旋转曲面方程与柱面方程共28页文档
解析几何_柱面、旋转曲面与二次曲面
x z (2)xOz 面上双曲线 2 2 1分别绕 x 轴和 z 轴; a c x x
绕 x 轴旋转
2
2
x2 y2 z2 1 2 2 a c
旋转双叶双曲面
y
o
z
o y
z
x z (1)xOz 面上双曲线 2 2 1 分别绕 x 轴和 z 轴; a c
绕 z 轴旋转
z y o
H x, y 0 R y, z 0 T x, z 0 或 或 z0 x0 y0
例 已知两球面的方程为
x y z 1 及 x y 1 z 1 1
2 2 2 2 2 2
求它们的交线C在xOy面上的投影方程.
z 轴的柱
面,其准线为xoy 面上曲线C . (其他类推)
实 例
y z 2 1 2 b c x2 y2 2 1 2 a b 2 x 2 pz
2
2
椭圆柱面 母线// x 轴 双曲柱面母线// z 轴 抛物柱面母线// y 轴
1. 椭圆柱面
x y 2 1 2 a b
z
2 2
2. 双曲柱面
又由于M1在母线上,所以又有:
x1 y1 z1 1 2 1 0
即 x1=2y1,z1=1,消去x1,y1,z1得所求旋转曲面的方程: 2(x2+y2+z2)-5(xy+yz+zx)+5(x+y+z)-7=0。
下面特殊的旋 转曲面
f ( y, z ) 0 曲线 C 绕 z轴 x 0
2
2
x y z 2 1 2 a c
2 2 2
旋转单叶双曲面
§5 旋转面、柱面和锥面.
x y 2 pz
旋转抛物面
二、 柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线. F1 ( x, y, z ) 0 设柱面的准线为 F ( x, y, z ) 0 (1) 2 母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为 x x1 y y1 z z1 (2) X Y Z
z
M1 (0, y1 , z1 )
y
o
x
z x 2 y 2 cot
M ( x, y, z )
例2: 求直线 z = ay 绕 z 轴旋转所得的旋转曲面方程. 解: 将 y 用 x 2 y 2 代入直线 方程, 得
z a( x2 y 2 )
y x
z
z = ay
平方得: z2 = a2 ( x2 + y2 ) 该旋转曲面叫做圆锥面, 其顶点在原点.
§5
一、旋转面 1、 定义:
旋转面、柱面和锥面
以一条平面曲线C绕其平面上的一 条直线旋转一周所成的曲面叫做旋 转曲面 , 这条定直线叫旋转曲面的 轴. 纬线
C
o
曲线C称为放置曲面的母线
经线
二、旋转曲面的方程 在空间坐标系中,设旋转曲面的母线为:
F1 ( x, y, z ) 0 C : (1) F2 ( x, y, z ) 0 旋转直线为: x x0 y y0 z z0 L: (2) X Y Z 其中P0(x0,y0,z0)为轴L上一定点,X,Y,Z为旋转轴 L的方向数。 设M1(x1,y1,z1)为母线C上的任意点,则M1的纬圆总 可以看成是过M1且垂直于旋转轴L的平面与以P0为中 心,|P0M1|为半径的球面的交线。
微积分课件第2节 柱面及旋转曲面
同理: yoz 坐标面上的已知曲线 f ( y , z ) 0 绕 y 轴旋转一周的旋转曲面方程为
f y,
x 2 z 2 0.
二、 旋转曲面(surfaces of revolution )
例 1 直线 L绕另一条与 L相交的直线旋转一周, 所得旋转曲面叫圆锥面.两直线的交点叫圆锥面 0 叫圆锥面的 的顶点,两直线的夹角 2 试建立顶点在坐标原点,旋转轴为 z 轴, 半顶角. z 半顶角为 的圆锥面方程. 解 yoz 面上直线方程为 z y cot 因为将直线z y cot 绕z轴旋转, o
x y 2 pz
2 2
( Paraboloid )
第二节 柱面与旋转曲面
小结
柱面的概念(母线、准线).
旋转曲面的概念及求法.
练习: P263:1(单),2(单, 3(单)
第二节 柱面与旋转曲面
思考题
1. 指出下列方程在平面解析几何中和 空间解析几何中分别表示什么图形?
(1) x 2; ( 3) y x 1.
又因为 M0 在曲线 C 上,所以f ( y0 , z0 ) = 0 即得旋转曲面方程: f ( x 2 y 2 , z ) 0.
将y换成
x2 y2
第二节 柱面与旋转曲面
yoz 坐标面上的已知曲线 f ( y , z ) 0绕 z 轴旋
转一周的旋转曲面方程.
f
x 2 y 2 , z 0,
( 2) x 2 y 2 4;
第二节 柱面与旋转曲面
思考题1解答
方程
x2
平面解析几何中
空间解析几何中
平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0) ,
一般的旋转曲面方程椭球面双曲面抛物面
2
,其母线
的方向数是 1,0,1,求该柱面的方程.
解 设 M1(x1, y1z1) 是准线上的点,过 M1(x1, y1z1) 的母线为
x x1 y y1 z z1
1 0
1
且有 x12 y12 z12 1
2x12 2 y2 2 z2 2 2
由直线方程得 x1 x t, y1 y, z1 z t
代入得 (x t)2 y2 (z t)2 1
2(x t)2 2 y2 (z t)2 2
得
(z t)2 0,t z
所求柱面方程为
(x z)2 y2 1
即
x2 y2 z2 2xz 1 0 .
例2
已知圆柱面的轴为
x 1
y 1 2
z 1 2
,点
M1(1, 2,1)
在此柱面上,求这个圆柱
面的方程.
解法一 记所求的圆柱面为 S 因 S 的母线平行于其轴,母线的方向数为 1,-2,-2,若能求
得圆柱面的准线圆,则用例 1 的方法即可解题. 空间的圆总可看成某一球面与某一平面的交线,故圆柱面的准线圆可
看成以轴上的点. M0 (0,1, 1) 为中心, d | M 0M1 | 14 为半径的球面 x2 ( y 1)2 (z 1)2 14 与 过 已 知 点 M1(1, 2,1) 且 垂 直 于 轴 的 平 面
此处 t 的取值应使 t 有确定的意义,则称 f (x1, x2, , xn ) 为 n 元 次齐次函数, 对应的方程 f (x1, x2, , xn ) 0 为 次齐次方程.
例 u x2 y 2 yz 2 xyz 为三次齐次函数.
特殊曲面及其方程--柱面、锥面、旋转面知识讲解
特殊曲面及其方程--柱面、锥面、旋转面引言空间解析几何所研究的曲面主要是二次曲面。
但是也可以研究一些非二次特殊曲面。
本论文中将利用直线或曲线适合某几何特征来建立一些曲面的方程。
主要讨论由直线产生的柱面和锥面,曲线产生的旋转曲面这三大类。
1.柱面定义1:一直线平行于一个定方向且与一条定曲线Γ相交而移动时所产生的曲面叫做柱面(图1),曲线Γ作叫做准线。
构成柱面的每一条直线叫做母线。
显然,柱面的准线不是唯一的,任何一条与柱面所有母线都相交的曲线都可以取做柱面的准线,通常取一条平面曲线作为准线。
特别地,若取准线Γ为一条直线,则柱面为一平面,可见平面是柱面的特例。
下面分几种情形讨论柱面的方程。
1.1 母线平行于坐标轴的柱面方程选取合适的坐标系,研究对象的方程可以大为化简。
设柱面的母线平行于z 轴,准线为Oxy 面上的一条曲线,其方程为:(),00f x y z =⎧⎪⎨=⎪⎩图1u v又设(),,P x y z 为柱面上一动点(图2),则过点P 与z 轴平行的直线是柱面的一条母线,该母线与准线Γ的交点记为(),,0M x y ,因点M 在准线上,故其坐标应满足准线方程,这表明柱面上任一点(),,P x y z 的坐标满足方程(),0f x y =反过来,若一点(),,P x y z 的坐标满足方程(),0f x y =,过P 作z 轴的平行线交Oxy 面于点M ,则点M 的坐标(),,0x y 满足准线Γ的方程(),0,0f x y z ==,这表明点M 在准线Γ上,因此直线MP 是柱面的母线 (因为直线MP 的方向向量为{}{}0,0,||0,0,1z ),所以点P 在柱面上。
综上所述,我们有如下结论:母线平行上于z 轴,且与Oxy 面的交线为(),0,0f x y z ==的柱面方程为:(),0f x y = (1)它表示一个无限柱面。
若加上限制条件a z b ≤≤,变得它的一平截段面。
同理,母线平行于x 轴,且与Oyz 面的交线为(),0,0g y z x ==的柱面方程为(),0g y z =;母线平行于y 轴,且与Ozx 面的交线为(),0,0h x z y ==的柱面方程为(),0h x z =。
柱面锥面和旋转曲面ppt课件
.
S
建立旋转曲面的方程:
如图
得方程
规律:一般地,当坐标面上的曲线绕此坐标面里的一个坐标轴旋转时,为求得旋转曲面的方程,只需将曲线方程保留和旋转轴同名的坐标,以其余两坐标平方和的平方根代替方程中的另一个坐标.
例3.1.6 将圆
绕Z轴旋转,求所得旋转曲面的方程.
解:所求旋转曲面的方程为:
l
M1
S
旋转曲面又可看作以轴 l 为连心线的一族纬圆生成的曲面
特例--- 以直线为母线的旋转面
母线和轴共面时
圆柱面 (母线和轴线平行)
圆锥面 (母线和轴线相交 而不垂直)
平面 (母线和轴线正交)
母线和轴线异面且直母线 与轴线不垂直呢?
母线不是经线
单叶旋转双曲面
解:设P(x1,y1,z1)是母线上的任意点,因为旋转轴通过原点,所以过P的纬圆方程是:
(母线平行于Y轴的椭圆柱面)
(母线平行于x轴的双曲柱面)
(母线平行于y轴的抛物柱面)
注:上述柱面的方程都是二次的,都称为二次柱面。
1、锥面的概念
定义3.1.3 在空间通过一定点且与定曲线相交的一族直线所生成的曲面叫做锥面,这些直线都叫做锥面的母线,那个定点叫做锥面的顶点,定曲线叫做锥面的准线。
补充:
曲线 C
C
绕 z 轴
3、母线在坐标面而旋转轴为坐标轴的旋转曲面
曲线 C
C
绕z 轴
曲线 C
旋转一周得旋转曲面 S
C
S
M
N
z
P
y
z
o
绕 z轴
f (y1, z1)=0
M(x,y,z)
.
S
7-2柱面与旋转曲面
3.若柱面的母线平行于某条坐标轴,则柱面方程的特点 是_________;
2 y 2 x z 1是由 _______ 绕 _________ 轴旋转一 4. 曲面 4
周所形成的; 5. 曲面 ( z a )2 x 2 y 2 是由 ______________ 绕 _____ 轴 旋转一周所形成的;
M (0, y , z ) f ( y, z ) 0 M
d
1 1 1
y
d
x y | y1 |
2 2 2
x
2
将 z z1 , y1 x y 代入
f ( y1 , z1 ) 0
2 2 z z , y x y 将 代入 f ( y1 , z1 ) 0 1 1
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面。 这条定曲线C叫 柱面的准线 (directrix) ,动直 线L叫柱面的母 线(generatrix). 观察柱面的形 成过程:
播 放
柱面举例
z
z
y 2x
2
平面
o
y
oHale Waihona Puke yxxy x
抛物柱面
( Cylinder of the second order parabolic )
解
yoz 面上直线方程为 z y cot
2 2
M1 (0, y1 , z1 )
y
圆锥面方程
o
x
z x y cot
M ( x, y, z )
例2 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程.
x z (1)双曲线 2 2 1分别绕 x 轴和 z 轴; a c
球的旋转后的曲面表达式
球的旋转后的曲面表达式
平面曲线f(y,z)=0以Z为轴旋转一周,若y≥0,旋转曲面方程为f(√(x²+y²),z)=0,若y<0,旋转曲面方程为f(-√(x²+y²),z)=0。
旋转曲面方程
扩展资料
常见的曲面
1、球面
空间中到定点的距离等于定长的点的集合。
(其中,定点称为球心,定长称为半径)
2、柱面
一条直线l沿着一个空间曲线C平行移动所形成的曲面。
(其中,
l称为母线,C称为准线)
方程:一个只含两个变量x,y的方程f(x,y)=0在空间中表示母线平行于z轴且准线为xOy面上的曲线f(x,y)=0的柱面。
(同理,方程
g(y,z)=0和h(x,z)=0在空间中分别表示母线平行于x轴和y轴的柱面)
3、旋转面
一条曲线C绕一条直线l旋转所得的曲面。
(其中,曲线C为母线,直线l为旋转轴)
4、空间曲线
在直观上曲线可看成空间一个自由度的质点运动的轨迹。
5、投影柱面,投影曲线和投影
设空间曲线C,过曲线C上的每一点作xOy面的垂线,这些垂线形成一个母线平行于z轴且过C的柱面,称之为曲线C关于xOy面的投影柱面。
这个柱面与xOy面的交线称为曲线C在xOy面上的投影曲线。
柱面锥面旋转曲面与二次曲面
第10页/共31页
例1、柱面的准线方程为
x2 y 2 z 2 1 2x2 2 y 2 z 2 2
而母线的方向数为-1,0,1,求这柱面的方程。
例2 已知圆柱面的轴为
x y 1 z 1 1 2 2
点 (M11,-2,1)在此圆柱面上,求这个圆柱面
的方程
第11页/共31页
例3 柱面的准线是xoy平面的圆周(中心在原点,半径 为1),母线平行于直线l:x y z,求此柱面方程。
重点难点:柱面方程的求法.
空间曲线在坐标面上投影
第6页/共31页
一. 概念
z
引例. 分析方程
表示怎样的曲面 .
解:在 xoy 面上, 在圆C上任取一点
平行 z 轴的直线 l ,
M
表示圆C,
M1(x, y,0) , 过此点作
Co
M1
y
x
z 对任意 , 点M (x, y, z)
l
的坐标也满足方程
x2 y2 R2
例1: 方程 y2 =2x 表示.母线平行于 z 轴的柱面,
它的准线是xoy面上的抛物线y2 =2x,
该柱面叫做抛物柱面.
z
y
y2 =2x
o
x
第13页/共31页
例2: 方程 xy = 0表示.
母线平行于 z 轴的柱面, 它的准线是xoy面上的直线xy = 0, 所以它是过z轴 的平面.
z
o
y
xy = 0
解: 联立两个方程消去 z ,得
2x2 4( y1)2 1 2
这是母线平行于z 轴的椭圆柱面,两球面的交线C在xOy面上的投影 曲线方程为
2 x 2 4 ( y 1 ) 2 1
2
高等数学:第十二讲 空间曲面及其方程--柱面、旋转曲面 二
曲面方程的定义
如果曲面S与三元方程F(x, y, z) =0有下述关系: (1)曲面S上任一点的坐标都满足方程F(x, y, z) =0; (2)不在曲面S上的点的坐标都不满足方程 F(x, y, z) =0; 那么,方程F(x, y, z) =0就叫做曲面S的方程, 曲面S 就叫做方程F(x, y, z) =0的图形.
常见的曲面方程
球面
z
球心在点M0(x0,y0,z0)、半径为R的球面的方程为:
M0
(xx0)2(yy0)2(zz0)2R2
M
o
y
x
注:当球心在原点O(0,0,0)、半径为R时,球面方程为:
x2y2z2R2
常见的曲面方程 线段的垂直平分面
与点A(x1,y1,z1)、 B(x2,y2,z2)距离相等的点的集合称为线 段AB的垂直平分面.
例题
例 1 写出球心为点A(1,2,-3)、半径为2的球面方程. 解:所求球面方程为:(x1)2(y2)2(z+3)24
例题
例 2 已知点A(1,2,3)、 B(2,-1,4),求线段AB的垂直平分面方程.
解:设所求动点为M(x,y,z),根据题意得 |MA|=|MB|
(x1)2(y2)2(z3)2(x2)2(y+1)2(z4)2 即 2x-6y+2z-7迹时, 建立这曲面的方程;
已知坐标x、y、z间的一个方程时, 研究这方程所表示 的曲面的形状.
旋转曲面
yOz平面上曲线f(y, z)0绕 z 轴旋转所成的旋转曲面的方程.
z不变 y
x2 y2
旋转曲面的方程为 f x2 y2 , z 0
旋转曲面
旋转曲面
当坐标平面上的曲线绕此坐标平面里的一条坐标轴旋转时, 为了求出这样的旋转曲面的方程,只要将曲线在坐标面里的方程 保留和旋转轴同名的坐标,而用其他两个坐标平方和的平方根来 代替方程中的另一坐标即可.
柱面锥面旋转曲面与二次曲面
z
y12 2q
y y1
它的轴平行于z 轴
顶点
0,
y1 ,
y12 2q
(3)用坐标面 yoz ( x 0), x x1与曲面相截
均可得抛物线.
同理当 p 0, q 0 时可类似讨论.
x2 y2 z ( p 与 q 同号) 2 p 2q
椭圆抛物面
用截痕法讨论: 设 p 0, q 0 (1)用坐标面 xoy (z 0) 与曲面相截
截得一点,即坐标原点 O(0,0,0)
原点也叫椭圆抛物面的顶点.
与平面 z z1 (z1 0) 的交线为椭圆.
x2
(3)
从(2)(3)中消去参数x1,y1,z1得三元方程
F(x,y,z)=0
这就是以(1)为准线,以A为顶点的锥面方程。
例1、求顶点在原点,准线为
x2 y2
a
2
b2
1
z c
的锥面的方程。
x
2
y2
z2
答: a2 b2 c2 0
(二次锥面)
齐次方程:
设λ 为实数,对于函数f(x,y,z),如果有 f(tx,ty,tz)=tλf(x,y,z)
y, y,
z) z)
0 0
(1)
顶点为A(x0,y0,z0),如果M1(x1,y1,z1)为准线上任一点, 则锥面过点M1的母线为:
x x0 y y0 z z0 (2) x1 x0 y1 y0 z1 z0
且有 F1(x1,y1,z1)=0 F2(x1,y1,z1)=0
又由于M1在母线上,所以又有:
特殊曲面及其方程--柱面、锥面、旋转面知识讲解
特殊曲面及其方程--柱面、锥面、旋转面引言空间解析几何所研究的曲面主要是二次曲面。
但是也可以研究一些非二次特殊曲面。
本论文中将利用直线或曲线适合某几何特征来建立一些曲面的方程。
主要讨论由直线产生的柱面和锥面,曲线产生的旋转曲面这三大类。
1.柱面定义1:一直线平行于一个定方向且与一条定曲线Γ相交而移动时所产生的曲面叫做柱面(图1),曲线Γ作叫做准线。
构成柱面的每一条直线叫做母线。
显然,柱面的准线不是唯一的,任何一条与柱面所有母线都相交的曲线都可以取做柱面的准线,通常取一条平面曲线作为准线。
特别地,若取准线Γ为一条直线,则柱面为一平面,可见平面是柱面的特例。
下面分几种情形讨论柱面的方程。
1.1 母线平行于坐标轴的柱面方程选取合适的坐标系,研究对象的方程可以大为化简。
设柱面的母线平行于z 轴,准线为Oxy 面上的一条曲线,其方程为:(),00f x y z =⎧⎪⎨=⎪⎩图1u v又设(),,P x y z 为柱面上一动点(图2),则过点P 与z 轴平行的直线是柱面的一条母线,该母线与准线Γ的交点记为(),,0M x y ,因点M 在准线上,故其坐标应满足准线方程,这表明柱面上任一点(),,P x y z 的坐标满足方程(),0f x y =反过来,若一点(),,P x y z 的坐标满足方程(),0f x y =,过P 作z 轴的平行线交Oxy 面于点M ,则点M 的坐标(),,0x y 满足准线Γ的方程(),0,0f x y z ==,这表明点M 在准线Γ上,因此直线MP 是柱面的母线 (因为直线MP 的方向向量为{}{}0,0,||0,0,1z ),所以点P 在柱面上。
综上所述,我们有如下结论:母线平行上于z 轴,且与Oxy 面的交线为(),0,0f x y z ==的柱面方程为:(),0f x y = (1)它表示一个无限柱面。
若加上限制条件a z b ≤≤,变得它的一平截段面。
同理,母线平行于x 轴,且与Oyz 面的交线为(),0,0g y z x ==的柱面方程为(),0g y z =;母线平行于y 轴,且与Ozx 面的交线为(),0,0h x z y ==的柱面方程为(),0h x z =。
柱面的方程
z
M(x,y,z)
o
L
y
x
M1(x,y,0)
2.几种常见的柱面
1.椭圆柱面 2.双曲柱面 3.抛物柱面
x y 2 1 2 a b
x2 y2 2 1 2 a b
2
2
x 2 py
2
4.特殊的平面
Ax By C 0
1.椭圆柱面
-2 Y 0 2 -1
X 0 1
2
x y 2 1 2 a b
2 2 f ( x0 y0 , z 0 ) 0 (1)
o x
M(x,y,z),有
f ( x 2 y 2 , z ) 0 (2)
若点M(x,y,z),则其坐标x,y,z不满足(2)式。 故(2)式为此旋转曲面的方程。 故对曲线C:f(y,z)=0: 绕z轴旋转而成的曲面方程为
y2 z2 1, 9 4 x0
x2 z2 1, 16 4 y0
再用平行于xoy面的平面z = h (0 < ︱h︱< c )去截这个曲面,所 得截痕的方程是
x2 y2 h2 2 2 1 2 , a b c z h.
M ( x, y , z ) , 过点M的母线交准线于点 M 0 ( x0 , y0 , z 0 ), 则有
x x0 t y y0 t z z t 0
2 2 从而x 2 y 2 ( x0 y0 )t 2 R 2t 2 z0 t z2 2 2
f ( x 2 y 2 , z ) 0
曲线C绕y轴旋转而成的曲面方程为 f ( y, x 2 z 2 ) 0 类似地,可考虑其他的在某一坐标平面上的曲线绕相应的坐 标轴 旋转而成的旋转曲面的方程。
解析几何课4旋转面等
o
x
.
z
上一页
下一页
返回
5环面 圆 (x R) 2 y 2 r 2 ( R r 0) 绕 y轴 旋转所成曲面 y
生活中见过这个曲面吗?
o
x
.
z
环面方程
上一页 下一页
( x 2 z 2 R) 2 . y 2 r 2
.
或 ( x 2 y 2 z 2 R 2 r 2 ) 2 4R 2 ( x 2 z 2 )
y
绕 y 轴一周
o
.
a
x
z
上一页
下一页
返回
2 单叶旋转双曲面
上题双曲线
x2 y2 2 2 1 b a z 0
y
绕 y 轴一周
得单叶旋转双曲面
.
.
o
x2 z2 y2 2 1 2 a b
z
a
x
.
上一页
下一页
返回
3 旋转锥面 两条相交直线
x2 y2 2 2 =0 a b z = 0
x
x
上一页
下一页
返回
y z 2 1 2 (2)yOz 面上椭圆 a c
绕 y 轴和 z 轴;
2
2
z
绕 y 轴旋转
y
2
旋 转 椭 球 面
y x z 1 2 2 a c
2 2
x z
绕 z 轴旋转
上一页
下一页
x y z 2 1 2 a c
曲面及其方程 柱面、锥面、旋转曲面
机动
目录
上页
下页
返回
结束
二、柱面
定义 平行于定直线并沿定曲线 C移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线 ,动直线 L 叫 柱面的母线. 观察柱面的形 成过程:
播放
机动
目录
上页
下页
返回
结束
考察方程 F(x,y)=0 F(x,y)=0表示母线平行于z轴的柱面
(不含z)
z
0 2
过原点和椭圆上任一点的直线的方向向量为 v {a cos , b sin , c }
机动
目录
上页
下页
返回
结束
过原点和椭圆上任一点的直线族方程为:
x0 y0 z0 t a cos b sin c
即
x (a cos )t y (b sin )t z ct
y
x G ( y , z ) 0 准线 是 yoz 面上的曲线 z x 0 方程 H ( z , x ) 0 表示 柱面, l3 母线 平行于 y 轴; H ( z, x) 0 x 准线是 xoz 面上的曲线 y 0
机动 目录 上页 下页 返回 结束
y
椭圆柱面
第六节
第七章
曲面及其方程
一、基本概念 二、柱面、锥面、旋转曲面 三、二次曲面
机动
目录
上页
下页
返回
结束
一、基本内容
曲面方程的定义:
如果曲面S 与三元方程 F ( x , y , z ) 0 有下述关系:
(1) 曲面S 上任一点的坐标都满足方程;
(2) 不在曲面S 上的点的坐标都不满足方程;
那么,方程 F ( x , y , z ) 0 就叫做曲面 S 的 方程,而曲面 S 就叫做方程的图形.