《直角三角形二》教学设计

合集下载

湘教版数学九年级上册《4.3 解直角三角形》教学设计2

湘教版数学九年级上册《4.3 解直角三角形》教学设计2

湘教版数学九年级上册《4.3 解直角三角形》教学设计2一. 教材分析湘教版数学九年级上册《4.3 解直角三角形》是学生在学习了三角形的性质、勾股定理的基础上进行学习的。

本节内容主要让学生掌握直角三角形的性质,学会用勾股定理解决实际问题,进一步培养学生的观察能力、思考能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的性质、勾股定理等相关知识,具备一定的观察、思考和解决问题的能力。

但部分学生对直角三角形的性质和勾股定理的理解不够深入,解决实际问题的能力有待提高。

三. 教学目标1.理解直角三角形的性质,掌握用勾股定理解决实际问题的方法。

2.培养学生的观察能力、思考能力和解决问题的能力。

3.提高学生的数学素养,使学生在实际生活中能运用数学知识解决问题。

四. 教学重难点1.重点:直角三角形的性质,用勾股定理解决实际问题。

2.难点:如何引导学生发现直角三角形的性质,以及如何将实际问题转化为数学问题。

五. 教学方法1.情境教学法:通过生活实例引入直角三角形,激发学生的学习兴趣。

2.启发式教学法:引导学生发现直角三角形的性质,培养学生独立思考的能力。

3.实践教学法:让学生通过动手操作、解决实际问题,加深对知识的理解。

六. 教学准备1.教学课件:制作直角三角形的相关课件,包括图片、动画等。

2.教学素材:准备一些实际问题,用于引导学生运用勾股定理解决问题。

3.学生活动材料:为学生提供一些卡片,上面写有直角三角形的性质和勾股定理。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直角三角形图片,如建筑物的角落、三角板等,引导学生关注直角三角形。

提问:“你们知道直角三角形的性质吗?”让学生回顾已学知识,为新课的学习做好铺垫。

2.呈现(10分钟)讲解直角三角形的性质,引导学生发现并总结直角三角形的特征。

通过课件展示直角三角形的特点,如直角边的平方和等于斜边的平方。

同时,给出勾股定理的公式。

人教版数学八年级上册《直角三角形判定》教学设计

人教版数学八年级上册《直角三角形判定》教学设计

人教版数学八年级上册《直角三角形判定》教学设计一. 教材分析人教版数学八年级上册《直角三角形判定》是初中数学的重要内容,主要让学生了解直角三角形的判定方法,掌握直角三角形的性质。

本节课的教学内容主要包括两个方面:一是利用锐角三角函数的定义判断直角三角形;二是利用直角三角形的性质判断直角三角形。

二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数的概念、三角形的性质等基础知识,具备一定的空间想象能力和逻辑思维能力。

但部分学生对直角三角形的判定方法理解不透彻,容易混淆。

因此,在教学过程中,要关注学生的学习差异,针对性地进行指导。

三. 教学目标1.让学生掌握直角三角形的判定方法,能运用所学知识解决实际问题。

2.培养学生的空间想象能力、逻辑思维能力和合作交流能力。

3.激发学生对数学的兴趣,提高学生的数学素养。

四. 教学重难点1.教学重点:直角三角形的判定方法。

2.教学难点:如何运用直角三角形的判定方法解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形的判定方法。

2.利用多媒体辅助教学,展示直角三角形的判定过程,提高学生的空间想象能力。

3.采用小组合作学习,培养学生的团队协作能力和交流能力。

4.运用实例分析法,让学生学会将所学知识应用于实际问题。

六. 教学准备1.准备相关教学课件,展示直角三角形的判定过程。

2.准备实例题目,用于巩固所学知识。

3.准备黑板、粉笔等教学工具。

七. 教学过程1. 导入(5分钟)教师通过展示生活中的直角三角形实例,如建筑工人测量高度、体育运动员投掷项目等,引导学生关注直角三角形在实际生活中的应用,激发学生的学习兴趣。

同时,提出问题:“如何判断一个三角形是不是直角三角形?”从而引入新课。

2. 呈现(10分钟)教师简要回顾锐角三角函数的定义,引导学生思考如何利用锐角三角函数判断直角三角形。

通过讲解和示范,呈现直角三角形的判定方法,让学生初步掌握。

3. 操练(10分钟)学生分组进行练习,每组选取一道实例题目,运用所学知识判断题目中的三角形是否为直角三角形。

湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)的教学内容主要包括解直角三角形的应用、锐角三角函数的概念和应用。

本节课是在学生已经掌握了直角三角形的相关知识的基础上进行教学的,目的是让学生能够运用所学的知识解决实际问题,提高学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于直角三角形的相关知识也有了一定的了解。

但是,学生在解决实际问题时,往往会因为对概念理解不深、思路不清晰而导致解题困难。

因此,在教学过程中,教师需要引导学生深入理解概念,培养学生的解题思路。

三. 教学目标1.知识与技能:使学生掌握解直角三角形的应用,理解锐角三角函数的概念和应用。

2.过程与方法:培养学生运用所学的知识解决实际问题的能力,提高学生的数学应用能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.教学重点:解直角三角形的应用,锐角三角函数的概念和应用。

2.教学难点:如何引导学生运用所学的知识解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,培养学生的解题思路;通过分析实际案例,使学生理解所学知识的应用价值;通过小组合作学习,提高学生的团队合作意识和交流能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计好教学问题和案例。

2.学生准备:掌握直角三角形的相关知识,预习本节课的内容。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。

2.呈现(15分钟)教师展示案例,让学生观察和分析案例中的直角三角形,引导学生发现实际问题中的数学规律。

3.操练(20分钟)教师设置问题,引导学生运用所学的知识解决实际问题。

学生在解决问题的过程中,教师给予指导和点拨,帮助学生理清解题思路。

23.2.2 解直角三角形及其应用 第2课时 教案

23.2.2 解直角三角形及其应用 第2课时 教案

沪科版数学九年级上册23.2.2 解直角三角形及其应用教学设计例3 如图 23-16,一学生要测量校园内一棵水杉树的高度。

他站在距离水杉树8米的E处,测得树顶端A的仰角∠ACD为52°,已知测角器CE=1.6米,问树高AB为多少米?(精确到0.1m).例4 解决本章引言所提问题。

如图23-17,某校九年级学生要测量当地电视塔的高度AB,因为不能直接到达塔底B处,他们采用在发射台院外与电视塔底B成一直线的C,D两处地面上,用测角器测得电视塔顶部A的仰角分别为45°和30°,同时量得CD为50m,已知测角器高为1m,问电视塔的高度为多少米?(结果精确到1m).例5 如图23-18,一船以20n mile/h的速度向东航行,在A处测得灯塔C在北偏东60°的方向上,老师提示:解决这个问题的方法,我们称为实际问题数学化,这是解决实际问题常用的方法。

通过学生自己的观察、比较、总结出在这些结论。

实际问题数学化,由实际问题画出平面图形,也能有平面图形想像出实际情景,再根据解直角三角形的来解决实际问题。

并且了解了仰角,俯角的概念。

引导学生再次思考。

加强学生的合作意识,使学生养成大胆猜测和想象的能力,积极参与数学问题的谈论,敢于发表自己的见解。

强调易错点,加继续航行1h到达B处,再测得灯塔C在北偏东30°的方向上,已知灯塔C四周10 n mile 内有暗礁,问这船继续向东航行是否安全?分析:这船继续向东航行是否安全,取决于灯塔C 到AB航线的距离是否大于10 n mile解直角三角形应用的基本图形①不同地点看同一点(如图①);②同一地点看不同点(如图②)建筑物BC上有一旗杆AB,由距BC 40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,教师再给予点评、引导,然后共同完成问题的解决。

在探索中发现,这样才能理解其中的规律并能加以总结.通过问题的解决和延伸,引发学生自主思考,培养学生解决问题的逻辑思维能力。

直角三角形的性质—教学设计

直角三角形的性质—教学设计

直角三角形的性质—教学设计教学目标:1.了解直角三角形的定义及性质;2.熟练应用直角三角形的性质求解相关问题;3.培养学生观察、推理和解决问题的能力。

教学重点和难点:教学准备:1.教师准备直角三角形的相关教学素材,如图片、幻灯片、教学视频等;2.学生准备直尺、量角器等绘图工具。

教学过程:一、导入(5分钟)教师出示一张直角三角形的图片,让学生观察并回答以下问题:1.这个三角形有几个角?每个角的度数是多少?2.这个三角形的哪个边是直角边?直角的度数是多少?3.你能否找到其他的直角三角形?二、直角三角形的定义(15分钟)1.教师给出“直角三角形”这个概念的定义:“一个三角形,其中一个角是直角(90°),称为直角三角形。

”2.教师给出直角三角形的符号表示△ABC(其中∠C=90°)。

3.教师通过绘制示范,帮助学生理解直角三角形的概念,同时引导学生观察直角三角形的性质。

三、直角三角形的性质(25分钟)1.教师出示一张包含直角三角形示意图的图片,让学生观察并回答以下问题:a)直角三角形的两个锐角之和是多少?b)直角三角形的斜边是哪两边之间最长的那一条?c)直角三角形的两条直角边满足什么关系?2.教师通过幻灯片或板书总结直角三角形的性质:a)直角三角形的两个锐角之和是90°;b)直角三角形的斜边是哪两边之间最长的那一条;c)直角三角形的两条直角边满足勾股定理:直角三角形的斜边的平方等于两条直角边平方的和。

3.教师给出直角三角形的勾股定理,并通过例题讲解如何应用勾股定理求解直角三角形的边长。

4.学生自主练习:学生们在教师的指导下,互相出示自己练习的题目,互相检查答案。

四、直角三角形的应用(30分钟)1.教师出示几个直角三角形应用的实例,如测量高度、求解航程等,引导学生思考如何应用直角三角形的性质解决这些问题。

2.学生探究:学生们分小组进行探究活动,每个小组选出一个代表进行报告。

要求学生使用勾股定理解决实际问题,并画出问题的图形。

全国初中数学优质课一等奖《直角三角形全等的判定》教学设计

全国初中数学优质课一等奖《直角三角形全等的判定》教学设计

《§1.2.2直角三角形》教学设计XXX 学校 XXX一、 教学内容解析本节课是北师大版八年级下册《三角形的证明》的第二节课,是在学生已经历了一般三角形全等的判定、勾股定理及其逆定理的验证等相关知识的基础上,对直角三角形全等的判定作进一步深入和拓展,同时又是进一步研究轴对称、等腰三角形、四边形等知识的工具性内容,具有不容忽视的基石作用,因此本节课在教材中起着承上启下的作用。

从认知基础的角度看,一方面,学生已经历了平行线的证明、勾股定理及其逆定理的 验证,理解几何命题之间的因果关系,这些都为“HL ”定理的合情推理奠定了基础。

另一方面,“HL ”定理是一般三角形全等判定的延伸。

从思想方法的角度看,“HL ”定理是学生通过动手操作,从特例到一般结论的研究,综合运用了勾股定理等相关旧知化为一般三角形全等的判定而获得,而定理在实际生活中的应用又是数学建模的过程。

因此,本节的灵魂是化归思想、类比思想、模型思想、特殊与一般思想的具体化身。

从数学本质的角度看,实验-观察-归纳-猜想-验证是获得定理的关键,而灵活运用定理是知识转化为能力的催化剂。

根据以上分析,确定本节课的教学重点为: 直角三角形全等的判定定理“HL ”的探究与应用。

二、 目标与目标解析:依据《新课程标准》及学生的实际情况制定教学目标如下:1、知识与技能目标:能通过探索掌握判定直角三角形全等的“斜边、直角边”定理。

2、过程与方法目标:经历“探索--发现--猜想--证明”的过程,体会合情推理在获得结论中发挥的作用。

3、情感与价值目标:在自主探究定理证明的过程中培养勇于探索的精神,在合作交流环节中感受合作获得新知带来的成功喜悦,激发对数学证明的兴趣和信心。

三、 教学诊断分析1、预测在“发散探究”环节,由于学生存在差异,部分学生会存在不同的问题,例如, 变式2中,可能会出现由“C B BC ''=,C A AC ''=,A A '∠=∠”不能得出结论的错误判断这种情况。

沪教版(上海)初中数学八年级第一学期 19.8(2)直角三角形的性质 教案

沪教版(上海)初中数学八年级第一学期 19.8(2)直角三角形的性质 教案

教学设计表进行线段转化,试着想一想,还有没有别的方法?3、几何画板演示辅助线添法,引导学生进行证明5、小总结:根据之前的学习,我们知道当遇到线段的倍分问题时,可以使用线段的转化来解决,那么推论1给我们提供了什么新思路?题还可以使用特殊角转化(推论1)(板书)例题讲解,巩固运用(1)13’30”-19’40”掌握例题11、让我们来看看这道例题能不能使用我们学习的新思路去解决?题目(板书):已知:AB=AC,∠B=30°,AD⊥AC求证:1=2BD DC请学生在导学单上先标出已知条件(一位同学上台标记),并思考如何证明3、讲解例题(板2、一位学生用粉笔标出已知条件,效果图:全体学生思考如何证明书)深化理解,变式训练19’40”-27’30”完成导学单上练习部分第1题1、通过用特殊角转化线段的倍分关系,我们已经解决了一道例题,现在请你们自主完成练习部分第一题:3、巡场进行个别辅导(①指出这题是例题1的变式②提示学生将已知在图上进行标记),请完成得快的同学上台分享思路2、完成导学单上练习部分第一题4、一位学生上台讲练习1(通过垂直平分线的定义得到BD=AD,得∠B=∠BAD=30°,从而∠DAC=∠BAC-∠BAD=120°-30°=90°,于是CD=2AD=2BD)几何画板操作简单、绘图精准直观,可以很好地辅助几何题的讲解。

辅以电子白板取代传统黑板,ActivInspire电子白板笔取代粉笔,如虎添翼。

自主梳理,证明推论227’30”-32’00”由推论1的逆命题得到推论2,理解推论2的证明1、回忆之前我们学习的垂直平分线定理和角平分线定理都有逆定理,那请一位同学用文字语言试着说说看推论1的逆命题?3、转化为几何语言?5、思考这个命题2、一位同学回答:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°4、学生回答:已知:在Rt△ABC中,∠ACB=90°,12BC AB,求运用几何画板演示定理的推理过程,清晰直观,大大提升了课堂教学的效率。

《三角形分类》教学设计(优秀4篇)

《三角形分类》教学设计(优秀4篇)

《三角形分类》教学设计(优秀4篇)《三角形分类》教学设计篇一教材内容:本课的教学内容是北师大版教材四年级下册“三角形”第二单元。

教学目标:1、知识与技能:使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

2、方法与过程:经历分类的过程,渗透分类的数学思想,培养学生的空间观念和初步的逻辑思维能力。

3、情感态度与价值观:在共同学习中,训练学生的自我探索能力,在探索活动中培养学生主动探索精神和创新意识。

重、难点:教学重点:认识锐角三角形、直角三角形、钝角三角形以及等腰三角形、等边三角形的基本特征。

教学难点:发现三角形的角、边特征从而正确分类。

教学工具:多媒体幻灯片、直尺、学具袋(各种类型的三角形)教学过程:一、复习引入1、复习出示幻灯片2生活中哪些东西是三角形,同学们可以列举生活用品,也可以对书中的事物进行描述。

出示幻灯片3我们学过哪几种角?(指名口答)下面的角是什么角?(指名口答)下面三种角同学们知道角是由两条边和一个顶点组成的,并且它的两条边是两条射线。

2、揭题板书:是啊,三角形在我们生活中处处可见,有着广泛的应用,为我们的生活增添了不少情趣,是我们生活中的数学,今天我们就来给众多精美的三角形分分类。

板书:三角形的分类二、探索新知:给三角形分类1、按角把三角形分类三角形有各种不同的形状,所以可以分成不同的类别。

(发给每个小组一个学具袋)(1)操作感知让学生打开学具袋。

(内装有锐角三角形、钝角三角形、直角三角形纸片各2张并编上序号),以小组为单位,量出每个三角形三个角的度数,并按要求填写记录表。

(2)展示、交流指名说一说量得的结果后,仔细观察。

看看你发现了什么?(教师出示填写好的记录单,和学生对照检查后,让学生说说他们的发现,可以组内相互说说,再在班上说。

)向学生介绍什么是锐角三角形、直角三角形、钝角三角形。

(3)认识三类三角形的关系(多媒体出示)理解三角形的关系图。

《解直角三角形》2教学设计

《解直角三角形》2教学设计

《解直角三角形》教学设计教学案例基本信息课程说明(信息技术与学科教学内容结合方面的指导思想与理论依据):利用西沃技术与ppt结合,通过paid实现互动信息技术环境软硬件要求及搭建环境情况Seewo EasiNote seewo link教学背景分析本节课是解直角三角形第一课时,前面学生已经学习了三角函数的知识,通过与之前学过的直角三角形的知识整合,形成了新的知识体系。

本节课围绕知识的形成过程,通过教师的引领,学生对解直的依据进行归纳,引导学生对解直条件的细化进行探究,注重新旧知识的联系,注重思维的训练,提炼最简方法、优化解题方案,注重一题多解,探究活动起点低,以先发散再聚焦的方式进行学法指导,不断的明确问题,体现知识的系统性。

明确具体问题,知道要干什么,怎么解决问题,对于表格的探究,注重师生互动,梳理各种类型,渗透数形结合的思想,关注学生的学习感受,体现了学生学习的主体作用。

教学目标教学目标:1.会结合具体图形理解解直角三角形的概念,掌握已知一边一角解直角三角形的方法;2.通过探究,逐步培养学生分类讨论的数学思想;3.通过小组合作交流、展示逐步培养学生表达能力,发挥学生的主动性。

教学重点:已知一边、一角的直角三角形的解法教学难点:探究活动中,对解直不同条件的分类教学过程教学教师活动学生活动设置意图技术应用时间安排阶段一、引导学生对课前测进行分析前测中的问检测基础抓拍学生5分钟a bc C B A 课前测 二、合作探究反馈和分析: 1.sin60°= ,cos45°= ,tanA=33,则∠A = ;2.在Rt △ABC 中,∠C=90°,sinA=32,a=4,则c= ;3. 直角三角形都除直角外还包含哪些元素?在Rt △ABC 中∠C=90°,除直角外,其余元素之间都存在哪些关系?探究活动:在直角三角形中,除直角外,至少已知几个元素,可以利用元素之间的三种等量关系求出其余所有元素?试举例说明。

八年级数学下册《直角三角形》教案、教学设计

八年级数学下册《直角三角形》教案、教学设计
1.基础知识巩固:
-请同学们完成课本第chapter页的练习题1-5,重点关注勾股定理及其逆定理的应用。
-选择两道与直角三角形判定方法相关的题目进行解答,要求写出详细的解题过程。
2.实践应用题:
-结合生活实际,找出两个含有直角三角形的场景,并简要说明直角三角形在其中的作用。
-尝试运用勾股定理解决实际距离或高度测量问题,要求列出解题步骤和最终答案。
3.提高拓展题:
-完成“拓展延伸”部分第1、2题的解答,培养学生的逻辑思维和空间想象力。
-针对本节课学到的直角三角形知识,编写一道具有挑战性的题目,与同学进行交流分享。
4.小组合作任务:
-以小组为单位,共同探讨直角三角形在实际生活中的应用,并以PPT或手抄报形式进行展示。
-小组讨论并总结直角三角形判定方法的要点,将讨论成果以书面形式提交。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们学习数学的热情。
2.培养学生严谨、认真的学习态度,使他们养成勤奋好学的学习习惯。
3.通过直角三角形的学习,引导学生体会数学在生活中的应用,增强他们的数学意识。
4.培养学生面对困难时,勇于挑战、积极进取的精神风貌。
教学设计:
1.导入:通过生活中的实例,如建筑物的直角、三角形标志等,引起学生对直角三角形的关注,激发他们的学习兴趣。
5.反思与总结:
-完成本节课的学习反思,总结自己在课堂上的收获和不足,以及对直角三角形知识点的认识。
-撰写一篇关于直角三角形学习心得的短文,与同学和老师分享。
作业要求:
1.作业应在规定时间内完成,书写工整、清晰,解答过程要求简洁明了。
2.鼓励同学们在完成作业时积极思考,主动请教同学和老师,提高解决问题的能力。

锐角、钝角、直角三角形的认识(二级第二学期)

锐角、钝角、直角三角形的认识(二级第二学期)

教学设计方案
板书设计:
锐角三角形、钝角三角形、直角三角形
锐角 锐角锐角 锐角锐角 锐角角
学生自主学习单
三角形的研究
班级
学习态度与习惯
★★☆☆☆
姓名自主
评价学习方法与效果
★★☆☆☆
1.记一记:把三角形角的研究结果填到表格中
下列三角形的三个角分别是





角 角
角③
角 角
角④
角 角
角⑤
角 角
角⑥
角 角
角⑦
角 角
角2.分一分:哪些三角形可以分一类?3.试一试:给每一类三角形取个名字?
三角形
分一类;
我给它们取名为
三角形;
三角形
分一类;
我给它们取名为
三角形;
三角形
分一类;
我给它们取名为
三角形。

《直角三角形(2)》教学设计

《直角三角形(2)》教学设计

10.3 直角三角形(二)一、学情分析学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求.二、教学任务分析本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质.在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一.因此本节课的教学目标定位为:1.知识目标:①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性定理解决实际问题②利用“HL’’2.能力目标:进一步掌握推理证明的方法,发展演绎推理能力三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业.1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形.想一想,怎么画?同学们相互交流.3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论.我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”.那么我们能否通过作等腰三角形底边的高来证明“等边对等角”.要求学生完成,一位学生的过程如下:已知:在△ABC中,AB=AC.求证:∠B=∠C.证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90°又∵AB=AC,AD=AD,∴△ABD≌△ACD.∴∠B=∠C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑.质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD 和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .也有学生认同上述的证明.教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课.2:引入新课(1).“HL”定理.由师生共析完成已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求证:Rt△ABC≌Rt△A′B′C′证明:在Rt△ABC中,AC=AB2一BC2(勾股定理).又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2(勾股定理).AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C' (SSS).教师用多媒体演示:定理斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.A'B'C'CBA从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的.练习:判断下列命题的真假,并说明理由:(1)两个锐角对应相等的两个直角三角形全等;(2)斜边及一锐角对应相等的两个直角三角形全等;(3)两条直角边对应相等的两个直角三角形全等;(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.已知:R △ABC 和Rt △A'B ' C',∠C=∠C'=90°,BC=B'C',BD 、B'D'分别是AC 、A'C'边上的中线且BD —B'D' (如图).求证:Rt △ABC ≌Rt △A'B'C'.证明:在Rt △BDC 和Rt △B'D'C'中,∵BD=B'D',BC=B'C',∴Rt △BDC ≌Rt △B 'D 'C ' (HL 定理).CD=C'D'.又∵AC=2CD ,A 'C '=2C 'D ',∴AC=A'C'.∴在Rt △ABC 和Rt △A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt △ABC ≌CORt △A'B'C (SAS ).通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结.3:做一做问题你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来.)4:议一议E21B D C A 'D A 'B 'C 'C D B A如图,已知∠ACB=∠BDA=90°,要使△ACB≌BDA,还需要什么条件?把它们分别写出来.这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.(教师一定要提供时间和空间,让同学们认真思考,勇于向困难提出挑战)5:例题学习如图,有两个长度相等的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?解:根据题意,可知∠BAC= ∠EDF=90°,∴Rt △BAC ≌Rt △EDF(HL)∴∠B= ∠DEF(全等三角形的对应角相等)∵∠DEF+ ∠F=90°(直角三角形的两锐角互余)∴∠B+ ∠F=90°.6:课时小结本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现,很值得继续发扬广大.7:课后作业习题10.9第1、2、3题四、教学反思本节HL定理的证明学生掌握得比较好,定理的应用方面尤其是“议一议”中的该题灵活性较强,给教师和学生发挥的余地较大,该题是一个开放题,结论和方法并不惟一,所以学生积极性非常高,作为教师要充分利用好这个资源,可以达到一题多解,举一反三的效果.。

浙教版数学八年级上册2.6《直角三角形》教学设计(2)

浙教版数学八年级上册2.6《直角三角形》教学设计(2)

浙教版数学八年级上册2.6《直角三角形》教学设计(2)一. 教材分析《直角三角形》是浙教版数学八年级上册第2.6节的内容,本节主要让学生掌握直角三角形的性质,学会用勾股定理计算直角三角形的边长,并能运用直角三角形的性质解决实际问题。

本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习相似三角形、解三角形等知识打下了基础。

二. 学情分析八年级的学生已经学习了三角形的性质、勾股定理等基础知识,具备一定的空间想象能力和逻辑思维能力。

但部分学生对直角三角形的性质理解不够深入,运用勾股定理解决实际问题的能力有待提高。

此外,学生对数学知识的应用意识有待加强,学习兴趣有待提高。

三. 教学目标1.理解直角三角形的性质,掌握勾股定理及运用。

2.培养学生的空间想象能力、逻辑思维能力和解决问题的能力。

3.增强学生的数学应用意识,提高学习兴趣。

四. 教学重难点1.重点:直角三角形的性质,勾股定理的运用。

2.难点:运用勾股定理解决实际问题,灵活运用直角三角形的性质。

五. 教学方法1.启发式教学:引导学生主动探究直角三角形的性质,激发学生思考。

2.案例教学:通过具体案例,让学生学会用勾股定理解决实际问题。

3.小组合作:鼓励学生分组讨论,培养学生的团队协作能力。

4.归纳总结:引导学生自主总结直角三角形的性质和勾股定理的运用。

六. 教学准备1.教学PPT:制作含有直角三角形图片、案例及动画的PPT,辅助教学。

2.教学案例:准备一些关于直角三角形的实际问题,用于课堂练习。

3.学习资料:为学生提供相关的学习资料,以便课后复习。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中常见的直角三角形图片,如电梯、楼梯等,引导学生关注直角三角形。

提问:你们对这些直角三角形有什么了解?让学生回顾已学的三角形性质知识。

2.呈现(10分钟)介绍直角三角形的定义及性质,通过PPT展示直角三角形的特点。

讲解勾股定理,并用PPT展示勾股定理的证明过程。

1 直角三角形的性质和判定(I)第二课时 含30°角的直角三角形的性质和判定一等奖创新教学设计

1 直角三角形的性质和判定(I)第二课时 含30°角的直角三角形的性质和判定一等奖创新教学设计

1 直角三角形的性质和判定(I)第二课时含30°角的直角三角形的性质和判定一等奖创新教学设计直角三角形的性质和判定(1)第二课时含30°角的直角三角形的性质和判定教学设计教学目标知识与技能目标:通过探索、推理得出直角三角形的性质和判定。

过程与方法目标:掌握直角三角形的性质和判定,并能运用其解决一些实际问题。

情感态度与价值观目标:在探索直角三角形性质和判定的过程中培养学生的逆向思维。

教学重、难点1.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. .在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

教学过程1、复习旧知1. 我们学习过的直角三角形的性质有哪些?2. 我们学习过的直角三角形的判定有哪些?3.在右图中,△ABC是直角三角形,CD是斜边AB上的中线,①AB=10cm,CD的长为多少cm②CD=2cm,则AB的长为多少?③若∠A =40°,则其他角为多少度?④若∠A=30°,你能得到什么结论?二、讲授新课1.如图,在Rt△ABC中,∠ACB=90°,如果∠A=30°,那么直角边BC与斜边AB有什么关系呢?学生动手测量结论:软件测量结论:方法一:解:取线段AB的中点D,连接CD。

∵CD是Rt△ABC斜边AB上的中线,∴∵∠BCA=90°,且∠A=30°∴∠B=60°.∴△CBD为等边△∴方法二:提示:两块含30°角的直角三角板拼成一个等边三角形结论:直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(几何语言:∵△ABC是直角三角形,∠C=90°,∠A=30°,∴BC= AB)2.师:该性质定理的逆定理是否成立?即“在直角三角形中,如果一条直角边是斜边的一半,那么这条直角边所对的角是30°”这句话对吗如图,在Rt△ABC中,∠BCA=90°,若BC= AB,那么∠A=30°吗?解:取线段AB的中点D,连接CD∵CD是Rt△ABC斜边上的中线,∴CD= AB=BD∵BC= AB∴BC=BD=CD,即△BDC为等边三角形∴∠B=60°,∵∠A+∠B=90°,∴∠A=30°结论:直角三角形的性质定理:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

浙教版数学八年级上册2.6《直角三角形》教学设计(1)

浙教版数学八年级上册2.6《直角三角形》教学设计(1)

浙教版数学八年级上册2.6《直角三角形》教学设计(1)一. 教材分析《直角三角形》是浙教版数学八年级上册第2.6节的内容,本节主要让学生掌握直角三角形的性质,学会用勾股定理计算直角三角形的边长,并能够应用直角三角形的性质解决实际问题。

本节内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念和性质,具备了一定的几何知识基础。

同时,学生通过之前的学习,已经掌握了勾股定理,能够进行简单的数学推理和计算。

但部分学生在解决实际问题时,可能还不能很好地将理论知识与实际问题相结合。

三. 教学目标1.让学生掌握直角三角形的性质,理解直角三角形中的勾股定理,并能够运用勾股定理计算直角三角形的边长。

2.培养学生运用直角三角形的性质解决实际问题的能力。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.直角三角形的性质2.勾股定理在直角三角形中的应用3.解决实际问题五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生自主探究和合作交流,培养学生解决问题的能力。

同时,通过案例分析,使学生更好地理解直角三角形的性质和勾股定理在实际问题中的应用。

六. 教学准备1.教学PPT2.教学案例七. 教学过程导入(5分钟)引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。

呈现(10分钟)1.呈现直角三角形的定义和性质,让学生初步了解直角三角形的特点。

2.通过PPT展示直角三角形的图像,让学生直观地感受直角三角形的特点。

操练(15分钟)1.让学生运用勾股定理计算直角三角形的边长,巩固学生对勾股定理的掌握。

2.提供一些实际问题,让学生运用直角三角形的性质解决问题,培养学生的应用能力。

巩固(10分钟)1.通过PPT展示一些巩固题,让学生独立完成,检验学生对直角三角形性质的掌握情况。

2.让学生进行小组讨论,共同解答问题,培养学生的合作能力。

人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2

人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2

人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2一. 教材分析《“斜边、直角边”判定直角三角形全等》是人教版数学八年级上册第三章的内容。

这部分内容是在学生已经掌握了全等图形的概念、判定方法以及直角三角形的性质的基础上进行学习的。

本节课的主要内容是让学生掌握利用“斜边、直角边”判定两个直角三角形全等的方法,并能够运用这一方法解决实际问题。

教材通过例题和练习题的形式,帮助学生理解和掌握这一判定方法。

二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念、判定方法以及直角三角形的性质。

但学生在运用这些知识解决实际问题时,往往会遇到困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握利用“斜边、直角边”判定两个直角三角形全等的方法,并能够运用这一方法解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:利用“斜边、直角边”判定两个直角三角形全等的方法。

2.难点:如何引导学生将理论知识与实际问题相结合,提高解决问题的能力。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生发现和总结规律。

2.合作学习法:学生分组讨论,共同解决问题,培养学生的团队合作意识。

3.实践操作法:学生动手操作,观察、分析、总结,提高学生的动手能力和观察能力。

六. 教学准备1.教具:直角三角形模型、多媒体设备。

2.学具:学生用书、练习册、铅笔、橡皮。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等图形的概念、判定方法以及直角三角形的性质。

为新课的学习做好铺垫。

2.呈现(10分钟)教师通过多媒体展示几个实际问题,让学生观察、思考。

引导学生发现这些问题都可以归结为判断两个直角三角形是否全等的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直角三角形(二)》教学设计
南峰初级中学苗玉栋
教学目标:
1.知识与技能目标:(1).掌握已知直角三角形的一条直角边和斜边,作直角三角形的方法。

(2).掌握直角三角形全等的判定方法“HL(3).能用全等直角三角形的判定方法解决简单问题。

2.过程与方法目标:经历探究全等直角三角形判定方法“HL”的过程,学会用操作确认、归纳发现问题结论的方法。

3.情感与价值目标:通过操作确认、归纳发现结论,感知实验操作在发现问题结论中的重要作用。

教学重点:“斜边、直角边”公理的掌握.
教学难点:“斜边、直角边”公理的灵活运用.
课前准备:
1.教师准备:课件
2.学生准备:复习判定三角形全等定理的相关知识.
课时安排:一课时
教学过程:
一、复习旧知,引入新课
1、判定两个三角形全等的方法:、、、_____.
2、如图,在Rt△ABC中,直角边是、,斜边是____.
3、如图,AB⊥BE于B,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF______.(填“全等”或“不全等”) 根据 (用简写法)
(2)若∠A=∠D,BC=EF,则△ABC与△DEF______.(填“全等”或“不全等”) 根据 .(用简写法)
(3)若AB=DE,BC=EF,则△ABC与△DEF (填“全等”或“不全等”) 根据 .(用简写法)
(4)若AB=DE,AC=DF,BC=EF则△ABC与△DEF (填“全等”或“不全等”) 根据 .(用简写法)
2题 3题
学生回忆解答.
4、在△ABC与△A′B′C′中,如果AB=A′B′,AC=A′C′,∠B=∠B′,那么,△ABC与△A′B′C′全等吗?
学生根据已学的判定全等的知识讨论回答.
教师提问:“边边角”分别对应相等是不能保证三角形全等的,那么当“角”为直角时“边边角”就成了“斜边直角边”,此时能否全等?从而引入新课. 二、合作学习,自主探究
(一)已知一条边和斜边,求作一个直角三角形.
想一想,怎么画?同学们相互交流讨论得出结论:(图见课件)
步骤1:画∠MCN=90º;
步骤2:在射线CM截取 CB=a;
步骤3:以点B为圆心以b长为半径画圆弧,交射线CN于点A;
步骤4:连结AB.
(二)证明“HL”定理.
由师生共同分析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,
AB=A′B′,BC=B′C′.
求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB2-BC2(勾股定理).
又∵在Rt△A′B′C′中,A′C′=A′C′=A′B′2-B′C′2(勾
股定理).
AB=A′B′,BC=B′C′,AC=A′C′.
∴Rt△ABC≌Rt△A′B′C′(SSS).
定理:斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.
(三)例题讲解:A'
B'C' B
A
如图,有两个长度相等的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度 DF 相等,两个滑梯的倾斜角∠B 和∠F 的大小有什么关系?
师生共同分析完成解题过程如下:
解:根据题意,可知∠BAC=∠EDF=90º,BC=EF ,AC=DF ,
∴ Rt △BAC ≌Rt △EDF (HL ).
∴ ∠B=∠DEF (全等三角形的对应角相等). ∵ ∠DEF+∠F=90°(直角三角形的两锐角互余),
∴ ∠B+∠F=90°.
三、巩固运用、深化拓展
1.判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 、
2.已知∠ACB=∠BDA=90º,要使△ACB≌BDA,还需要什么条件?把它们分别写出来.
3.如图,在△ABC≌△A ′B ′C ′中,CD ,C ′D ′分别分
别是高,并且AC =A ′C ′,CD=C ′D ′.∠ACB=∠A ′C ′B ′.
求证:△ABC≌△A ′C ′B ′.
四、课时小结
本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定'C C A D B '
''B D A
A
B
D C
O
F A B
C D E
直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.
五、课后作业
P21页习题1.6
板书设计
定理:斜边和一条直角边分别相等的两个直角三角形全等.
简单的用“斜边、直角边”或“HL”表示
两个直角三角形全等的判定:SAS、ASA、AAS、SSS、HL.
教学反思
本节课教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SAS、ASA、AAS、SSS)的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解。

在教学过程中,让学生充分体验到实验、观察、比较、猜想、总结、验证的数学方法,一步步培养他们的逻辑推理能力。

在探索“HL公理”中,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程.。

相关文档
最新文档