数学物理方法知识点总结数学物理方程知识点归纳

合集下载

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳数学和物理是息息相关的学科,数学在物理中起着重要的作用,许多物理规律都可以用数学方程式表达。

在学习物理时,掌握数学方程式是必不可少的,以下是数学物理方程知识点的归纳。

1.牛顿第一定律牛顿第一定律又称为惯性定律,它表明物体保持运动状态的惯性,只有外力才能改变物体的运动状态。

牛顿第一定律的数学表达式为F=ma,即力等于质量乘以加速度。

2.牛顿第二定律牛顿第二定律是物理学中最重要的定律之一,它描述了物体的运动状态和所受的力之间的关系。

牛顿第二定律的数学表达式为a=F/m,即加速度等于力除以质量。

3.牛顿第三定律牛顿第三定律又称为作用与反作用定律,它表明对于每一个作用力,都存在一个相等而反向的反作用力。

牛顿第三定律的数学表达式为F1=-F2,即作用力等于反作用力的相反数。

4.万有引力定律万有引力定律是描述物体之间万有引力作用的定律,它表明两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

万有引力定律的数学表达式为F=Gm1m2/d2,即引力等于万有引力常数乘以两个物体的质量除以它们之间的距离的平方。

5.波动方程波动方程是描述波动现象的方程,它可以用来描述声波、光波等波动现象。

波动方程的数学表达式为y(x,t)=Asin(kx-ωt+φ),即位移等于振幅乘以正弦函数,其中k是波数,ω是角频率,φ是初相位。

6.热传导方程热传导方程是描述热传导现象的方程,它可以用来描述物体内部的温度分布随时间的变化。

热传导方程的数学表达式为∂u/∂t=k∇2u,即温度变化率等于热扩散系数乘以温度梯度的二阶导数。

7.量子力学方程量子力学方程是描述微观粒子运动的方程,它可以用来描述电子、质子等粒子的运动和相互作用。

量子力学方程的数学表达式为Hψ=Eψ,即哈密顿算符作用于波函数等于能量乘以波函数。

8.电动力学方程电动力学方程是描述电场和磁场相互作用的方程,它可以用来描述电磁波、电荷运动等现象。

数学物理方程知识点

数学物理方程知识点

数学物理方程知识点
Chapter 1:绪论
1.偏微分方程的基本概念名词
2.三大类方程的典型物理模型:弦振动、热传导、
3.二阶方程的标准简化:用坐标变换化简二阶项、用v=ue!"!!"化简一次项
Chapter 2:波动方程
1.D’Alembert公式——Cauchy 初值问题:
半区域用延拓法或特征线法、非齐次方程右端用叠加原理、
2.分离变量法——矩形区域混合初边值问题:
方程分离、特征值与特征函数求解、初值用特征函数展开确定系数
非齐次方程右端用叠加原理、叠加原理一般公式
非齐次边界先化成齐次边界、边界条件最先考虑
3.三维波动方程球平均法——Cauchy 初值问题
三维积分公式的一般表达、极坐标表达
4.二维波动方程降维法——Cauchy 初值问题
二维积分公式的一般表达、极坐标表达
5.能量积分——解的唯一性和稳定性
6.解的无穷远渐进形态
Chapter 3:热传导方程
1.Fourier 变换法——Cauchy 初值问题:1 维或n 维公式
2.分离变量法——矩形混合初边值问题:
place 变换法
4.圆域上的热传导方程、极坐标、Bessel 函数
5.能量积分——解的唯一性和稳定性
6.极值原理——解的唯一性和稳定性
Chapter 4:调和方程
1.分离变量法——Drichlet 问题
圆域内外(内外Poisson 公式)、扇形区域、环形区域、矩形区域、球形区域
非齐次问题先齐次化,或用特征函数法
2.Green 公式、能量积分、变分原理、基本解、基本积分公式、平均值公式、极值原理、唯
一性和稳定性。

3.Green 函数:上班平面、球形区域。

数学物理方程的重点

数学物理方程的重点

一.无界问题的特征线法求解求解1.一维无界弦振动方程的达朗贝尔公式(特征线法在弦振动方程的应用)求解法 1.1齐次方程两端无界弦振动方程的求解 齐次弦振动方程及初始条件:⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt ψϕ其方程为+∞<<-∞>=-x t u a u xx tt ,0,02,其特征方程为022=-⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξu u u x +=,ηξu a u a u t ⨯-⨯=,ηηξηξξu u u u xx ++=2,ηηξηξξu a u a u a u tt 2222+-=)()()()(),(0042at x G at x F G F t x u u u u a u xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x u x x G x F x u t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰ )(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x u -++=⎰+-+-++=atx atx db b a at x at x t x u )(21)]()([21),(ψϕϕ(1)此公式为达朗贝尔公式 1.2单侧无界弦振动齐次方程的求解⎪⎩⎪⎨⎧>=>==>>=-0,0),0(),()0,(),()0,(0,0,02t t u t t x x u x x u x t u a u t xx tt ψϕ先求出对应双侧无界弦振动方程⎩⎨⎧ψ=Φ=+∞<<-∞>=-)()0,(),()0,(,0,02x x u x x u x t u a u t xx tt 其中要求)(),(x x ψΦ为奇函数又已知其右侧函数表达式可以求出求出左侧表达式⎩⎨⎧<--≥=Φ0),(0),()(x x x x x ϕϕ,⎩⎨⎧<--≥=ψ0),(0),()(x x x x x ψψ 将其带入达朗贝尔公式可求出对应双侧无界弦振动方程的解⎰+-ψ+-Φ++Φ=atx atx db b a at x at x t x u )(21)]()([21),( 只要令0)(21)]()([210),(,0=Φ+Φ-Φ⇒==⎰-db b a at at t x u x atat又令0>x ,⎪⎪⎩⎪⎪⎨⎧<+---+>+-++=⎰⎰+--+-atx at x atx at x at x db b a at x at a a at x db b a at x at x t x u )(,)(21))](()([21,)(21)]()([21),(ϕϕϕϕϕϕ 此),(t x u 即为单侧无界弦振动齐次方程的解 1.3零初始条件的非齐次弦振动方程的求解⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x u x u t t x f u a u t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x u x u t u a u t xx tt 则⎰=td t x w t x u 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x u 0)()(0),(21),(),(τττττ 1.4有初始条件的非齐次无界弦波动方程的求解⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0),,(2x x u x x u x t t x f u a u t xx tt ψϕ 此方程要使用叠加原理进行求解设),(),(),(t x z t x v t x u +=其中分别满足以下方程⎩⎨⎧==+∞<<-∞>=-)()0,(),()0,(,0,02x x v x x v x t v a v t xx tt ψϕ(1)和⎩⎨⎧==+∞<<-∞>=-0)0,(,0)0,(,0),,(2x y x y x t t x f y a y t xx tt (2) 对于方程(1),使用达朗贝尔公式可以求得:其特征方程为022=+⎪⎭⎫⎝⎛a dt dx ,2,1c at x =±所以at x +=ξ,at x -=ηηξv v v x +=,ηξv a v a v t ⨯-⨯=,ηηξηξξv v v v xx ++=2,ηηξηξξv a v a v a v tt 2222+-=)()()()(),(0042at x G at x F G F t x v v v v a v xx tt -++=+=⇒=⇒=-=-ηξξηξη由初始条件)()(')(')0,(),()()()0,(x x aG x aF x v x x G x F x v t ψϕ=-==+=来确定⎰=---xx dbb x G x G a x F x F a 0)()]0()([)]0()([ψ)0()0()(1)()(0x G x F db b a x G x F xx -+=-⎰ψ)()()(x x G x F ϕ=+)(2)0()0()(21)(0x x G x F db b a x F xx ϕψ+-+=⎰)(212)0()0()(21)(0at x x G x F db b aat x F at x x ++-+=+⎰+ϕψ)(2)0()0()(21)(0x x G x F db b a x G xx ϕψ+---=⎰)(2)()()(21)(0at x at x G at x F db b a at x G atx x -+-----=-⎰-ϕψ)()(),(at x G at x F t x v -++=⎰+-+-++=atx atx db b a at x at x t x v )(21)]()([21),(ψϕϕ对于方程2,使用齐次化原理可以求得⎩⎨⎧==>=-0)0,(,0)0,(0),,(2x y x y t t x f y a y t xx tt 设);,(τt x w 为下面齐次方程的解⎩⎨⎧==>=-),(),(,0),(,02ττττx f x y x y t y a y t xx tt 则⎰=td t x w t x y 0);,(),(ττ为零初始条件的非齐次弦振动方程的解(将),(t x f 作用延时效果累积为将齐次化思想)转换计时器的初始时刻将齐次方程初始时刻换为0需要τ-=t t '可得0','>⇒>=t t dt dt τ 齐次方程可以化简为⎩⎨⎧===>=-0'),,()0,(,0)0,(0',0'2''t x f x w x w t w a w t xx t t τ 使用达朗贝尔公式可以求得⎰+-+-++='')(21)]'()'([21)',(at x at x db b a at x at x t x w ψϕϕ其中),()(,0)(τψϕx f x x ==则⎰-+--=)()(),(21),(τττt a x t a x db b f a t x w ⎰⎰⎰++--==t t a x t a x td db b f a d t x w t x y 0)()(0),(21),(),(τττττ最后,根据叠加原理求得⎰⎰⎰++--+-++-++=+=t t a x t a x at x at x d db b f a db b a at x at x t x y t x v t x u 0)()(),(21)(21)]()([21),(),(),(ττψϕϕττ1.5.无界弦振动方程的决定区域与影响区域 决定区域:对于特定u(x,t)依赖的(x,t)的取值范围对于(x,t )的取值能影响u(x,t)的取值范围为影响区域2.只含二阶导的2阶偏微分方程的特征线法求解 2.1只含二阶导的二阶偏微分方程的初步化简⎩⎨⎧===++)(),0(),(),0(0y y u y y u Cu Bu Au x yy xy xx ψϕ其特征方程为00,0222=+-⎪⎭⎫ ⎝⎛⇒-=⇒=+==++C dx dy B dx dy A dx dy dy dx d C B A y x y x y y x x ϕϕϕϕϕϕϕϕϕ根据特征方程解的三种不同情况将其进行进一步的化简 2.2特征方程存在两个不同实根时的化简 先用公式法求出特征方程两个不同的实根A ACB B dx dy 242-±=,g A AC B B dx dy =-+=⎪⎭⎫ ⎝⎛2421,e A AC B B dx dy =--=⎪⎭⎫⎝⎛24221c gx y +=2c ex y +=可以用换元法对此偏微分方程进行化简x A AC B B y 242-+-=ξxAACB B y 242---=η将其带入=++yy xy xx Cu Bu Au=ξηu例1.化简下列方程并求解⎩⎨⎧===-+σφ)0,(,)0,(032t u t u u u u x xx tx tt3/2)/(032032222=-+⇒=-+⇒=-+x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ03/2)/(03)/(2)/(22=--⇒=--+dt dx dt dx dt dx dt dx,0,0,3,10,0,0,1,13)2(,)2(22121242===-=======-=+-=+=--=+±=⇒±=+±=tt xt xx t x tt tx xx t x tx t t x t x t t x c t t x dt dx ηηηηηξξξξξηξηηξηξξηξηηηξξηξξηηξηξξηξηηηξξηξξηηξηξξηξηηξηξηξξηξηξηξηξηξηξηξηξηξηξηξu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u xt xt x x tx xx xx x x xx tt tt tt tt x x x t t t 32)3()3(2)()(96)3(3)3(1,3--=++-+-=++=+++++=+-=++---=+=+=-=+=)()(),(00)369()646()321(32ηξξηηηξηξξg f t x u u u u u u u u xx tx tt +==⇒=--+---+-+=-+2.3当特征方程存在2个相等实根A B dx dy 2)(2,1=12c x AB y =-),0(,2≠=-=B y x A By ηξ 0,0·,0,00====⇒=xx yy u C u A B 或如例1化简下列方程44=++xx tx tt u u u4/4)/(044044222=++⇒=++⇒=++x t x t x x t t xx tx tt u u u ϕϕϕϕϕϕϕϕdtdx dx dt d x t x t //0-=⇒=+=ϕϕϕϕϕ2/,04/4)/(04)/(4)/(22==+-⇒=+-+dt dx dt dx dt dx dt dx dt dx,0,10,2,1,,2========-===-=xt xx tt t x tt xt xx t x x t x ηηηηηξξξξξηξηηξηξξηξηηξηξξηηξηξξηξηηξηξξξξηξηηξηξξηξηηηξηξξξηξηηξξηξηηξξu u u u u u u u u u u u u u u u u u u u u u u u u tx tx x t t x x t x t tx xx xx x x x x xx tt tt t t t t tt 222)(22422222---=+++++=++=++++==++++=0)480()880()4244(=⇒=+-++-+⨯-+ηηηηξηξξu u u u)2()2()()()(t x g t x xf g f u f u -+-=+=⇒=ξξηξη2.4当特征方程存在一对共轭复根时二.积分变换法求解无界一维波动方程、1维热传导方程和二维Laplace 方程 1.傅立叶变换的定义与性质 1.1傅立叶变换的定义)()())((w F dx e x f x f F iwx ==⎰+∞∞-1.2傅立叶变换的位移性质)()()()]([)(c x d ee c xf dx e c x f c x f F iwcRRc x iw iwx --=-=-----⎰⎰)()]([)()()]([)(w F e x f F e c x d e c x f e c x f F iwc Riwc c x iw iwc -----==--=-⎰1.3.傅立叶变换的相似性质dcx e cx f c dcx c ecx f dx ecx f cx f F Rcx c wi Rcx cw i Riwx⎰⎰⎰---===)(11)()()]([)(1)(1)]([1c wF c du e u f c cx f F u c wR ==-⎰1.3傅立叶变换的微分性质⎰⎰⎰-+∞∞-----===RiwxRiwx iwx Riwx dex f e x f x df e dx e x f x f F )(|)()()('))('( )())(()())((0))('(w iwF x f iwF dx e x f iw dx e iw x f x f F Riwx iwx R===--=⎰⎰--⎰⎰⎰-+∞∞-----===Riwx iwx Riwx Riwx dex f e x f x df e dx e x f x f F )('|)(')(')(''))(''( )()())(()())('())(''(22w F iw x f F iw x f iwF x f F ===dx e x f iw e x f x df e dx e x f x f F iwx Rn iwx n n Riwx Riwx n n -------⎰⎰⎰+===)()()()())(()1()1()1()()()()())(()())(())((1)(w F iw x f F iw x f iwF x f F n n n n ===-1.3.傅立叶变换的乘多项式性质⎰⎰⎰---=-==R Riwx iwx iwx Rdx e x f dw di dx e x f dw d i dx e x xf x xf F ))(())((1)())(( ))(())((())(())((w F dwdi x f F dw d i dx e x f dw d ix xf F R iwx ===⎰- ⎰⎰⎰---===R Riwx iwx Riwxdx e x f dw d i dx e x xf dw d i dx ex xxf x f x F ))(())(()())((2222)())(())(())((2222222222w F dw d i dx e x f dw d i dx e x f dw d i x f x F R iwx iwx R===⎰⎰-- dx e x f x dwd idx e x f xx dx e x f x x f x F iwx n RRiwx n Riwx n n ))(()()())((11-----⎰⎰⎰=== ⎰⎰====--Rn nn n n n R iwx n n n iwx n n nnw F dw d i x f F dw d i dx e x f dw d i dx e x f dw d i x f x F ))(()))((())(())(())((1.4傅立叶变换积分性质由傅立叶变换的微分性质)())((x f dt t f dx dx=⎰∞- ⎰∞-=xdt t f iw x f F )())(()(1))((1))((w F iwx f F iw dt t f F x==⎰∞- 1.5傅立叶变换的卷积性质卷积定义式⎰-=*Rdt t x g t f x g f )()()(卷积公式1)()()(w G w F g f F =*先做卷积再变换系数不变 证明:⎰⎰⎰⎰-----=-=*R iwt t x iw Riwx R Rdx e e dt t x g t f dx dte t x g t f x g f F )()()()()())((⎰⎰⎰⎰-----=-=*RRiwu iwt Rt x iw Riwt dt du e u g e t f dt dx e t x g e t f x g f F )()()()())(()()()())(())(())(()()(w G w F t f F u g F dt u g F e t f g f F Riwt ===*⎰-卷积公式2))()((2)()(x g x f F w G w F π=*先傅立叶变换再做卷积系数要乘系数2π 1.6 主要函数的傅立叶变换)(0,00,)(指数信号⎩⎨⎧<>=-x x e x f x β iw e iw dx e dx eex f F iw x iw x iwxx +=+-===∞++-+∞+-+∞--⎰⎰βββββ1|1))((0)(0)(02)(x ex f -=2.傅立叶变换法求解一维波动方程 2.1无界齐次波动方程的求解⎪⎩⎪⎨⎧==>∈=-)3)(()0,()2)(()0,()1(0,,02x x u x x u t R x u a u txx tt ψϕ 分别对(1)、(2)、(3)式进行傅立叶变换)4(0),()()),((0),()()),((22=+⇒=-t w F aw t w u F t w F iaw t w u F tt tt)5))((())0,((x F w u F ϕ=)6))((())0,((x F w u F t ψ=)7()()()),((21iawt iawt e w C e w C t w u F -+=将(5)、(6)代入(7)式⎩⎨⎧-=+=--iawtawt t iawtiawt e awiC e w awiC t w u F e w C e w C t w u F 2121)()),(()()()),(( ⎩⎨⎧=-=+))(()()())(()()(2121x F w awiC w awiC x F w C w C ψϕ ⎪⎩⎪⎨⎧-=+=)))((1))(((21)()))((1))(((21)(21x F iaw x F w C x F iaw x F w C ψϕψϕ iawt iawt e x F iawx F e x F iaw x F t w u F --++=)))((1))(((21)))((1))(((21)),((ψϕψϕ又由傅立叶变换的位移性质))(()())((x f F e dx e c x f c x f F iwc Riwx --=-=-⎰左边的项的位移系数可以求出at c iwat iwc -=⇒=-)8))(((21))((21at x F e x F iawt +=ϕϕ iwaw F w G at x G e w G e w G F e x F iwaiawt iawt iawt 2))(()()()())(())((21ψψ=+===用傅立叶变换的积分性质进一步化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞- ))((21))((1212))(()()(⎰+∞-===+=atx dy y F a w F iw a iwa w F at x G w G ψψψ右边第一项的系数也可以用位移性质求出at c iwat iwc =⇒-=-))((21))((21at x F e x F iwt -=-ϕϕ iwaw F w H at x H e w H e x F iwaiwat iwat 2))(()()()())((21ψψ=-==--继续用傅立叶变换积分性质来化简))((1))(()())((x f F iw dy y f F x f dy x f dx d xx =⇒=⎰⎰∞-∞-))((21))((1212))(()()(⎰-∞-===-=atx dy y F a w F iw a iwa w F at x H w H ψψψ 四项全部求和 )))((21))(((21)))((21))(((21)),((⎰⎰-∞-+∞---+++=atx at x dy y F a at x F dy y F a at x F t w u F ψϕψϕ ))((21))(()(((21)),((⎰+-+-++=atx atx dy y F a at x F at x F t w u F ψϕϕ 对此式施加傅立叶逆变换 ⎰+-+-++=at a at x dy y a at x at x t x u )(21))()((21),(ψϕϕ 2.2非齐次方程的无界波动方程(不用齐次化原理)2.3半无界波动方程的求解3.傅立叶变换法求解一维热传导方程4.傅立叶变换法求解2维Laplace 方程place 变换的定义与性质place 变换求解一维波动方程place 变换求解一维热传导方程place 变换求解2维Laplace 方程二.有限边界的分离变量法求解(正弦初始条件以及二次初始条件)1.第一类边界条件和第二类边界条件第三类边界条件的特征值问题2.齐次化方程(可以用傅里叶级数展开或用齐次化原理)3.齐次化边界条件4.齐次方程,齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子5.齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子6.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子7.非齐次方程,非齐次边界条件第一类边界条件和第二类边界条件的波动方程和热传导方程推导与例子8.圆域LAPLACE 问题求解9.矩形域Laplace 方程。

数学物理方程归纳总结

数学物理方程归纳总结

数学物理方程归纳总结数学和物理方程是科学研究中的重要工具,广泛应用于各个领域。

本文将对一些常见的数学物理方程进行归纳总结,分析其数学意义和物理应用,并探讨其背后的原理和推导过程。

1. 一维运动方程一维运动是物理学中最简单的情形之一,其运动状态只涉及一个方向的变化。

常见的一维运动方程有:- 位移公式:$S = V_0t + \frac{1}{2}at^2$- 速度公式:$V = V_0 + at$- 速度与位移的关系:$V^2 = V_0^2 + 2aS$这些方程描述了质点在匀加速度下的运动规律,其中$S$ 表示位移,$V_0$ 表示初始速度,$a$ 表示加速度,$t$ 表示时间,$V$ 表示末速度。

这些方程在解决一维运动问题时具有重要的应用价值,可以帮助我们计算物体的位移、速度和加速度等物理量。

2. 牛顿力学方程牛顿力学是经典力学的基础理论,在描述宏观物体运动和相互作用时非常重要。

牛顿三定律是牛顿力学的核心,其表述为:- 第一定律(惯性定律):物体在不受外力作用时保持静止或匀速直线运动。

- 第二定律(运动定律):物体受到的合力等于质量乘以加速度,即 $F = ma$。

- 第三定律(作用与反作用定律):任何两个物体之间的相互作用力大小相等、方向相反。

根据牛顿第二定律,我们可以推导出一些重要的等式,用于解决各种力学问题。

例如,结合万有引力定律,我们可以得到开普勒第三定律 $T^2 = \frac{4\pi^2}{GM}r^3$,其中 $T$ 是行星公转周期,$G$ 是引力常数,$M$ 是太阳的质量,$r$ 是行星与太阳的平均距离。

3. 麦克斯韦方程组麦克斯韦方程组是电磁学的基础方程,描述了电磁场的产生和传播规律。

麦克斯韦方程组包括四个方程:- 高斯定律:$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$- 安培定律:$\nabla \cdot B = 0$- 法拉第电磁感应定律:$\nabla \times E = -\frac{\partial B}{\partial t}$- 完整的麦克斯韦方程:$\nabla \times B =\mu_0J+\mu_0\varepsilon_0\frac{\partial E}{\partial t}$其中,$E$ 和 $B$ 分别表示电场和磁场,$\rho$ 表示电荷密度,$J$ 表示电流密度,$\varepsilon_0$ 是真空中的介电常数,$\mu_0$ 是真空中的磁导率。

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳
数学和物理是紧密相关的学科,数学物理方程是两个学科的交叉点。

下面将对数学物理方程的知识点进行归纳。

1. 微积分
微积分是数学物理方程中最基础的知识点之一。

微积分包括微分和积分两个部分。

微分是研究函数变化率的工具,积分是研究曲线下面积的工具。

微积分在物理学中有着广泛的应用,例如牛顿第二定律、万有引力定律等。

2. 偏微分方程
偏微分方程是数学物理方程中的重要知识点。

偏微分方程是描述物理现象的数学模型,例如热传导方程、波动方程等。

偏微分方程的求解需要使用到数学分析和数值计算等方法。

3. 矩阵和线性代数
矩阵和线性代数是数学物理方程中的另一个重要知识点。

矩阵是一种数学工具,可以用来表示线性方程组。

线性代数是研究向量空间和线性变换的学科。

矩阵和线性代数在物理学中有着广泛的应用,例如量子力学中的哈密顿算符等。

4. 微分方程
微分方程是数学物理方程中的重要知识点。

微分方程是描述物理现象的数学模型,例如运动方程、电路方程等。

微分方程的求解需要使用到微积分和数值计算等方法。

5. 概率论和统计学
概率论和统计学是数学物理方程中的另一个重要知识点。

概率论是研究随机事件的学科,统计学是研究数据分析和推断的学科。

概率论和统计学在物理学中有着广泛的应用,例如热力学中的熵等。

以上是数学物理方程的知识点归纳,这些知识点是物理学家和数学家研究物理现象和数学问题的基础。

科普数学物理知识点总结

科普数学物理知识点总结

科普数学物理知识点总结一、数学知识点总结1. 代数:代数是数学中的一个基本分支,它研究的是数与数之间的关系,以及加减乘除等数的运算。

其中包括线性代数、高等代数等内容。

在代数中,我们学习了一元一次方程、一元二次方程、多项式的因式分解、配方法、分式方程、方程组、不等式等内容,这些都是日常生活中常见的数学问题的解决方法。

2. 几何:几何是研究空间、形状、大小、相似、对称、平移、旋转等概念的数学分支。

我们在几何中学习了很多图形的性质和运算,比如平行线、垂直线、直角三角形、相似三角形、勾股定理、相交线、多边形等知识。

这些知识点对于我们理解和分析空间中的问题都有很大的帮助。

3. 概率论与数理统计:概率论是数学中研究随机现象的规律的数学分支,它包括了随机事件、样本空间、概率的定义和性质等内容;而数理统计则是利用概率论的原理对统计数据进行分析和推断。

近年来,概率论和数理统计在各个领域的应用非常广泛,比如金融、医学、生物、信息技术等,成为了现代科学研究中不可或缺的数学工具。

4. 微积分:微积分是数学中一个极为重要的分支,它包括了导数、微分、积分、微分方程等内容。

微积分不仅是数学的基础,而且在物理、化学、生物等自然科学领域都有着广泛的应用。

通过微积分的学习,我们可以更深入地理解变化、极限、面积、体积等概念,从而更好地描述和分析自然界中的各种变化规律。

5. 离散数学:离散数学是数学中的一个分支,它包括了图论、集合论、逻辑、数论等内容。

与连续数学相对应,离散数学更多地关注离散的结构和离散的概念,它的应用也非常广泛,如在计算机科学、信息技术、通信等领域都有着重要的地位。

二、物理知识点总结1. 力学:力学是物理学的基础分支,它研究物体的运动和受力的规律。

在力学中,我们学习了牛顿运动定律、动量守恒、能量守恒、万有引力定律、运动学、静力学等内容,这些知识点对我们理解和分析自然界中的物体运动有着非常重要的意义。

2. 电磁学:电磁学是研究电荷和磁场之间相互作用的规律的物理学分支,它包括了库仑定律、安培定律、法拉第定律、麦克斯韦方程等内容。

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳数学物理方程是数学和物理学两门学科的交叉领域,其涉及到许多重要的知识点。

本文将从微积分、向量、力学、热力学和波动等方面,总结归纳数学物理方程的主要知识点。

一、微积分微积分是数学和物理学中非常重要的一个分支。

其中,微分和积分是微积分的两个基本概念。

微分是研究函数在某一点的变化率,积分则是求解函数的面积、体积或长度等量的方法。

微积分的一些重要公式包括:牛顿-莱布尼茨公式、柯西-黎曼方程、拉普拉斯公式等。

二、向量向量是几何学和物理学中非常重要的概念。

向量具有大小和方向两个属性,可以表示物理量的大小和方向。

向量的一些重要知识点包括:向量的加法和减法、向量的数量积和向量积、向量的投影、向量的夹角等。

三、力学力学是物理学中研究物体运动和相互作用的学科。

其中,牛顿三大定律是力学的基础。

牛顿第一定律指出物体在外力作用下保持静止或匀速直线运动;牛顿第二定律则确定了物体受力的大小和方向与其加速度成正比;牛顿第三定律则描述了力的相互作用。

四、热力学热力学是物理学中研究热量和能量转化的学科。

其中,热力学的一些重要概念包括:热力学系统、热力学过程、热力学态函数、热力学循环等。

热力学中的一些重要公式包括:热力学第一定律、热力学第二定律、热力学方程等。

五、波动波动是物理学中研究波的传播和相互作用的学科。

其中,波动的一些重要概念包括:波长、频率、波速、干涉、衍射、折射等。

波动的一些重要公式包括:波动方程、费马原理、赫兹实验等。

数学物理方程中的知识点非常丰富,包括微积分、向量、力学、热力学和波动等方面。

这些知识点是理解和应用物理学中的方程和定律的基础,对于物理学的学习和科学研究都具有重要的意义。

数学物理方程知识点汇总

数学物理方程知识点汇总

数学物理方程是研究自然现象和科学问题的基础工具,下面是数学物理方程的一些知识点汇总:
微积分:微积分是研究函数变化的数学分支,包括导数、积分等概念。

在物理学中,微积分广泛应用于描述运动和力学、电磁学等领域。

偏微分方程:偏微分方程是对多元函数的偏导数进行求解的方程式,被广泛用于描述物理现象和自然现象,如流体力学、传热学、量子力学等。

黎曼几何:黎曼几何是研究非欧几何的数学分支,对一些物理问题的描述非常重要,如广义相对论、引力场、宇宙学等。

矩阵论:矩阵论是代数学的一个分支,用于处理线性方程组、向量空间、特征值和特征向量等,被广泛应用于物理建模和计算机图形学等领域。

哈密顿力学:哈密顿力学是一种基于能量守恒原理和拉格朗日力学的数学方法,被广泛应用于量子力学、统计物理学、天体物理学等领域。

泛函分析:泛函分析是研究无限维空间和函数空间上的变化的数学分支,被广泛应用于量子力学、波动力学、概率论等领域。

数学物理方程是研究自然现象和科学问题的基础工具,涉及到多个数学分支和物理学领域。

不同的数学物理方程可以描述不同的自然现象和科学问题,对于学习和理解这些知识点非常重要。

高一数学物理知识点总结归纳

高一数学物理知识点总结归纳

高一数学物理知识点总结归纳一、数学知识点总结1. 代数与函数1.1 一次函数及其图像、性质和应用1.2 二次函数及其图像、性质和应用1.3 指数、对数及其运算性质2. 几何与三角2.1 基本图形及其性质(如正方形、矩形等)2.2 相似与全等三角形的性质2.3 圆、圆周角及其性质3. 概率统计3.1 基本概率问题的求解3.2 随机事件的独立性和相关性3.3 数据的收集和处理方法二、物理知识点总结1. 力学1.1 牛顿运动定律1.2 力的合成与分解1.3 受力分析与静力平衡条件2. 电磁学2.1 电荷、电场与电势2.2 电流、电阻与电势差2.3 磁场与电磁感应3. 光学3.1 光的反射与折射3.2 镜子和透镜的成像规律3.3 光的干涉与衍射现象以上仅为高一数学物理知识点的简要总结,下面将对各个知识点进行更详细的介绍和归纳。

一、数学知识点详解1. 代数与函数1.1 一次函数及其图像、性质和应用一次函数又称线性函数,其表示形式为y = kx + b,其中k称为斜率,b称为截距。

一次函数的图像为一条直线,斜率决定了直线的倾斜程度,截距表示了直线与y轴的交点。

一次函数的性质和应用包括函数的增减性、定义域和值域、函数图像的平移和伸缩变换等。

在实际问题中,一次函数常常用于描述线性关系,如速度、利润等。

1.2 二次函数及其图像、性质和应用二次函数的一般表示形式为y = ax^2 + bx + c,其中a、b、c为常数且满足a ≠ 0。

二次函数的图像为抛物线,其开口方向由a的正负决定。

二次函数的性质和应用包括二次函数的图像特征、顶点坐标、对称轴、零点和最值等。

在实际问题中,二次函数常用于描述抛射运动、几何问题等。

1.3 指数、对数及其运算性质指数和对数是一种数学运算方法,指数表示底数连乘的次数,对数表示在指数运算中的未知数。

指数和对数具有一系列运算性质,如指数运算和对数运算的互逆性、指数法则和对数法则等。

指数和对数的应用广泛,常用于解决指数增长问题、科学计数法、复利计算等。

(整理)数学物理方程小结

(整理)数学物理方程小结

数学物理方程小结 第七章 数学物理定解问题数学物理定解问题包含两个部分:数学物理方程(即泛定方程)和定解条件。

§7.1数学物理方程的导出一般方法: 第一确定所要研究的物理量u ,第二 分析体系中的任意一个小的部分与邻近部分的相互作用,根据物理规律, 抓住主要矛盾, 忽略次要矛盾。

(在数学上为忽略高级小量.)第三 然后再把物理量u 随时间,空间的变为通过数学算式表示出来, 此表示式即为数学物理方程。

(一) 三类典型的数学物理方程(1)波动方程: 0:),(:),(:22222222==∂∂-∂∂=∆-∂∂→f 当无外力时t x f xua t u 一维t r f u a tu 三维 此方程 适用于各类波动问题。

(特别是微小振动情况.)(2)输运方程: 0:).(:),(:2222==∂∂-∂∂=∆-∂∂→f 无外源时t x f xu a t u 一维t r f u a tu 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程:.0(:0:).程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==∆=∆→稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方程 。

§7.2定解条件定解条件包含初始条件与边界条件。

(1) 初始条件的个数等于方程中对时间最高次导数的次数。

例如波动方程应有二个初始条件, 一般选初始位移u (x,o )和初始速度u t (x,0)。

而输运方程只有一个初始条件选为初始分布u (x,o ),而Laplace 方程没有初始条件。

(2) 三类边界条件第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3) 其中H 为常数. 7.3二阶线性偏微分方程分类判别式 ,,0,,0,,0221121222112122211212抛物型a a a 椭圆型a a a 双曲型a a a =-=∆<-=∆>-=∆ 波动方程是双曲型的,输运方程为抛物型的,而拉普拉斯方程为椭圆型的.7.4 达朗贝尔公式对一维无界的波动方程,当不考虑外力时,定解问题为()()()()()()()[]()⎰+-+++-====∂∂-∂∂atx at x t d aat x at x t x u 解为x x u x x u x u a t u ξξψϕϕψϕ2121,:0,0,022222对半无界问题作延拓处理:对第一类齐次边界条件作奇延拓,而对第二类齐次边界条件作偶延拓.第八章 分离变量法8.1分离变量法主要步骤:1.边界条件齐次化,对非齐次边界条件首先把它化为齐次的. •2.分离变量 u(x,t) =X(x) T(t) (1) [以后对三维问题也是如此]•3. 将(1)式代入原方程得出含任意常数λ的常微分方程, (称为本征方程) 而λ为本征值.•4.由齐次边界条件确定本征值,并求出本征方程.(得出的解为本征函数)•5.根据迭加原理把所有满足方程的线性无关解迭加后,就能得通解. •6.再由初始条件确定系数.一维波动方程在第一类齐次边界条件下的()()()()()()()()()4,sin 2:3,sin 22,sin 0,:1,sinsin cos ,:0011ξπξξψπξπξξϕϕππππd ln a n b 同样d ln l a x l xn a x u 代入边入边界l x n l at n b l at n a t x u 通解ln ln n n n n n ⎰⎰∑∑====⎪⎭⎫ ⎝⎛+=∞=∞=一维波动方程在第二类齐次边界条件下的通解:()()()()()()()()7.cos 2,cos 26.1,15,cossin cos .000000100ξπξξψπξπξξϕξξψξξϕπππd ln a n B d l n l A d l B d l A l x n l at n B l at n A t B A t x u ln ln ll n n n ⎰⎰⎰⎰∑====⎪⎭⎫ ⎝⎛+++=∞=一维输运方程在第一类齐次边界条件下的通解:()()()()9,sin 28,sin ,012⎰∑==⎪⎭⎫⎝⎛-∞=ln t l a n n n d ln l c lx n ec t x u ξπξξϕππ一维输运方程在第二类齐次边界条件下的通解:()()()()()11,cos 2,110,cos ,00002⎰⎰∑===⎪⎭⎫ ⎝⎛-∞=ln lt l a n n n d ln l c d l c lx n ec t x u ξπξξϕξξϕππ对其他的齐次边界条件,如本征函数已知也可直接求解,而对本征函数不熟则只能用分离变量法来求解. 8.2 非齐次边界条件的处理 常用方法有 1) 直线法 :对边界条件为: u(0,t)=g(t), u(L,t)=h(t) .令 ()()()()()x Lt g t h t g t x u t x v ---=,, ,可把边界条件化为齐次,但一般情况下方程变为非齐次. •只有当g,h 为常数时,方程才不变. 2) 特解法•把 u 化为两部分,令 u=v+w 使v 满足齐次边界条件与齐次方程,而使w 满足齐次方程与非齐次边界条件.下面通过实例来介绍此方法. • 例题 求解下列定解问题• U tt -a 2 U xx = 0 • U|x=0 =0, U|x=L = ASin ωt • U|t=0 = 0 , U t ∣t=0 = 0 •( 其中A 、ω为常数, 0<x <L , 0< t )•解:令 u=v+w ,使w 满足波动方程与非齐次边界条件,•得出()altaxA t x w ωωωsinsin sin,第九章 二阶常微分方程的级数解法 本征值问题一.拉普拉斯方程与亥姆霍斯方程在球坐标与柱坐标下分 离变量结果.1. 拉普拉斯方程在球坐标下的通解:()()()1,,1,,,1ϕϑϕϑim m l l L l l Y r B r A r u ∑⎪⎭⎫ ⎝⎛+=+其中Ylm为球函数,拉普拉斯方程在球坐标下的解不依赖于边界条件. 在轴对称时(1)式退化为()()()∑∞=+⎪⎭⎫⎝⎛+=012,cos ,l l l l l l P r B r A r u θθ2. 拉普拉斯方程在柱坐标下:()()()()()()()()()()()()()()()()()()..55.0:4,,0,ln :4;:3,04.01.3.022,1,0,sin cos 1.,,222222222''2程为m 阶Bessel方R m x dxdR x dx R d x 式为今x m F E R 式解为Bz A z Z 的解为R m d dR d R d Z Z m m m b m a z Z r R z u =-++==+=+===⎪⎪⎭⎫ ⎝⎛-++=-==+=ΦΦ=ρμρμρμρρρμλϕϕϕϕϕρ(5)式其解为m 阶Bessel 函数,解依赖于边界条件,当上下底为边界条件是齐次时, μ<0.对应的解是虚贝塞尔函数.3) 亥姆霍斯方程在球坐标与柱坐标下分离变量结果.在球坐标下:()()()ϕϑϕϑ,,,Y r R r u =其中Y 为球函数,R 为球贝塞尔函数.在柱坐标下:.()()()()()()()()()()()()()5.0:4,;4.01.3.022,1,0,sin cos 1.,,22222222222222''2=-++=-==⎪⎪⎭⎫ ⎝⎛--++=+==+=ΦΦ=R m x dxdR x dx R d x 式为今x k 令R m k d dR d R d Z Z m m m b m a z Z r R z u ρμνμρνρρρνλϕϕϕϕϕρ (5)式其解为m 阶Bessel 函数, 二、常微分方程的级数解法1. 掌握常点邻域的级数解法.2. 掌握正则奇点邻域的级数解法.3.知道无穷级数退化为多项式的方法. 三. 知道Sturm-Livouville 本征值问题的共同性质•当k(x),q(x)和ρ(x)都只取非负的值(≥0), Sturm-Livouville 方程共同性质为:•1)当k(x),k ’(x)和q(x)连续且x=a 和x=b 最多为一阶极点时,存在无限多个本征值及对应的本征函数:()()()()x y x y x y x y k k 321321,,≤≤≤≤≤λλλλ2)所有本征值λn ≥03)对应于不同本征值的本征函数带权正交()()()()m n dx x x y x y banm≠=⎰,0ρ4)本征函数族构成完备系()()∑∞==1n n n x y f x f第十章 球函数1. 轴对称的球函数当物理问题绕某一轴转动不变时,选此轴为z 轴这时物理量u 就与φ无关,m=0.此时球函数Y(θ,φ)就为L 阶勒让德多项式.即Y=P l (cos θ) 1) 勒让德多项式1. 勒让德多项式级数形式:()()()()()()1.!2!2!!22121202∑-=-----=l 或l n nl lnl x n l n l n n l x P 2. 勒让德多项式微分形式:()()()2.1!212l ll l l x dxd l x P -= 3.前几项为:P 0(x)= 1, P 1(x) =x=cos θ, •P 2(x)=(3x 2-1)/2, ….•一般勒让德多项式的幂次取决L•当L 为偶数时都为偶次幂项,L 为奇数时都为奇次幂项. 对特殊点x=1,0.()()()()()()()()(),!!2!!1210,00,1,11212n n P P x P x P P nn n l ll l --==-=-=-•4.勒让德多项式正交关系()lk l k l N dx x P x P δ211)(=⎰- (3) •5.勒让德多项式的模 122,1222+=+=l N l N l l (4) 6.广义傅里叶级数 :当f(x)在[-1,1]连续可导,且在x=-1与1有限时.()()()(),212111⎰∑-∞=+==dx x P x f l f x P f x f l l l l l (5) •7.在球坐标下Laplace 方程: △u= 0的通解为:轴对称()()()()()∑∑∑∞=+∞=-=+⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+=01017,cos 6,,l l l l l l l ll m lm l l l l P r B r A u Y r B r A r u θϕθθ (6)式有两系数需要两条件来确定,对球坐标有两自然边界条件,r=0与r →∞,球内解包含r=0,•u 有限, ()∑∞===0cos ,0l l ll l P r A u B θ (7)•而A l 由球面的边界条件确定,同样对球外区域两系数由球面的边界条件与r →∞, 两个条件确定. 8. 母函数()∑∞==+-02cos cos 211l l l P r r r θθ (8)9. 递推公式()()()()()()()0.12.2,112'1'1''1'111>-=+-+=++=+-+-++-l P P P l xP P P P x P l x lP x xP l l l l l l l l l l l二.连带勒让德函数•在一般情况下,物理量u 与φ有关,故球函数Y 是连带勒让德函数与周期函数的乘积. 1. 连带勒让德函数()[]()x P xm l m 221-=Θ (1)2.连带勒让德函数的微分表示()().1!21222lml m l lmml x dxd l x P --=++ (2) 从(2)可得当L 一定时,m 的取值为 m=0,1,2…L.共有L+1个值.而三角形式球函数Y (θ,φ)中,cosm φ,sinm φ为不同态,共有2L+1个态.3.正交关系()()()()()!!1223.2211m l m l l 模平方NN dx x P x P mllk ml m k m l -++==⎰-δ 4. 球函数Y 的两种表示形式. 第十一章 柱函数 一、 掌握三类柱函数的基本性质一般我们称Bessel 函数Jm(x)为第一类柱函数. 而把Neumann 函数Nm(x)称为第二类柱函数 . 1)对于第一类柱函数与第二类柱函数的线性组合.()()()()()()x iN x J x H x iN x J x H m m mm m m-=+=21称为第一种与第二种汉克尔函数.而汉克尔函数称为第三类柱函数2) x →0和x →∞时的行为()()()()()()()()()()()⎪⎭⎫⎝⎛---∞→⎪⎭⎫⎝⎛--∞→∞→∞→-→→→→==⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--=∞→∞→〉==4224210002lim ,2lim 42sin 2lim ,42cos 2lim lim ,lim 0.0lim ,1lim ππππππππππππm x i m x m x i m x m x m x m x m x m x x e xx H e xx H m x x x N m x x x J x J x N m x J x J3) 递推公式()()()()()()()[]()()()()()()()()()()()()4.3.212.1.211!21211!11'1'110122022x J xx J m x J x J x x J m x J 展开与把x J x x J x dxdxx J x k m k k x k m k dx d x J dx d m m m m m m m m m m mm k k k m k k kk m km m -+-+∞=-+∞=+=+-=-=-=⎪⎭⎫⎝⎛++Γ-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++Γ-=⎥⎦⎤⎢⎣⎡∑∑4) 贝塞尔函数的零点对m 阶贝塞尔方程()()()()()()()()()()0)(::1.0.,0.00'222222====〉==-++ρμρμρμρμρμμρmm nm n m nmmJx 本征值x 记JJ R 件对柱侧面的齐次边界条时当x R m xdx dRxdx Rdx对第一类齐次边界条件 得出第n 个零点对第二类齐次边界条件 二.贝塞尔函数的正交关系 .• 对于不同本征值的同阶贝塞尔函数在区间 • [0,ρ0]上带权重ρ正交.• ()()()()()()1.][20nk m nm kmm nmNd J J δρρρμρμρ=⎰•• 2)广义傅里叶- 贝塞尔级数•()()()()()[]()()()()3.12.021ρρρμρρμρρd J f Nf J f f m nmm nn m n mn n ⎰∑==∞=• 3)Laplace 在柱坐标下的通解 • 轴对称m=0,柱内解为• 在侧面为第一类齐次边界条件时•()()()()()()()()()()2.,1.,101110000100⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=∑∑∞=∞=ρρρρR x J z R x sh B z Rx ch A z B A z u 条件时侧面为第二类齐次边界R x J z R x ch B z Rx sh A z u n n n n nn n n n n nn• 其中系数An,Bn 由上下底边界条件确定.• 在上下底为齐次边界条件时, μ≤ 0,R 的解为虚宗量贝塞尔函数.记为I m (x)• 同样可得Laplace 方程在柱内解 • 当轴对称时m=0• 上下底满足第一类齐次边界条件时解为•()()()()3.cos,:2.sin ,0001H z n H n I A z u 对第二类齐次边界条件H z n H n I A z u n n n n ππρρππρρ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=∑∑∞=∞=• 输运方程与波动方程在柱坐标下的解 • 1) 解的形式: u(r ,t)=T(t)v(r ) • V 满足亥姆霍兹方程.在侧面与上下底齐次边界条件下能完全确定本征值,例如上下底满足第一类齐次边界条件. 在轴对称情况下m=0 对输运方程柱内的解:上下底满足第一类齐次边界条件()()1.sin ,,2221,1000t H l x al n n nl n eH zl x J a t z u ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-∞==∑⎪⎪⎭⎫ ⎝⎛=πρπρρρ波动方程在柱内的解:• 在上下底满足第一类齐次边界条件下•()[]()2002000000)(2.sin sin cos ,,⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=∑∞ρπρρπρnnl n nlnl nl nl nl x H l k x J H z l at k b at k a t z u• 二维极坐标下的解: •• 侧面满足第一类齐次边界条件 ••()[]()∑∞=+=10000sin cos ,n n n n n n k J at k d at k c t u ρρ (3) •• 侧面满足第二类齐次边界条件•()[]()()4.sincos,1111ρρnnnnnnkJatkdatkct batu∑∞=+++=••第十二章积分变换法•一、傅里叶变换法••1。

数学物理考点总结归纳

数学物理考点总结归纳

数学物理考点总结归纳一、导言:数学物理是一门基础学科,对于理工科学生来说,掌握好数学物理的考点是非常重要的。

本文将对数学物理的考点进行总结归纳,帮助同学们更好地备考。

二、微积分微积分是数学物理中的重要内容之一,下面列举了某些重要的微积分考点:1. 导数与微分:导数的定义、导数的计算法则、高阶导数等;2. 函数的极限:极限的定义和性质、常用的极限法则;3. 积分与变积分法:微分中值定理、积分的定义和性质、牛顿-莱布尼兹公式;4. 微分方程:常微分方程的解法、特殊的微分方程、一阶线性微分方程。

三、线性代数线性代数是数学物理中的另一个核心内容,以下为一些重要的线性代数考点:1. 矩阵运算:矩阵的加减乘除、转置、伴随矩阵等;2. 矩阵的特征值和特征向量:特征值与特征向量的定义和性质、特征值的求解;3. 矩阵的行列式和逆矩阵:行列式的定义和性质、逆矩阵的求解;4. 线性方程组:线性方程组的求解、线性相关性与线性无关性;5. 线性空间和子空间:线性空间的定义和性质、子空间的概念。

四、力学力学是物理学的基础,下面为数学物理中的力学部分的考点总结:1. 运动学:位移、速度、加速度等基本概念、匀速直线运动和匀加速直线运动;2. 牛顿三定律:牛顿第一定律、牛顿第二定律、牛顿第三定律;3. 力与运动:力的合成与分解、力的叠加原理、万有引力定律、胡克定律等;4. 动量和动能:动量的定义和性质、动能的定义和性质、动量定理和动能定理;5. 力学中的功和能量:功的定义和性质、功率的概念、势能与机械能守恒。

五、电磁学电磁学是物理学中的重要分支,以下是数学物理中的电磁学考点:1. 电场和静电场:电荷、电场强度的计算、电场线和电势的关系;2. 电场中的运动:电场中的带电粒子、荷质比的测定、带电粒子的受力分析;3. 磁场和静磁场:磁感应强度、磁场线和磁通量的关系;4. 电磁感应:法拉第电磁感应定律、感应电动势的计算、自感与互感;5. 交流电路:交流电的基本概念、电阻、电感和电容的串并联等。

数学物理方程知识点总结

数学物理方程知识点总结

数学物理方程知识点总结一、牛顿运动定律牛顿的运动定律是经典物理力学的基础,它描述了物体在力的作用下的运动规律。

牛顿的三大运动定律分别是:1. 第一定律:一个物体如果受力作用,将保持静止或匀速直线运动,直到受到外力的作用而改变其状态。

2. 第二定律:物体的加速度与作用力成正比,与质量成反比。

即F=ma。

3. 第三定律:作用力与反作用力大小相等,方向相反,且在同一直线上。

这三个定律描述了物体在受力作用下的运动规律,它们被广泛应用于物体的运动研究和工程设计中。

二、电磁场方程电磁场方程描述了电荷和电磁场之间的相互作用。

其中,麦克斯韦方程组是最基本的电磁场方程,它包括了电荷产生的电场和电流产生的磁场,并描述了它们随时间和空间的变化规律。

麦克斯韦方程组包括了4个方程,分别是:1. 静电场高斯定律:描述电荷产生的静电场。

2. 静磁场高斯定律:描述磁场的产生和分布。

3. 安培定律:描述电流产生的磁场。

4. 法拉第电磁感应定律:描述磁场的变化产生感应电场。

这些方程组成了电磁场的基本描述,它们被广泛应用于电磁场的研究和工程技术中。

三、热传导方程热传导方程描述了物体内部的热传导过程。

热传导方程可以描述物体内部温度分布和热量的传导规律。

通常情况下,热传导方程是一个偏微分方程,它描述了温度场随时间和空间的变化规律。

热传导方程一般形式为:δT/δt = αΔT其中,T表示温度场,t表示时间,α为热传导系数,ΔT为温度梯度。

这个方程被广泛应用于热传导问题的研究和工程设计中。

四、波动方程波动方程描述了机械波和电磁波在空间中的传播规律。

波动方程是一个偏微分方程,它描述了波动场随时间和空间的变化规律。

波动方程的一般形式为:∂^2ψ/∂t^2 = v^2∇^2ψ其中,ψ表示波动场,t表示时间,v为波速,∇^2为拉普拉斯算符。

波动方程描述了波动在空间中的传播和幅度变化规律,它被广泛应用于波动现象的研究和工程设计中。

总之,数学与物理方程是自然科学研究和工程技术发展的基础。

《数学物理方程》复习提纲与复习重点

《数学物理方程》复习提纲与复习重点
能否写出主要的求解步骤和解的积分表达式?
(1)了解调和函数的主要性质,并会灵活的运用. (2) 关于边值问题的唯一性和稳定性 : 会利用调和
椭 的唯一性. 圆 (3) 熟 记 三 维 和 二 维 Laplace 算 子 关 于 区 域 型 (和 D)的 Dirichlet 问题的 Green 函数的定义,并 方 会用 “镜像法” 求一些特殊域的 Green 函数,会证 Green 1 : 程 函数的主要性质,比如(三维) 0 G( .
函数的性质或某种积分关系式证明第一、三边值问题
(4)会用 Green 函数法求出某些
MM 0
特殊区域(如球域、上半空间、圆域、上半平面) Dirichlet 问题解的积分表达式.
(1)一维热传导方程的混合问题是如何求 解的?主要步骤有哪些? 解的表达式 如何?要会证特征函数系的正交性. (2)熟记Fourier变换的主要性质,某些性
抛 物 型 方 程
3.
质并会去证,比如:卷积性质,乘积性质. (3)会用Fourier变换法求出简单的热方程
初值问题解的表达式.
三、一般理论:
熟记二自变量二阶线性偏微分方程特征的定义,会完整的
表达出来,并会求某些简单方程的特征,比如:弦振动方
程、二维Laplace方程、一维热传导方程.
四、要特别注意:方法的灵活运用.
《数学物理方程》复习提纲
一、基 本 概 念
1.定解问题,定解问题的解,定解问题的适定性; 2.线性定解问题的简单叠加原理及Duhamle原理; 3.二自变量的二阶半线性方程的分类与化标准形.
二.典型定解问题的讨论
1.双曲型方程: ①.弦振动方程的初值问题,混合问题及相应的物理解释; ②高维波动方程Cauchy问题的解及相应的物理解释; ③双曲型方程的其它定解问题(第一、三、四问题).

数学物理方法知识点归纳

数学物理方法知识点归纳

数学物理方法知识点归纳一、向量1. 向量的定义:向量是具有大小和方向的量,可以用箭头表示。

2. 向量的表示方法:可以用坐标表示,也可以用分量表示。

3. 向量的运算:3.1 向量的加法:将两个向量的对应分量相加。

3.2 向量的减法:将两个向量的对应分量相减。

3.3 向量的数量积:将两个向量的对应分量相乘后求和。

3.4 向量的向量积:根据相关公式求得向量的模长和方向。

4. 坐标系与向量:向量的坐标表示与坐标系的选择有关。

5. 向量的模长和方向:可以通过向量的坐标计算得到。

二、微积分1. 极限与导数:1.1 极限的定义:函数在某一点的极限是函数逼近该点时的稳定值。

1.2 导数的定义:函数在某一点的导数是该点的切线斜率。

1.3 导数的计算:使用导数的定义或相关公式计算函数的导数。

2. 微分与积分:2.1 微分的定义:函数微分是函数在某一点附近的线性逼近。

2.2 积分的定义:积分是函数的反导数。

2.3 微分与积分的关系:微分和积分是互为逆运算。

3. 常见函数的导数与积分:3.1 基本函数的导数和积分:如常数函数、幂函数、指数函数、对数函数等。

3.2 三角函数的导数和积分:如正弦函数、余弦函数、正切函数等。

3.3特殊函数的导数和积分:如反三角函数、指数函数、四则运算函数等。

三、矩阵1. 矩阵的定义:矩阵是由数个数按照一定次序排列在矩形阵列中的数集合。

2. 矩阵的运算:2.1 矩阵的加法:将两个矩阵的对应元素相加。

2.2 矩阵的减法:将两个矩阵的对应元素相减。

2.3 矩阵的数乘:将矩阵的每个元素都乘以一个数。

2.4 矩阵的乘法:根据矩阵乘法的规则进行计算。

3. 矩阵的转置:将矩阵的行和列互换得到的新矩阵。

4. 矩阵的逆与行列式:根据相关公式进行计算。

5. 矩阵的应用:在线性代数、图像处理、物理等领域有广泛应用。

四、微分方程1. 微分方程的定义:含有未知函数及其导数的方程。

2. 常微分方程:只包含一元函数及其导数的方程。

数学物理方程复习要点

数学物理方程复习要点

数学物理方程复习要点Chapter11、能够根据物理问题,写出三类方程及其定解条件(不要求推导)。

2、掌握基本概念,如偏微分方程、解、阶数、线性性、齐次性等。

3、掌握边界条件齐次化方法练习题:1.写出受外力作用的弦振动的方程。

2.写出稳恒状态下圆盘上的温度分布方程,以及第一类边界条件。

3.说明方程1)cos(+=+u u xy u yy x 的阶数、线性性、齐次性。

Chapter2分离变量法1、熟悉常用特征值问题的解。

熟记方程0X Xλ''+=加4种边界条件的解,以及加周期条件的解2、一维弦振动方程和热传导方程定解问题的分离变量法。

2(,), 0, 0 tt xx u a u f x t x l t ⎧=+<<>⎪⎨⎪⎩定解条件2(,), 0, 0 t xx u a u f x t x l t ⎧=+<<>⎪⎨⎪⎩定解条件边界条件齐次否?当方程和边界条件都齐次时,直接用分离变量法;当方程非齐次,而边界条件齐次时用特征函数法;当边界条件非齐次时,首先将边界条件齐次化,然后将定解问题化为上述两种情况。

3、二维泊松方程定解问题(1)在矩形域上,用直角坐标系1212(,), , (,)(), (,)(), (,)(), (,)(), xx yy u u f x y a x b c y d u a y g y u b y g y c y d u x c f x u x d f x a x b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩当其中一组边界条件齐次时,直接用分离变量法;否则将其中一组边界条件齐次化.(2)在扇形域或圆域上,用极坐标系.例扇形区域上泊松方程狄里克莱问题为020011, 0, <(,)0, (,)0, 0 (,), u u u f u u u ρρρθθρραθβρρραρβρρρθϕαθβ⎧++=<<<⎪⎪⎪==≤≤⎨⎪=≤≤⎪⎪⎩在此情况下,直边上的边界条件是齐次的,故可用特征函数法求解。

数学与物理公式总结归纳

数学与物理公式总结归纳

数学与物理公式总结归纳在学习数学和物理的过程中,我们常常会遇到各种各样的公式。

这些公式是解题和计算的基石,可以帮助我们理解和应用各种数学和物理概念。

在本文中,我们将总结归纳一些常见且重要的数学和物理公式,希望能够帮助大家更好地掌握和应用这些知识。

一、代数公式1. 一次方程公式:一次方程公式可以表示为:ax + b = 0,其中a和b是已知的常数,x是未知数。

2. 二次方程公式:二次方程公式可以表示为:ax^2 + bx + c = 0,其中a、b和c是已知的常数,x是未知数。

解二次方程的方法有配方法、求根公式等。

3. 指数公式:指数公式可以表示为:a^m * a^n = a^(m+n),其中a是底数,m和n是指数。

4. 对数公式:对数公式可以表示为:loga(M*N) = logaM + logaN,其中a是底数,M和N是实数。

二、几何公式1. 长度公式:- 直线段的长度公式:AB = |B - A|,其中A和B是直线段的两个端点坐标。

- 三角形边长关系公式:c^2 = a^2 + b^2 - 2ab * cos(C),其中a、b和c分别是三角形的三边长度,C是夹角的度数。

2. 面积公式:- 矩形的面积公式:A = length * width,其中length和width分别是矩形的长和宽。

- 三角形的面积公式:A = 1/2 * base * height,其中base是三角形的底边长,height是相应的高。

3. 体积公式:- 立方体的体积公式:V = side^3,其中side是立方体的边长。

- 圆柱体的体积公式:V = πr^2h,其中r是圆柱体的半径,h是高度。

三、物理公式1. 运动公式:- 速度公式:v = Δs / Δt,其中v是速度,Δs是位移,Δt是时间。

- 加速度公式:a = Δv / Δt,其中a是加速度,Δv是速度变化,Δt是时间。

2. 力学公式:- 牛顿第二定律公式:F = ma,其中F是物体受到的力,m是物体的质量,a是物体的加速度。

数学物理方程复习资料

数学物理方程复习资料

l0
l
0,1, 2,3, ).
3. Fourier 变换的微分性质
若函数 f (x) 的傅里叶变换为 f (x) ,且其导函数 f ′(x) 的傅里叶变换存在,则有 f ′(x) = iλ f (x) , 即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 iλ 。更一般地,若 f (x) 的 n 阶导数 f (n) (x)
x
)(x

C),
其中
∫ = an
1= l f (x) cos nπ xdx (n
l −l
l
1, 2,3, ),
∫ = bn
1= l f (x) sin nπ xdx (n
l −l
l
1, 2,3,).
=C
= x f (x)
1[ 2
f
(x−) +
f
(x+ )]
∑ ∫ 当 f (x) 为奇= 函数时, f (x)
uxx = (iλ)2 u (x, t) = −λ 2U (λ, t)
∫ = [ ∂u ] = ∞ ∂u e−iλxdx ∂ [ u(x, t)]
∂t −∞ ∂t
∂t
同理,[ ∂∂2tu2 ]
=
∂2 ∂t 2
[ u( x, t )]
M3 特征线法 写出二阶偏微分方程的特征方程 解特征方程得到两族积分曲线 作特征变换,求通解 代入边界条件求解
二阶线性偏微分方程
A
∂2u ∂x2
+
2B
∂2u ∂x∂y
+
C
∂2u ∂y 2
+D
∂u ∂x
+E
∂u ∂y
+Fu
= 0

(完整word版)数学物理方法总结(改)(word文档良心出品)

(完整word版)数学物理方法总结(改)(word文档良心出品)

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而 ()x C ϕ=.故 v=2xy+C.222()(2)f z x y i x y C z i C=-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2lf z f dz iz απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限11010l i m l i m 1k k k k k k kk a z z aR a a z z +++→∞→∞->=-,即说明20102000()()()......()......k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1l i m1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑. 双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim{[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--. 推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xz zz π-====-=-+++++⎰⎰⎰,Z的单极点为1,22z ==- 则221Re (22241z s i z z z π→--=+=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()}i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()}i m x G x m x d x G x e π∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n )k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰, k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i l lk l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1. ()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()ptf p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()()c f t c f t c f pc fp ++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a . (5) 位移定理 ()()te f t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()()f t f t f p f p , 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为ux∂∂,xx u 意为22u x ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)u f M t n∑∂=∂第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sinn n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k l k X x C x lπλπ+=+= 其中 k=0,1,2…… (4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+. 初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(c o s )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(c o s )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l lr r l u A r P x P x P x θθ∞======+∑,则 22200121(,)(c o s )(c o s )33l l l l u r A r P r P r θθθ∞===+∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方法知识点总结数学物理方程知识点归纳一、力学1.物质的运动和静止是相对参照物而言的。

2.相对于参照物,物体的位置改变了,即物体运动了。

3.参照物的选取是任意的,被研究的物体不能选作参照物。

4.力的作用是相互的,施力物体同时也是受力物体。

5.力的作用效果有两个:使物体发生形变。

使物体的运动状态发生改变。

6.力的三要素:力的大小、方向、作用点。

7.重力的方向总是竖直向下的,浮力的方向总是竖直向上的。

8.重力是由于地球对物体的吸引而产生的。

9.一切物体所受重力的施力物体都是地球。

10.两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力。

11.二力平衡的条件(四个):大小相等、方向相反、作用在同一条直线上,作用在同一个物体上。

12.用力推车但没推动,是因为推力小于阻力(错,推力等于阻力)。

13.影响滑动摩擦力大小的两个因素:接触面间的压力大小。

接触面的粗糙程度。

14.惯性现象:(车突然启动人向后仰、跳远时助跑、运动员冲过终点不能立刻停下来)。

15.物体惯性的大小只由物体的质量决定(气体也有惯性)16.司机系安全带,是为了防止惯性(错,防止惯性带来的危害)。

17.判断物体运动状态是否改变的两种方法:速度的大小和方向其中一个改变,或都改变,运动状态改变。

如果物体不是处于静止或匀速直线运动状态,运动状态改变。

18.物体不受力或受平衡力作用时可能静止也可能保持匀速直线运动。

二、热学1.实验室常用温度计是利用液体热胀冷缩的性质制成的2.人的正常体温约为36.5℃。

3.体温计使用前要下甩,读数时可以离开人体。

4.物质由分子组成,分子间有空隙,分子间存在相互作用的引力和斥力。

5.扩散现象说明分子在不停息的运动着;温度越高,分子运动越剧烈。

6.密度和比热容是物质本身的属性。

7.沿海地区早晚、四季温差较小是因为水的比热容大(暖气供水、发动机的冷却系统)。

8.物体温度升高内能一定增加(对)。

9.物体内能增加温度一定升高(错,冰变为水)。

10.改变内能的两种方法:做功和热传递(等效的)。

11.热机的做功冲程是把内能转化为机械能三、声与光1.一切发声的物体都在振动,声音的传播需要介质。

2.通常情况下,声音在固体中传播最快,其次是液体,气体。

3.乐音三要素:音调(声音的高低)响度(声音的大小)音色(辨别不同的发声体)4.超声波的速度比电磁波的速度慢得多(声速和光速)5.光能在真空中传播,声音不能在真空中传播。

6.光是电磁波,电磁波能在真空中传播。

7.真空中光速:c =3某108m/s =3某105km/s(电磁波的速度也是这个)。

8.反射定律描述中要先说反射再说入射(平面镜成像也说”像与物┅”的顺序)。

9.镜面反射和漫反射中的每一条光线都遵守光的反射定律。

10.光的反射现象(人照镜子、水中倒影)。

11.平面镜成像特点:像和物关于镜对称(左右对调,上下一致)。

12.平面镜成像实验玻璃板应与水平桌面垂直放置。

13.人远离平面镜而去,人在镜中的像变小(错,不变)。

14.光的折射现象(筷子在水中部分弯折、水底看起来比实际的浅、海市蜃楼、凸透镜成像)。

15.在光的反射现象和折射现象中光路都是可逆的16.凸透镜对光线有会聚作用,凹透镜对光线有发散作用。

17.能成在光屏上的像都是实像,虚像不能成在光屏上,实像倒立,虚像正立。

18.凸透镜成像试验前要调共轴:烛焰中心、透镜光心、和光屏中心在同一高度。

19.凸透镜一倍焦距是成实像和虚像的分界点,二倍焦距是成放大像和缩小像的分界点。

20.凸透镜成实像时,物如果换到像的位置,像也换到物的位置。

四、电学1.电路的组成:电源、开关、用电器、导线。

2.电路的三种状态:通路、断路、短路。

3.电流有分支的是并联,电流只有一条通路的是串联。

4.在家庭电路中,用电器都是并联的。

5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

7.电压是形成电流的原因。

8.安全电压应低于24V。

9.金属导体的电阻随温度的升高而增大。

10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI14.串联电路中:电压、电功和电功率与电阻成正比15.并联电路中:电流、电功和电功率与电阻成反比16.”220V100W”的灯泡比”220V40W”的灯泡电阻小,灯丝粗。

五、磁场1.磁场是真实存在的,磁感线是假想的。

2.磁场的基本性质是它对放入其中的磁体有力的作用。

3.奥斯特试验证明通电导体周围存在磁场(电生磁)。

4.磁体外部磁感线由N极出发,回到S极。

5.同名磁极相互排斥,异名磁极相互吸引。

6.地球是一个大磁体,地磁南极在地理北极附近。

7.磁场中特定点磁场的方向:自由的小磁针静止时N极的指向该点磁感线的切线方向8.电流越大,线圈匝数越多电磁铁的磁性越强。

六、压强1.水的密度:ρ水=1.0某103kg/m3=1 g/ cm32.1m3水的质量是1t,1cm3水的质量是1g。

3.利用天平测量质量时应”左物右码”。

4.同种物质的密度还和状态有关(水和冰同种物质,状态不同,密度不同)。

5.增大压强的方法:增大压力减小受力面积6.液体的密度越大,深度越深液体内部压强越大。

7.连通器两侧液面相平的条件:同一液体液体静止8.利用连通器原理:(船闸、茶壶、回水管、水位计、自动饮水器、过水涵洞等)。

9.大气压现象:(用吸管吸汽水、覆杯试验、钢笔吸水、抽水机等)。

10.马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值。

11.浮力产生的原因:液体对物体向上和向下压力的合力。

12.物体在液体中的三种状态:漂浮、悬浮、沉底。

13.物体在漂浮和悬浮状态下:浮力=重力14.物体在悬浮和沉底状态下:V排=V物15.阿基米德原理F浮=G排也适用于气体(浮力的计算公式:F浮=ρ气gV排也适用于气体)七、机械功能1.杠杆和天平都是”左偏右调,右偏左调”2.杠杆不水平也能处于平衡状态3.动力臂大于阻力臂的是省力杠杆(动滑轮是省力杠杆)4.定滑轮特点:能改变力的方向,但不省力动滑轮特点:省力,但不能改变力的方向5.判断是否做功的两个条件:有力沿力方向通过的距离6.功是表示做功多少的物理量,功率是表示做功快慢的物理量7.”功率大的机械做功一定快”这句话是正确的8.质量越大,速度越快,物体的动能越大9.质量越大,高度越高,物体的重力势能越大10.在弹性限度内,弹性物体的形变量越大,弹性势能越大11.机械能等于动能和势能的总和12.降落伞匀速下落时机械能不变(错)内能的利用一、分子热运动:1、物质是由分子组成的。

分子若看成球型,其直径以10-10m来度量。

2、一切物体的分子都在不停地做无规则的运动①扩散:不同物质在相互接触时,彼此进入对方的现象。

②扩散现象说明:A分子之间有间隙。

B分子在做不停的无规则的运动。

③课本中的装置下面放二氧化氮这样做的目的是:防止二氧化氮扩散被误认为是重力作用的结果。

实验现象:两瓶气体混合在一起颜色变得均匀,结论:气体分子在不停地运动。

④固、液、气都可扩散,扩散速度与温度有关。

⑤分子运动与物体运动要区分开:扩散、蒸发等是分子运动的结果,而飞扬的灰尘,液、气体对流是物体运动的结果。

3、分子间有相互作用的引力和斥力。

①当分子间的距离d=分子间平衡距离r,引力=斥力。

②d<r时,引力<斥力,斥力起主要作用,固体和液体很难被压缩是因为:分子之间的斥力起主要作用。

③d>r时,引力>斥力,引力起主要作用。

固体很难被拉断,钢笔写字,胶水粘东西都是因为分子之间引力起主要作用。

④当d>10r时,分子之间作用力十分微弱,可忽略不计。

破镜不能重圆的原因是:镜块间的距离远大于分子之间的作用力的作用范围,镜子不能因分子间作用力而结合在一起。

二、内能:1、内能:物体内部所有分子做无规则运动的动能和分子势能的总和,叫做物体的内能。

2、物体在任何情况下都有内能:既然物体内部分子永不停息地运动着和分子之间存在着相互作用,那么内能是无条件的存在着。

无论是高温的铁水,还是寒冷的冰块。

3、影响物体内能大小的因素:①温度:在物体的质量,材料、状态相同时,温度越高物体内能越大。

②质量:在物体的温度、材料、状态相同时,物体的质量越大,物体的内能越大。

③材料:在温度、质量和状态相同时,物体的材料不同,物体的内能可能不同。

④存在状态:在物体的温度、材料质量相同时,物体存在的状态不同时,物体的内能也可能不同。

4、内能与机械能不同:机械能是宏观的,是物体作为一个整体运动所具有的能量,它的大小与机械运动有关内能是微观的,是物体内部所有分子做无规则运动的能的总和。

内能大小与分子做无规则运动快慢及分子作用有关。

这种无规则运动是分子在物体内的运动,而不是物体的整体运动。

5、热运动:物体内部大量分子的无规则运动叫做热运动。

温度越高扩散越快。

温度越高,分子无规则运动的速度越大。

三、内能的改变:1、内能改变的外部表现:物体温度升高(降低),物体内能增大(减小)。

物体存在状态改变(熔化、汽化、升华),内能改变。

反过来,不能说内能改变必然导致温度变化。

(因为内能的变化有多种因素决定)2、改变内能的方法:做功和热传递。

A、做功改变物体的内能:①做功可以改变内能:对物体做功物体内能会增加。

物体对外做功物体内能会减少。

②做功改变内能的实质是内能和其他形式的能的相互转化③如果仅通过做功改变内能,可以用做功多少度量内能的改变大小。

(W=△E)B、热传递可以改变物体的内能。

①热传递是热量从高温物体向低温物体或从同一物体的高温部分向低温部分传递的现象。

②热传递的条件是有温度差,传递方式是:传导、对流和辐射。

热传递传递的是内能(热量),而不是温度。

③热传递过程中,物体吸热,温度升高,内能增加;放热温度降低,内能减少。

④热传递过程中,传递的能量的多少叫热量,热量的单位是焦耳。

热传递的实质是内能的转移。

C、做功和热传递改变内能的区别:由于它们改变内能上产生的效果相同,所以说做功和热传递改变物体内能上是等效的。

但做功和热传递改变内能的实质不同,前者能的形式发生了变化,后者能的形式不变。

D、温度、热量、内能区别:△温度:表示物体的冷热程度。

温度升高,→内能增加不一定吸热。

如:钻木取火,摩擦生热。

△热量:是一个过程。

吸收热量不一定升温。

如:晶体熔化,水沸腾。

内能不一定增加。

如:吸收的热量全都对外做功,内能可能不变。

△内能:是一个状态量内能增加不一定升温。

如:晶体熔化,水沸腾。

相关文档
最新文档