上海交大研究生矩阵理论答案
上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分
上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分100分,其中*A 表示矩阵A 的共轭转置.一、 单项选择题(每题3分,共15分)1. 设⎪⎪⎪⎭⎫ ⎝⎛=001001001A ,则=-199200A A ( )(A )E ; (B )0; (C )A ; (D )2A .2. 下列集合对所给运算构成实数域上线性空间的是( )(A ) 次数等于)1(≥m m 的实系数多项式的集合,对于多项式的通常加法和数与多项式的通常乘法;(B ) Hermite 矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法;(C ) 平面上全体向量的集合,对于通常的加法和如下定义的数乘运算0x x k =⋅,k 是实数,0x 是某一取定向量;(D ) 投影矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法.3. 线性变换为正交变换的必要而非充分条件的是( )(A )保持向量的长度不变; (B )将标准正交基变为标准正交基;(C )保持任意两个向量的夹角不变;(D )在任意标准正交基下的矩阵为正交矩阵.4. 设A 是幂等矩阵,则下列命题中不正确的是( )(A )A 与对角矩阵相似; (B )A 的特征值只可能是1或者0;(C )A A )1sin()sin(=; (D )幂级数10)(-∞=-=∑A E A k k .5. 设21,V V 是V 的两个线性子空间,则与命题“21V V +的任意元素的分解式唯一”不等价的命题是( )(A ){}021=⋂V V ; (B )2121dim dim )dim (V V V V +=+;(C )21V V +的零元素的分解式唯一; (D )V V V =⋃][21.二、填空题(每空3分,共15分)设二维线性空间V 的线性变换V V T :1与V V T :2在基21,αα下的矩阵分别为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0201,1201B A . 1、21,T T 的乘积:21T T V V 在基21,αα下的矩阵为 . 2、=)(dim 1T R .3、)()(21T N T R ⋂的一个基为 .4、若常数k 使得)(B A k +为幂收敛矩阵,则k 应该满足的条件是 .5、⎪⎪⎭⎫⎝⎛B B A 0的Jordan 标准型为 .三、计算题(12分)向量空间22⨯R 中的内积通常定义为.))(,)((,),(22222121⨯⨯=====∑∑ij ij i j ij ij b B a A b a B A选取⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=1110,001121A A ,构造子空间],[21A A W =.1、求⊥W 的一组基;2、利用已知的W 和⊥W 求22⨯R 的一个标准正交基.四、计算题(18分)已知⎪⎪⎪⎭⎫⎝⎛-=110130002A .1、求矩阵A 的Jordan 标准型J 和可逆矩阵P 使得A 相似于J ;2、计算矩阵A e ;3、求下列微分方程组的解⎪⎩⎪⎨⎧==,)0(,0x x Ax dt dx ⎪⎪⎪⎭⎫ ⎝⎛=1110x .五、计算题(10分)设n m C A ⨯∈的秩为r ,A 的奇异值分解为*UDV A =,nm O O O D ⨯⎪⎪⎭⎫ ⎝⎛Λ=,),,(21r s s s diag ,=Λ.求矩阵)(A A B =的奇异值分解和它的Moore-Penrose 广义逆.六、计算题(18分) 设多项式空间})({][3322104R a t a t a t a a t f t P i ∈+++==中的线性变换为3032322110)()()()()(t a a t a a t a a a a t Tf -+-+-+-=.1、取定一组基,求该线性变换在该基下的矩阵A ;2、求与A 相关的四个子空间)(),(),(T A R A R A N 和)(T A N ;3、求线性变换T 的值域的基与维数;4、求线性变换T 的核的基与维数.七、证明题(6分)设n n C A ⨯∈. 证明A 是正定矩阵当且仅当存在一个正定矩阵B ,使得2B A =.八、证明题(6分)设A 为n 阶矩阵,证明:A 非奇异的充分必要条件是存在常数项不等于0的多项式)(λg 使得0)(=A g .。
研究生矩阵理论课后答案矩阵分析所有习题
习题3 习题3-14
#3-14: =E,则存在 则存在U #3-14:若A∈Hm×n,A2=E,则存在U∈Un×n使得 U*AU=diag(Er,-En-r). 存在U 证:存在U∈Un×n使得 A=Udiag(λ A=Udiag(λ1,…,λn)U*, , (*) 其中λ 的特征值的任意排列 任意排列. 其中λ1,…,λn是A的特征值的任意排列. , ∵ A2=E=Udiag(1,…,1)U* 和 =E=Udiag(1, ,1)U =Udiag(λ Udiag(λ A2=Udiag(λ1,…,λn)U*Udiag(λ1,…,λn)U* , , =Udiag(λ =Udiag(λ12,…,λn2)U* , =1,即 1,i=1,…,n,. ∴ λi2=1,即λi=±1,i=1, ,n,. 1(设共有 取λ1,…,λn的排列使特征值1(设共有r个)全排在 , 的排列使特征值1(设共有r 前面, (*)式即给出所需答案 式即给出所需答案. 前面,则(*)式即给出所需答案.
(α + β, γ ) = (α + β ) Aγ * = α Aγ * + β Aγ * = (α, γ ) + (β, γ );
(α,α) ≥ 0; (α,α) =α A > 0, ∀α ≠ 0 (因A正定). α
*
Cauchy-Schwarz不等式 不等式: ②:Cauchy-Schwarz不等式: |(α, β)|≤ α β
−1 0 3 5 −1 3 6 1 1 0 = 0 − 1 − 10 W A1 W1* 1 0 0 −1 0
习题3 习题83-3(1) 0 3
6 −1 3 6 −1 3 8 3 0 3 8 = 0 , A1 = − 2 − 5 A1 0 − 2 − 5 0
研究生矩阵论课后习题答案(全)习题二
研究生矩阵论课后习题答案(全)习题二习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ??-??-+-??; (2)22220000000(1)00000λλλλλλ-?-??-??; (3)2222232321234353234421λλλλλλλλλλλλλλ??+--+-??+--+-+---??;(4)23014360220620101003312200λλλλλλλλλλλλλλ++?? -----??. 解:(1)对矩阵作初等变换23221311(1)10010000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-→-→?-++,则该矩阵为Smith 标准型为+)1(1λλλ;(2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ??--??-??;(3)对矩阵作初等变换故该矩阵的Smith 标准型为+--)1()1(112λλλ; (4)对矩阵作初等变换在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ-??-??. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ-----??;(2)1001000λαββλαλαββλα+-+?+??-+??;(3)100100015432λλλλ--?-??+??;(4)0012012012002000λλλλ+++??+??. 解:(1)该λ-矩阵的右上角的2阶子式为1,故而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ??++??--+--+??;(2)322322 2212122122λλλλλλλλλλ??-+--+??-+--??. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687------??;(2)452221111-----??;(3)3732524103---??--??;(4)111333222-----??;(5)***********????-????--??;(6)1234012300120001??. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ??-→??-+??,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-;(2)设该矩阵为A ,则310001000(1)E A λλ-→??-??,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ?? -→??-+??,故A 的初等因子为从而A 的Jordan 标准形为1000000i i -?? ; (4)设该矩阵为A ,则21000000E A λλλ??-→??,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000; (5)设该矩阵为A ,则210001000(1)E A λλλ??-→??+??,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001--??; (6)设该矩阵为A ,则1234012300120001E A λλλλλ-------??-=??--??-?? ,该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001. 5.设矩阵142034043A ??=--??,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη==-,100050005?? Λ=??,则1A P P -=Λ.,故4455144441453510354504535A P P -??-?=Λ=-. 6.设矩阵211212112A --=--??-??,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1 P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ--=-+→- ---,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ??=??.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x --= ?--??解之,得12100,111X X== ? ? ? ?-.其通解为1122k X k X +=1212k k k k ?? ?-??,其中21,k k 为任意常数.考虑方程组11212121211111122200021110002k k k k k k k k k -- -→-+----,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ??= ? ???.则相似变换矩阵123100[,,]010111P X X X ??==??-??.7.设矩阵102011010A ??=-??,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --??-+=--??.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++L ,则12121n n n n n A a A a A a A a I O ---+++++=L ,即123121()n n n n n A A a A a A a I a I ----++++=-L ,因为A 可逆,故(1)0nn a A =-≠,则9.设矩阵2113A -??=,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I -----++-=-==-.10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2n A 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-;(2)422575674-??----??;(3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a --?=??--??--??. 解:(1) 设311020111A -=??,则231110002002011100(2)I A λλλλλλ---=-→-----,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -=----??,则2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。
研究生课程-《矩阵分析》试题及答案
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。
矩阵理论与应用(张跃辉)(上海交大)第二章参考答案
(0.0.3)
是 U + W 的一组基. 为此需要证明该向量组线性无关, 且 U + W 的任何向量均可由这些向量 线性表示.
设
k1α1 + k2α2 + · · · + krαr + br+1βr+1 + · · · + bsβs + cr+1γr+1 + · · · + ctγt = 0. (0.0.4)
0 = V0 ⊂ F α1 ⊂ (F α1 ⊕ F α2) · · · ⊂ (F α1 ⊕ · · · ⊕ F αm) ⊂ · · · ⊂ (F α1 ⊕ · · · ⊕ F αn) = V
显然是一个空间的真包含的链,其长度 m = n. 因此需证的等式成立。该等式说明线性空间的 维数是子空间按包含关系所形成的链的最大长度。
3. (1) 设 V 是线性空间, U 与 W 是 V 的两个子空间. 证明:
dim (U + W ) = (dim U + dim W ) − dim (U ∩ W ).
(2) 设 V 是有限维线性空间. 证明并解释下面的维数公式: dim V = max{m | 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm−1 ⊂ Vm = V, Vi 是 Vi+1 的真子空间}
5. 设
112
A = 0 1 1 ,
134
求 A 的四个相关子空间. 解:
R(A) = [(1, 0, 1)T , (1, 1, 3)T ], R(AT ) = [(1, 0, 1)T , (0, 1, 1)T ], N (A) = [(−1, −1, 1)T ], N (AT ) = [(−1, −2, 1)T ]
矩阵论习题答案
自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。
上海交大研究生矩阵理论答案
nk rnn12习题 一1.( 1)因cosnx sin nx sin nx cosnx cosx sin x sin x =cosxcos(n sin(n 1)x 1)x sin( n cos(n 1)x 1)x,故由归纳法知cosnx sin nx A。
sin nx cosnx( 2)直接计算得A4E ,故设 n4 k r (r 0,1,2,3) ,则 AnA 4 k Ar( 1) A , 即只需算出 A 2, A 3即可。
0 1 0 1( 3 )记 J=,则,1 0n1 n 12 n 2na C n aC n a C nanC 1 a n 1C n 1aAn(aE J )nnC i a i Jn ii 0n n an 。
C 1a n 1 an2. 设 AP1a2P 1(a 1,0),则由A 2E 得a 1时,11110 12 12 1 02不可能。
1而由 a10时,2 1知1 所以所求矩阵为 PB P 1 ,其中 P 为任意满秩矩阵,而ii2221 0 1 0 1 0 B 1, B 2, B 3。
0 10 11注: A2E 无实解, AnE 的讨论雷同。
3. 设 A 为已给矩阵,由条件对任意n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2个未知数时线性方程 AXXA=0 有 n 2个线性无关的解, 由线性方程组的理论知其系数矩阵为零矩阵,1*1a w通过直接检验即发现 A 为纯量矩阵。
a na n 1 a 1 04. 分别对( A B )和A 作行(列)初等变换即可。
C5. 先证 A 或 B 是初等到阵时有AB*B *A *,从而当 A 或 B 为可逆阵时有AB*B * A *。
考虑到初等变换 A 对 B 的 n1阶子行列式的影响及 A A 即可得前面提到的结果。
E r 0 下设 PAQ,(这里 P , Q 满秩),则由前讨论只需证下式成立即可:0 0**E r 0 *E r 0 B B,0 00 0( 1) r<n-1 时,因秩小于 n-1 的 n 阶方阵的 n-1 阶子式全为 0,结论显然;B n1*E r 0 0 0 **E r 0 0B n2( 2) r=n-1 时,0 0, B,但0 10 0E r 0b 11b 12b 21b 22b 1 nb 2nb 11b 12b 21b 22b 1n b 2n ,故0 B nn0 0b n1b n2b nn0 0E r 0 B n1 *B n 2**E r 0 BB。
矩阵理论试题答案最终版
阵
G
为
(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1
∫
1
−1
2*(t 2 − 1)dt
上海交通大学矩阵理论试卷张跃辉
八、证明题(6 分)
设A为n阶矩阵,证明:A非奇异的充分必要条件是存在常数项不等于0的多项式g(λ)使 得g(A) = 0。
8
附
录
上海交通大学 2009-2010 学年第一学期《矩阵理论》试卷
姓名
学号
矩阵理论分班号
成绩
本试卷共四道大题, 总分 100 分. 其中 A∗ 表示矩阵 A 的共轭转置.
A
与
B
的最小多项式分别为
(x
−
1)2(x
−
2)
与
(x
−
1)(x
−
2)2,
则矩
阵
A A−B 0B
的最小多项式为 (
)
(A)(x−1)2(x−2)
(B)(x−1)(x−2)2
(C)(x−1)2(x−2)2
(D)(x−1)3(x−2)3
4. 设 A 为 n 阶可逆矩阵, ρ(A) 是其谱半径, || • || 是一种矩阵范数, 则必有 ( )
(3) 设 σ 是 V 的一个等距变换, σ(e1) = e1 + e2. 求 σ((x, y)T )? 这样的等距变换唯一吗?
100
13. 设 A = 1 0 1 .
010
(1) 求 A 的 Jordan 标准形 J(不必计算变换矩阵 P ); (2) 设 n ≥ 3, 计算 An − An−2 与 A2 − E; (3) 求 ∫0t(E − A−2)eAsds.
1
二. 填空题(每空 3 分, 共 15 分)
设二维线性空间V 的线性变换T1 : V → V 与T2 : V → V 在基α1, α2下的矩阵分别为
()
A=
1 2
研究生 矩阵论 课后答案
|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A
≤
1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知
考博必备 研究生矩阵理论课后答案矩阵分析所有习题共73页
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走
研究生矩阵理论课后答案第5章
按范数收敛
定义:赋范空间V的序列{x(n)|n=1,2,…}按范数 ‖‖α收敛于aV,如果 limn‖x(n)-a‖α=0 命题:对赋范空间V的任意两个等价向量范数 ‖‖α, ‖‖β, 都有 limn‖x(n)-a‖α=0 limn‖x(n)-a‖β=0 (即按任意两个向量范数的收敛实质上等价) 因 0 limn‖x(n)-a‖α d limn‖x(n)-a‖β 0 limn‖x(n)-a‖β(1/c)limn‖x(n)-a‖α
1=|yk|(i=1n|yi|p)1/p =‖y‖p n1/p (*) (i|yi|=|xi|/|xk|1) 1=limp1limp‖y‖p limpn1/p=n0=1 1=limp‖y‖p=limp‖x‖p/‖x‖ ‖x‖=limp‖x‖p
同一向量的三种范数之间的大小关系
Frobenius 矩阵范数
例5.2.2:矩阵的Frobenius范数定义为 ‖A‖F=(i=1mj=1n|aij|2)1/2. (ACmn的向量2-范数蕴含前3条公理)不难证明4 条范数公理全部满足.因非负性和齐次性是显 然的;③的证明见课本.我们只讲④的证明. ‖AB‖F2=i=1mj=1n|k=1paikbkj|2 i=1mj=1n((k=1p|aik|2)(k=1p|bkj|2))(C-S不等
则
n
1 ak 1 bk a k bk a b p q q b p a
1 a k bk a b k 1 pa
p
n k 1
ak
p
1 qb
q
b k 1 k
n q
1 1 ab ab q xn|}=|k‖x‖; ‖x+y‖= max{|x1+y1|,…,|xn+yn|} max{|x1|+|y1|,…,|xn|+|yn|} max{|x1|,…,|xn|}+max{|y1|,…,|yn|} =‖x‖+‖y‖
矩阵论B卷及答案上海交通大学
上海交通大学《矩阵论》 B 卷姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)(答案AAAAB )1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦注:A 的特征值为0,-1,而1kk x k∞=∑的收敛区间为[1,1)-2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散 注:由定理M 有n 个不同特征值,故可以对角化3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 注:M 的秩为2故无QR 分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭注:'()At Ate Ae =,故()'A At t A Ae Aee ====5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦注:B 中矩阵的最小多项式为()22x - 二、填空题(每题3分,共15分) 1. 设220A A -=,则cos 2A = [ E+()2cos11A - ]。
2.已知n nA C ⨯∈,并且()1A ρ<,则矩阵幂级数kk kA ∞=∑=[()2AE A - ]。
矩阵理论历年试题汇总及答案
矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。
历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。
以下是对矩阵理论历年试题的汇总及答案解析。
矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。
答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。
接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。
特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。
答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。
计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。
矩阵理论与应用(张跃辉)(上海交大)第六章参考答案
证明:直接验证即可. 6. 证明命题 6.1.1. ∑ 证明:直接验证可知 A† A 与 AA† 均为正交投影矩阵. 再设 A = U V ∗ 是 A 的奇异值 ∑ ∑ ∑ ∑ 分解, 则 A† = V † U ∗ , A∗ = V ∗ U ∗ . 由于 † 与 ∗ 的列空间与零空间相同, U, V 可逆, 故 R(A† ) = R(A∗ ), N (A† ) = N (A∗ ). 7. 设 A ∈ Cm×n , 又 U ∈ Cm×m 和 V ∈ Cn×n 均为酉矩阵. 证明 (U AV )† = V ∗ A† U ∗ . ∑ ∗ ∑ ∗ 证明:设 A = P Q 是 A 的奇异值分解, 则 U P Q V 是 U AV 的奇异值分解. 因 ∑ ∑ † 此 (U AV )† = (U P Q∗ V )† = V ∗ (Q P ∗ )U ∗ = V ∗ A† U ∗ . 8. 设 H 为幂等 Hermite 矩阵, 证明 H31. 证明命题 6.4.3. 32. (1) 哪些矩阵的 {1, 2}- 逆等于它的转置矩阵? (2) 哪些矩阵的 {1, 4}- 逆等于它的转置矩阵? 33. 试求一个与书中公式形式不同的计算秩为 1 的矩阵的各种广义逆的公式. 34. 不可逆的方阵可否有可逆的 {1, 2}- 逆或 {1, 3}- 逆或 {1, 4}- 逆? 35. 哪些不可逆的方阵有唯一的 {1, 2}- 逆或 {1, 3}- 逆或 {1, 4}- 逆? 36. 是否存在矩阵其 {1, 2}- 逆或 {1, 3}- 逆或 {1, 4}- 逆不唯一但只有有限个? 37. 设正规矩阵 A 仅有一个非零特征值 λ. (1) 证明 A† = λ−2 A; (2) 试求 A 的 {1, 2}- 逆, {1, 3}- 逆及 {1, 4}- 逆的表达式; −2 1 1 (3) 根据 (1) 与 (2) 计算矩阵 1 −2 1 的各种广义逆. 1 1 −2 38. 设 L, M 是 Cn 的子空间. 证明: (1) PL+M = (PL + PM )(PL + PM )† = (PL + PM )† (PL + PM ); (2) PL∩M = 2PL (PL + PM )† PM = 2PM (PL + PM )† PL . 39. 证明: A† = A(1,4) AA(1,3) . 40. 取 A1 , A2 分别为第 18 题的 (1) 和 (2), 并设 b1 = (1, 1, 0, 1)T , b2 = (1, 1, 2)T . 分别求 出方程组 A1 x = b1 和 A2 x = b2 的通解. ) ) ( ( 2 1 2 −1 . 求 Ax = b 的最小范数解. ,b= 41. 设 A = −1 0 −1 0 ) ( ) ( 2 1 2 −1 . 求矛盾方程组 Ax = b 的最小二乘解. ,b= 42. 已知 A = 0 −1 −2 1 43. 证明推论 6.5.1. 44. 确定矩阵方程矩阵方程 AXB = 0 的通解, 并以此证明定理 6.5.6. 1 0 0 1 1 1 0 0 . 45. 设 A = 0 1 1 0 0 0 1 1 (1) 当 b = (1, 1, 1, 1)T 时, 方程组 Ax = b 是否相容? (2) 当 b = (1, 0, 1, 0)T 时, 方程组 Ax = b 是否相容? 若方程组相容, 求其通解和最小范数解; 若方程组不相容, 求其最小范数的最小二乘解. 46. 证明线性方程组 Ax = b 有解 ⇐⇒ AA† b = b. 这里 A ∈ Cm×n , b ∈ Cm . 47. 判断矩阵方程 AXB = C 是否有解, 有解时求其解, 其中
矩阵论考试题和答案(详细)
因此 B = Udiag (λ ,L , λ )U = Vdiag (λ ,L , λ )V H = E 。
H
1 3 1
1 3 n
1 3 1
1 3 n
-------------4
(2)因为 A ≥ 0 ,所以 A 的特征值均非负。设 A 的特征值为 λ1 ,L , λn ,且 λ1 ≥ L ≥ λn ≥ 0 , 则 A2 的特征值为 λ12 ,L , λn2 ,于是
AT Ax = AT b
的解, 所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 AT A 非奇异, 即 rank ( AT A) = n 。因为 rank ( AT A) = rank ( A) ,所以不相容线性方程组 Ax = b 的最 小二乘解唯一当且仅当 A 列满秩。 -----------4
记 P = U H V = ( pij ) ,则 diag (λ1 ,L , λn ) P = Pdiag (λ1 ,L , λn ) ,从而
λi pij = λ j pij (i, j = 1,L , n) ,
于是
1 1
λi3 pij = λ j3 pij (i, j = 1,L , n) ,
即
diag (λ13 ,L , λn3 ) P = Pdiag (λ13 ,L , λn3 ) ,
A + = C T ( CC
T
-----------------5
1 4 0 1 − 4
)−1 ( B T B )−1 B T
1 − 4 = 0 1 4
0 1 0
---------5
1 (2)因为 AA + b = 2 ≠ b ; 所以不相容的。 -----------3 2 1 4 -----------3 其极小最小二乘通解为 x = A + b = 2 1 − 4 (3)因为 x 是不相容线性方程组 Ax = b 的最小二乘解当且仅 x 是如下相容线性方程组
矩阵理论与应用(张跃辉 上海交大研究生教材)第四答案
39
这迫使 B 是分块对角矩阵。 12. 证明: 如果 Hermite 阵或实对称矩阵 A 至少有 k 个特征值 (包括重数) 大于零,则 A 在某一个 k 维子空间上正定. 证明:设 Hermite 阵或实对称矩阵 A 至少有 k 个正特征值 λ1 , · · · , λk ,相应的线性无 ∗ Aα = α∗ (λ α ) = λ (α∗ α ) > 0,即 A 在 k - 维子空 关的特征向量为 α1 , · · · , αk 。于是 αi i i i i i i i 间 Span{α1 , ..., ak } 上正定. 13. (1) 证明: 平面上的可逆线性变换 σ 是正规变换 ⇐⇒ σ 将某个正方形伸缩为矩形 (因 此非正规的可逆线性变换不可能将任何正方形伸缩为矩形) 或者将所有正方形均变为正方形; ) ( 1 1 将哪些正方形变为了矩形? (2) 计算 2 阶实正规矩阵 −1 1 ) ( 1 2 是非正规矩阵, 说明它不能将任何正方形伸缩 为矩形; 试求一个正 (3) 证明矩阵 0 3 方形使得其在该矩阵下的像仍是正方形; (4) 试给出 3 阶实正规矩阵的几何意义. 证明:(1) 必要性。设可逆线性变换 σ 是正规变换,则或者 σ 有两个实特征值和两个正 交的实单位特征向量,因此由该二特征向量构成的正方形被 σ 变为矩形;或者 σ 有一对非 实的特征值,此时 σ 正交相似于一个 Schur 型,因此它是一个位似变换与一个正交变换的合 成,从而将每个正方形均变为正方形。 充分性。设 σ 是将某个正方形伸缩为矩形,于是 σ 将一对正交向量 α1 , β1 伸缩为另一对 正交向量 λ1 α1 , λ2 β1 . 由于 σ 可逆,λi = 0,因此 σ 有 2 个正交的单位特征向量 α, β , 故 σ 是 正规变换. 如果 σ 是将所有正方形伸均变为正方形,则 σ 将任意标准正交基 α, β 变为一对等 长的正交向量 σ (α), σ (β ). 故 σ (α, β ) = (σ (α), σ (β )) = (α, β )A, 其中矩阵 A 的两列等长且正 ) ( a −b , |A| = a2 + b2 = 0. 因此 σ 正交相 交 (因为 σ (α) 与 σ (β ) 等长且正交), 于是 A = b a 似于 Schur 型 A,故为正规变换。 (2) 由 (1) 的证明可知,该矩阵将所有正方形均变为正方形 (边长扩大为 √ 2 倍).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题 一1.(1)因 cos sin sin cos nx nx nx nx ⎡⎤⎢⎥-⎣⎦ cos sin sin cos x x x x ⎡⎤⎢⎥-⎣⎦= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++⎡⎤⎢⎥-++⎣⎦,故由归纳法知cos sin sin cos nnx nx A nx nx ⎡⎤=⎢⎥-⎣⎦。
(2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)nkrkrA A A A ==-,即只需算出23,A A 即可。
(3)记J=0 1 0 11 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则 , 112211111 () n n n nn n n n n n n n nni i n inn i n n n a C a C a C a C a C a A aE J C a J a C aa -----=-⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n∑。
2.设1122 (1,0),0 a A P P a A E λλ-⎡⎤===⎢⎥⎣⎦则由得21112111 1 1 210 0 0 a λλλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,不可能。
而由2112222 0 0 000 0 0 a λλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,知1i λ=±所以所求矩阵为1i PB P -, 其中P 为任意满秩矩阵,而1231 0 1 0 1 0,,0 10 1 0 1B B B -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦。
注:2A E =-无实解,nA E =的讨论雷同。
3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2n 个未知数时线性方程AX -XA=0有2n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,通过直接检验即发现A 为纯量矩阵。
110n n a a a -+++=4.分别对(A B )和A C ⎛⎫⎪⎝⎭作行(列)初等变换即可。
5.先证A 或B 是初等到阵时有()***AB B A =,从而当A 或B 为可逆阵时有()***AB B A =。
考虑到初等变换A 对B 的1n -阶子行列式的影响及*1A A -=即可得前面提到的结果。
下设 00 0r E PAQ ⎡⎤=⎢⎥⎣⎦,(这里P ,Q 满秩),则由前讨论只需证下式成立即可:*** 0 00 00 0r rE E B B ⎛⎫⎡⎤⎡⎤= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭, (1) r<n-1时,因秩小于n-1的n 阶方阵的n-1阶子式全为0,结论显然;(2) r=n-1时,*00 00 10 0r E ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,n12**nn 0 0 0 0 B 0n B B rE B ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,但 1112111121212222122212 00 0 0 0 0n n n r n n n nn b b b b b b b b b E b b b b b b ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故 *00 0r E B ⎛⎫⎡⎤= ⎪⎢⎥⎣⎦⎝⎭n12 nn 0 B 0n B B ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦** 00 0r E B ⎡⎤=⎢⎥⎣⎦。
6.由()()0()0r A r A AX AX AX ⊥⊥==⇔=及,即0AX =与0A AX ⊥=同解,此即所求证。
7.设其逆为()ij a ,则当I 固定时由可逆阵的定义得n 个方程()()()121111123n j j j i i i in ij a a w a w a w δ----++++=,1,2,j n =,其中ij δ为Kronecker 符号。
对这里的第l 个方程乘以()()1j n l w--然后全加起来得()()()()111j n j n i ij nw a w ----=,即得()()111j n i ij a wn-+-=。
注:同一方程式的全部本原根之和为0,且mw 也是本原根(可能其满足的方程次数小于n )。
习题 二1. 因11x x x ⊕==⊕,所以V 中零元素为1,x 的负元素为1x,再证结合律、交换律和分配律。
2. 归纳法:设121s W W W V -≠,则下面三者之一必成立: (1)121s s W W W W -⊂; (2)121s s W W W W -⊃。
(3) 存在121\s s W W W W α-∈及121\()s s W W W W β-∈。
如果是(1)(2)则归纳成立,如果是(3)则选s 个不同的数12,,,s k k k ,则必有某一个12i s k W W W αβ+∉。
3. U 是满足方程tr(A)=0解向量空间,其维数为21n -,故其补空间为一维的,可由任一迹非0的矩阵生成。
4. 易证线性封闭。
又设V 中元素为1211n n n n f a x a x a ---=+++,则U 是满足方程110n n a a a -+++=的子空间。
故U 的维数为n-1,其补空间为一维的,故任取一系数非0且不满足此方程式的元即可生成此补空间。
5. 记U=()123,,u u u ,()12,W w w =,把U,W 放在一起成4行5列的矩阵,其Hermite标准形为1 4 5 1 2150 1 1 390 0 0 1 30 0 0 0 0⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,故UW 的基为123w w -+,U 的基为123w w -+,1u ;W 的基为123w w -+,1w ;U W + 的基为123w w -+,1u ,1w 。
6.0(,,,)0x y z w UW x y z w x y z w ⎧+++=⎫⎧=⎨⎨⎬-+-=⎩⎩⎭, 1 1 1 121 1 1 1r ⎛⎫= ⎪--⎝⎭,故()()()dim 2,dim dim dim dim 4U W U W U W U W =+=+-=;()()1,1,1,1U W --的基为方程组的解向量0,1,1,-1和。
7.(1)由1(1)(1)j j jijii i x x a X x x -==---∑知可表示为线性组合,由基定义知其为一组基。
(2)由()01n nii iii i a x b x ===-∑∑及()0(11)1jijjiji xx C x ==-+=-∑得0jj j k k k b C a ==∑。
注:当k<j 时,1jk C =。
8.由12,,,j t αβββ为的线性组合知存在矩阵A 使得()()1212,,,,,,s t A αααβββ=,由i α线性无关可知()r A s =故s t ≤,把A 的Hermite 标准形非0行的第一个非0元所在列对应的i β全替代为i α即为所求。
9.易证为子空间; {}n U B Z XA x F =∈为在空间上的核空间,故{}()()()dim dim nU Z XA X F r AB r A r AB ==∈-=-。
习题三1.略2.()()1122 ,, y a b x y x x b c y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故积定义的(1)(3)显然;而(2)成立 c a b b ⎛⎫⇔⎪⎝⎭为正定矩阵20,0a ac b ⇔>->。
3.(1)(3)显然(2)(,)0f f ≥且等号成立当且仅当(,)0f f =⇔()22002f f π⎛⎫+= ⎪⎝⎭⇔()002f f π⎛⎫== ⎪⎝⎭⇔ cos sin 0cos sin 022a b a b θθππ+=⎧⎪⎨+=⎪⎩⇔00a b f ==⇔=。
||()||5h t ==。
习题 四1. 设AB 的特征值及其对应的特征向量为,i i X λ,即i i i ABX X λ=,如0i BX =,则0i λ=(注意到只能有一个特征值为0)。
故由i i i BABX BX λ=知BA 与AB 特征值勤全相同,所以它们都相似于()12,,n dig λλλ。
2.σ对应的矩阵为0 2 22 3 12 1 3T--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦, 即()()123123,,,,,e e e e e e A σ=作基变换()()'''123123,,,,.e e e e e e P =则()()'''1123123,,,,.e e e e e e PAP σ-=故使为对角形的基()1123,,e e e P -即可。
3.V 的一组基为1 00 00 10 1 1 00 0⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,,,分别记为123,,e e e ,则123223332,,e e e e e e e e e σσσ=-=-=-,故()()123123 0 0 0,,,, 1 1 11 1 1e e e e e e σ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦=()123,,e e e A ,求出使1PAP -为对角形阵的P ,基取为()1123,,e e e P -4.令11 20 0,2 10 1P P AP -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦则,()10 00 01,||0,0 10 5tr A A A P P -⎡⎤⎡⎤====⎢⎥⎢⎥⎣⎦⎣⎦。
5. ()||m n m n E AB E BA λλλ--=-知除0外AB 与BA 的特征值全相同(包括代数重数),而迹为矩阵特征值之和。
6. (1)特征多项式287x x -+为最小多项式,可能角化 (2)()()()||123E A λλλλ-=---为最小多项式,可对角化(3)特征多项式为()()212λλ-+,经验证()()2A E A E -+,故最小多项式为()()12λλ-+,可对角化。
(4)同(3),但()()20A E A E -+≠,故最小多项式为()()212λλ-+,不能对角化。
7.(1) a 0 a 1, 0 a 0 a A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则()()()22,A B A B f f x a m x a x a m ==-=-≠-=; (2) a 1 0 0 a 1 0 00 a 0 00 a 0 0,0 0 a 00 0 b 00 0 0 b 0 0 0 b A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦()()()()322A Bf x a x b x a x b f =--≠--=,()()()()22A B m x a x b x a x b m =--=--=8. 由特征多项式的表达式特和题设有10,0ni i j i i j λλλ=≠==∑∑,故22110n ni i i j i i i j λλλλ==≠⎛⎫==+ ⎪⎝⎭∑∑∑21n i i λ==∑, 又i λ为实数故i λ均为0。