分析方程的性质,寻找解的性质和形式
数值法:通过数值计算,求解偏微分方程的数值解
偏微分方程的求解方法:展示偏微分方程的求解方法,如分离变量法、积分因子法等
公式素材
偏微分方程的 定义和性质
偏微分方程的 应用实例
偏微分方程的 求解方法
偏微分方程的 扩展和研究进
展
动画素材
动画类型:2D动画、3D动画、Flash动画等 动画内容:偏微分方程的求解过程、应用实例等 动画风格:简洁明了、生动有趣、易于理解 动画时长:根据课件内容需要,控制在5-10分钟以内
偏微分方程PPT课件
(高等数学)偏微分方程
![(高等数学)偏微分方程](https://img.taocdn.com/s3/m/55a7eb72be23482fb4da4ca2.png)
第十四章 偏微分方程物理、力学、工程技术和其他自然科学经常提出大量的偏微分方程问题.由于实践的需要和一些数学学科(如泛函分析,计算技术)的发展,促进了偏微分方程理论的发展,使它形成一门内容十分丰富的数学学科.本章主要介绍一阶偏微分方程、线性方程组及二阶线性偏微分方程的理论.在二阶方程中,叙述了极值原理、能量积分及惟一性定理.阐明了一些解的性质和物理意义,介绍典型椭圆型、双曲型、抛物型方程的常用解法:分离变量法,基本解,格林方法,黎曼方法,势位方法及积分变换法.最后,扼要地介绍了有实用意义的数值解法:差分方法和变分方法.§1 偏微分方程的一般概念与定解问题[偏微分方程及其阶数] 一个包含未知函数的偏导数的等式称为偏微分方程.如果等式不止一个,就称为偏微分方程组.出现在方程或方程组中的最高阶偏导数的阶数称为方程或方程组的阶数.[方程的解与积分曲面] 设函数u 在区域D 内具有方程中所出现的各阶的连续偏导数,如果将u 代入方程后,能使它在区域D 内成为恒等式,就称u 为方程在区域D 中的解,或称正规解. ),,,(21n x x x u u = 在n +1维空间),,,,(21n x x x u 中是一曲面,称它为方程的积分曲面. [齐次线性偏微分方程与非齐次线性偏微分方程] 对于未知函数和它的各阶偏导数都是线性的方程称为线性偏微分方程.如()()()()y x f u y x c yuy x b x u y x a ,,,,=+∂∂+∂∂就是线性方程.在线性方程中,不含未知函数及其偏导数的项称为自由项,如上式的f (x,y ).若自由项不为零,称方程为非齐次的.若自由项为零,则称方程为齐次的.[拟线性方程与半线性方程] 如果一个方程,对于未知函数的最高阶偏导数是线性的,称它为拟线性方程.如()()()()()()0,,,,,,,,,,,,22222122211=+∂∂+∂∂+∂∂+∂∂∂+∂∂u y x c y uu y x b x u u y x a yu u y x a y x u u y x a x u u y x a就是拟线性方程,在拟线性方程中,由最高阶偏导数所组成的部分称为方程的主部.上面方程的主部为()()()22222122211,,,,,,yuu y x a y x u u y x a x u u y x a ∂∂+∂∂∂+∂∂如果方程的主部的各项系数不含未知函数,就称它为半线性方程.如()()()()0,,,,,,2222=∂∂+∂∂+∂∂+∂∂y yu y x d x y u y x c yu y x b x u y x a就是半线性方程.[非线性方程] 不是线性也不是拟线性的方程称为非线性方程.如1)()1(222=∂∂+∂∂+yux u u就是一阶非线性偏微分方程.[定解条件] 给定一个方程,一般只能描写某种运动的一般规律,还不能确定具体的运动状态,所以把这个方程称为泛定方程.如果附加一些条件(如已知开始运动的情况或在边界上受到外界的约束)后,就能完全确定具体运动状态,称这样的条件为定解条件.表示开始情况的附加条件称为初始条件,表示在边界上受到约束的条件称为边界条件.[定解问题] 给定了泛定方程(在区域D 内)和相应的定解条件的数学物理问题称为定解问题.根据不同定解条件,定解问题分为三类.1︒ 初值问题 只有初始条件而没有边界条件的定解问题称为初值问题或柯西问题. 2︒ 边值问题 只有边值条件而没有初始条件的定解问题称为边值问题.3︒ 混合问题 既有边界条件也有初始条件的定解问题称为混合问题(有时也称为边值问题).[定解问题的解] 设函数u 在区域D 内满足泛定方程,当点从区域D 内趋于给出初值的超平面或趋于给出边界条件的边界曲面时,定解条件中所要求的u 及它的导数的极限处处存在而且满足相应的定解条件,就称u 为定解问题的解.[解的稳定性] 如果定解条件的微小变化只引起定解问题的解在整个定义域中的微小变化,也就是解对定解条件存在着连续依赖关系,那末称定解问题的解是稳定的.[定解问题的适定性] 如果定解问题的解存在与惟一并且关于定解条件是稳定的,就说定解问题的提法是适定的.§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x u x u t u u x x x t F()()0,,,,,,211211=∂∂++∂∂nn n n x u x x x a x u x x x a (1) 式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2)称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ 的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) )是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni i n i x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ 解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2. 非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n i n i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R t un i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()u x x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 ===为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x up p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂== 若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂yb b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bVa V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解. 2︒ 如0=∂∂=∂∂=∂∂=∂∂yb x b y a x a ,即回到完全解. 3︒ 当0/,0/≡∂∂≡∂∂b Va V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uFp x F t p p F p t u p Ft x i i i ni iii i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或u F p x F p u F p x F p p Fp up F x p F xp F x n nnni i i nn ∂∂+∂∂-==∂∂+∂∂-=∂∂=∂∂==∂∂=∂∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组()()F x y z p q G x y z p q a,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解.例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程dz a x zdx y azdy =++-22 得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为zFqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数)可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为n n n n i i iin n n x f p x f p p f p z p f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111 可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1)称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yP x Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足 zU R y U Q x U P ∂∂=∂∂=∂∂=,,从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P xz发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解 ()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数. [特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-j i j i t xa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线. [狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ 的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量. 作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλ ϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tnj i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i (k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关. (ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c)).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1 ,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ图14.3于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B tu A xv D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统. 考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且()()()()()()()()v u t x u t x v v u t x u x t v v u t x v tx u v u t x v x t u ,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A ut D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂t x v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=nnnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni i a .如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u m i nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ 式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222tus u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,对任意x D ∈和任意的a i 有()∑∑==≥ni i nj i jiija aa a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值). 如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。
计算流体力学基础_P2_偏微分方程的性质 ppt课件
![计算流体力学基础_P2_偏微分方程的性质 ppt课件](https://img.taocdn.com/s3/m/60bebb6be53a580217fcfe8b.png)
di( a 1 , g 2,3)
对于左边界:
条件
描述
u0 anduc u0 anduc
u0 anduc
超音速入口 亚音速入口 超音速出口
u0 anduc 亚音速出口
边界条件设定
给定3个边界条件 给定2个边界条件 无需给定边界条件 给定1个边界条件
知识点
Slide 14
5. 椭圆型方程:Laplace方程
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
u(Ep)
守恒变量:质量 密度、动量密度、 能量密度
u1 U u u2
E u3
u 1,uu 2/u 1,Eu 3
E p 1 u2 1 2
p
c/a 0
I A 0 a 2 b c 0 ( 3 )
特征方程(3)有两个互异实根 -> 矩阵A可对角化 -> 双曲型
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 11
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 7
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
x
y
特征线法是空气动力学重要的计算方 法。早期(计算机出现之前),是主 y 要的CFD手工计算方法之一。
偏微分讲义
![偏微分讲义](https://img.taocdn.com/s3/m/328e7004eff9aef8941e06be.png)
初始条件:若PDE含时间变量 ,一般需给出 u 在超 平面 t t0 的条件 u |t t0 u x, t0 ,称为初始条件.
定解问题:泛定方程+定解条件 边值问题;初值问题(Cauchy问题或无边界问题); 混合问题(初边值问题).
§4 数值求解微分方程
如果能找到一个(或一族)具有所要求阶连续导数 的解析函数,将它代入微分方程(组)中,恰好使得 方程(组)的所有条件都得到满足,我们就将它称为 这个方程(组)的解析解(也称古典解).寻找解析 解的过程称为求解微分方程. 适定:存在性;唯一性;稳定性. 人们往往只关心某个定义范围内,对应某些特定的 自变量的解的取值或是近似值.这样一组数值称为这 个微分方程在该范围内的数值解,寻找数值解的过程 称为数值求解微分方程.
到显式Euler公式:
un1 un hf (tn , un ) (n 0,1,2,)
b
a
f ( ) f ( x)dx (b a) f (a) (b a) 2 (a, b) 2
有限差分方法是一种微分方法,自上世纪五 十年代以来得到了广泛的应用,该方法概念清晰, 方法简单,直观.虽然其与变分法相结合所形成 的有限元法更有效,但有限差分还是以其固有特 点在数值计算中有其重要地位,是应用最多的一 种数值方法.
§2 偏微分方程分类 齐次、非齐次;定常、非定常; 线性、非线性;方程、方程组.
以二阶拟线性偏微分方程为例,简单回顾 一下偏微分方程的分类.
n 2u u 1 aij x x bi x cu f i, j i 1 i j i n
u 其中 aij , bi , c, f 可以与 xi , u , 有关. xi
椭圆型: 0 抛物型: 0 双曲型: 0
偏微分方程简明教程
![偏微分方程简明教程](https://img.taocdn.com/s3/m/da878d24dcccda38376baf1ffc4ffe473368fdb8.png)
偏微分方程简明教程本篇文章将以简明的方式介绍偏微分方程的基本概念、分类、求解方法以及应用领域。
一、基本概念:\[F(x_1,x_2,...,x_n,u,\frac{{\partial u}}{{\partialx_1}},\frac{{\partial u}}{{\partial x_2}},...,\frac{{\partial u}}{{\partial x_n}}, \frac{{\partial ^2 u}}{{\partialx_1^2}},\frac{{\partial ^2 u}}{{\partial x_1 \partialx_2}},...,\frac{{\partial ^2 u}}{{\partial x_n^2}},...) = 0\]其中,\(u\) 为未知函数,\(x_1,x_2,...,x_n\) 为自变量,\(\frac{{\partial u}}{{\partial x_1}},\frac{{\partialu}}{{\partial x_2}},...,\frac{{\partial u}}{{\partial x_n}}\) 分别表示 \(u\) 对 \(x_1,x_2,...,x_n\) 的偏导数。
二、分类:1.线性偏微分方程:线性偏微分方程中的未知函数及其偏导数项之间的关系是线性的。
具有如下的一般形式:\[a_1(x_1, x_2,...,x_n) \frac{{\partial ^2 u}}{{\partialx_1^2}} + a_2(x_1, x_2,...,x_n) \frac{{\partial ^2 u}}{{\partial x_2^2}} + ... + a_n(x_1, x_2,...,x_n) \frac{{\partial ^2u}}{{\partial x_n^2}} + b(x_1, x_2,...,x_n) = 0\]2.非线性偏微分方程:非线性偏微分方程中,未知函数及其偏导数项之间的关系是非线性的,常见的非线性偏微分方程有广义波动方程、传热方程等。
李治平 偏微分方程数值解讲义
![李治平 偏微分方程数值解讲义](https://img.taocdn.com/s3/m/97078026793e0912a21614791711cc7931b77821.png)
李治平偏微分方程数值解讲义【李治平偏微分方程数值解讲义】知识文章一、前言在现代科学和工程中,偏微分方程是一种非常重要的数学工具,常常用于描述自然界各种现象和规律。
而对于偏微分方程的数值解法,也是数值计算中的一个重要分支。
本文将围绕着李治平教授的偏微分方程数值解讲义展开讨论,详细探究其中的价值和意义。
二、总览李治平教授的偏微分方程数值解讲义李治平教授的偏微分方程数值解讲义是在对数值计算和偏微分方程研究领域拥有丰富经验的学者对该领域的总结和共享。
其讲义通过结合理论和实践,系统地介绍了偏微分方程的数值解方法及其在实际问题中的应用。
涵盖了有限差分法、有限元法、谱方法等多种数值解法,还对常见的偏微分方程进行了具体案例分析,展现了其深度和广度。
三、深度分析1. 有限差分法有限差分法是一种常见的偏微分方程数值解法,它将偏微分方程中的导数用离散的差分表示,通过有限差分逼近来求解偏微分方程的近似解。
在李治平教授的讲义中,对有限差分法的原理和应用进行了详细介绍,并结合了具体的案例来展示其解题过程和应用效果。
2. 有限元法有限元法是一种更为精确的数值解法,它将求解区域划分成有限个单元,通过建立单元之间的关系来逼近原偏微分方程的解。
在讲义中,李治平教授对有限元法的算法和实现进行了深入讲解,并指导学生如何应用该方法解决实际问题,具有很高的指导意义。
3. 谱方法谱方法是一种基于傅里叶级数展开的数值解法,它通过将方程中的未知函数表示成正交多项式的线性组合,来逼近原偏微分方程的解。
与有限差分法和有限元法相比,谱方法在精度和稳定性上更具优势。
在讲义中,李治平教授对谱方法的理论和实践进行了讲解,并指引学生如何利用该方法处理实际问题。
四、回顾与展望李治平教授的偏微分方程数值解讲义涵盖了丰富的内容,深入浅出地介绍了多种数值解法及其应用。
通过学习这门课程,可以帮助学生建立起对偏微分方程数值解的深刻理解,并掌握相关的数值计算技能。
未来,随着科学技术的发展和应用的拓展,偏微分方程数值解将会更加广泛地应用于各个领域,因此这门讲义的价值和意义将会更加凸显。
偏微分方程讲义
![偏微分方程讲义](https://img.taocdn.com/s3/m/29868715a2161479171128ba.png)
习题3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §3.5 极坐标系下的分离变量法 . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 3.5.2 由射线和圆弧所界定区域中问题的解法 . . . . . . . . . . . . . . . 周期边界条件问题的解法 . . . . . . . . . . . . . . . . . . . . . .
iv 3.6.3 3.6.4 3.6.5 Legendre方程的级数解、 Legendre多项式 . . . . . . . . . . . . . . Bessel方程的级数解、 Bessel函数 . . . . . . . . . . . . . . . . . . 圆盘中热传导方程的解 . . . . . . . . . . . . . . . . . . . . . . . .
习题1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §1.5 线性偏微分方程的叠加原理,定解问题的适定性 1.5.1 叠加原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
习题3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . §3.6 高维曲线坐标系下的分离变量法、球函数和柱函数 . . . . . . . . . . . . 3.6.1 3.6.2 Bessel方程和Legendre方程的导出 . . . . . . . . . . . . . . . . . . 二阶线性齐次常微分方程的级数解法 . . . . . . . . . . . . . . . .
第二章 三类典型的偏微分方程讲解
![第二章 三类典型的偏微分方程讲解](https://img.taocdn.com/s3/m/4248cdfb960590c69ec376ae.png)
在 dt 时段内通过微元的两端流入的热量
dQ1
(Qx1
Qx2
)dt
k ( T
( x2 , t ) x
T
( x1, t ) )dt x
k
x2 x1
2T (x, x2
t
)dxdt
在任意时段 [t1,t2 ] 内,流入微元的热量
Q1
t2 t1
x2 x1
k
2T (x, x2
t2 t1
V
k 2TdV dt
流入的热量导致V 内的温度发生变化
S n
T (x, y, z,t1) T (x, y, z, t2 )
温度发生变化需要的热量为:
Q2 c T (x, y, z,t2) T (x, y, z,t1)dV
V
c
t2 T dtdV
t
p
p t
1 a2
p t
代入 u 得
t
x
u 1 p
x a2 t
对t求导,得
2u xt
1 a2
2 p t 2
利用
u 1 p
t x
得
2 p t 2
a2
2 p x2
一维声波方程。
第二章 三类典型的偏微分方程
第二章 三类典型的偏微分方程
三类典型的偏 微分方程
第二章 三类典型的偏微分方程
2.1 波动方程
☆ 一维波动方程 最典型的一维波动问题是均匀弦的横向振动问题。
一根紧拉着的均匀柔软弦,长为l,两端固定在X轴上O、 L两点,当它在平衡位置附近做垂直于OL方向的微小横向 振动时,求这根弦上各点的运动规律。
偏微分方程简明教程
![偏微分方程简明教程](https://img.taocdn.com/s3/m/f51b7584ba4cf7ec4afe04a1b0717fd5360cb238.png)
偏微分方程简明教程偏微分方程是描述多变量函数之间关系的数学方程。
它在物理学、工程学和经济学等领域起着重要的作用,因此了解和掌握偏微分方程的解法和性质对于深入理解这些领域的问题是至关重要的。
本文将从基本概念、解法和应用三个方面介绍偏微分方程的简明教程。
一、基本概念∂u/∂t+c∂u/∂x=0其中u是关于变量x和t的函数,c是常数。
这个方程描述了u对时间t和空间坐标x的变化关系。
偏微分方程可以是线性的或非线性的,可以是齐次的或非齐次的。
二、解法解偏微分方程的方法有多种,以下介绍常见的几种解法。
1.变量分离法变量分离是最常用的求解偏微分方程的方法。
基本思路是将方程中的未知函数分离,然后对两边积分。
例如对于方程∂u/∂t=c∂u/∂x可以将u关于t求偏导数,将u关于x求偏导数,然后将两边移项得到∂u/∂t=c∂u/∂xdu/u = c dx对两边积分得到ln,u, = cx + k解出u,即可得到方程的解。
2.特征线法特征线法适用于一阶偏微分方程。
基本思想是找到方程的特征曲线,然后将未知函数表示为特征曲线上的参数方程。
例如对于方程∂u/∂t+c∂u/∂x=0特征曲线满足dx/dt = c,即x = ct + k。
将u表示为x和t的函数u(x,t),可以得到d/dt u(x,t) = du/dx * dx/dt = du/dx * c这样方程可以化简为一阶方程,然后进行求解。
3.分离变量法分离变量法适用于可分离变量的偏微分方程。
基本思想是将方程中的未知函数表示为两个变量的乘积形式,然后对两边进行分离。
例如对于方程∂u/∂t=a∂²u/∂x²可以假设u(x,t)=X(x)T(t),然后将偏微分方程化为两个常微分方程,然后分别求解。
三、应用1.热传导方程热传导方程描述了物体内部温度的变化关系,它在热力学和材料科学研究中起着重要的作用。
热传导方程可以通过偏微分方程的分离变量法求解。
2.波动方程波动方程描述了波的传播和振动的数学模型,它在物理学和工程学中广泛应用。
偏微分方程讲义 arnold
![偏微分方程讲义 arnold](https://img.taocdn.com/s3/m/84f41ffd6037ee06eff9aef8941ea76e59fa4a67.png)
偏微分方程讲义一、引言偏微分方程(partial differential equations,简称PDE)是数学中的一个重要分支,研究方程中包含多个未知函数及其偏导数的关系。
本文将介绍偏微分方程的基本概念和解法。
二、基本概念2.1 偏导数偏导数是函数在某一点上对某个自变量的变化率。
对于二元函数u(x,y),其偏导数可表示为∂u∂x 和∂u∂y。
类似地,对于三元函数u(x,y,z),其偏导数可表示为∂u∂x、∂u∂y和∂u∂z。
2.2 偏微分方程的分类偏微分方程可以分为线性偏微分方程和非线性偏微分方程两大类。
线性偏微分方程的解可以通过叠加已知解得到,而非线性偏微分方程的解则需要通过数值方法或近似解法求得。
2.3 常见的偏微分方程常见的偏微分方程包括波动方程、热传导方程、扩散方程等。
这些方程在物理学、工程学等领域中具有广泛的应用。
三、解偏微分方程的方法3.1 分离变量法分离变量法是解偏微分方程的常用方法之一。
通过假设解可以表示为各个自变量的乘积形式,将原方程化为一系列常微分方程,然后求解这些常微分方程得到解。
3.2 特征线法特征线法适用于一阶偏微分方程,通过引入新的自变量,将原方程转化为常微分方程。
然后通过求解常微分方程得到解,再通过逆变换得到原方程的解。
3.3 变换方法变换方法是通过引入适当的变换将原方程转化为简单的标准形式方程,然后通过求解标准形式方程得到解。
常用的变换方法包括相似变量法、变系数法等。
3.4 数值方法数值方法是通过离散化偏微分方程,将其转化为代数方程组,然后通过数值计算得到近似解。
常用的数值方法包括有限差分法、有限元法、谱方法等。
四、应用案例4.1 波动方程波动方程描述了波的传播过程,广泛应用于声学、光学等领域。
通过适当的边界条件和初始条件,可以求解波动方程得到波的传播情况。
4.2 热传导方程热传导方程描述了物体内部温度随时间的变化规律,广泛应用于热力学、材料科学等领域。
通过适当的边界条件和初始条件,可以求解热传导方程得到物体内部温度的分布。
偏微分方程讲义
![偏微分方程讲义](https://img.taocdn.com/s3/m/add1481bff00bed5b9f31d0e.png)
小。对Verhulst 模型中方程分离变量,积分得到 从而 ln 若初值 / ,则解 。则在 时,恒 。 因此,
const;若初值 有解 在
/ , 但是 ∞
时,即在解存在的范围内恒成立 0 从而 ln 故得 exp 解出 , exp 因此,当 ∞时, 大小,生
成陆地,每人不足一平方米的活动范围. Malthus 模型假设人口净增长率 为常数,从而人口方程是线性 常微分方程,只在群体总数不太大时才合理。在总数增大时,生物群 体的各成员之间由于有限的生存空间、 有限的自然资源及食物等原因, 就要进行生存竞争.因此,总数大了以后,不仅有一个自然的线性增 长项 ,还有一个竞争项来部分地抵消这个增长,人口增长的指 ,相当于还存在—个与 成
,人口的增长量为
设出生率为 ,死亡率为 ;假定出生数和死亡数与人口和时间 间隔成正比,则在时段 , 。人口净增长率 人口出生数为 ,死亡数为
– ,则得到人口满足的常微分方程,
设已知时刻
时人口总数为 ,
,有初始条件
因此,得到支配人口增长的 Cauchy 问题 , 称为Malthus 模型。由高等数学知道,解为 exp
第 1 讲 绪论:科学计算的核心
教学目的: 微分方程与数学模型紧密联系,求解微分方程是科学计算的核 心内容;建立常微分方程与偏微分方程的密切联系,建立课程的模式 偏微分方程和基本概念。 主要内容: §1 生物群体演化模型 ............................................................................. 3 1.1 Malthus 模型 ................................................................................ 3 1.2 Verhulst 模型 ................................................................................ 5 1.3 偏微分方程模型 ......................................................................... 8 §2 典型偏微分方程 ............................................................................. 10 2.1 线性偏微分方程 ........................................................................ 12 2.2 非线性方程 ................................................................................ 14 2.3 模式方程:对流‐扩散方程 ....................................................... 15 §3 偏微分方程的解及其确定 ............................................................. 19 3.1 通解、一般解和特解 ................................................................ 19 3.2 线性偏微分方程的特征理论 .................................................... 23 3.3 线性迭加原理 ............................................................................ 30 习题 1 ..................................................................................................... 31 附录 1:量阶符号和微分算子 ............................................................. 34 附录 2:计算机代数系统 ..................................................................... 37
偏微分方程掌握偏微分方程的基本概念与解法
![偏微分方程掌握偏微分方程的基本概念与解法](https://img.taocdn.com/s3/m/cd19389377a20029bd64783e0912a21614797f88.png)
偏微分方程掌握偏微分方程的基本概念与解法偏微分方程(Partial Differential Equations,PDEs)是数学中一种重要的方程类型,在数学、物理、工程等领域中具有广泛的应用。
掌握偏微分方程的基本概念与解法对于深入理解和应用相关领域的知识至关重要。
本文将介绍偏微分方程的基本概念,并详细讨论几种常见的偏微分方程解法。
一、偏微分方程的基本概念在介绍偏微分方程的解法之前,我们有必要先了解一些偏微分方程的基本概念。
偏微分方程是包含多个未知函数的方程,这些未知函数的导数以及它们本身都可能出现在方程中。
偏微分方程通常用来描述物理、化学、工程等自然科学领域中的过程和现象。
常见的偏微分方程类型包括椭圆型方程、双曲型方程和抛物型方程。
椭圆型方程常用于描述稳态问题,如静电场分布;双曲型方程常用于描述波动传播过程,如声波、电磁波的传播;抛物型方程常用于描述热传导、扩散以及其他变化速度较慢的现象。
二、偏微分方程解法1. 分离变量法分离变量法是解偏微分方程中常用的一种方法。
它适用于一些特定的偏微分方程类型,如线性齐次方程。
分离变量法的基本思想是假设待求解函数可以表示为若干个单变量函数的乘积形式,然后将原方程中的导数进行分离,并且令各个单变量函数分别等于常数。
通过求解这些常数,再将各个单变量函数组合起来,得到最终的解函数。
2. 特征线法特征线法常用于解决双曲型方程。
该方法通过分析偏微分方程的特征线和特征曲面来求解方程。
首先,通过特征曲线对自变量进行参数化,并将其代入原方程,得到关于未知函数的常微分方程(ODE)。
然后,通过求解此常微分方程,得到未知函数的一般解。
最后,通过特征线与边界条件的关系确定未知常数,得到特定的解。
3. 变换法变换法是通过对偏微分方程进行变量变换,将原方程转化为更简单的形式,从而求解方程的方法。
常见的变换方法有齐次化变量、特征变量法等。
通过适当的变量替换,可以将原方程转化为常微分方程、分离变量的偏微分方程或者恒定系数的变系数常微分方程。
偏微分方程演讲稿ppt课件
![偏微分方程演讲稿ppt课件](https://img.taocdn.com/s3/m/2252aa8876c66137ef06192d.png)
PARTIAL DIFFIERENTIAL EQUATION (P.D.E)
演讲人:Marky
1
目录
• 1 偏微分方程的基本概念 • 2 有限差分方法 • 3 常系数扩散方程及初边值问题 • 4 复金兹堡-朗道方程的简单介绍
深圳大学材料学院
2
1 偏微分方程的基本概念
3
1.1 偏微分方程定义
深圳大学材料学院
17
4 复金兹堡-朗道方程的简单介绍
18
复Ginzburg-Landau方程(CGLE)形式如下:
t
A
A
(1
i
)
2 x
A
(1
i
)
A2
A
其中,A=(x,t)是关于时间t和空间x的复变量;μ是标度参数,通常
情况下,μ=1 ;实数α,β是系统参数。当α,β→∞,α/β=常数,
上方程转变为非线性薛定谔方程。当α,β→0,方程可以化为一个简
, tn1)
u(x j
,tn )
[
u t
]nj
O(
)
(1)
u(x j1, tn ) u(x j , tn ) h
[
u x
]nj
O(h)
(2)
u(x j1, tn )
2u(x j , tn ) h2
u(x j1,t n)
[
2u x 2
]nj
O(h2 )
(3)
深圳大学材料学院
11
利用(1)式和(2)有
1.2.1 偏微分方程的解
偏微分方程的解:如果给定一个函数,将它及它对自变量的各阶偏导 数代入原偏微分方程,能使方程成为恒等式,则称函数是偏微分方程的解。
偏微分方程概论
![偏微分方程概论](https://img.taocdn.com/s3/m/af5807d3dc88d0d233d4b14e852458fb770b38ab.png)
流体动力学方程
总结词
描述流体运动的规律
详细描述
流体动力学方程,如Navier-Stokes方程,用于描述流 体的运动规律,包括流体速度、压力、密度等随时间空 间的变化。这些方程在气象预报、航空航天、船舶设计 等领域有广泛应用。
热传导方程
总结词
描述热量传递的过程
详细描述
热传导方程,如Fourier定律,用于描 述热量传递的过程。该方程能够描述 温度场随时间的变化,在材料科学、 能源工程、环境科学等领域有广泛应 用。
龙格-库塔方法
总结词
龙格-库塔方法是偏微分方程数值解法中的一种高精度方法。
详细描述
龙格-库塔方法是一种隐式的数值求解偏微分方程的方法,其 基本思想是通过一系列的迭代步骤逐步逼近原方程的解。该 方法精度较高,稳定性较好,适用于求解各种类型的偏微分 方程。
有限差分法
要点一
总结词
有限差分法是偏微分方程数值解法中的一种常用方法。
有限差分法
总结词
有限差分法是一种数值求解偏微分方程的方法,通过将微分转化为差分,将连续问题离 散化。
详细描述
有限差分法的基本思想是将偏微分方程中的微分项用离散的差分近似代替,从而将连续 问题离散化。这种方法适用于求解偏微分方程的初值问题和边界值问题,具有简单易行、
计算量小等优点。
有限元素法
总结词
偏微分方程的应用领域
自然科学
物理学、化学、生物学等自然科学领域中,偏微分方程被用来描述各种现象,如物理定律、化学 反应和生物进化等。
工程技术与计算
在航空航天、机械工程、电子工程和计算机科学等领域,偏微分方程被用来进行数值模拟和计算 ,如有限元分析、有限差分方法和谱方法等。
偏微分方程讲义
![偏微分方程讲义](https://img.taocdn.com/s3/m/b07b9aa83169a4517723a3ad.png)
%Input - f1,f2,f3,f4 are boundary functions input as strings % - a and b right endpoints of [0,a] and [0,b] % - h step size % - tol is the tolerance %Output - U solution matrix;
%Initialize parameters and U n=fix(a/h)+1; m=fix(b/h)+1; ave=(a*(feval(f1,0)+feval(f2,0)) ...
+b*(feval(f3,0)+feval(f4,0)))/(2*a+2*b); U=ave*ones(n,m);
一些内点的四个邻居都属于集合Ω,这种点称为正则点, 另一些内点的部分邻居不属于集合Ω,这种点属于非正则 点。对于每个正则点,可以得到一个方程,但是非正则 点不能得到方程,这样最后得到的方程个数少于未知量 个数。因此,对于非正则点要使用一些方法得到方程, 常用的方法是直接转移和线性插值的方法。前者就是直 接用Ω内临近的点的值代替,后者是用Ω内附近点的线性 组合代替。 下面以例子讲解具体的求解过程。
1.2偏微分方程的建模
例子1,弦的振动方程
一根长为L的均匀细线,线密度为ρ(x),放于x轴上拉紧 后,让它离开平衡位置做微小振动。求任意时刻t弦线的 位移u(x,t)。 使用元素法的思想,在弦上取[x,x+∆x]一段进行分析。因 为弦的质量相对于张力非常小,因此可以看成弦仅仅受 到两个张力,T(x)和T(x+ ∆x),利用力学基本定律,可以 得到水平和竖直方向两个方程
第十四章偏微分方程
![第十四章偏微分方程](https://img.taocdn.com/s3/m/3d6cd1837f1922791688e8d7.png)
.§3 二阶偏微分方程一、一、二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程(1) 式中a ij(x)=a ij(x1,x2,…,x n)为x1,x2,…,x n的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程称为二阶方程(1)的特征方程;这里a1,a2,…,a n是某些参数,且有.如果点x︒=(x1︒,x2︒,…,x n︒)满足特征方程,即则过x︒的平面的法线方向l:(a1,a2,…,a n)称为二阶方程的特征方向;如果一个(n)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n个自变量方程的分类与标准形式] 在点P(x1︒,x2︒,…,x n︒),根据二次型(a i为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P为椭圆型.(ii) 特征根都不为零,有n个具有同一种符号,余下一个符号相反,称方程在点P为双曲型.(iii) 特征根都不为零,有个具有同一种符号(n>m>1),其余m个具有另一种符号,称方程在点P为超双曲型.(iv) 特征根至少有一个是零,称方程在点P为抛物型.若在区域D内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D内是椭圆型、双曲型或抛物型.在点P作自变量的线性变换可将方程化为标准形式:椭圆型:双曲型:超双曲型:抛物型:式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为(2) a11,a12,a22为x,y的二次连续可微函数,不同时为零.方程a11d y2a12d x d y+a22d x2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线.在某点P(x0,y0)的邻域D内,根据Δ=a122-a11a12的符号将方程分类:当Δ>0时,方程为双曲型;当Δ=0时,方程为抛物型;当Δ<0时,方程为椭圆型.在点P的邻域D内作变量替换,可将方程化为标准形式:(i)(i)双曲型:因Δ>0,存在两族实特征曲线,,作变换,和方程化为标准形式或(ii)(ii)抛物型:因Δ=0,只存在一族实的特征曲线,取二次连续可微函数,使,作变换,,方程化为标准形式(iii)(iii)椭圆型:因Δ<0,不存在实特征曲线,设为的积分,不同时为零,作变量替换,,方程化为标准形式二、极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用.[椭圆型方程的极值原理与解的惟一性定理]1︒极值原理设D为n维欧氏空间E n的有界区域,S是D的边界,在D内考虑椭圆型方程式中a ij(x),b i(x),c(x),f(x)在上连续,c(x)≤0且二次型正定,即存在常数μ>0,对任意和任意的a i有定理1设u(x)为D内椭圆型方程的解,它在D内二次连续可微,在上连续,且不是常数,如f(x)≤0(或f(x)≥0),则u(x)不能在D的内点取非正最小值(或非负最大值).如果过边界S上的任一点P都可作一球,使它在P点与S相切且完全包含在区域D内,则有定理2设u(x)为椭圆型方程在D内二次连续可微,在上连续可微的解,且不是常数,并设f(x)≤0(或f(x)≥0).若u(x)在边界S上某点M处取非正最小值(或非负最大值),只要外法向导数在点M存在,则(或)2︒定解问题(i) 第一边值问题(狄利克莱问题)(S)(ii) 第二边值问题(诺伊曼问题)(S)其中N为S的外法线方向.(iii) 第三边值问题(混合问题)(S)a(),b(),()在S上连续,N是S的外法线方向,a()≥0,b()≤0,且a2()+b2()≠0.3︒解的惟一性问题设c(x)及b()不同时恒等于零,如果定解问题Lu=f,lu=的解存在,则是惟一的,设c(x)及b()都恒等于零,如果定解问题Lu=f,lu=的解存在,则除相差一个常数外,解是惟一的.[抛物型方程的极值原理与解的惟一性定理]设为柱体,在柱体内部考虑抛物型方程式中a ij(x,t),b i(x,t),c(x,t),f(x,t)在上连续,且正定.1︒强极值原理设u(x,t)为抛物型方程Lu=f(x,t)在D×(0,T)内连续可微在上连续的解.并设f(x)=0,若u(x,t)在D×(0,T]的某点(x0,t0)取非负的最大值,即则对任意满足下列条件的点P(x,t),都有u(x,t)=m:点P(x,t)满足t<t0,且可用完全在D×(0,T] 内的连续曲线x=x(t)与点(x0,t0)相连.如在的侧边界Γ:S×[0,T]上(S是D的边界)任一点P都可作一球,使它在P点与Γ相切且完全在D×(0,T)内,则有定理设u(x,t)在上连续,在D×(0,T]内满足抛物型方程Lu=f,且不是常数,设f≤0,若u(x,t)在Γ上某点M处取非正最小值,只要外法向导数在点M存在,则2︒柯西问题与混合问题柯西问题的初值条件是混合问题按下列的定解条件分别称为(i) 第一边值问题:,;(ii) 线性边值问题:,,其中N为Γ的外法线方向为已知函数,a≥0,b≤0,a2+b2≠03︒解的惟一性定理如果抛物型方程Lu=f的混合问题的解存在,那末它是惟一的.如果柯西问题存在有界的解,那末在有界函数类中,解是惟一的.[波动方程的能量积分与解的惟一性定理]1︒波动方程的柯西问题与混合问题设波动方程为柯西问题的初值条件是如果在有界区域Q:D×(0,T]中考虑波动方程,记的侧边界为Γ,则混合问题的定解条件是(i) (i) 第一边值问题(ii) (ii) 第二边值问题(iii) (iii) 第三边值问题式中N为Γ的外法线方向,φ(x),ψ(x)为D上的已知函数,为定义在Γ上的已知函数,.2︒解的惟一性定理波动方程的混合问题与柯西问题的解如果存在必定惟一.惟一性定理可用下面能量积分证明.3︒能量积分积分*称为波动方程的能量积分.满足齐次波动方程及u|Γ=0(或)的函数u(x,t)成立:能量守恒原理E(t)=E(0).能量不等式式中满足齐次波动方程及的函数,在上面能量不等式E(t)中增加一项,上面关系仍成立.对于柯西问题,在特征锥(R为大于零的常数)中考虑齐次波动方程的解u,记特征锥与t=t0的截面为,关于能量积分成立下面的能量不等式式中πt是t=常数的超平面与以为上底所作的柱体(母线平行于Ot轴)的交截面.*是的简写,下同.三、三种典型方程1. 波动方程研究下面形式的波动方程式中f(x,y,z,t)为已知函数.许多物体的运动规律可用波动方程来描述.如弦振动可用一维波动方程描述;膜的振动可用二维波动方程描述;声波和电磁波的振荡可用三维波动方程描述.[齐次方程柯西问题的解]设齐次波动方程的柯西问题满足下面初始条件:并设三次连续可微,二次连续可微,那末解u的表达式分别为1︒三维(克希霍夫公式)式中S at表示球面:,d S表示球面的面积元素.2︒二维(泊松公式)式中K at表示圆:.3︒一维(达兰贝尔公式)利用降维法可从高维的解推得低维的解.[非齐次方程柯西问题的解]非齐次波动方程柯西问题的解等于上面齐次方程柯西问题的解添加一项所谓推迟势.1︒三维式中积分区域是以(x,y,z)为中心,at为半径的球体,2︒二维式中.一维[解的物理意义]波动方程解的表达式具有明确的物理意义.1︒波的传播以弦振动为例,在达兰贝尔公式中,形如(x-at)的解描写了弦振动以常速度a向右传播,称(x-at)为右传播波,(x+at)为左传播波,a为波速.2︒依赖区间过点P(x,t)作两条特征线x=c1,x+at=c2交x轴于x1,x2,则区间[x1,x2]称为点P的依赖区间,由达兰贝尔公式可见解在P点的值只与[x1,x2]上初始条件有关,而与区间外(x),(x)的值无关.3︒决定区域过x轴上两点x1,x2(x1<x2)分别作特征线x=x1+at,x=x2则三角形区域x1+at≤x≤x2(t>0)称为[x1,x2]的决定区域(图14.4(a)),在区域中解的数值由[x1,x2]上的初始条件完全决定.任意改变初始条件在[x1,x2]外的数值,解在此区域中不会发生任何变化.图14.44︒影响区域过x轴上两点分别作特征线x=x1,x=x2+at称区域x1-at≤x≤x2(t>0)为[x1,x2]的影响区域(图14.4(b)).在此区域中,解的数值受到[x1,x2]上初始条件的影响,而在此区域外,解的值不受[x1,x2]上的初始条件影响,当区域[x1,x2]缩为一点x0时,点x0的影响区域为x轴上区间(图14.4(c))x0≤x≤x0+at (t>0)对二维波动方程,点(x0,y0,t0)的依赖区域为t=0上的圆.(x-x0)2+(y-y0)2≤a2t02在t=0上圆(x-x0)2+(y-y0)2≤a2t02的决定区域是以(x0,y0,t0)为顶点的圆锥体区域(图14.5(a)).(x-x0)2+(y-y0)2≤a2(t-t0)2 (t≤t0)初始平面t=0上一点(x0,y0,0)的影响区域为圆锥体(图14.5(b)).(x-x0)2+(y-y0)2≤a2t2 (t>0) (1) 初始平面t=0上某一区域的影响区域,就是由此区域上每一点所作的圆锥体(1)的包络面所围成的区域.图14.5对三维波动方程,点(x0,y0,z0,t0)的依赖区域为t=0上的球面(x-x0)2+(y-y0)2+(z-z0)2=a2t02初始平面t=0上的球体(x-x0)2+(y-y0)2+(z-z0)2≤a2t02的决定区域是以它为底,以(x0,y0,z0,t0)为顶点的圆锥体区域(x-x0)2+(y-y0)2+(z-z0)2≤a2(t-t0)2 (t≤t0)在初始平面t=0上点(x0,y0,z0,0)的影响区域为锥面(x-x0)2+(y-y0)2+(z-z0)2=a2t2 (t>0) (2) 初始平面上某一区域的影响区域就是它上面的每一点所作的锥面(2)的包络面围成的区域.二维与三维波的传播存在着下述本质区别.5︒惠更斯原理对三维波动方程,点(x0,y0,z0,0)的影响区域为(x-x0)2+(y-y0)2+(z-z0)2≤a2t2 (t>0)若在某一有界区域Ω有一个初始扰动,在时刻t受到此初始扰动的影响区域就是所有以点为中心,以at为半径的球面全体,当t足够大时,这种球面族有内外包络面,称外包络面为传播波的前阵面,内包络面为后阵面.前阵面以外的部分表示扰动尚未传到的区域,后阵面以内的部分是波已传过并恢复了原来状态的区域,前后阵面之间的区域就是受到扰动影响的部分,在三维,波的传播有清晰的前阵面与后阵面,称为惠更斯原理或称无后效现象.6︒波的弥散对二维波动方程,点(x0,y0)的影响区域为(x-x0)2+(y-y0)2≤a2t2若在有界区域Ω内有一个初始扰动,则波的传播只有前阵面而无后阵面,所以当Ω的初始扰动传到某点后,扰动对此点的影响不会消失,不过随时间的增加而逐渐减弱.这种现象称为波的弥散,或说波具有后效现象.2. 热传导方程热传导方程的一般形式为式中f(x,t)为连续有界函数.热传导方程是描述热的传导过程,分子的扩散过程等物理规律的.对于n维热传导方程的柯西问题的初值条件为式中为连续有界函数,方程的解的表达式为3. 拉普拉斯方程研究重力场、静力场、磁场以及一些物理现象(如振动、热传导、扩散)的平衡或稳定过程,通常得到椭圆型方程,最典型的方程为拉普拉斯方程Δu=0及泊松方程Δu=ρ式中ρ为已知函数,Δ为拉普拉斯算子,[圆或球的狄利克莱问题解的泊松积分] 当区域为圆或球时,分别采用极坐标(r,)或球坐标(r,θ,)较为方便.Δu=0的极坐标形式为Δu=0的球坐标形式为狄利克莱问题解的泊松积分为1︒区域是圆时,Δu=0, u|r=a=,解为泊松积分式中为已知连续函数,.2︒区域是球时,Δu=0, u|r=a=,解为泊松积分式中为已知连续函数,[调和函数的性质] 二维拉普拉斯方程的连续解称为调和函数,它具有以下重要性质:1︒设函数u(x,y)在以S为边界的有界区域D内调和,在上有连续一阶偏导数,则式中为外法向导数.2︒算术平均值定理设函数u(x,y)在圆的内部调和,在闭圆上连续,则u(x,y)在圆心的值等于它在圆周上的值的算术平均值.3︒每一个调和函数u(x,y)对x,y无穷次可微.4︒哈拉克第一定理(一致收敛定理)设{u k(x,y)}, (k=1,2)在有界区域D内调和,在上连续,如果u k(x,y)在D的边界上一致收敛,则在D内也一致收敛,并且极限函数在D内调和.5︒哈拉克第二定理(单调性定理)设调和函数列{u k(x,y)}, (k=1,2,…)在D的某一内点收敛,且对于任意k,u k+1(x,y)≥u k(x,y)则u k(x,y)在D内处处收敛于某调和函数,同时在D的每一有界闭子区域上一致收敛.6︒刘维尔定理如函数u(x,y)在全平面上调和且不是常数,则它不可能有上界和下界.7︒可去奇点定理设u(x,y)在A点的一个邻域(除A点外)调和且有界,但在A点没有定义,则可定义函数u(x,y)在A点的值,使u在整个A点的邻域(包括A点)内是调和函数.[李雅普诺夫闭曲面与内、外边值问题] 设S为E n的有限闭曲面,如果满足下列条件,那末S称为李雅普诺夫闭曲面:(i) 曲面到处有切面.(ii) 存在常数d>0,对曲面上每一点P,可作一个以P为中心、d为半径的球,使曲面在此球内的部分和任意一条与P点法线平行的直线相交不多于一点(iii) 曲面上任意二点P1及P2的法线的夹角γ(P1,P2)满足式中A,δ为正常数,0<δ≤1,是点P1与P2之间的距离.(iv) 从空间任意一点P0看曲面的任一部分σ的立体角有界,即||≤k (k为常数)(从点P0看曲面S的立体角为式中表示矢量,N P表示S在点P的外法线矢量,d S P表示点P的面积元素.)设D为E n的有界区域,其边界S为李雅普诺夫闭曲面.求在D内满足Δu=0而在S上满足给定边界条件的解称为内边值问题;求在D外满足Δu=0而在S上满足给定边界条件的解称为外边值问题.[狄利克莱问题与诺伊曼问题的解]狄利克莱问题Δu=0,诺伊曼问题Δu=0,式中M S∈S,为S上的已知连续函数,为外法向导数.1︒狄利克莱问题的解可表示为面积分.式中v(P)称为面密度,面积分u(M)称为双层位势,r PM为点M与变点P之间的距离,r PM为矢量,N P为S在点P的外法线矢量,v(M)满足第二类弗雷德霍姆积分方程(第十五章§1):(i) 内边值问题(ii) 外边值问题2︒诺伊曼问题的解可表示为面积分式中(P)称为面密度,面积分u(M)称为单层位势,(P)满足第二类弗雷德霍姆积分方程:(i) 内边值问题(ii) 外边值问题定理:狄利克莱的内外边值问题及诺伊曼的外边值问题有惟一解,而诺伊曼的内边值问题解存在的充分必要条件是:[泊松方程] 在区域D内,泊松方程Δu=ρ(ρ为已知连续函数)有特解:三维:体势位二维:对数势位式中r PM为点M与变点P之间的距离.如果已知泊松方程的一个特解U(M),则=u-U满足Δ=0,从而泊松方程的边值问题可化为拉普拉斯方程相应的边值问题.四、基本解与广义解[共轭微分算子与自共轭微分算子]算子称为二阶线性微分算子,式中a ij,b i,c为x1,x2,…,x n的二次连续可微函数.由公式决定的算子L*称为L的共轭微分算子.如果L=L*,则称L为自共轭微分算子.[格林公式]1︒算子L的格林公式是式中S为区域D的边界,N为S的外法线矢量,e i为x i的轴的矢量(0,…,0,,0,…,0),cos(N,e i)表示矢量N与e i的夹角的余弦,2︒三维拉普拉斯算子的格林公式其中是外法向导数.3︒算子的格林公式式中L*为L的共轭微分算子,N为外法线矢量,i,j分别为x轴,y轴上的单位矢量.[基本解]1︒方程Lu=f的基本解:设M,M0为E n中的点,满足方程的解U(M,M0)称为方程Lu=f的基本解,有时也称为方程Lu=0的基本解,式中(M-M0)称为n维狄拉克函数(-函数).基本解U(M,M0)满足(i) LU(M,M0)=0,当M≠M0,(ii) 对任意充分光滑的函数f(M),于是U(M,M0)满足Lu=f(M) .所以有时也就把满足条件(i)、(ii)的函数U(M,M0)定义为方程Lu=f(M)的基本解.(a) Δu=0的基本解二维:三维:n维:式中表示点M与M0之间的距离.(b) n维空间的多重调和方程m u=0的基本解(c) 热传导方程的基本解(d) 波动方程的基本解一维:二维:三维:2︒柯西问题的基本解(i) 称满足的解为波动方程柯西问题的基本解,它的形式为一维:二维:三维:(ii) 称满足的解为热传导方程柯西问题的基本解,它的形式是同样方法可以定义其他定解问题的基本解.由定义可见,基本解表示由集中量(如点热源,点电荷等)所产生的解,下段介绍的格林函数,黎曼函数也具有这种特点,统称它们为点源函数,或影响函数.[广义解]在区域D中给定二阶线性方程式中f在D上连续.1︒设u n(x)为D上充分光滑(如二阶连续可微)的函数序列,当n→∞时,u n(x)一致(或在适当意义下)收敛于函数u(x),同时Lu n也一致(或在适当意义下)收敛于f(x),则称u(x)为Lu=f的广义解.2︒设函数u(x)在区域D内连续,如果对于任意二次连续可微且在与D的边界距离小于某一正数的点上恒等于零的函数(与无关,称为D的试验函数)有那末称u(x)为方程Lu=f的广义解.有时为了区别广义解,称以前定义的解为古典解,古典解一定是广义解.但因广义解不一定光滑,甚至不可微,所以不一定是古典解.例如,当(x),(x)只是x的连续函数时,函数u(x,t)=(x+t)-(x-t)为波动方程的广义解,但不是古典解.五、二阶偏微分方程的常用解法1.分离变量法它是解线性微分方程常用的一种方法,特别当区域是矩形、柱体、球体时使用更为普遍.这种方法是先求满足边界条件的特解,利用迭加原理,作这些特解的线性组合,得到定解问题的解.求特解时常归结为求某些常微分方程边值问题的特征值和特征函数.以下对不同类型方程说明分离变量法的具体解法.[弦振动方程]1︒两端固定的弦振动齐次方程混合问题设u(x,t)=X(x)T(t),具体解法如下:(1) X(x),T(t)满足的常微分方程:(2) 用此二常微分方程的解的乘积表示弦振动方程的特解u n(x,t).解边值问题当时,有非零解称λn为边值问题的特征值,X n(x)为特征函数.把λn代入T(t)的方程,得式中A n,B n为任意常数,这样就得到弦振动方程的特解:(3) 把u n(x,t)迭加,形式上作级数(4) 利用特征函数的正交性,确定系数A n,B n.把(x)及(x)展开成傅立叶级数式中利用初始条件可得于是混合问题的形式解为若(i) (x)具有一阶和二阶连续导数,三阶导数逐段连续,且(0)=(l),"(0)="(l)=0;(ii)(x)连续可微,二阶导数逐段连续,(0)=(l)=0,那末形式解右端的级数一致收敛,形式解就是混合问题的正规解.2︒解的物理意义弦的这种形式的振动称为驻波,点(m=0,1n) 为不动的点,称为节点;点(m=0,1,2n-1)处振幅最大,称为腹点;称为弦振动的固有频率;弦线发出的最低音的频率为(τ为张力,ρ为弦的线密度)称为该弦的基音,其他频率都是它的整数倍,称为泛音.3︒非齐次方程的混合问题将u(x,t)和f(x,t)展开成傅立叶级数:那末根据定解条件再利用1︒中(x)与(x)的傅立叶展开式,有所以形式解为若(x)具有一、二阶连续导数,三阶导数逐段连续,(x)和f(x,t)连续可微,二阶导数逐段连续,同时(0)=(l)="(0)="(l)=0(0)=(l)=f(0,t)=f(l,t)=0则级数一致收敛,形式解就是非齐次方程混合问题的正规解.4 遇到非齐次边界条件作变换可化为关于v(x,t)的齐次边界条件求解.[热传导方程]热传导方程的第一边值问题设u(x,t)=X(x)T(t),得X"(x)+2X(x)=0T'(t)+a22T(t)=0特征值,对应的特征函数为,而作形式解式中c n等于(x)的傅立叶系数即.当(x)具有一、二阶连续导数,三阶导数逐段连续,(0)=(l)=0,则上述级数一致收敛,形式解就是正规解了.[拉普拉斯方程]球内定常温度分布的狄利克莱问题—拉普拉斯方程的狄利克莱问题.选用球坐标令u(r,,)=v(r,)().代入方程,分离变量得"()+k2()=0 (1)(2) 利用对于变量的周期性,u(r, ,)=u(r, ,+2),可知方程(1)中的k只能取m(m=0,1),那末()取{cos m,sin m}.再将方程(2)分离变量,令v=R(r)H(),得(3)(4) 方程(4)的解可用勒让德多项式表示,为了使解有界,λ只能取λn2=n(n+1) (n=0,1,2,…)对应的解H()=P n(m)(cos),,P n(x)为勒让德多项式方程(3)可写成这是欧拉方程,其有界解为R(r)=c1r n.最后将u的特解迭加,利用边界条件和球函数的正交性得式中P n(m)(cos)为一般勒让德函数.如果二次连续可微,则表示的级数一致收敛,它就是狄利克莱问题的解.[高阶方程]梁的横向振动方程为(a为常数) (1) 定解条件为设y (x,t )=X (x )T (t ),那末方程(2)满足X"(0)=X"(l )=0的特征值,特征函数(n =1,2),方程(3)的解为所以方程(1)的形式解为由y (x,0)=x (l -x )得最后得到方程(1)的解.2. 双曲型方程的黎曼方法 考虑拉普拉斯双曲型方程[古沙问题的特征线法] 古沙问题是设a (x,y ),b (x,y ),c (x,y ),f (x,y )为连续函数;连续可微且,令则古沙问题化为下面积分方程组的求解问题它可用逐次逼近法求解,显然x=x 0,y=y 0为拉普拉斯双曲型方程的特征线,所以此法也称为特征线法. [广义柯西问题的黎曼方法] 广义柯西问题是设a (x,y ),b (x,y ),c (x,y ), 1(x )及(x )为连续可微函数,且'(x )≠0,而f (x,y )及2(x )为连续函数.设M (x 0,y 0)不是y=(x )上的点,过点M 作特征线x=x 0,y=y 0交y=(x )于P 及Q ,记曲边三角形PMQ 为D (图14.6),在D 上用格林公式(本节,四)得设v (x,y ;x 0,y 0)为下面古沙问题的解:那末广义柯西问题解的黎曼公式为式中v (x,y ;x 0,y 0)称为黎曼函数,这个方法称为黎曼方法.一般可用特征线法求黎曼函数.但对常系数偏微分方程(c 为常数)也可用下法求黎曼函数.设v=v (z ),,则方程化为贝塞耳方程图14.6黎曼函数就是满足此贝塞耳方程及条件v(0)=1的零阶贝塞耳函数,对常系数的拉普拉斯双曲型方程通过变换可化为的形式,它的黎曼函数就是上式.3.椭圆型方程的格林方法在区域D考虑椭圆型方程式中a ij,b i,c,f为x1,…,x n的连续可微函数,a ij=a ji,二次型是正定的.[格林函数及其性质] 若Lu=0的共轭方程L*u=0的基本解G(x,)在D的边界S上满足G(x,)=0, x∈S则称G(x,)为方程Lu=0的格林函数,式中x=(x1,…,x n),ξ为参变点,=(1,…,n),即G(x,)=G(x1,…,x n;1,…,n).格林函数具有对称性质:设G(x,),V(x,)分别为方程Lu=0及其共轭方程的格林函数,则成立对称关系G(x,)=V(x,)特别如果Lu为自共轭微分算子,则有G(x,)=G(,x)[利用格林函数解边值问题]1︒一般公式在区域D上应用格林公式(本节,四),并取v=G(x,),则方程Lu=f的狄利克莱问题u|s=的解为式中(N是S的外法线方向)2︒对于球体(球心为O,半径为a),u=0的基本解为,r为P(x,y,z)与参变点的距离,作M关于球面的反演点M1,记r1为M1与P的距离,则格林函数为.狄利克莱问题u|s=的解为式中S为球面.引用球坐标时,解为泊松积分(本节,三,3).3︒在圆上(半径为a),u=0的格林函数为式中r为P(x,y)与参变点的距离,r1为P与M点关于圆的反演点M1的距离,圆上狄利克莱问题的解为泊松积分.4.积分变换法积分变换法是解线性微分方程,特别是常系数方程的一种有效方法,它是把方程的某一独立变量看成参变量,作未知函数的积分变换,这样可减少原方程独立变量的个数而将方程化为简单形式(最简单的情况是常微分方程,甚至是代数方程).解此简化方程的对应定解问题并通过逆积分变换就得到原定解问题的解.下面举例说明傅立叶变换和拉普拉斯变换方法.例1 用傅立叶变换法解弦振动方程的柯西问题解把t作为参变量,作u(x,t)关于x的傅立叶变换F原来的柯西问题化为下面的定解问题把p看作参数,其解为由傅立叶变换的反演公式得到原问题的解例2 用拉普拉斯变换法解热传导方程的定解问题解 把x 当作参变量,作u (x,t )关于t 的拉普拉斯变换L原问题化为通解为要求解有界.c 2必须为零,所以,查拉普拉斯变换表(第十一章)得式中erfc(y )为余误差函数.§4 偏微分方程的数值解法一、 一、 差分法差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商在平面 (x , y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族.(i , j =0,1,2,…,n )作成一个正方形网格,这里h 为事先指定的正数,称为步长;网格的交点称为节点,简记为(i , j ).取一些与边界S 接近的网格节点,用它们连成折线,所围成的区域记作.称内的节点为内节点,位于上的节点称为边界节点(图14.7).下面都在网格上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数:注意, 1︒ 式中的差商称为向后差商,而称为向前差商,称为中心差商.也可用向前差商或中心差商代替一阶偏导数.2︒ x 轴与y 轴也可分别采用不同的步长h , l ,即用直线族(i ,j =0, ±1, ±2)作一个矩形网格.2. 椭圆型方程的差分方法[五点格式] 考虑拉普拉斯方程的第一边值问题式中为定义在D 的边界S 上的已知函数.采用正方形网格,记,在节点(i , j )上分别用差商代替,对应的差分方程为(1)或即任一节点(i , j )上的值等于周围相邻节点上解的值的算术平均,这种形式的差分方程称为五点格式,在边界节点上取(2)图14.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G(x) = φ(x/2) − F (0), F (0) + G(0) = φ(0) = ψ (0). ( ) ( ) x − at x + at ⇒ u(x, t) = ψ +φ − φ(0). 2 2
例 2.4 对非齐次波动方程的初值问题 (2.5)、(2.6), 证明: 当 f (x, t) 不变时, (1) 如果初始条件在 x 轴的区间 [x1 , x2 ] 上发生变化, 那么对应的解在区间 [x1 , x2 ] 的影响区域外不发生变化; (2) 在 x 轴区间 [x1 , x2 ] 上所给的初始条件唯一确定区间 [x1 , x2 ] 的决定区域中解的 数值. 解: 弄清影响区域、决定区域的定义. 例 2.5 求解 utt − a2 uxx = 0, x > 0, t > 0, u|t=0 = φ(x), ut |t=0 = 0, ux − kut |x=0 = 0,
其中 k 为正常数. 齐海涛 htqi2008@ 4
山东大学威海分校
2
达朗贝尔公式、波的传播
解: 波动方程的通解为 u = F (x − at) + G(x + at), 由初始条件得 F (x) + G(x) = φ(x), −aF ′ (x) + aG′ (x) = 0
1 C 1 C F (x) − G(x) = C, F (x) = φ(x) + , G(x) = φ(x) − , 2 2 2 2
1 其中 C = F (0) − G(0). 由于 x + at ≥ 0, G(x + at) = 2 φ(x + at) − C 2 . 当 x − at ≥ 0 1 C 1 时, F (x − at) = 2 φ(x − at) + 2 . 此时 u(x, t) = 2 [φ(x + at) + φ(x − at)]. 当 x − at < 0 时, 由边界条件知
由 d'Alembert 公式有 1 1 v (x, t) = [(h − x + at)φ(x − at) + (h − x − at)φ(x + at)] + 2 2a 再由 (1) 知此定解问题的解. 注:此问题也可由 (1) 并利用初始条件决定 F 和 G. 例 2.2 问初始条件 φ(x) 与 ψ (x) 满足怎样的条件时, 齐次波动方程初值问题的解仅由 右传播波组成? 解: 由题意知 1 1 G(x) = φ(x) + 2 2a ∫
1 − ka C1 G(x) − , 1 + ka 1 + ka 1 − ka C1 F (x − at) = F (−(at − x)) = G(at − x) − . 1 + ka 1 + ka 1 1 − ka ka ⇒ u(x, t) = φ(x + at) + φ(at − x) + φ(0). 2 2(1 + ka) 1 + ka 例 2.6 求解初边值问题 utt − uxx = 0, 0 < t < kx, k > 1, u|t=0 = φ0 (x), x ≥ 0, u | = φ1 (x), x ≥ 0, t t=0 u|t=kx = ψ (x), 其中 φ0 (0) = ψ (0). 解: 当 x − t ≥ 0 时, 由 d'Alembert 公式有 1 1 u(x, t) = [φ0 (x − t) + φ0 (x + t)] + 2 2 ∫
= 0.
x=l
例 1.3 试证: 圆锥形枢轴的纵向振动方程为 [ ] ( ∂ ( x )2 ∂u x )2 ∂ 2 u E 1− =ρ 1− , ∂x h ∂x h ∂t2 其中 h 为圆锥的高. 解: 仿照第一题有 (R 为圆锥的底面半径) ρV (x) 其中 ∂u ∂u ∂2u (x, t) = ES (x + ∆x) (x + ∆x, t) − ES (x) (x, t) ∂t2 ∂x ∂x ( x )2 S (x) = πR2 1 − . h
2 达朗贝尔公式、波的传播
例 2.1 证明方程 [ ] ∂ ( x )2 ∂u 1 ( x )2 ∂ 2 u 1− = 2 1− ∂x h ∂x a h ∂t2
(h > 0 常数)的通解可以写成 u= F (x − at) + G(x + at) , h−x
其中 F, G 为任意的具有二阶连续导数的单变量函数, 并由此求解它的初值问题: t=0: u = φ(x), ∂u = ψ (x). ∂t
x x+at
x−at
(h − ξ )ψ (ξ )dξ.
ψ (ξ )dξ −
x0
C ≡ const. 2a
故
G′ (x)
= 0, 即
aφ′ (x) + ψ (x) = 0.
例 2.3 利用传播波法, 求解波动方程的古沙(Goursat)问题 2 ∂2u 2∂ u = a , ∂t2 ∂x2 u|x−at=0 = φ(x), u|x+at=0 = ψ (x), (φ(0) = ψ (0)). 解: 设 u(x, t) 具有行波解 u = F (x − at) + G(x + at), 由边界条件得 F (0) + G(2x) = φ(x), F (x) = ψ (x/2) − G(0), F (2x) + G(0) = ψ (x).
齐海涛
htqi2008@
2
山东大学威海分校 而 x = 0 时, T (0) = ρgl, 知 C = ρgl, 所以 T (x) = ρg (l − x). 又 sin α2 ≈ tan α2 = ∂u (x + ∆x, t), ∂x . x x + ∆x .
2
达朗贝尔公式、波的传播
山东大学威海分校
1
方程的导出、定解条件
例 1.2 在杆纵向振动时, 假设 (1) 端点固定, (2) 端点自由, (3) 端点固定在弹性支撑 上, 试分别导出这三种情况下所对应的边界条件. 解: (1) u(0, t) = u(l, t) = 0; ∂u (2) 端点自由, 即端点处无外力作用. 在左端点 SE (0) ∂u ∂x (0, t) = 0, 即 ∂x (0, t) = 0. 同理右端点 ∂u ∂x (l, t) = 0. (3)端点固定在弹性支承上, 端点受的外力与支撑的变形成比例. 如左端有弹性支承, 弹性系数设为 k , 则 ( ) ∂u k ∂u − + hu =0 h= . SE (0) (0, t) = ku(0, t), ∂x ∂x E (x)S x=0 同理右端: ( ) ∂u + hu ∂x
解: (1) 令 v (x, t) = (h − x)u(x, t) 并代入方程得 vtt = a2 vxx , 齐海涛 htqi2008@ 3
山东大学威海分校
2
达朗贝尔公式、波的传播
进而 u= (2) {
F (x − at) + G(x + at) v = . h−x h−x
vtt = a2 vxx , t = 0 : v = (h − x)φ(x), vt = (h − x)ψ (x). ∫
由 Hooke 定律, B 两端的张力分别为 E (x)ux |x , E (x)ux |x+∆x . B 段的运动方程为 Sρ(x)∆x ∂2u (x, t) = E (x)Sux |x+∆x − E (x)Sux |x ∂t2
其中 S 为细杆截面面积, x 为 B 段重心坐标. 约去 S , 令 ∆x → 0, 有 ( ) ( ) ∂u ∂ ∂u ∂ ρ(x) = E (x) . ∂t ∂t ∂x ∂x 1
( x )2 V (x) = πR2 1 − ∆x + 例 1.4 绝对柔软而均匀的弦线有一端固定, 在它本身重力作用下, 此线处于铅垂的平衡 位置, 试导出此线的微小横振动方程. 解: 设弦长为 l, 取弦上端点为原点, 取铅垂向下的轴为 x 轴. 设 u(x, t) 为时刻 t, x 处的横向位移. 取位于 (x, x + ∆x) 的微元进行分析, 由绝对柔软的假设, 弦的张力 T 的方向总是沿弦的切线方向. 又由微小振动的假设 ux ≪ 1. 因此认为弦在振动过程中不 伸长, 且张力 T 与时间无关. 考察受力平衡 (α1 , α2 为张力 T 的方向与竖直线的夹 角) T (x + ∆x) cos α2 − T (x) cos α1 = −ρg ∆x, (1) T (x + ∆x) sin α2 − T (x) sin α1 = ρ∆xutt . 由 (1) 知 dT = −ρg dx ⇒ T = −ρgx + C. (2)
.. O
∂u sin α1 ≈ tan α1 = (x, t). ∂x 由 (2) 知 [ ] ∂ ∂u(x) ∂2u T (x) =ρ 2 ∂x ∂x ∂t [ ] ∂2u ∂ ∂u ⇒ =g (l − x) . ∂t2 ∂x ∂x
T .
T . x .
例 1.5 一柔软均匀的细弦, 一端固定, 另一端是弹性支承. 设该弦在阻力与速度成正比 的介质中作微小的横振动, 试写出弦的位移所满足的定解问题. 解: k , σ 为正常数 utt − a2 uxx + kut = 0, 0 < x < l, t > 0, u|t=0 = φ(x), ut |t=0 = ψ (x), u|x=0 = 0, (ux + σu)|x=l = 0. 例 1.6 若 F (ξ ), G(ξ ) 均为其变元的二次连续可导函数, 验证 F (x − at), G(x + at) 均 满足弦振动方程 (1.11). √ 例 1.7 验证 u(x, y, t) = 1/ t2 − x2 − y 2 在锥 t2 − x2 − y 2 > 0 中满足波动方程 utt = uxx + uyy .