2019-2020学年北京市西城区三帆中学九年级下学期期中数学试卷 (解析版)
北京市西城区2019-2020学年中考第三次模拟数学试题含解析
北京市西城区2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算或化简正确的是()A.234265+=B.842=C.2(3)3-=-D.2733÷=2.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.3.下列运算,结果正确的是()A.m2+m2=m4B.2m2n÷12mn=4mC.(3mn2)2=6m2n4D.(m+2)2=m2+44.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC 的大小是()A.55°B.60°C.65°D.70°5.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克6.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B. C. D.7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46°C.67°D.78°8.-sin60°的倒数为( )A.-2 B.12C.-33D.-2339.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC= ()A.3B.2 C.3 D.3+210.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟11.已知反比例函数y=﹣6x,当1<x<3时,y的取值范围是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣212.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( )A .极差是3.5B .众数是1.5C .中位数是3D .平均数是3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知图中Rt △ABC ,∠B=90°,AB=BC,斜边AC 上的一点D ,满足AD=AB ,将线段AC 绕点A 逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC 时,旋转角度α 的值为_________,14.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 15.如图,点A ,B 在反比例函数k y x=(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.16.如图,在矩形ABCD 中,AB=3,BC=5,在CD 上任取一点E ,连接BE ,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为_____.17.如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得8CD =,20BC =米,CD 与地面成30°角,且此时测得1米的影长为2米,则电线杆的高度为=__________米.18.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.若苗圃园的面积为72平方米,求x ;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由; 20.(6分)如图,在等腰△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥BC 交AB 延长线于点E ,垂足为点F .(1)证明:DE 是⊙O 的切线;(2)若BE=4,∠E=30°,求由»BD、线段BE 和线段DE 所围成图形(阴影部分)的面积, (3)若⊙O 的半径r=5,sinA=5,求线段EF 的长. 21.(6分)26?32-⨯+--(12)-1+3tan60° 22.(8分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局.(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家.用树形图或列表法求只进行两局游戏便能确定赢家的概率.23.(8分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为()4,0B ,另一个交点为A ,且与y 轴相交于C 点()1求m 的值及C 点坐标;()2在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由()3P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由. 24.(10分)某市旅游景区有A ,B ,C ,D ,E 等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A ,B ,C ,D ,E 这五个景点共接待游客 万人,扇形统计图中E 景点所对应的圆心角的度数是 ,并补全条形统计图.(2)甲,乙两个旅行团在A ,B ,D 三个景点中随机选择一个,这两个旅行团选中同一景点的概率是 . 25.(10分)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB=2,PC=1. (1)求证:PC 是⊙O 的切线.(2)求tan ∠CAB 的值.26.(12分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息: 信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天; 信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?27.(12分)解分式方程:12x -=3x参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】解:A.不是同类二次根式,不能合并,故A错误;B.822=,故B错误;C.2(3)3-=,故C错误;D.27327393÷=÷==,正确.故选D.2.D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组3.B【解析】【分析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【详解】A. m2+m2=2m2,故此选项错误;B. 2m2n÷12mn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.4.C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.5.C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.6.C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.7.B【解析】【分析】根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可【详解】根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.故选B.【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键. 8.D【解析】分析:3sin602-︒=-根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:3 sin602 -︒=-3231,⎛⎛⨯=⎝⎭⎝⎭Q3的倒数是23.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.9.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.10.D分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:5001050(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.11.D【解析】【分析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.【详解】解:∵反比例函数y=﹣6x,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.故选D.【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.12.C【解析】【分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.15或255°【解析】如下图,设直线DC′与AB相交于点E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=22AC,∴AE=22AD,又∵AD=AB,AC′=AC,∴AE=22AB=2222⨯AC=12AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即当DC′∥BC时,旋转角α=15°;同理,当DC′′∥BC时,旋转角α=180°-45°-60°=255°;综上所述,当旋转角α=15°或255°时,DC′//BC.故答案为:15°或255°.14.k>1【解析】【分析】根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.【详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-1>0,解得:k>1,故答案为:k>1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x 的图象经过第一、三象限解答.15.【解析】试题解析:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC=2BD ,∴OD=2OC .∵CD=k ,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴22229376()22AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键.16.53【解析】【分析】设CE=x ,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x ,DE=CD-CE=3-x .在Rt △ABF 中利用勾股定理求出AF 的长度,进而求出DF 的长度;然后在Rt △DEF 根据勾股定理列出关于x 的方程即可解决问题.【详解】设CE=x .∵四边形ABCD 是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=53,故答案为53.17.(【解析】【分析】过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.∵CD=8,CD与地面成30°角,∴DE=12CD=12×8=4,根据勾股定理得:∵1m杆的影长为2m,∴DEEF=12,∴EF=2DE=2×4=8,∴(.∵ABBF=12,∴AB=12()故答案为(.【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.18.4【解析】【分析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4.【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2(2)当x=4时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.20.(1)见解析(2)833π(3)83【解析】分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=12ODOE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.(3)先证Rt△DFB∽Rt△DCB得BF BDBD BC=,据此求得BF的长,再证△EFB∽△EDO得EB BFEO OD=,据此求得EB的长,继而由勾股定理可得答案.详解:(1)如图,连接BD、OD,∵AB是⊙O的直径,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴142xx=+,解得:x=4,∴3S△ODE=12×4×33S扇形ODB=2 60?·48 3603ππ=,则S阴影=S△ODE-S扇形ODB3-83π;(3)在Rt△ABD中,BD=ABsinA=10×55∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴BF BDBD BC=,即251025BF=,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴EB BFEO OD=,即255EBEB=+,∴EB=103,∴EF=228 = 3EB BF-.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.21.0【解析】【分析】根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算.【详解】原式=-23+2-3-2+33=0.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.22.(1),13(2)29【解析】解:(1)画树状图得:∵总共有9种等可能情况,每人获胜的情形都是3种,∴两人获胜的概率都是13.(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为13.任选其中一人的情形可画树状图得:∵总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,∴两局游戏能确定赢家的概率为:29. (1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案. (2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为13.可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案.23.()14m =,()0,4C ;()2存在,()2,6M ;()(315,15P +①或(15,15P -;②当2t =时,16PBQC S =四边形最大.【解析】【分析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC 的直线和抛物线只有一个交点,从而求出点M 坐标;(3)①先判断出四边形PBQC 时菱形时,点P 是线段BC 的垂直平分线,利用该特殊性建立方程求解; ②先求出四边形PBCQ 的面积与t 的函数关系式,从而确定出它的最大值.【详解】解:(1)将B (4,0)代入23y x x m =-++,解得,m=4,∴二次函数解析式为234y x x =-++,令x=0,得y=4,∴C (0,4);(2)存在,理由:∵B (4,0),C (0,4),∴直线BC 解析式为y=﹣x+4,当直线BC 向上平移b 单位后和抛物线只有一个公共点时,△MBC 面积最大, ∴24{34y x b y x x =-++=-++, ∴24(2)16t --+,∴△=1﹣4b=0,∴b=4,∴26x y =⎧⎨=⎩,∴M (2,6); (3)①如图,∵点P 在抛物线上,∴设P (m ,234m m -++),当四边形PBQC 是菱形时,点P 在线段BC 的垂直平分线上,∵B (4,0),C (0,4),∴线段BC 的垂直平分线的解析式为y=x ,∴m=234m m -++,∴m=15±, ∴P (15+,15+)或P (15-,15-);②如图,设点P (t ,234t t -++),过点P 作y 轴的平行线l ,过点C 作l 的垂线,∵点D 在直线BC 上,∴D (t ,﹣t+4),∵PD=234t t -++﹣(﹣t+4)=24t t -+,BE+CF=4,∴S 四边形PBQC =2S △PDC =2(S △PCD +S △BD )=2(12PD×CF+12PD×BE )=4PD=224164(2)16t t t -+--+ ∵0<t <4,∴当t=2时,S 四边形PBQC 最大=1.考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.24.(1)50,43.2°,补图见解析;(2)13. 【解析】【分析】(1)由A 景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【详解】解:(1)该市景点共接待游客数为:15÷30%=50(万人),E景点所对应的圆心角的度数是:6 36043.250o o⨯=B景点人数为:50×24%=12(万人),补全条形统计图如下:故答案是:50,43.2o.(2)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 =.25.(1)见解析;(2).【解析】【分析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.26.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.27.x=1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】方程两边都乘以x(x﹣2),得:x=1(x﹣2),解得:x=1,检验:x=1时,x(x﹣2)=1×1=1≠0,则分式方程的解为x=1.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。
北京市西城区2019-2020学年中考数学模拟试题(3)含解析
北京市西城区2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF =142°,则∠C的度数为()A.38°B.39°C.42°D.48°2.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.下列式子成立的有( )个①﹣12的倒数是﹣2②(﹣2a2)3=﹣8a52325 2④方程x2﹣3x+1=0有两个不等的实数根A.1 B.2 C.3 D.44.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿()A.20 B.25 C.30 D.355.如图,是一个工件的三视图,则此工件的全面积是()A.60πcm2B.90πcm2C.96πcm2D.120πcm26.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1B.a=1 C.a=﹣1 D.a=±17.一元二次方程210--=的根的情况是()x xA.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断8.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车在行驶过程中进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等9.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°10.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为()A.30°B.40°C.50°D.60°11.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.12.下列计算正确的是()A.5﹣2=3B.4=±2C.a6÷a2=a3D.(﹣a2)3=﹣a6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于一元二次方程2520x x-+=,根的判别式24b ac-中的b表示的数是__________.14.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.15.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是_____.16.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.17.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).18.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(6分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 30 25 0.05B 50 50 0.05C 120 不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元 上网时间/h 超时费/(元) 总费用/(元) 方式A 30 40 方式B50100(II )设选择方式A 方案的费用为y 1元,选择方式B 方案的费用为y 2元,分别写出y 1、y 2与t 的数量关系式;(III )当75<t <100时,你认为选用A 、B 、C 哪种计费方式省钱(直接写出结果即可)?22.(8分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.23.(8分)如图,反比例y=4x的图象与一次函数y=kx ﹣3的图象在第一象限内交于A (4,a ). (1)求一次函数的解析式;(2)若直线x=n (0<n <4)与反比例函数和一次函数的图象分别交于点B ,C ,连接AB ,若△ABC 是等腰直角三角形,求n 的值.24.(10分)如图,直线y 1=﹣x+4,y 2=34x+b 都与双曲线y=kx 交于点A (1,m ),这两条直线分别与x轴交于B ,C 两点.求y 与x 之间的函数关系式;直接写出当x >0时,不等式34x+b >kx 的解集;若点P在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.25.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;26.(12分)如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB P ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.甲 乙 丙单价(元/米2) 2m 5n 2m(1)当3x =时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________. 27.(12分)已知:a+b =4(1)求代数式(a+1)(b+1)﹣ab 值;(2)若代数式a 2﹣2ab+b 2+2a+2b 的值等于17,求a ﹣b 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】分析:根据翻折的性质得出∠A=∠DOE ,∠B=∠FOE ,进而得出∠DOF=∠A+∠B ,利用三角形内角和解答即可.详解:∵将△ABC 沿DE ,EF 翻折,∴∠A=∠DOE ,∠B=∠FOE ,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A ﹣∠B=180°﹣142°=38°.故选A .点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型. 2.B 【解析】 【分析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案. 【详解】由图可知所给的平面图形是一个长方形, 长方形绕一边所在直线旋转一周得圆柱, 故选B. 【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键. 3.B 【解析】 【分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断. 【详解】 解:①﹣12的倒数是﹣2,故正确; ②(﹣2a 2)3=﹣8a 6,故错误;)﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x 2﹣3x+1=0有两个不等的实数根,故正确. 故选B . 【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答. 4.B 【解析】设可贷款总量为y ,存款准备金率为x ,比例常数为k ,则由题意可得:ky x=,4007.5%30k =⨯=,∴30y x=, ∴当8%x =时,303758%y ==(亿), ∵400-375=25,∴该行可贷款总量减少了25亿. 故选B. 5.C 【解析】 【分析】先根据三视图得到圆锥的底面圆的直径为12cm ,高为8cm ,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可. 【详解】圆锥的底面圆的直径为12cm ,高为8cm ,所以圆锥的母线长, 所以此工件的全面积=π⋅62+12⋅2π⋅6⋅10=96π(cm2). 故答案选C. 【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体. 6.C 【解析】 【分析】根据一元一次方程的定义即可求出答案. 【详解】由题意可知:1012a a -≠⎧⎨⎩+=,解得a =−1故选C . 【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型. 7.A 【解析】 【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.故选A. 【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 8.B 【解析】 【分析】①根据函数的图象即可直接得出结论;②求得直线OA 和DC 的解析式,求得交点坐标即可;③由图象无法求得B 的横坐标;④分别进行运算即可得出结论. 【详解】 由题意和图可得,轿车先到达乙地,故选项A 错误,轿车在行驶过程中进行了提速,故选项B 正确,货车的速度是:300÷5=60千米/时,轿车在BC 段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D 错误,设货车对应的函数解析式为y =kx , 5k =300,得k =60,即货车对应的函数解析式为y =60x , 设CD 段轿车对应的函数解析式为y =ax +b ,2.5804.5300a b a b +=⎧⎨+=⎩,得110195a b =⎧⎨=-⎩, 即CD 段轿车对应的函数解析式为y =110x -195, 令60x =110x -195,得x =3.9,即货车出发3.9小时后,轿车追上货车,故选项C 错误, 故选:B . 【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式 9.A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B ′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A . 10.B 【解析】试题解析:∵AB ∥CD ,且50CAB ∠=︒, 50ECD ∴∠=︒, ED AE Q ,⊥ 90CED ∴∠=︒,∴在Rt CED V 中,905040D .∠=︒-︒=︒ 故选B . 11.A 【解析】试题分析:观察图形可知,该几何体的主视图是.故选A .考点:简单组合体的三视图. 12.D 【解析】 【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算. 【详解】A. 不是同类二次根式,不能合并,故A 选项错误; 4,故B 选项错误; C. a 6÷a 2=a 4≠a 3,故C 选项错误; D. (−a 2)3=−a 6,故D 选项正确. 故选D. 【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.-5 【解析】【分析】分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可. 【详解】解:b 表示一元二次方程2520x x -+=的一次项系数5-. 【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式△=b 2-4ac ,不要盲目套用,要看具体方程中的a ,b ,c 的值.a 代表二次项系数,b 代表一次项系数,c 是常数项. 14.1. 【解析】 【分析】由三角形BCD 为直角三角形,根据已知面积与BD 的长求出CD 的长,由OC+CD 求出OD 的长,确定出B 的坐标,代入反比例解析式求出k 的值,利用反比例函数k 的几何意义求出三角形AOC 面积即可. 【详解】∵BD ⊥CD ,BD=2, ∴S △BCD =12BD•CD=2, 即CD=2. ∵C (2,0), 即OC=2,∴OD=OC+CD=2+2=1,∴B (1,2),代入反比例解析式得:k=10, 即y=10x, 则S △AOC =1. 故答案为1. 【点睛】本题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解答本题的关键. 15.1a ≥-且2a ≠ 【解析】分式方程去分母得:2(2x-a )=x-2, 去括号移项合并得:3x=2a-2, 解得:223a x -=,∵分式方程的解为非负数,∴223a-≥且22203a--≠,解得:a≥1 且a≠4 .16.【解析】试题解析:∵一个布袋里装有2个红球和5个白球,∴摸出一个球摸到红球的概率为:.考点:概率公式.17.y=x2+2x(答案不唯一).【解析】【分析】设此二次函数的解析式为y=ax(x+2),令a=1即可.【详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y=ax(x+2),把a=1代入,得y=x2+2x.故答案为y=x2+2x(答案不唯一).【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.18.60°【解析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(4)4;(2)35;(4)点E的坐标为(4,2)、(53,103)、(4,2).【解析】分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB 中运用三角函数求出BH 即可.(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图4(2),则有OH=2,BH=4,MN ⊥OC .设圆的半径为r ,则MN=MB=MD=r .在Rt △BHD 中运用勾股定理可求出r=2,从而得到点D 与点H 重合.易证△AFG ∽△ADB ,从而可求出AF 、GF 、OF 、OG 、OB 、AB 、BG .设OR=x ,利用BR 2=OB 2﹣OR 2=BG 2﹣RG 2可求出x ,进而可求出BR .在Rt △ORB 中运用三角函数就可解决问题.(4)由于△BDE 的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t 的方程就可解决问题.详解:(4)过点B 作BH ⊥OA 于H ,如图4(4),则有∠BHA=90°=∠COA ,∴OC ∥BH . ∵BC ∥OA ,∴四边形OCBH 是矩形,∴OC=BH ,BC=OH . ∵OA=6,BC=2,∴AH=0A ﹣OH=OA ﹣BC=6﹣2=4. ∵∠BHA=90°,∠BAO=45°, ∴tan ∠BAH=BHHA=4,∴BH=HA=4,∴OC=BH=4. 故答案为4.(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图4(2).由(4)得:OH=2,BH=4.∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN=MB=MD=r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM=DM ,∴CN=ON ,∴MN=12(BC+OD ),∴OD=2r ﹣2,∴DH=OD OH -=24r -.在Rt △BHD 中,∵∠BHD=90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r=2,∴DH=0,即点D 与点H 重合,∴BD ⊥0A ,BD=AD . ∵BD 是⊙M 的直径,∴∠BGD=90°,即DG ⊥AB ,∴BG=AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF=12AD=2,GF=12BD=2,∴OF=4,∴同理可得:,∴BG=12.设OR=x ,则x .∵BR ⊥OG ,∴∠BRO=∠BRG=90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x=5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR=5.在Rt △ORB 中,sin ∠BOR=BR OB35.故答案为35. (4)①当∠BDE=90°时,点D 在直线PE 上,如图2.此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t ,OP=t . 则有2t=2. 解得:t=4.则OP=CD=DB=4. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE=2,∴EP=2, ∴点E 的坐标为(4,2). ②当∠BED=90°时,如图4.∵∠DBE=OBC ,∠DEB=∠BCO=90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,,∴BE=5t . ∵PE ∥OC ,∴∠OEP=∠BOC .∵∠OPE=∠BCO=90°,∴△OPE ∽△BCO ,∴OEOB =OPBC ,2t ,∴t .∵解得:t=53,∴OP=53,,∴=103, ∴点E 的坐标为(51033,). ③当∠DBE=90°时,如图4.此时PE=PA=6﹣t ,OD=OC+BC ﹣t=6﹣t .则有OD=PE ,(6﹣t ),∴BE=BA ﹣t )t ﹣.∵PE ∥OD ,OD=PE ,∠DOP=90°,∴四边形ODEP 是矩形, ∴DE=OP=t ,DE ∥OP ,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=22,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.20.(1)见解析(2)相切【解析】【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【详解】(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键.21.(I)见解析;(II)见解析;(III)见解析.【解析】【分析】(I)根据两种方式的收费标准分别计算,填表即可;(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.【详解】(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,填表如下:(II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.22.(1)证明见解析(1)1或1 【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可; (1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.23.(1)y=x ﹣3(2)1 【解析】 【分析】(1)由已知先求出a ,得出点A 的坐标,再把A 的坐标代入一次函数y=kx-3求出k 的值即可求出一次函数的解析式;(2)易求点B 、C 的坐标分别为(n ,4n),(n ,n-3).设直线y=x-3与x 轴、y 轴分别交于点D 、E ,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC 是等腰直角三角形时只有AB=AC 一种情况.过点A 作AF ⊥BC 于F ,根据等腰三角形三线合一的性质得出BF=FC ,依此得出方程4n-1=1-(n-3),解方程即可. 【详解】解:(1)∵反比例y=4x的图象过点A (4,a ), ∴a=44=1, ∴A (4,1),把A (4,1)代入一次函数y=kx ﹣3,得4k ﹣3=1, ∴k=1,∴一次函数的解析式为y=x ﹣3;(2)由题意可知,点B 、C 的坐标分别为(n ,4n),(n ,n ﹣3). 设直线y=x ﹣3与x 轴、y 轴分别交于点D 、E ,如图,当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴4n﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.24.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.(1)1;(2)1 6【解析】【分析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为12和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为x个,根据题意得:21 212x= ++解得:x=1经检验:x=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况 ∴两次摸出都是红球的概率为: 21126=. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件. 26.(1)8m 2;(2)68m 2;(3) 40,8 【解析】 【分析】(1)根据中心对称图形性质和,OP AB P ,12OM AB =,12AE PM =可得42x AE -=,即可解当83x =时,4个全等直角三角形的面积;(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x 的代数式表示出菱形和四个全等直角三角形的面积,列出含有x 的解析式表示白色区域面积,并化成顶点式,根据04OP <<,06OQ <≤,1968II S ≤⨯,求出自变量的取值范围,再根据二次函数的增减性即可解答;(3)计算出x=2时各部分面积以及用含m 、n 的代数式表示出费用,因为m,n 均为正整数,解得m=40,n=8. 【详解】(1) ∵O 为长方形和菱形的对称中心,OP AB P ,∴142OM AB == ∵12AE PM =,OP PM OM +=,∴42x AE -= ∴当83x =时,41223AE -==,21124468223II S AM AE m =⨯⋅=⨯⨯⨯= (2)∵()2211442422I S OP OQ x x x m =⨯⋅=⨯⋅=,()214(246)2II S AM AE x m =⨯⋅=-∴I IIII I S AB BC S S =⋅--=-()22234672474.254x x x m ⎛⎫++=--+ ⎪⎝⎭,∵04OP <<,06OQ <≤,1968II S ≤⨯∴040261246968x x x ⎧⎪<<⎪<≤⎨⎪⎪-≤⨯⎩解不等式组得23x ≤≤,∵40a =-<,结合图像,当34x ≥时,III S 随x 的增大而减小. ∴当2x =时, III S 取得最大值为()2242627268m -⨯+⨯+= (3)∵当2x =时,S Ⅰ=4x 2=16 m 2,246II S x =-=12 m 2,III S =68m 2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n 均为正整数,解得m=40,n=8.【点睛】本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x 的二次函数解析式表示出白色区面积.27.(1)5;(2)1或﹣1.【解析】【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b )2+2(a+b )可得(a-b )2+2×4=17,据此进一步计算可得. 【详解】(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a 2﹣2ab+b 2+2a+2b=(a ﹣b )2+2(a+b ),∴(a ﹣b )2+2×4=17,∴(a ﹣b )2=9,则a ﹣b=1或﹣1.【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用.。
北京市西城区2019-2020学年中考第二次质量检测数学试题含解析
北京市西城区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A.B.C.D.2.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°3.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)4.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A.B.C.D.5.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3D .方差是0.346.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( ) A .﹣1B .±2C .2D .﹣27.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .338.下列图形中,是中心对称但不是轴对称图形的为( )A .B .C .D .9.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .6B .8C .10D .1210.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .98132C .82432D .8813211.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( ) A .2B .22C .23D .412.下列计算正确的是( ) A .3a 2﹣6a 2=﹣3 B .(﹣2a )•(﹣a )=2a 2 C .10a 10÷2a 2=5a 5 D .﹣(a 3)2=a 6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.14.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB =500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)15.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.16.抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________. 17.因式分解:x 2﹣10x+24=_____.18.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c 经过A 、B 、C 三点,已知点A (﹣3,0),B (0,3),C (1,0). (1)求此抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标.20.(6分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?21.(6分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.24.(10分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P 顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,»AQ长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,23BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.25.(10分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?26.(12分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.27.(12分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B 、∠CBD=∠EDB ,∠CBD=∠EBD ,∴∠EBD=∠EDB ,所以B 正确. D 、∵sin ∠ABE=,∵∠EBD=∠EDB ∴BE=DE ∴sin ∠ABE=.由已知不能得到△ABE ∽△CBD .故选C .点睛:本题可以采用排除法,证明A ,B ,D 都正确,所以不正确的就是C ,排除法也是数学中一种常用的解题方法. 2.C 【解析】 【分析】根据勾股定理求解. 【详解】设小方格的边长为1,得, 22222+= ,22222+=,AC=4,∵OC 2+AO 2=222)2)+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C . 【点睛】考点:勾股定理逆定理. 3.D 【解析】 【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到22AD OA '- 3,于是得到结论. 【详解】解:∵AD′=AD=4,AO=12AB=1,∴,∵C′D′=4,C′D′∥AB,∴C′(4,),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.4.C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.5.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解:A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.6.D【解析】【分析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.7.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.8.C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误. 故选C.考点:中心对称图形;轴对称图形.9.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=3E1D1=3×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(3)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(3)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD231D132,∴正六边形A2B2C2D2E2F2的边长32,同理可得正六边形A3B3C3D3E3F3的边长=32×2,则正六边形A11B11C11D11E11F11的边长=(32)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.11.B【解析】【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是12.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.12.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.270【解析】【分析】根据三角形的内角和与平角定义可求解.【详解】解析:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.14.1. 【解析】试题解析:在RtΔABC 中,sin34°=ACAB∴AC=AB×sin34°=500×0.56=1米. 故答案为1. 15.17 【解析】 【分析】根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题. 【详解】解:1-30%-50%=20%,∴2520%1030%1850%17⨯+⨯+⨯=. 【点睛】本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键. 16.()1,1m -- 【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标. 【详解】y=mx 2+2mx+1=m(x 2+2x)+1 =m(x 2+2x+1-1)+1 =m(x+1)2 +1-m ,所以抛物线的顶点坐标为(-1,1-m ), 故答案为(-1,1-m ).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键. 17.(x ﹣4)(x ﹣6) 【解析】 【分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可. 【详解】x 2﹣10x+24= x 2﹣10x+(-4)×(-6)=(x ﹣4)(x ﹣6) 【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.18.34【解析】 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】∵在0.·3、227这四个实数种,有理数有0.·3227这3个, ∴抽到有理数的概率为34,故答案为34.【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)y=﹣x 2﹣2x+1;(2)(﹣32,154)【解析】 【分析】(1)将A (-1,0),B (0,1),C (1,0)三点的坐标代入y=ax 2+bx+c ,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB 是等腰直角三角形,得出∠BAO=45°,再证明△PDE 是等腰直角三角形,则PE 越大,△PDE 的周长越大,再运用待定系数法求出直线AB 的解析式为y=x+1,则可设P 点的坐标为(x ,-x 2-2x+1),E 点的坐标为(x ,x+1),那么PE=(-x 2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE 最大,△PDE 的周长也最大.将x=-32代入-x 2-2x+1,进而得到P 点的坐标. 【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (﹣1,0),B (0,1),C (1,0),∴9a-3b+c=0{c=3a+b+c=0,解得a=-1{b=-2c=3,∴抛物线的解析式为y=﹣x 2﹣2x+1; (2)∵A (﹣1,0),B (0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154,即点P坐标为(﹣32,154)时,△PDE的周长最大.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.20.(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图21.(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.22.(1),;(2)点的坐标为;(3)点的坐标为和【解析】【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W 1=4400×120×(1﹣8%)﹣a=485760﹣a (元), 按照方案二所交房款为:W 2=4400×120×(1﹣10%)=475200(元), 当W 1>W 2时,即485760﹣a >475200, 解得:0<a <10560,当W 1<W 2时,即485760﹣a <475200, 解得:a >10560,∴当0<a <10560时,方案二合算;当a >10560时,方案一合算. 【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键. 24. (1)45,1227,62π;(2)满足条件的∠QQ 0D 为45°或135°;(3)BP 的长为275或2725;(4)7210≤CQ≤7. 【解析】 【分析】(1)由已知,可知△APQ 为等腰直角三角形,可得∠PAB ,再利用三角形相似可得PA ,及弧AQ 的长度; (2)分点Q 在BD 上方和下方的情况讨论求解即可.(3)分别讨论点Q 在BD 上方和下方的情况,利用切线性质,在由(2)用BP 0表示BP ,由射影定理计算即可; (4)由(2)可知,点Q 在过点Q o ,且与BD 夹角为45°的线段EF 上运动,有图形可知,当点Q 运动到点E 时,CQ 最长为7,再由垂线段最短,应用面积法求CQ 最小值. 【详解】解:(1)如图,过点P 做PE ⊥AD 于点E由已知,AP =PQ ,∠APQ =90° ∴△APQ 为等腰直角三角形 ∴∠PAQ =∠PAB =45°设PE =x ,则AE =x ,DE =4﹣x ∵PE ∥AB ∴△DEP ∽△DAB∴DEDA=PEAB∴4-x4=3x解得x=12 7∴PA=2PE=122∴弧AQ的长为14•2π•122=627π.故答案为45,1227,62π.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,23BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=23BP由(2)可知,PP0=23BP∴BP0=13BP∵AB=3,AD=4 ∴BD=5∵△ABP0∽△DBA ∴AB2=BP0•BD∴9=13BP×5∴BP=27 5同理,当点Q位于BD下方时,可求得BP=27 25故BP的长为275或2725(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF22CF+CE2217+2过点C做CH⊥EF于点H由面积法可知CH=FC ECEF•5272∴CQ的取值范围为:210≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.25.(1)200名;折线图见解析;(2)1210人.【解析】【分析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答.【详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×5060200+=1210(人). 答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.26. (1) 2. (2)△ABC ∽△DEF.【解析】【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+=o o o ,2222822BC +==;故答案为 2.(2)△ABC ∽△DEF.证明:∵在4×4的正方形方格中, 135,9045135ABC DEF ∠=∠=+=o o o o ,∴∠ABC=∠DEF. ∵2,22,2,2,AB BC FE DE ==== ∴222, 2.22AB BC DE FE ==== ∴△ABC ∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键. 27.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则。
北京市西城区2019-2020学年中考数学第三次调研试卷含解析
北京市西城区2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(p a)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是()A.B.C.D.2.下列计算结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x3)23.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.44.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3C.平均数是3 D.方差是0.345.下列运算正确的是()A.(a2)3 =a5B.23a a ag C.(3ab)2=6a2b2D.a6÷a3 =a26.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.7.计算3a2-a2的结果是()A.4a2B.3a2C.2a2D.38.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x9.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个11.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A.12B.25C.35D.71812.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.14.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.15.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)16.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.17.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________cm.18.若反比例函数2kyx-=的图象位于第二、四象限,则k的取值范围是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP 的值.20.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.21.(6分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.22.(8分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 43,求»QD的长(结果保留);若△APO的外心在扇形COD的内部,求OC的取值范围.23.(8分)计算:﹣2212+|1﹣4sin60°|24.(10分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)45 25标价(元)60 30(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?25.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.27.(12分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】∵pv=k(k为常数,k>0)∴p=kv(p>0,v>0,k>0),故选C.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.2.C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.3.B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.4.B 【解析】 【分析】A 、根据众数的定义找出出现次数最多的数;B 、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C 、根据加权平均数公式代入计算可得;D 、根据方差公式计算即可. 【详解】解: A 、由统计表得:众数为3,不是8,所以此选项不正确;B 、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C 、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D 、S 2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确; 故选B . 【点睛】本题考查方差;加权平均数;中位数;众数. 5.B 【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法. 解析: ()326a a = ,故A 选项错误; a 3·a = a 4故B 选项正确;(3ab)2 = 9a 2b 2故C 选项错误; a 6÷a 3 = a 3故D 选项错误. 故选B. 6.B 【解析】 【分析】根据俯视图是从上往下看的图形解答即可. 【详解】从上往下看到的图形是:.故选B.本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 7.C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2-a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.8.C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.9.D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.10.D【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0, 对称轴为x=2ba-<1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0, 当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac ,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0. 由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8, 上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点. 11.A 【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个; ②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率. 详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个, 概率为451=902. 故选A .点睛:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn. 12.B 【解析】试题分析:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、a 的绝对值>2,故本选项正确,不符合题意;D 、2a <0,故本选项正确,不符合题意. 故选B .考点:实数与数轴.二、填空题:(本大题共6个小题,每小题4分,共24分.)13..【解析】试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=,即AE=AF=,因此可求得=×AF×AB=××3=.考点:翻折变换(折叠问题)14.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,+=,∴527∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.15.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,∵1<x1<1,3<x1<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y1.故答案为<.16.1.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案为1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.17.310 5【解析】【分析】根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得.【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB 2=AC 2+BC 2,即()22263x x =+, 解得3105x = 故答案为:3105. 【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键.18.k>1【解析】【分析】根据图象在第二、四象限,利用反比例函数的性质可以确定1-k 的符号,即可解答.【详解】∵反比例函数y =2k x-的图象在第二、四象限, ∴1-k <0,∴k >1.故答案为:k >1.【点睛】此题主要考查了反比例函数的性质,熟练记忆当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)PD 是⊙O 的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP ,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD 和∠D 的度数,进而可得∠OPD=90°,从而证明PD 是⊙O 的切线;(2)连结BC ,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC 长,再证明△CAE ∽△CPA ,进而可得,然后可得CE•CP 的值. 试题解析:(1)如图,PD 是⊙O 的切线.证明如下:连结OP ,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP ,∴∠OAP=∠OPA=30°,∵PA=PD ,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD 是⊙O 的切线.(2)连结BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵C 为弧AB 的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C ,∠CAB=∠APC ,∴△CAE ∽△CPA ,∴,∴CP•CE=CA 2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.20.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键. 21.(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【解析】试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.22.(1)详见解析;(2)143;(3)4<OC<1.【解析】【分析】(1)连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB=⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=433QB OB ==, ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=, (3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点,∵OA=1,∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC ,∴OC 的取值范围为4<OC <1.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL 证出Rt △APO ≌Rt △BQO ;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.23.-1【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【详解】解:原式=4412--⨯-=41--=﹣1.【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.24.(1)LED 灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.【解析】【分析】1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个,利用该商场购进了LED 灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED 灯泡a 个,则购进普通白炽灯泡(120-a )个,这批灯泡的总利润为W 元,利用利润的意义得到W=(60-45)a+(30-25)(120-a )=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a 的范围,然后根据一次函数的性质解决问题.【详解】(1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个.根据题意,得300(6045)(0.93025)3200x y x y +=⎧⎨-+⨯-=⎩解得200100x y =⎧⎨=⎩答:该商场购进LED 灯泡与普通白炽灯泡的数量分别为200个和100个.(2)设该商场再次购进LED 灯泡a 个,这批灯泡的总利润为W 元.则购进普通白炽灯泡(120﹣a )个.根据题意得W=(60﹣45)a+(30﹣25)(120﹣a )=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.【点睛】本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.25.(1)见解析(2)见解析【解析】【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形26.(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q;(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,(舍弃),∴m=5或5∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.27.(1)见解析;(2)△ADF的面积是108 25.【解析】试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC =810BC OMAB OA==,求出OM,根据cos∠BAC=35AC AMAB OA==,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.试题解析:(1)证明:连接OD,CD,∵AC是⊙O的直径,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中DE CEEO EOOC OD⎧⎪⎨⎪⎩===,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD过圆心O,∴ED为⊙O的切线.(2)过O作OM⊥AB于M,过F作FN⊥AB于N,则OM∥FN,∠OMN=90°,∵OE∥AB,∴四边形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴OC OE AC AB=,∴356AB =,∴AB=10,在Rt△BCA中,由勾股定理得:22106+=8,sin∠BAC=810 BC OMAB OA==,即435 OM=,OM=125=FN,∵cos∠BAC=35 AC AMAB OA==,∴AM=9 5由垂径定理得:AD=2AM=185,即△ADF的面积是12AD×FN=12×185×125=10825.答:△ADF的面积是108 25.【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.。
北京市三帆中学2020届中考基础练习数学试卷
北京市三帆中学2020 届中考基础练习数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.小超同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关结果的条数是1650000,这个数用科学记数法表示为( )A .410165⨯B .51065.1⨯C .61065.1⨯D .710165.0⨯2.下面的几何体中,主视图为三角形的是( ) A . B .C .D . 3.若正多边形的一个内角是 140,则该正多边形的边数是( )A . 6B . 7C .9D .124.如果0222=-+a a ,那么代数式2)4(2-⋅-a a a a 1的值是( ) A .2 B .1 C .2- D .1-5.如图,用三角板作ABC ∆ 的边AB 上的高线,下列三角板的摆放位置正确的是( )A .B .C .D .6.实数a 、b 、c 、d 在数轴上对应点的位置如图所示,正确的结论有( )A .b a >B .0>bcC .b c >D .0>+d b7.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为( )A . 43B .21 C .41 D .1 8.小明和小亮组成团队参加某科学比赛. 该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满 60,则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利. 为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是( ) ①小亮测试成绩的平均数比小明的高②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理A .①③B .①④C .②③D .②④第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)9.分解因式:x x 3692- .10.如图,已知四边形ABCD 平行四边形,通过测量、计算得四边形 ABCD 的面积约为 2cm (结果保留一位小数)11.请写出一个二次函数的解析式,满足当1<x 时,y 随x 的增大而增大,当 1≥x 时, y 随x 的增大而减小: .12.已知第一组数据:12,14,16,18的方差为21S ;第二组数据:32,34,36,38的方差为22S ;第三组数据:2020,2019,2018,2017的方差为 23S ,则 21S ,22S ,23S 的大小关系是21S 22S 23S (填“>”,“=”或“<”)13.下图是从一个正方形中剪下一个小正方形后,拼成一个矩形的过程.根据下图,写出一个正确的等式: .14.如图是小明设计的用激光笔测量城墙高度的示意图,在点P 处水平放置一面平面镜,光线从点A 出发经平面镜反射后刚好射到城墙 CD 的顶端C 处,已知BD AB ⊥,BD CD ⊥,2.1=AB 米,8.1=BP 米,12=PD 米, 那么该城墙高度=CD 米.15.如图所示的网格是正方形网格,则∠-∠PCD PAB (点 A ,B ,C ,D ,P 是网格线交点).16.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是由OCD ∆经过两次图形的变化(平移、轴对称、旋转)得到的,这个变化过程可以是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17. 计算: 30tan 313)3()41(1--+---π18. 求不等式组⎪⎩⎪⎨⎧->+-≥122123x x x x 的整数解 19. 已知:ABC ∠求作:ABC ∠的平分线下面是小红设计的尺规作图过程作法:如图,(1)在平面内取点P (与点B 不重合)(2)以P 为圆心,PB 为半径作P Θ,与BA 、BC 边分别交于F 、E ,连接EF(3)作EF 的垂直平分线交P Θ于D (点D 在ABC ∠内部)(4)作射线BD所射线BD 即为的ABC ∠平分线根据小红设计的尺规作图过程(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:PF PE =∴点P 在EF 的垂直平分线上,即EF PD ⊥∴弧=DE 弧DF ( )(填推理的依据)FBD EBD ∠=∠∴( )(填推理的依据)20. 如图,已知BCA BAC ∠=∠,90=∠=∠BCD BAE ,BD BE =,求证:D E ∠=∠21.已知关于x 的一元二次方程0)1(2=+++a x a x(1)求证:此方程总有两个实数根(2)如果此方程有两个不相等的实数根,写出一个满足条件的a 的值,并求此时方程的根22.如图,四边形ABCD 是矩形,点E 在BC 边上,点F 在BC 延长线上,且BAE CDF ∠=∠.(1)求证:四边形AEFD 是平行四边形 ;(2)若3=DF ,4=DE ,5=AD ,求CD 的长度23.如图,AB 是O Θ的直径,弦AB CD ⊥于点E ,在O Θ的切线CM 上取一点P ,使得COA CPB ∠=∠.(1)求证:PB 是O Θ的切线;(2)若 34=AB ,6=CD ,求PB 的长.24.在平面直角坐标系 xOy 中,直线33+=x y 与x 轴,y 轴分别交于点 A ,B ,抛物线 a bx ax y 32-+=经过点 A ,将点B 向右平移4个单位长度,得到点C .(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围北京市三帆中学2020 届中考考前基础练习数学试卷2020.7参考答案和评分标准一、选择题1-5:CBCBC 6-8:DCD二、填空题 9.)2)(2(9-+x x x10.1.3(以4A 版面测量的)11.2)1(--=x y12.=,>13.)14(3)1()4(22+++=+-+a a a a14.815.4516.将OCD ∆向上平移3个单位长度,再沿轴翻折得到AOB ∆(答案不唯一) 三、解答题17.解:原式23331314=⨯--+-= 18.解:由①得:1≥x由②得:1<x∴不等式组的解集为:11<≤-x∴整数解为:1-,019.解:补全作图过程如图所示:垂直于弦的直径平分弦并且平分弦所对的两条弧等弧所对的圆周角相等20.证明:BCA BAC ∠=∠BC BA =∴在BAE Rt ∆和CBD Rt ∆中⎩⎨⎧==BC BA BD BE )(HL BCD Rt BAE Rt ∆≅∆∴D E ∠=∠∴21.解:(1)22)1(4)1(-=-+=∆a a a 0)1(2≥-a∴此方程总有两个实数根(2) 此方程有两个不相等的实数根 0)1(2>-=∆∴a即当1≠a 时,符合题意当0=a 时,方程为:02=+x x 01=∴x ,12-=x(答案不唯一)22.解:(1)证明: 矩形ABCDAD BC //∴90=∠=∠DCB B90=∠+∠∴BEA BAE90=∠+∠F CDFBAE CDF ∠=∠F BEA ∠=∠∴FD AF //∴∴四边形AEFD 是平行四边形(2) 四边形AEFD3==∴FD AE∴在AED ∆中,222AD ED AE =+ AED ∆∴是直角三角形AD EF //EDA FED ∠=∠∴DEA Rt ECD Rt ∆≅∆∴ADED EA CD =∴ 512=∴CD 23.解:(1)证明:CM 是O Θ的切线 CP OC ⊥∴90=∠∴OCP180=∠+∠∴COA COBCPB COA ∠=∠∴180=∠+∠∴CPB COB∴在四边形COBP 中, 180=∠+∠OCP OBP90=∠∴OBPPB OB ⊥∴PB ∴是O Θ的切线(2)连接CBCD AB ⊥321==∴CD CE 23sin ==∠∴CO CE COA P COA ∠==∠∴ 60OB OC =OCB OBC ∠=∠∴3021=∠=∠∴COA CBO 6=∴CB , 60=∠PBCPC 、PB 是的切线PB PC =∴PCB ∆∴是等边三角形6==∴CB PB24.解:(1))0,1(-A ,)3,0(B点C 是由点B 向右平移4个单位长度得到的 )3,4(C ∴(2)将)0,1(-A 代入中a bx ax y 32-+= 得到a b 2-= ∴抛物线为a x a a ax ax y 4)1(3222--=--= ∴抛物线的对称轴为1=x(3)当0>a 时抛物线经过点C 时,与线段BC 有一个公共点 此53=a 时 ∴当53≥a 时符合题意 当0<a 时抛物线顶点在线段BC 上则与线段BC 只有一个公共点此时43-=a ∴综上所述,53≥a 或43-=a。
北京市西城区2019-2020学年第四次中考模拟考试数学试卷含解析
北京市西城区2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.2.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.1216B.172C.136D.1123.如图,由四个正方体组成的几何体的左视图是()A.B.C.D.4.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8 9 10户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是95.在﹣3,0,46这四个数中,最大的数是()A.﹣3 B.0 C.4 D66.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大7.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是()A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为1000 3D.普通列车行驶t 小时后,动车到达终点B地,此时普通列车还需行驶20003千米到达A地8.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形9.根据下表中的二次函数2y ax bx c=++的自变量x与函数y的对应值,可判断该二次函数的图象与x轴().x…1-012…y…1-74-2-74-…A.只有一个交点B.有两个交点,且它们分别在y轴两侧C.有两个交点,且它们均在y轴同侧D.无交点10.在-3,12,0,-2这四个数中,最小的数是( )A.3B.12C.0 D.-211.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k 的取值范围是()A.B.C.D.12.若分式11a-有意义,则a的取值范围是()A.a≠1B.a≠0C.a≠1且a≠0D.一切实数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到1cm2).14.已知关于x的一元二次方程20x mx n++=的两个实数根分别是x1=-2,x2=4,则+m n的值为________.15.抛物线y=﹣x2+4x﹣1的顶点坐标为.16.不等式组2x+1x{4x3x+2>≤的解集是▲ .17.如图,在平面直角坐标系中,函数y=x和y=﹣12x的图象分别为直线l1,l2,过点A1(1,﹣12)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.18.圆柱的底面半径为1,母线长为2,则它的侧面积为_____.(结果保留π)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:22111xx x x⎛⎫-+⎪--⎝⎭,其中x满足2410x x-+=.20.(6分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?21.(6分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE 面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE 上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.22.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.23.(8分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.24.(10分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC =36°,求∠CAO度数.25.(10分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=3,AD=1,求DB的长.26.(12分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.27.(12分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.58B.38C.1116D.12参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据中心对称图形,轴对称图形的定义进行判断.【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.C【解析】【分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为1 36,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形. 3.B 【解析】从左边看可以看到两个小正方形摞在一起,故选B. 4.A 【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],分别进行计算可得答案. 详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9, 众数为9, 方差:S 2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4, 故选A .点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法. 5.C 【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,1这四个数中,﹣3<0<1,最大的数是1.故选C . 6.A 【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188,方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187,方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593∵188>187,683>593,∴平均数变小,方差变小, 故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.C 【解析】 【分析】可以用物理的思维来解决这道题. 【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A 选项正确;y=0时两车相遇,x=3,所以B 选项正确;设动车速度为V 1,普车速度为V 2,则3(V 1+ V 2)=1000,所以C 选项错误;D 选项正确. 【点睛】理解转折点的含义是解决这一类题的关键. 8.D 【解析】 【详解】根据全等三角形的性质可知A ,B ,C 命题均正确,故选项均错误; D.错误,全等三角也可能是直角三角,故选项正确. 故选D. 【点睛】本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等. 9.B 【解析】 【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上 则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧 故选B. 【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成. 10.D【解析】【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可. 【详解】在﹣3,12,0,﹣1这四个数中,﹣1<﹣3<0<12,故最小的数为:﹣1.故选D.【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.11.C【解析】【分析】【详解】解:把点(0,2)(a,0)代入,得b=2.则a=,∵,∴,解得:k≥2.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.12.A【解析】分析:根据分母不为零,可得答案详解:由题意,得10a-≠,解得 1.a≠故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.174cm1.【解析】直径为10cm的玻璃球,玻璃球半径OB=5,所以AO=18−5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=6013 AB BOAO⨯=,圆锥底面半径=BD=6013,圆锥底面周长=1×6013π,侧面面积=12×1×6013π×11=72013π.点睛: 利用勾股定理可求得圆锥的母线长,进而过B作出垂线,得到圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷1.本题是一道综合题,考查的知识点较多,利用了勾股定理,圆的周长公式、圆的面积公式和扇形的面积公式求解.把实际问题转化为数学问题求解是本题的解题关键.14.-10【解析】【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,求出即可.【详解】∵关于x的一元二次方程20x mx n++=的两个实数根分别为x1=-2,x2=4,∴−2+4=−m,−2×4=n,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键15.(2,3)【解析】试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).考点:二次函数的性质16.﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.17.1【解析】【分析】根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.【详解】解:由题意可得,A1(1,-12),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴点A2018的横坐标为:1,故答案为1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.18.4π【解析】【分析】根据圆柱的侧面积公式,计算即可.【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2πrl=2π×1×2=4π.故答案为:4π.【点睛】题考查了圆柱的侧面积公式应用问题,是基础题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.21xx+,1.【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将2410x x -+=变形为214x x +=,整体代入计算即可. 【详解】解:原式2(1)11(1)(1)x x x x x x x x ⎡⎤-=-+⎢⎥---⎣⎦2211(1)x x x x x x -+=--- 321(1)(1)x x x x x x x -+=--- 321(1)x x x x x -+-=-2(1)(1)(1)x x x x x -+-=-21x x+= ∵2410x x -+=, ∴214x x +=, ∴原式44x x== 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 20.(1)50,20;(2)12,23;见图;(3)大约有720人是A 型血. 【解析】【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B 型的人数除以抽取的总人数即可求得m 的值;(2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20, 故答案为50,20;(2)O 型献血的人数为46%×50=23(人), A 型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=1265025=, 3000×625=720, 估计这3000人中大约有720人是A 型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.21.(1)y=﹣x ﹣1;(1)△ACE 的面积最大值为278;(3)M (1,﹣1),N (12,0);(4)满足条件的F点坐标为F 1(1,0),F 1(﹣3,0),F 3(,0),F 4(4,0). 【解析】 【分析】(1)令抛物线y=x 1-1x-3=0,求出x 的值,即可求A ,B 两点的坐标,根据两点式求出直线AC 的函数表达式;(1)设P 点的横坐标为x (-1≤x≤1),求出P 、E 的坐标,用x 表示出线段PE 的长,求出PE 的最大值,进而求出△ACE 的面积最大值;(3)根据D 点关于PE 的对称点为点C (1,-3),点Q (0,-1)点关于x 轴的对称点为M (0,1),则四边形DMNQ 的周长最小,求出直线CM 的解析式为y=-1x+1,进而求出最小值和点M ,N 的坐标; (4)结合图形,分两类进行讨论,①CF 平行x 轴,如图1,此时可以求出F 点两个坐标;②CF 不平行x 轴,如题中的图1,此时可以求出F 点的两个坐标. 【详解】解:(1)令y=0,解得11x =-或x 1=3, ∴A (﹣1,0),B (3,0);将C 点的横坐标x=1代入y=x 1﹣1x ﹣3得3y =-, ∴C (1,-3),∴直线AC 的函数解析式是1y x =--,(1)设P 点的横坐标为x (﹣1≤x≤1),则P 、E 的坐标分别为:P (x ,﹣x ﹣1),E (x ,x 1﹣1x ﹣3),∵P 点在E 点的上方,()()221232PE x x x x x =-----=-++,∴当12x =时,PE 的最大值9,4=△ACE 的面积最大值()1327[21]228PE PE =--==,(3)D 点关于PE 的对称点为点C (1,﹣3),点Q (0,﹣1)点关于x 轴的对称点为K (0,1), 连接CK 交直线PE 于M 点,交x 轴于N 点,可求直线CK 的解析式为21y x =-+,此时四边形DMNQ 的周长最小,最小值252CM QD =+=+,求得M (1,﹣1),102N ⎛⎫ ⎪⎝⎭,. (4)存在如图1,若AF ∥CH ,此时的D 和H 点重合,CD=1,则AF=1,于是可得F 1(1,0),F 1(﹣3,0),如图1,根据点A 和F 的坐标中点和点C 和点H 的坐标中点相同,再根据|HA|=|CF|,求出()()434747F F +,,,. 综上所述,满足条件的F 点坐标为F 1(1,0),F 1(﹣3,0),()347F ,,()447F ,. 【点睛】属于二次函数综合题,考查二次函数与x 轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大. 22.(1)见解析;(2)AC =1. 【解析】 【分析】(1)要证明DB 为⊙O 的切线,只要证明∠OBD =90即可.(2)根据已知及直角三角形的性质可以得到PD =2BD =2DA =2,再利用等角对等边可以得到AC =AP ,这样求得AP 的值就得出了AC 的长. 【详解】(1)证明:连接OD ; ∵PA 为⊙O 切线, ∴∠OAD =90°; 在△OAD 和△OBD 中,0A 0B DA DB DO DO =⎧⎪=⎨⎪=⎩,∴△OAD ≌△OBD , ∴∠OBD =∠OAD =90°, ∴OB ⊥BD ∴DB 为⊙O 的切线 (2)解:在Rt △OAP 中; ∵PB =OB =OA , ∴OP =2OA , ∴∠OPA =10°, ∴∠POA =60°=2∠C , ∴PD =2BD =2DA =2, ∴∠OPA =∠C =10°, ∴AC =AP =1. 【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.23.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:(3)∵140>0,∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000,∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.24.(1)证明见解析(2)18°【解析】【分析】(1)根据HL证明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.【详解】(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是Rt△,在Rt △ABC 和Rt △BAD 中,AD BCAB BA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL ); (2)∵Rt △ABC ≌Rt △BAD , ∴∠ABC =∠BAD =36°, ∵∠C =90°, ∴∠BAC =54°,∴∠CAO =∠CAB ﹣∠BAD =18°. 【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”. 25.BD= 2. 【解析】 【详解】试题分析:根据∠ACD=∠ABC ,∠A 是公共角,得出△ACD ∽△ABC ,再利用相似三角形的性质得出AB 的长,从而求出DB 的长. 试题解析: ∵∠ACD=∠ABC , 又∵∠A=∠A , ∴△ABC ∽△ACD , ∴AD ACAC AB=,∵AD=1,AB=, ∴AB=3,∴BD= AB ﹣AD=3﹣1=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB 的长是解题关键.26.(1)7000辆;(2)a 的值是1. 【解析】 【分析】(1)设一月份该公司投入市场的自行车x 辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣14a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵1%20%4a<,解得a<80,∴a=1,答:a的值是1.【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键. 27.A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:105 168=,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即m Pn =.。
2019 年北京市西城区三帆中学初三数学期中考试
2019年北京市西城区三帆中学初三数学期中考试分层班级班级姓名学号成绩注意:(1)时间120分钟,满分100分;(2)请将答案填写在答题纸上,在试卷上作答不得分。
一、选择题(本题共16分,每小题2分)1.抛物线y=(x-1)2+3的顶点坐标为A.(1,3)B.(-1,3)C.(-1,-3)D.(3,1)2.如图,⊙O是△ABC的外接圆,∠BOC= 100°,则∠A的大小为A.30°B.50°C.80°D.100°3.下列图案中既是轴对称图形又是中心对称图形的是4.如图,四边形ABCD是⊙O内接四边形,E为CD延长线上一点,若∠ADE=120°,则∠B等于A.130°B.120°C.80°D.60°5.在平面直角坐标系xOy中,将抛物线y=2x2先向右平移3个单位长度,再向下平移4个单位长度后所得到的抛物线表达式为A.y=2(x+3)2−4B.y=2(x+3)2+4B.y=2(x−3)2−4 D.y=2(x−3)2+46.已知二次函数y=x2−2x,若点A(−1,y1),B(2,y2),是它图象上的两点,则y1与y2的大小关系为A.y1>y2B.y1=y2C.y1<y2D.不能确定7.如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点0为圆心作圆,若点A,B,C分别在⊙D外,⊙o内,⊙D上,则原点0的位置应该在()A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B 与点C 之间靠近C 点D.点B 与点C 之间靠近B 点8.已知一次函数y 1=kx +m(k ≠0)和二次函数y 2=ax 2+bx +c(a ≠0)部分自变量和对应的函数值如下表:当y 2>y 1时,自变量x A.−1<x <2B.4<x <5C.x <−1或x >4D.x <−1或x >5二、填空题(本题共16分,每小题2分) 9.点P (2,1)关于原点对称的点的坐标为 。
北京市西城区2019-2020学年中考数学三月模拟试卷含解析
北京市西城区2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在同一平面直角坐标系中,函数y=x+k 与k y x=(k 为常数,k≠0)的图象大致是( ) A . B .C .D .2.如图,△ABC 中,AB=AC ,BC=12cm ,点D 在AC 上,DC=4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E 、F 分别落在边AB 、BC 上,则△EBF 的周长是( )cm .A .7B .11C .13D .163.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒4.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C ,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )A .50°B .60°C .70°D .80° 5.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.下列各数:π,sin30°,﹣3 ,9其中无理数的个数是( )A .1个B .2个C .3个D .4个7.在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,则下列结论正确的是( )A .a <0,b <0,c >0B .﹣2b a=1 C .a+b+c <0D .关于x 的方程ax 2+bx+c=﹣1有两个不相等的实数根8.下列计算正确的是A .224a a a +=B .624a a a ÷=C .352()a a =D .222)=a b a b --(9.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o10.如图所示:有理数,a b 在数轴上的对应点,则下列式子中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<11.二次函数y =ax 2+c 的图象如图所示,正比例函数y =ax 与反比例函数y =c x在同一坐标系中的图象可能是( )A.B.C.D.12.已知二次函数y=x2 + bx +c 的图象与x轴相交于A、B两点,其顶点为P,若S△APB=1,则b与c满足的关系是()A.b2 -4c +1=0 B.b2 -4c -1=0 C.b2 -4c +4 =0 D.b2 -4c -4=0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组2332xx-<⎧⎨+<⎩的解集是_____________.14.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为______.15.分解因式:a3﹣a=_____.16.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.17.已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.18.已知b是a,c的比例中项,若a=4,c=16,则b=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE 于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.20.(6分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.21.(6分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 、B 和D (4,).(1)求抛物线的表达式.(2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点B 运动,同时点Q 由点B 出发,沿BC 边以1cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ 2(cm 2).①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S 取时,在抛物线上是否存在点R,使得以点P 、B 、Q 、R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M 到D 、A 的距离之差最大,求出点M 的坐标.22.(8分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值; (3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.23.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC 是可以伸缩的起重臂,其转动点A 离地面BD 的高度AH 为3.4m .当起重臂AC 长度为9m ,张角∠HAC 为118°时,求操作平台C 离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A 、B 、C 、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C 厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D 厂家的零件为 件,扇形统计图中D 厂家对应的圆心角为 ;抽查C 厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A 、B 、C 、D 四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.25.(10分)如图,△ABC 内接与⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于AC 点E ,交PC 于点F ,连接AF(1)判断AF 与⊙O 的位置关系并说明理由;(2)若⊙O 的半径为4,AF=3,求AC 的长.26.(12分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是,众数是;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?27.(12分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C (4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.2.C【解析】【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【详解】∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.【点睛】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.3.D【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.4.B【解析】试题分析:∵在三角形ABC 中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB ﹣∠B=40°.由旋转的性质可知:BC=B′C ,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B .考点:旋转的性质.5.C【解析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限. 答案为C考点:一次函数的图像6.B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【详解】sin30°=12,故无理数有π, 故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.D【解析】试题分析:根据图像可得:a <0,b >0,c <0,则A 错误;12b a->,则B 错误;当x=1时,y=0,即a+b+c=0,则C 错误;当y=-1时有两个交点,即2ax bx c 1++=-有两个不相等的实数根,则正确,故选D .8.B试题分析:根据合并同类项的法则,可知2222a a a +=,故A 不正确;根据同底数幂的除法,知624a a a ÷=,故B 正确;根据幂的乘方,知()326a a =,故C 不正确;根据完全平方公式,知()2222ab a b a b -=-+,故D 不正确.故选B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.9.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 10.C【解析】【分析】从数轴上可以看出a 、b 都是负数,且a <b ,由此逐项分析得出结论即可.【详解】由数轴可知:a<b<0,A 、两数相乘,同号得正,ab >0是正确的;B 、同号相加,取相同的符号,a+b <0是正确的;C 、a <b <0,1a b>,故选项是错误的; D 、a-b=a+(-b )取a 的符号,a-b <0是正确的.故选:C .【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.11.C【解析】【分析】根据二次函数图像位置确定a <0,c >0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a <0,c >0,∴正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.12.D【解析】【分析】 抛物线的顶点坐标为P (−2b ,244c b -),设A 、B 两点的坐标为A (1x ,0)、B (2x ,0)则AB =12x x -,根据根与系数的关系把AB 的长度用b 、c 表示,而S △APB =1,然后根据三角形的面积公式就可以建立关于b 、c 的等式.【详解】解:∵1212,x x b x x c +=-=,∴AB =12x x -= ∵若S △APB =1 ∴S △APB =12×AB×244c b - =1, 214124c b -∴-=∴−12×2414b c -=,∴(248b ac -=,s ,则38s =,故s =2,2,∴2440b c --=.故选D .【点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x <-1【解析】2332x x -<⎧⎨+<⎩①② 解不等式①得:x<5,解不等式②得:x<-1所以不等式组的解集是x<-1.故答案是:x<-1.14.2【解析】【详解】解:x 2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.15.a (a+1)(a ﹣1)【解析】解:a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1).故答案为:a (a+1)(a ﹣1).16.0或1【解析】分析:需要分类讨论:①若m=0,则函数y=2x+1是一次函数,与x 轴只有一个交点;②若m≠0,则函数y=mx 2+2x+1是二次函数,根据题意得:△=4﹣4m=0,解得:m=1。
2019届北京市西城区九年级下学期第一次中考模拟考试数学试卷【含答案及解析】
2019届北京市西城区九年级下学期第一次中考模拟考试数学试卷【含答案及解析】2019届北京市西城区九年级下学期第一次中考模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四总分得分一、选择题1. 64的立方根是()A. ±8B. ±4C. 8D. 42. 2014年11月北京主办了第二十二届APEC(亚太经合组织)领导人会议,“亚太经合组织”联通太平洋两岸,从地理概念上逐渐变成了一个拥有280000000人口的经济合作体,把“280000000”用科学记数法表示正确的是()A. B. C. D.3. 如右图是由四个相同的小正方体组成的立体图形,它的俯视图为()4. 一名射击爱好者5次射击的中靶环数依次为:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.95. 下列图形中,是中心对称图形的是()6. 在函数中,自变量x的取值范围是()A. B. C. D.7. 一个不透明的口袋中,装有4个红球,3个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为()A. B. C. D.8. 如图,⊙的半径为5,为⊙的弦,⊥于点.若,则弦的长为()A.4 B.6 C.8 D.109. 若正多边形的一个外角为60º,则这个正多边形的中心角的度数是()A.30° B.60° C.90° D.120°10. 如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点是点P关于BD的对称点,交BD于点M,若BM=x,的面积为y,则y与x之间的函数图象大致为()二、填空题11. 若则.12. 质量检测部门对甲、乙两工厂生产的同样产品抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.22.由此可以推断出生产此类产品,质量比较稳定的是厂.13. 在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得m,m,延长AO,BO分别到D,C两点,使m,m,又测得m,则河塘宽AB= m.14. 写出一个当自变量时,y随x的增大而增大的反比例函数表达式_____.15. 居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为元.16. 规定:在平面直角坐标系xOy中,“把某一图形先沿x轴翻折,再沿y轴翻折”为一次变化.如图,已知正方形ABCD,顶点A(1,3),C(3,1).若正方形ABCD经过一次上述变化,则点A变化后的坐标为,如此这样,对正方形ABCD连续做2015次这样的变化,则点D变化后的坐标为.三、计算题17. 计算:.18. 解不等式组:四、解答题19. 如图,C,D为线段AB上两点,且AC=BD,AE∥BF.AE=BF.求证:∠E=∠F.20. 已知,求代数式的值.21. 已知关于的一元二次方程有两个不相等的实数根.(1)、求k的取值范围;(2)、若k为小于2的整数,且方程的根都是整数,求k的值.22. 列方程或方程组解应用题:在练习100米跑步时,小丽为了帮助好朋友小云提高成绩,让小云先跑7.5秒后自己再跑,结果两人同时到达终点,这次练习中小丽的平均速度是小云的1.6倍,求小云这次练习中跑100米所用的时间.23. 如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D 到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)、画出△DEC平移后的三角形;(2)、若BC=,BD=6,CE=3,求AG的长.24. 为了提倡“绿色”出行,顺义区启动了公租自行车项目,为了解我区居民公租自行车的使用情况,某校的社团把使用情况分为A(经常租用)、B(偶尔租用)、C(不使用)三种情况.先后在2015年1月底和3月底做了两次调查,并根据调查结果绘制成了如下两幅不完整的统计图:根据以上信息解答下列问题:(1)在扇形统计图中,A(经常租用)所占的百分比是;(2)求两次共抽样调查了多少人;并补全折线统计图;(3)根据调查的结果,请你谈谈从2015年1月底到2015年3月底,我区居民使用公租自行车的变化情况.25. 如图,是⊙的直径,是⊙上一点,是的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD.(1)求证:AF⊥EF;(2)若,AB=5,求线段BE的长.26. 阅读、操作与探究:小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:如图1,Rt△ABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为.请仿照小亮的方法解决下列问题:(1)如图2,已知Rt△FGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;(2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为.27. 在平面直角坐标系xOy中,抛物线与y轴交于C点,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为-1.(1)求a的值;(2)设抛物线的顶点P关于原点的对称点为,求点的坐标;(3)将抛物线在A,B两点之间的部分(包括A, B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线无交点,求m 的取值范围.28. 如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.(1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长;(2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;(3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.29. 已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A 在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;②抛物线与的“完美三角形”的斜边长的数量关系是;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
北京市西城区2019-2020学年中考数学教学质量调研试卷含解析
北京市西城区2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =-B .32824x x =+C .2232626x x +-=+D .2232626x x +-=- 2.a 的倒数是3,则a 的值是( )A .13B .﹣13C .3D .﹣33.如图是一个几何体的主视图和俯视图,则这个几何体是( )A .三棱柱B .正方体C .三棱锥D .长方体4.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形5.下列图形中,是轴对称图形的是( )A .B .C .D .6.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .2547.如图所示的几何体的俯视图是( )A .B .C .D .8.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( )A .8815 2.5x x +=B .8184 2.5x x +=C .88152.5x x =+D .8812.54x x =+ 9.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--10.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=9011.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A .0.96×107B .9.6×106C .96×105D .9.6×10212.-2的绝对值是()A .2B .-2C .±2D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt AOB ∆中,42OA OB ==.O e 的半径为2,点P 是AB 边上的动点,过点P 作O e 的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为______.14.已知关于x 的不等式组0521x a x f -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 15.已知点P (a ,b )在反比例函数y=2x的图象上,则ab=_____. 16.将点P (﹣1,3)绕原点顺时针旋转180°后坐标变为_____.17.如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD=5,AE=2,AF=1.如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是______.18.6-的相反数是_____,倒数是_____,绝对值是_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长. 20.(6分)先化简:241133a a a -⎛⎫÷+ ⎪--⎝⎭,再从3-、2、3中选择一个合适的数作为a 的值代入求值. 21.(6分)在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.求证:四边形BFDE 是矩形;若CF =3,BF =4,DF =5,求证:AF 平分∠DAB . 22.(8分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)23.(8分)化简:()()2a b a 2b a -+-.24.(10分)(1)计算:(﹣2)﹣2+12cos60°32)0; (2)化简:(a ﹣1a )÷221a a a-+ .25.(10分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)26.(12分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(3取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.27.(12分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.2.A【解析】【分析】根据倒数的定义进行解答即可.【详解】∵a 的倒数是3,∴3a=1,解得:a=13. 故选A .【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.3.A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A.【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.4.C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.5.B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.6.B【解析】【分析】易证△CFE∽△BEA,可得CF CEBE AB,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB =,BE =CE =x ﹣52,即525522x yx -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5;故选B .【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.7.D【解析】【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D 所示视图一致.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.8.D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+. 故选D .点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.9.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .10.A【解析】试题分析:设某种书包原价每个x 元,根据题意列出方程解答即可. 设某种书包原价每个x 元, 可得:0.8x ﹣10=90考点:由实际问题抽象出一元一次方程.11.B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B . 考点:科学记数法—表示较大的数.12.A【解析】【分析】根据绝对值的性质进行解答即可解:﹣1的绝对值是:1.故选:A .【点睛】此题考查绝对值,难度不大二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23 【解析】 【分析】连接OQ ,根据勾股定理知222PQ OP OQ =-,可得当OP AB ⊥时,即线段PQ 最短,然后由勾股定理即可求得答案.【详解】连接OQ .∵PQ 是O e 的切线,∴OQ PQ ⊥;∴222PQ OP OQ =-,∴当PO AB ⊥时,线段OP 最短,∴PQ 的长最短,∵在Rt AOB ∆中,42OA OB ==,∴28AB OA ==, ∴4OA OB OP AB⋅==, ∴2223PQ OP OQ =-=.故答案为:3【点睛】本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到PO AB ⊥时,线段PQ 最短是关键.14.-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.15.2【解析】【分析】接把点P (a ,b )代入反比例函数y=2x 即可得出结论. 【详解】∵点P (a ,b )在反比例函数y=2x 的图象上, ∴b=2a, ∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.(1,﹣3)【解析】【分析】画出平面直角坐标系,然后作出点P 绕原点O 顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】点P (-1,3)绕原点O 顺时针旋转180°后的对应点P′的坐标为(1,-3).故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.17.105105r -<<+ 【解析】 【分析】因为以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交,圆心距满足关系式:|R-r|<d<R+r ,求得圆D 与圆O 的半径代入计算即可.【详解】连接OA 、OD ,过O 点作ON ⊥AE ,OM ⊥AF.AN=12AE=1,AM=12AF=2,MD=AD-AM=3 ∵四边形ABCD 是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四边形OMAN 是矩形∴OM=AN=1∴OA=22215+=,OD=221310+=∵以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交∴105105r -<<+本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.18.6,6-6【解析】∵只有符号不同的两个数是互为相反数,∴6-的相反数是6;∵乘积为1的两个数互为倒数,∴6-的倒数是6 -;∵负数得绝对值是它的相反数,∴6-绝对值是 6.故答案为(1). 6(2).6-(3). 6三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线;(2)由(1)知,OC ∥BD ,∴△OCE ∽△BFE , ∴,∵OB =2,∴OC =OB =2,AB =4,, ∴,∴BF =3,在Rt △ABF 中,∠ABF =90°,根据勾股定理得,AF =5,∵S △ABF =AB•BF =AF•BH ,∴AB•BF =AF•BH ,∴4×3=5BH ,∴BH =.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.20.-1.【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后在3-、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】241133a a a -⎛⎫÷+ ⎪--⎝⎭()()223133a a a a a +--+=÷-- ()()22332a a a a a +--=⋅-- 2a =+,当3a =-时,原式321=-+=-.故答案为:-1.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB ,根据等腰三角形的判定与性质,可得∠DAF=∠DFA ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE=DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB=90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA=∠FAB .在Rt △BCF 中,由勾股定理,得,∴AD=BC=DF=5,∴∠DAF=∠DFA ,∴∠DAF=∠FAB ,即AF 平分∠DAB .【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA 是解题关键.22.49.2米【解析】【分析】设PD=x 米,在Rt △PAD 中表示出AD ,在Rt △PDB 中表示出BD ,再由AB=80.0米,可得出方程,解出即可得出PD 的长度,继而也可确定小桥在小道上的位置.【详解】解:设PD=x 米,∵PD ⊥AB ,∴∠ADP=∠BDP=90°.在Rt △PAD 中,x tan PAD AD ∠=,∴x x 5AD x tan38.50.804===︒. 在Rt △PBD 中,x tan PBD DB ∠=,∴x x DB 2x tan26.50.50===︒. 又∵AB=80.0米,∴5x 2x 80.04+=,解得:x≈24.6,即PD≈24.6米. ∴DB=2x=49.2米.答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米.23.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.24.(1)12-;(2)11a a +-; 【解析】【分析】(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题.【详解】解:(1)原式1111,422=+⨯- 111,44=+- 1.2=- (2)原式221,21a a a a a -=⋅-+()()()211,1a a aa a+-=⋅-1.1aa+=-【点睛】本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.25.(1)证明见解析;(2)233π-;【解析】【分析】(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.【详解】(1)证明:连接OD,∵CD与圆O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,OA ODAOC CODOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,则AC与圆O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC与Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD为等边三角形,图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积,=260212233 36023ππ⨯-⨯⨯=-n.【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.26.(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.【解析】试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在Rt△ABE中,∵,∴BA=10tan60°=米.即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下:假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.∵∠BFA=45°,∴,此时的影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大楼的影子落在台阶MC这个侧面上.∴小猫仍可晒到太阳.考点:解直角三角形.27.(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩, 解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩, 即P (6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h55.点M到直线AB 5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键。
2019-2020学年北京市西城区三帆中学九年级(下)期中数学试卷-解析版
2019-2020学年北京市西城区三帆中学九年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.116的算术平方根是()A. ±14B. 14C. −14D. ±182.若x<y,则下列式子错误的是()A. x−2<y−2B. 2−x>2−yC. −x3>−y3D. x+3>y+23.下列语句:①点(4,5)与点(5,4)是同一点;②点(4,2)在第二象限;③点(1,0)在第一象限;④点(0,5)在x轴上.其中正确的是()A. ①②B. ②③C. ①②③④D. 没有4.下列说法错误的是()A. −1的立方根是−1B. 4的平方根是2C. √2是2的一个平方根D. −√3是√(−3)2的一个平方根5.估算√29+3的值是在()A. 8和9之间B. 7和8之间C. 6和7之间D. 5和6之间6.某不等式组中的两个不等式的解集在数轴上表示如图,则该不等式组的解集为()A. x<4B. x<2C. x≤2D. 2≤x<47.如意运输公司要将500吨物资运往某地,现有A、B两种型号的车可供调用.已知A型车每辆可装30吨,B型车每辆可装25吨.在每辆车不超载的条件下,把500吨物资装运完.在已确定调用8辆A型车的前提下,至少需要调用B型车的辆数是()A. 11B. 14C. 13D. 128.为加强锻炼增强体魄,我校初三(1)班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与各活动小组人数分布情况的扇形图和条形图如图所示:①该班学生50名学生②篮球有16人③跳绳人数所占扇形圆心角为57.6°④足球人数所占扇形圆心角为120°这四种说法中正确的有()A. 2个B. 0个C. 1个D. 3个9.一个长方形在平面直角坐标系中三个顶点的坐标为(−2,−1)(−2,2)和(4,−1),则第四个顶点的坐标为()A. (−2,2)B. (4,2)C. (4,4)D. (4,3)10.小明和小亮周末相约去电影院看电影,下面是他们的一段对话:小明:小亮,你下了300路公交车后,先向前走300米,再向左转走200米,就到电影院了,我现在在电影院门口等你呢!小亮:我按你说的路线走到了W超市,不是电影院啊?小明:你走到W超市是因为你下车后先向西走了,如果你先向北走就能到电影院了.根据上面两个人的对话记录,小亮现在从W超市去电影院的路线是()A. 向南直走500米,再向西直走100米B. 向北直走500米,再向西直走100米C. 向南直走100米,再向东直走500米D. 向北直走500米,再向东直走100米二、填空题(本大题共8小题,共24.0分)11.若3x−5的算术平方根是4,则它的另一个平方根是______,x=______.12.为确保“中国共产党十九次代表大会”的安全,对进入会场的党代表的安全检查应采用______(填“全面调查”或“抽样调查”)13.不等式−3x−9≤0的非正整数解为______.14.课间操时小华、小军、小刚的位置如图所示,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以用坐标表示成______ .15.所有满足√7<x<√18的整数x有______.16.在平面直角坐标系中,若点P(m−4,m+2)在y轴上,则m=______,点P的坐标为______.17.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊______只.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:②g(a,b)=(b,a),如g(1,3)=(3,1);③ℎ(a,b)=(−a,b),如ℎ(1,3)=(−1,3).且规定了运算顺序是“由内到外”,例如按照以上规定有:f(g(2,−3))=f(−3,2)=(−2,3),那么f(g(ℎ(5,−3)))=______.三、解答题(本大题共6小题,共46.0分)19. (1)计算:(−2)3+√4−√9; (2)√−273−√(−2)2+2√5+|2−√5|.20. (1)解不等式3x +5<8(x −1)+3,并写出满足此不等式的最小整数解.(2)解不等式组{−2(x +3)≤7x +3x+12−16<x+33,并把它的解集在数轴上表示出来.21. 近年来,我国汽车销售市场较为低迷,2018年国内汽车市场进入拐点,汽车产销同比均呈较快下降趋势,受销售不佳的影响,汽车厂商开始减少汽车的生产,2018年中国汽车产销率首次突破100%.2019年汽车行业发展状况仍然不太乐观,截至2019年11月,中国汽车累计销量2311万辆,同比下降9.1%.如图是根据中国汽车工业协会的有关数据整理的统计图.根据以上信息,回答下列问题:(1)2018年国内汽车市场进入拐点,意思是说比2017年的汽车销量减少,减少了______万辆(保留小数点后两位);(2)从2010年到2019年,汽车销售增速最快大约是______%;(3)请依次回答以下5个问题:从2010年到2019年11月,哪一年的汽车销量最高?是多少万辆?与上一年相比,增速约为多少?预估2020年我国汽车销量将达到多少万辆?你的预估理由是什么?22.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(−3,2),B(0,4),C(−1,0).(1)在坐标系中画出△ABC并写出△ABC的面积为______.(2)点P(a−4,b+2)是△ABC内任意一点.将△ABC平移至△A1B1C1的位置,点A,B,C,P的对应点分别是A1,B1,C1,P1.若点P1的坐标为(a,b).在坐标系中画出△A1B1C1.(3)若坐标轴上存在一点M,使△BCM的面积等于△ABC的面积,求点M的坐标.23.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?24.设x为实数,我们用{x}表示不小于x的最小整数,如:{3.2}=4,{−2}=−2.在此规定下,任一实数都能写成x={x}−a的形式.(1)若−1.2={−1.2}−a,则a=______;(2)直接写出{x}、x与x+1这三者的大小关系:______;(3)满足{2x+5}=4的x的取值范围是______;满足{2.5x−3}=4x−3的x的取值4是______.答案和解析1.【答案】B【解析】解:116的算术平方根是14,故选:B .根据算术平方根定义可得答案.此题主要考查了算术平方根,关键是掌握求一个非负数的算术平方根与求一个数的平方互为逆运算.2.【答案】D【解析】解:A 、由x <y 得x −2<y −2,所以A 选项的式子正确;B 、由x <y 得−x >−y ,则2−x >2−y ,所以B 选项的式子正确;C 、由x <y 得−13x >−13y ,所以C 选项的式子正确; D 、由x <y 得x +3<y +3,所以D 选项的式子错误.故选:D .根据不等式的性质对各选项进行判断.本题考查了不等式的性质:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.3.【答案】D【解析】解:①点(4,5)与点(5,4)是不同的点,故此选项错误;②点(4,2)在第一象限,故此选项错误;③点(1,0)在x 轴上,故此选项错误;④点(0,5)在y 轴上,故此选项错误.故选:D .直接利用各象限内点的坐标特点得出答案.此题主要考查了点的坐标,正确掌握点的坐标特点是解题关键.4.【答案】B【解析】解:A.−1的立方根是−1,说法正确;B .4的平方根是±2,故原说法错误;C .√2是2的一个平方根,说法正确;D .−√3是√(−3)2的一个平方根,说法正确.故选:B .分别根据立方根的定义,平方根的定义逐一判断即可得出正确选项.本题主要考查了平方根与立方根的定义,熟记相关定义是解答本题的关键.5.【答案】A【解析】解:∵√25<√29<√36,∴8<√29+3<9,故选:A.首先确定√29的范围,再确定√29+3的范围即可.此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.6.【答案】C【解析】解:由数轴知该不等式组的解集为x≤2,故选:C.根据“同小取小”可得答案.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】A【解析】解:设需要调用x辆B型车,依题意,得:30×8+25x≥500,.解得:x≥1025∵x为正整数,∴x的最小值为11.故选:A.设需要调用x辆B型车,根据调用的两种型号的车一次运货辆不少于500吨,即可得出关于x的一元一次不等式,解之取其中最小的整数值即可得出结论.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.8.【答案】C=48(名),故本选项错误;【解析】解:①该班学生数是:12÷90°360∘②篮球有:48−16−12−8=12(人),故本选项错误;=60°,故本选项错误;③跳绳人数所占扇形圆心角为360°×848=120°,故本选项正确;④足球人数所占扇形圆心角为360°×1648这四种说法中正确的有1个,故选:C.①根据乒乓球的人数和所占的百分比求出总人数;②用总人数减去其它项目的人数,求出篮球的人数;③用360°乘以跳绳人数所占的百分比即可得出答案;④用360°乘以足球人数所占的百分比即可得出答案.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.9.【答案】B【解析】解:如图,∵A(−2,−1),B(−2,2),C(4,−1),∴BD=AC=2+4=6,∴第四个顶点D的坐标为(6−2,2),即(4,2).故选:B.先在平面直角坐标系中描出点(−2,−1)(−2,2)和(4,−1),然后根据矩形的性质画出矩形得到第四个点的位置,再写出第四个顶点的坐标.本题考查了矩形的性质、坐标与图形性质:熟练掌握矩形的性质是解题的关键.10.【答案】D【解析】解:如图所示:从W超市去电影院的路线:向北直走200+300=500米,再向东直走300−200=100米.故选:D.根据对话画出图形,进而得出从W超市去电影院的路线.此题主要考查了勾股定理的应用,坐标确定位置,根据题意画出图形是解题关键.11.【答案】−47【解析】解:3x−5的算术平方根是4,则它的另一个平方根是−4,由题意得:3x−5=42,解得:x=7,故答案为:−4;7.根据平方根的性质可得另一个平方根是−4,再根据算术平方根的定义计算即可.此题主要考查了算术平方根和平方根,关键是掌握求一个非负数的算术平方根与求一个数的平方互为逆运算.12.【答案】全面调查【解析】解:为确保“中国共产党十九次代表大会”的安全,对进入会场的党代表的安全检查应采用全面调查.故答案为:全面调查.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进而得出答案.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.【答案】−3、−2、−1、0【解析】解:由原不等式得−3x≤9,x≥−3,则不等式的非正整数解为−3、−2、−1、0,故答案为:−3、−2、−1、0.根据解一元一次不等式基本步骤:移项、系数化为1可得其解集,再得出其非正整数解.本题主要考查一元一次不等式的整数解,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.14.【答案】(4,3)【解析】解:如图,小刚的位置可以用坐标表示成(4,3).故答案为(4,3).以小华的位置为坐标原点建立直角坐标系,然后写出小刚所在位置的坐标即可.本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.15.【答案】3,4【解析】解:∵√4<√7<√9,∴2<√7<3,∵√16<√18<√25,∴4<√18<5,∴√7<x<√18的整数x=3或4,故答案为:3,4.首先确定√7和√18的范围,然后可得整数x的值.此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.16.【答案】4 (0,6)【解析】解:∵点P(m−4,m+2)在y轴上,∴m−4=0,解得:m=4,∴m+2=6,∴点P的坐标为:(0,6).直接利用y轴上点的坐标特点得出m的值,进而得出答案.此题主要考查了y轴上点的坐标特点,正确得出m的值是解题关键.17.【答案】600【解析】解:20÷260=600(只).故答案为600.捕捉60只黄羊,发现其中2只有标志.说明有标记的占到260,而有标记的共有20只,根据所占比例解得.本题考查了用样本估计总体的思想,统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.18.【答案】(5,3)【解析】解:由题意知,f(g(ℎ(5,−3)))=f(g(−5,−3))=f(−3,−5)=(5,3).故答案是:(5,3).根据题意找到运算法则f、g、h,然后运用相应的运算法则解答.考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标.解题的关键是弄清楚、g、h所对应的运算法则.19.【答案】解:(1)原式=−8+2−3=−9;(2)原式=−3−2+2√5+√5−2=−7+3√5,【解析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用立方根以及二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:(1)3x+5<8x−8+3,3x−8x<−8+3−5,−5x<−10,x>2,所以此不等式的最小整数解为3;(2)解不等式−2(x+3)≤7x+3,得:x≥−1,解不等式x+12−16<x+33,得:x<4,则不等式组的解集为−1≤x<4,将不等式组的解集表示在数轴上如下:【解析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】79.8313.95【解析】解:(1)2887.89−2808.86=79.83(万辆).故答案为:79.83;(2)由图可得,从2010年到2019年,汽车销售增速最快的是2016年,增速大约是:2802.82−2459.76×100%≈13.95%.2459.76故答案为:13.95;(3)从2010年到2019年11月,2017年的汽车销量最高,是2887.89万辆;与上一年相×100%≈3.04%;比,增速约为:2887.89−2802.822802.82预估2020年我国汽车销量将达到2297.27万辆,预估理由是:截至2019年11月,中国汽车累计销量2311万辆,同比下降9.1%,2020年,受新冠肺炎影响,预估同比下降10%.2020年,汽车销量:2808.06×(1−9.1%)×(1−10%)≈2297.27(万辆).(1)根据条形统计图,用2017年汽车销量减去2018年汽车销量即可;(2)由图可得,从2010年到2019年,汽车销售增速最快的是2016年,根据数据计算即可;(3)由条形统计图可知,从2010年到2019年11月,2017年的汽车销量最高,是2887.89万辆;根据数据可求与上一年相比的增速;根据题意,结合实际情况可预估2020年我国汽车销量.本题主要考查了条形统计图以及折线统计图,解题时注意:从条形图可以很容易看出数据的大小,折线图能够清楚地表示出数量的增减变化情况.从统计图表中获取信息是解题的关键.22.【答案】5【解析】解:(1)如图,△ABC即为所求,△ABC的面积为:12−3−2−2=5;故答案为:5;(2)如图,△A 1B 1C 1即为所求;(3)因为△BCM 的面积等于△ABC 的面积,所以点M 的坐标为(−3.5,0)或(1.5,0).(1)根据点A(−3,2),B(0,4),C(−1,0),即可在坐标系中画出△ABC 并写出△ABC 的面积;(2)点P(a −4,b +2)是△ABC 内任意一点.将△ABC 向右平移4个单位,再向下平移2个单位即可在坐标系中画出△A 1B 1C 1;(3)根据△BCM 的面积等于△ABC 的面积,即可在坐标轴上找到点M .本题考查了作图−平移变换,解决本题的关键是掌握平移的性质.23.【答案】解:(1)设每辆车A 型车的售价为x 万元,每辆车B 型车的售价为y 万元,依题意,得:{x +2y =703x +y =80, 解得:{x =18y =26, 答:每辆车A 型车的售价为18万元,每辆车B 型车的售价为26万元.(2)设购进A 型车m 辆,则购进B 型车(7−m)辆,依题意,得:{18m +26(7−m)≥154m ≥2, 解得:3.5≥m ≥2.∵m 为整数,∴m =2或3,答:有2种购车方案:购进A 型车2辆,购B 型5辆;购进A 型车3辆,购B 型4辆.【解析】(1)设每辆车A 型车的售价为x 万元,每辆车B 型车的售价为y 万元,根据“1辆A 型车和2辆B 型车,销售额为70万元;本周已售出3辆A 型车和1辆B 型车,销售额为80万元”即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型车m 辆,则购进B 型车(7−m)辆,根据总价=单价×数量结合购车总费用不超过154万元,A 型号车不少于2辆,即可得出关于m 的一元一次不等式组,再解即可.本题主要考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】0.2 x ≤{x}<x +1 −1<x ≤−12 −2116或−1716【解析】解:(1)∵−1.2={−1.2}−a ,∴−1.2=−1−a ,解得a =0.2;(2)x ≤{x}<x +1,理由:∵x ={x}−b ,其中0≤b <1,∴b ={x}−x ,∴0≤{x}<x +1,∴x ≤{x}<x +1;(3)依题意有2x +5≤4<2x +5+1,解得:−1<x ≤−12;依据题意有2.5x −3≤4x −34<(2.5x −3)+1且4x −34为整数,解得:−32≤x <−56,∴−274≤4x −34<−4912,∴整数4x −34为−6,−5,解得:x =−2116或x =−1716.故答案为:0.2;x ≤{x}<x +1;−1<x ≤−12,−2116或−1716.(1)利用{x}表示不小于x 的最小整数,可得方程−1.2=−1−a ,解方程即可求解;(2)利用x ={x}−b ,其中0≤b <1得出0≤{x}<x +1,进而得出答案;(3)利用(2)中所求得出2x +5≤4<2x +5+1,进而得出即可;利用(2)中所求得出2.5x −3≤4x −34<(2.5x −3)+1,进而得出即可.此题主要考查了一元一次不等式组的应用,利用已知得出不等式组是解题关键.。
2019-2020学年北京市西城区中考数学考试试题
6.一、单选题
如图:在 中, 平分 , 平分 ,且 交 于 ,若 ,则 等于()
A.75B.100C.120D.125
7.如图,下列条件不能判定△ADB∽△ABC的是()
A.∠ABD=∠ACBB.∠ADB=∠ABC
C.AB2=AD•ACD.
8.如果解关于x的分式方程 时出现增根,那么m的值为
14.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.
A.-1或4B.-1或-4
C.1或-4D.1或4
4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )
A. B. C. D.
5.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
三、解答题(本题包括8个小题)
19.(6分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
求证:△ABE≌△CAD;求∠BFD的度数.
20.(6分)已知关于 的一元二次方程 .试证明:无论 取何值此方程总有两个实数根;若原方程的两根 , 满足 ,求 的值.
24.(10分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
北京市西城区2019-2020学年第二次中考模拟考试数学试卷含解析
北京市西城区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为()A.35B.31313C.23D.213132.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.3.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为()A.25°B.30°C.35°D.40°4.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.13B.23C.12D.255.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b6.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC7.如图,函数y1=x3与y2=1x在同一坐标系中的图象如图所示,则当y1<y2时()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0D.﹣1<x<0或x>18.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于A.90°B.180°C.210°D.270°9.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.34y x=D.1yx=10.在实数0,2-,1,5中,其中最小的实数是()A.0B.2-C.1D.511.不等式﹣12x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<412.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ACB=1:1.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于__________.14.正十二边形每个内角的度数为.15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.16.已知关于x 的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2 个交点,则m=_______.17.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.18.对于函数y= 2x,当函数y﹤-3时,自变量x的取值范围是____________ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.20.(6分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.21.(6分)如图所示,直线y=12x+2与双曲线y=k x相交于点A(2,n),与x 轴交于点C . (1)求双曲线解析式; (2)点P 在x 轴上,如果△ACP 的面积为5,求点P 的坐标.22.(8分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB 于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E 是OD 上一点,点F 是AB 上一点,且使,请判断△EFC 的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当时,请猜想的值(请直接写出结论).23.(8分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣3.24.(10分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.25.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)26.(12分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120 角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)27.(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.【详解】解:连接EB,由圆周角定理可知:∠B=90°,设⊙O的半径为r,由垂径定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:13∴cos∠ECB=CBCE=1313,故选D.【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.2.C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C3.B【解析】【分析】如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.【详解】如图,连接OA,OB,OC,OE.∵∠EBC+∠EDC =180°,∠EDC =130°,∴∠EBC =50°,∴∠EOC =2∠EBC =100°,∵AB =BC =CE ,∴弧AB =弧BC =弧CE ,∴∠AOB =∠BOC =∠EOC =100°,∴∠AOE =360°﹣3×100°=60°,∴∠ABE =12∠AOE =30°. 故选:B .【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.B【解析】【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.5.D【解析】试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D.由选项C可得,此选项正确.故选D.考点:实数与数轴6.D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.7.B【解析】【分析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【详解】根据图象知,一次函数y1=x3与反比例函数y2=1x的交点是(1,1),(-1,−1),∴当y1<y2时,, 0<x<1或x<-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.8.B【解析】【详解】试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B9.D【解析】A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=1x(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确10.B【解析】【分析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【详解】解:∵0,-2,1-2<0<1,∴其中最小的实数为-2;故选:B.【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.11.A【解析】【分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−12x>3−1,合并同类项得:−12x>2,系数化为1得:x<-4. 故选A.本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.12.D【解析】【分析】①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.【详解】①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC∙CD=AC∙AD.∴S△ABC=AC∙BC=AC∙AD=AC∙AD,∴S△DAC:S△ABC=AC∙AD:AC∙AD=1:1,④正确.故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.224πcm【解析】解:它的侧面展开图的面积=12•1π•4×6=14π(cm1).故答案为14πcm1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.150【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【详解】试题分析:正十二边形的每个外角的度数是:36012=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为150°.15.(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.16.1 或 0 【解析】【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m ﹣12)2<54,解得 m 或 m . 将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点, 这时:△=4﹣4(m ﹣1)m=0,解得:m=12.故答案为1 或 0 . 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.17.4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.18.-23<x<0 【解析】【分析】根据反比例函数的性质:y 随x 的增大而减小去解答.【详解】解:函数y=2x中,y 随x 的增大而减小,当函数y ﹤-3时 223? x 3x -∴- 又Q 函数y= 2x中,x 0≠ 203x ∴-<< 故答案为:-23<x<0. 【点睛】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=6x;(2)(4,0)或(0,0) 【解析】【分析】(1)把x=1代入一次函数解析式求得A 的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B 的坐标,后利用△ABP 的面积为8,可求P 点坐标.【详解】解:(1)把x=1代入y=2x ﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=kx,可得k=1×2=6,∴反比例函数的解析式为y=6x;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB与x轴交于点C,y=2x﹣4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x﹣2|×(2+6)=8,解得x=4或0,∴点P的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
北京市西城区2019-2020学年中考数学模拟试题(1)含解析
北京市西城区2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直2.下列计算或化简正确的是()A.234265+=B.842=C.2(3)3-=-D.2733÷=3.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A.b2>4ac B.ax2+bx+c≤6C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=04.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(3,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为()A.35 22(,)B.332(,)C.235 32(,)D.433 32(,)5.左下图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.6.若a与﹣3互为倒数,则a=()A.3 B.﹣3 C.D.-7.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A.B.C.D.9.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球10.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6 米,CD=4 米,∠BCD=150°,在D 处测得电线杆顶端A 的仰角为30°,则电线杆AB 的高度为()A.2+23B.4+23C.2+32D.4+3211.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3aAC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.14.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.15.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为__.16.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.17.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为______________. 18.在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180o;19.(6分)定义:若某抛物线上有两点A 、B 关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax 2-2mx+c (a ,m ,c 均为常数且ac≠0)是“完美抛物线”:(1)试判断ac 的符号;(2)若c=-1,该二次函数图象与y 轴交于点C ,且S △ABC =1.①求a 的值;②当该二次函数图象与端点为M (-1,1)、N (3,4)的线段有且只有一个交点时,求m 的取值范围. 20.(6分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销售量的相关信息如下表: 时间x (天)1≤x <50 50≤x≤90 售价(元/件)x +40 90每天销量(件)200-2x 已知该商品的进价为每件30元,设销售该商品的每天利润为y 元[求出y 与x 的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.21.(6分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?22.(8分)(阅读)如图1,在等腰△ABC 中,AB=AC ,AC 边上的高为h ,M 是底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1,h 1.连接AM .∵ABM ACM ABC S S S ∆∆∆+= ∴12111222h AB h AC hAC +=(思考)在上述问题中,h 1,h 1与h 的数量关系为: .(探究)如图1,当点M 在BC 延长线上时,h 1、h 1、h 之间有怎样的数量关系式?并说明理由.的距离是1,请运用上述结论求出点M的坐标.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(10分)已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.25.(10分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.26.(12分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|27.(12分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.题目要求的.)1.D【解析】【分析】根据菱形,平行四边形,正方形的性质定理判断即可.【详解】A.菱形的对角线不一定相等, A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误;C. 正方形的对角线相等,C 错误;D.正方形的对角线相等且互相垂直,D 正确; 故选:D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确. 故选D .3.C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac -f ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42b x a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中.4.B连接OO′,作O′H⊥OA于H.只要证明△O O′A是等边三角形即可解决问题. 【详解】连接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO=OBOA=3∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H⊥OA,∴3∴332,∴O′332),故选B.【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.5.A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图6.D故选C.考点:倒数.7.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.8.D【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.9.A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.10.B延长AD 交BC 的延长线于E ,作DF ⊥BE 于F ,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,22CD DF -3由题意得∠E=30°,∴EF=23tan DF E= , ∴3∴AB=BE×tanE=(3×33=(3+4)米, 即电线杆的高度为(3+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.11.D【解析】【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A .x 4•x 4=x 4+4=x 8≠x 16,故该选项错误;B .(a 3)2=a 3×2=a 6≠a 5,故该选项错误;C .(ab 2)3=a 3b 6≠ab 6,故该选项错误;D .a+2a=(1+2)a=3a ,故该选项正确;故选D .考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.12.B首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC【解析】【分析】S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -( S △ANF +S △FCM ).易知,S △ADC =S △ABC ,S △ANF =S △AEF ,S △FGC =S △FMC ,可得S 矩形NFGD =S 矩形EBMF .故答案分别为 S △AEF ,S △FCM ,S △ANF ,S △AEF ,S △FGC ,S △FMC .【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.14.106.710⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为106.710⨯,故答案为:106.710⨯.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.﹣4≤m≤﹣1【解析】【分析】先求出直线y =7与直线y =﹣2x ﹣1的交点为(﹣4,7),再分类讨论:当点B 在点A 的右侧,则m ≤﹣4≤3m﹣1,当点B 在点A 的左侧,则3m ﹣1≤﹣4≤m ,然后分别解关于m 的不等式组即可.【详解】解:当y =7时,﹣2x ﹣1=7,解得x =﹣4,所以直线y =7与直线y =﹣2x ﹣1的交点为(﹣4,7),当点B 在点A 的右侧,则m≤﹣4≤3m ﹣1,无解;当点B 在点A 的左侧,则3m ﹣1≤﹣4≤m ,解得﹣4≤m≤﹣1,所以m 的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键.16.y1<y1【解析】【分析】直接利用一次函数的性质分析得出答案.【详解】解:∵直线经过第一、三、四象限,∴y随x的增大而增大,∵x1<x1,∴y1与y1的大小关系为:y1<y1.故答案为:y1<y1.【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.17.2 501030 x yx y+=⎧⎨+=⎩【解析】【分析】设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.【详解】依题意得:2 501030x yx y+=⎧⎨+=⎩.故答案为2 501030x yx y+=⎧⎨+=⎩.【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.18.①②④【解析】【分析】由当ABCD的面积最大时,AB⊥BC,可判定ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.∵当ABCD 的面积最大时,AB ⊥BC , ∴ABCD 是矩形,∴∠A=∠C=90°,AC=BD ,故③错误,④正确;∴∠A+∠C=180°;故②正确;∴AC==1,故①正确.故答案为:①②④.【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD 是矩形是解此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) ac <3;(3)①a=1;②m >23或m <12. 【解析】【分析】(1)设A (p ,q ).则B (-p ,-q ),把A 、B 坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p 3=1a ,a >3,且C (3,-1),求得p =±1a 得到结果;②由①可知:抛物线解析式为y=x 3-3mx-1,根据M (-1,1)、N (3,4).得到这些MN 的解析式y =34x+74(-1≤x≤3),联立方程组得到x 3-3mx-1=34x+74,故问题转化为:方程x 3-(3m+34)x-114=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x 3-(3m+34)x-114,根据题意得到(Ⅰ)若-1≤x 1<3且x 3>3,(Ⅱ)若x 1<-1且-1<x 3≤3:列方程组即可得到结论.【详解】(1)设A (p ,q ).则B (-p ,-q ),把A 、B 坐标代入解析式可得:22 22ap mp c q ap mp c q⎧-+⎨++-⎩==, ∴3ap 3+3c=3.即p 3=−c a , ∴−c a≥3, ∵ac≠3,∴−ca>3,∴ac<3;(3)∵c=-1,∴p3=1a,a>3,且C(3,-1),∴p=,①S△ABC=12××1=1,∴a=1;②由①可知:抛物线解析式为y=x3-3mx-1,∵M(-1,1)、N(3,4).∴MN:y=34x+74(-1≤x≤3),依题,只需联立2213744y x mxy x⎧--⎪⎨+⎪⎩==在-1≤x≤3内只有一个解即可,∴x3-3mx-1=34x+74,故问题转化为:方程x3-(3m+34)x-114=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x3-(3m+34)x-114,∵△=(3m+34)3+11>3且c=-114<3,∴抛物线y=x3−(3m+34)x−114与x轴有两个交点,且交y轴于负半轴.不妨设方程x3−(3m+34)x−114=3的两根分别为x1,x3.(x1<x3)则x1+x3=3m+34,x1x3=−114∵方程x3−(3m+34)x−114=3在-1≤x≤3内只有一个解.故分两种情况讨论:(Ⅰ)若-1≤x1<3且x3>3:则()()()()1212330110x x x x ⎧--⎪⎨++≥⎪⎩<.即:()1212121239010x x x x x x x x ⎧-++⎨+++≥⎩<, 可得:m >23. (Ⅱ)若x 1<-1且-1<x 3≤3:则()()()()1212330110x x x x ⎧--≥⎪⎨++⎪⎩<.即:()1212121239010x x x x x x x x ⎧-++≥⎨+++⎩<, 可得:m <12, 综上所述,m >23或m <12. 【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.20.(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小,当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<,解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.21.每件衬衫应降价1元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x 元.根据题意,得 (40-x )(1+2x )=110,整理,得x 2-30x+10=0,解得x 1=10,x 2=1.∵“扩大销售量,减少库存”,∴x 1=10应舍去,∴x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.22.【思考】h 1+h 1=h ;【探究】h 1-h 1=h .理由见解析;【应用】所求点M 的坐标为(13,1)或(-13,4).【解析】【分析】 思考:根据等腰三角形的性质,把代数式12111222h AB h AC hAC +=化简可得12h h h +=. 探究:当点M 在BC 延长线上时,连接AM ,可得ABM ACM ABC S S S ∆∆∆-=,化简可得12h h h -=.应用:先证明AB AC =,△ABC 为等腰三角形,即可运用上面得到的性质,再分点M 在BC 边上和在CB 延长线上两种情况讨论,第一种有1+My=OB ,第二种为M y -1=OB ,解得M 的纵坐标,再分别代入2l 的解析式即可求解.【详解】思考Q ABM ACM ABC S S S ∆∆∆+= 即12111222h AB h AC hAC += Q AB AC =∴h 1+h 1=h .探究h 1-h 1=h .理由.连接AM ,∵ABM ACM ABC S S S ∆∆∆-= ∴12111222h AB h AC hAC -= ∴h 1-h 1=h .应用 在334y x =+中,令x=0得y=3; 令y=0得x=-4,则:A (-4,0),B (0,3)同理求得C (1,0),5AB =,又因为AC=5,所以AB=AC ,即△ABC 为等腰三角形.①当点M 在BC 边上时,由h 1+h 1=h 得:1+My=OB ,My=3-1=1,把它代入y=-3x+3中求得:13x M =, ∴1,23M ⎛⎫ ⎪⎝⎭; ②当点M 在CB 延长线上时,由h 1-h 1=h 得:M y -1=OB ,M y =3+1=4,把它代入y=-3x+3中求得:13x M =-,∴1,43M⎛⎫- ⎪⎝⎭,综上,所求点M的坐标为1,23⎛⎫⎪⎝⎭或1,43⎛⎫- ⎪⎝⎭.【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.23.(1)证明见解析;(2)AE=2时,△AEF的面积最大.【解析】【分析】(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,,∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=AE·FH=a(4-a)=-(a-2)2+2,∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.24.(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为183【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.试题解析:(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=33,OE=3,∴AB=63,∴CD=23,∴S△OCD=1233=332⨯⨯,∴S阴影=6S△OC D=183.25.(1)见解析;(2)2.【解析】【分析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解. 【详解】(1)如图所示,点P即为所求.(2)设BP=x,则CP=1﹣x,由(1)中作图知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【点睛】考核知识点:勾股定理和线段垂直平分线.26.1【解析】【分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【详解】解:原式=1﹣1×+1+=1﹣+1+=1.【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.27.4小时.【解析】【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:60048045, 2x x+=解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.。
北京市西城区三帆中学2019-2020学年九年级下学期期中数学试题(word无答案)
北京市西城区三帆中学2019-2020学年九年级下学期期中数学试题一、单选题(★) 1. 的算术平方根是()A.B.C.D.(★) 2. 若 x< y,则下列式子错误的是()A.x﹣2<y﹣2B.2﹣x>2﹣y C.﹣>﹣D.x+3>y+2(★) 3. 下列语句:①点(4,5)与点(5,4)是同一点;②点(4,2)在第二象限;③点(1,0)在第一象限;④点(0,5)在 x轴上.其中正确的是()A.①②B.②③C.①②③④D.没有(★) 4. 下列说法错误的是()A.﹣1的立方根是﹣1B.4的平方根是2C.是2的一个平方根D.﹣是的一个平方根(★★) 5. 估算+3的值是在()A.8和9之间B.7和8之间C.6和7之间D.5和6之间(★) 6. 某不等式组中的两个不等式的解集在数轴上表示如图,则该不等式组的解集为()A.x<4B.x<2C.x≤2D.2≤x<4(★★) 7. 如意运输公司要将500吨物资运往某地,现有 A、 B两种型号的车可供调用.已知 A 型车每辆可装30吨, B型车每辆可装25吨.在每辆车不超载的条件下,把500吨物资装运完.在已确定调用8辆 A型车的前提下,至少需要调用 B型车的辆数是()A.11B.14C.13D.12(★★) 8. 为加强锻炼增强体魄,我校初三(1)班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与各活动小组人数分布情况的扇形图和条形图如图所示:①该班有50名学生②篮球有16人③跳绳人数所占扇形圆心角为57.6°④足球人数所占扇形圆心角为120°这四种说法中正确的有()A.2个B.0个C.1个D.3个(★★) 9. 一个长方形在平面直角坐标系中三个顶点的坐标为(﹣2,﹣1)(﹣2,2)和(4,﹣1),则第四个顶点的坐标为()A.(﹣2,2)B.(4,2)C.(4,4)D.(4,3)(★) 10. 小明和小亮周末相约去电影院看电影,下面是他们的一段对话:小明:小亮,你下了300路公交车后,先向前走300米,再向左转走200米,就到电影院了,我现在在电影院门口等你呢!小亮:我按你说的路线走到了 W超市,不是电影院啊?小明:你走到 W超市是因为你下车后先向西走了,如果你先向北走就能到电影院了.根据上面两个人的对话记录,小亮现在从 W超市去电影院的路线是()A.向南直走500米,再向西直走100米B.向北直走500米,再向西直走100米C.向南直走100米,再向东直走500米D.向北直走500米,再向东直走100米二、填空题(★★) 11. 若3 x﹣5的算术平方根是4,则它的另一个平方根是_____, x=_____.(★) 12. 为确保“中国共产党十九次代表大会”的安全,对进入会场的党代表的安全检查应采用______ 填“全面调查”或“抽样调查”(★) 13. 不等式﹣3 x﹣9≤0的非正整数解为_____.(★)14. 课间操时,小华、小军、小刚的位置如图7,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成___________(★★) 15. 所有满足< x<的整数 x有_____.(★) 16. 在平面直角坐标系中,若点 P( m﹣4, m+2)在 y轴上,则 m=_____,点 P的坐标为_____.(★) 17. 某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊_____只.(★★) 18. 在平面直角坐标系中,对于平面内任一点( a, b),若规定以下三种变换:① f( a, b)=(﹣ b,﹣ a),如 f(1,3)=(﹣3,﹣1);② g( a, b)=( b, a),如 g(1,3)=(3,1);③ h( a, b)=(﹣ a, b),如 h(1,3)=(﹣1,3).且规定了运算顺序是“由内到外”,例如按照以上规定有: f( g(2,﹣3))= f(﹣3,2)=(﹣2,3),那么 f( g( h(5,﹣3)))=_____.三、解答题(★★) 19. (1)计算:;(2).(★★) 20. (1)解不等式3 x+5<8( x﹣1)+3,并写出满足此不等式的最小整数解.(2)解不等式组,并把它的解集在数轴上表示出来.(★★) 21. 近年来,我国汽车销售市场较为低迷,2018年国内汽车市场进入拐点,汽车产销同比均呈较快下降趋势,受销售不佳的影响,汽车厂商开始减少汽车的生产,2018年中国汽车产销率首次突破100%.2019年汽车行业发展状况仍然不太乐观,截至2019年11月,中国汽车累计销量2311万辆,同比下降9.1%.如图是根据中国汽车工业协会的有关数据整理的统计图.根据以上信息,回答下列问题:(1)2018年国内汽车市场进入拐点,意思是说比2017年的汽车销量减少,减少了万辆(保留小数点后两位);(2)从2010年到2019年,汽车销售增速最快大约是%;(3)请依次回答以下5个问题:从2010年到2019年11月,哪一年的汽车销量最高?是多少万辆?与上一年相比,增速约为多少?预估2020年我国汽车销量将达到多少万辆?你的预估理由是什么?(★★★★) 22. 如图,在平面直角坐标系中,△ ABC的三个顶点分别是 A(﹣3,2), B(0,4), C(﹣1,0).(1)在坐标系中画出△ ABC并写出△ ABC的面积为.(2)点 P( a﹣4, b+2)是△ ABC内任意一点.将△ ABC平移至△ A 1 B 1 C 1的位置,点 A,B, C, P的对应点分别是 A 1, B 1, C 1, P 1.若点 P 1的坐标为( a, b).在坐标系中画出△ A 1 B 1 C 1.(3)若坐标轴上存在一点 M,使△ BCM的面积等于△ ABC的面积,求点 M的坐标.(★★) 23. 列方程组或不等式解决实际问题:某汽车专卖店销售 A, B两种型号的新能源汽车,上周售出1辆 A型车和2辆 B型车,销售额为70万元;本周已售出3辆 A型车和1辆 B型车,销售额为80万元.(1)每辆 A型车和 B型车的售价各为多少万元?(2)甲公司拟向该店购买 A, B两种型号的新能源汽车共7辆,且 A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?(★★) 24. 设 x为实数,我们用{ x}表示不小于 x的最小整数,如:{3.2}=4,{﹣2}=﹣2.在此规定下,任一实数都能写成 x={ x}﹣ a的形式.(1)若﹣1.2={﹣1.2}﹣ a,则 a=;(2)直接写出{ x}、 x与 x+1这三者的大小关系:;(3)满足{2 x+5}=4的 x的取值范围是;满足{2.5 x﹣3}=4 x﹣的 x的取值是.。
北京市西城区2019-2020学年中考第四次质量检测数学试题含解析
北京市西城区2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.2.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π3.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x34.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B 两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米5.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A .2.6m 2B .5.6m 2C .8.25m 2D .10.4m 26.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1B .2C .3D .47.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣78.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( ) A .20cm2B .20πcm2C .10πcm2D .5πcm29.如图,在ABCD Y 中,E 为边CD 上一点,将ADE V 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40°10.若一组数据1、a 、2、3、4的平均数与中位数相同,则a 不可能...是下列选项中的( ) A .0B .2.5C .3D .5117 ) A 7B .7C .77D .-7712.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.14.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不相等的实根,则实数k 的取值范围是_____. 15.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.16.分解因式:3x2-6x+3=__.17.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.18.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.A B C D四个选项.19.(6分)一道选择题有,,,(1)若正确答案是A,从中任意选出一项,求选中的恰好是正确答案A的概率;(2)若正确答案是,A B,从中任意选择两项,求选中的恰好是正确答案,A B的概率.20.(6分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).21.(6分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.22.(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年北京市西城区三帆中学九年级第二学期期中数学试卷一、选择题1.的算术平方根是()A.±B.C.﹣D.±2.若x<y,则下列式子错误的是()A.x﹣2<y﹣2B.2﹣x>2﹣y C.﹣>﹣D.x+3>y+23.下列语句:①点(4,5)与点(5,4)是同一点;②点(4,2)在第二象限;③点(1,0)在第一象限;④点(0,5)在x轴上.其中正确的是()A.①②B.②③C.①②③④D.没有4.下列说法错误的是()A.﹣1的立方根是﹣1B.4的平方根是2C.是2的一个平方根D.﹣是的一个平方根5.估算+3的值是在()A.8和9之间B.7和8之间C.6和7之间D.5和6之间6.某不等式组中的两个不等式的解集在数轴上表示如图,则该不等式组的解集为()A.x<4B.x<2C.x≤2D.2≤x<47.如意运输公司要将500吨物资运往某地,现有A、B两种型号的车可供调用.已知A型车每辆可装30吨,B型车每辆可装25吨.在每辆车不超载的条件下,把500吨物资装运完.在已确定调用8辆A型车的前提下,至少需要调用B型车的辆数是()A.11B.14C.13D.128.为加强锻炼增强体魄,我校初三(1)班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与各活动小组人数分布情况的扇形图和条形图如图所示:①该班学生50名学生②篮球有16人③跳绳人数所占扇形圆心角为57.6°④足球人数所占扇形圆心角为120°这四种说法中正确的有()A.2个B.0个C.1个D.3个9.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣2,﹣1)(﹣2,2)和(4,﹣1),则第四个顶点的坐标为()A.(﹣2,2)B.(4,2)C.(4,4)D.(4,3)10.小明和小亮周末相约去电影院看电影,下面是他们的一段对话:小明:小亮,你下了300路公交车后,先向前走300米,再向左转走200米,就到电影院了,我现在在电影院门口等你呢!小亮:我按你说的路线走到了W超市,不是电影院啊?小明:你走到W超市是因为你下车后先向西走了,如果你先向北走就能到电影院了.根据上面两个人的对话记录,小亮现在从W超市去电影院的路线是()A.向南直走500米,再向西直走100米B.向北直走500米,再向西直走100米C.向南直走100米,再向东直走500米D.向北直走500米,再向东直走100米二、填空题(每题3分,共24分)11.若3x﹣5的算术平方根是4,则它的另一个平方根是,x=.12.为确保“中国共产党十九次代表大会”的安全,对进入会场的党代表的安全检查应采用(填“全面调查”或“抽样调查”)13.不等式﹣3x﹣9≤0的非正整数解为.14.课间操时小华、小军、小刚的位置如图所示,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以用坐标表示成.15.所有满足<x<的整数x有.16.在平面直角坐标系中,若点P(m﹣4,m+2)在y轴上,则m=,点P的坐标为.17.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣b,﹣a),如f(1,3)=(﹣3,﹣1);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(﹣a,b),如h(1,3)=(﹣1,3).且规定了运算顺序是“由内到外”,例如按照以上规定有:f(g(2,﹣3))=f(﹣3,2)=(﹣2,3),那么f(g(h(5,﹣3)))=.三、解答题(第19题8分,第20题10分,第21-24每题7分,共46分)19.(1)计算:(﹣2)3+﹣;(2)﹣+2+|2﹣|.20.(1)解不等式3x+5<8(x﹣1)+3,并写出满足此不等式的最小整数解.(2)解不等式组,并把它的解集在数轴上表示出来.21.近年来,我国汽车销售市场较为低迷,2018年国内汽车市场进入拐点,汽车产销同比均呈较快下降趋势,受销售不佳的影响,汽车厂商开始减少汽车的生产,2018年中国汽车产销率首次突破100%.2019年汽车行业发展状况仍然不太乐观,截至2019年11月,中国汽车累计销量2311万辆,同比下降9.1%.如图是根据中国汽车工业协会的有关数据整理的统计图.根据以上信息,回答下列问题:(1)2018年国内汽车市场进入拐点,意思是说比2017年的汽车销量减少,减少了万辆(保留小数点后两位);(2)从2010年到2019年,汽车销售增速最快大约是%;(3)请依次回答以下5个问题:从2010年到2019年11月,哪一年的汽车销量最高?是多少万辆?与上一年相比,增速约为多少?预估2020年我国汽车销量将达到多少万辆?你的预估理由是什么?22.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (﹣1,0).(1)在坐标系中画出△ABC并写出△ABC的面积为.(2)点P(a﹣4,b+2)是△ABC内任意一点.将△ABC平移至△A1B1C1的位置,点A,B,C,P的对应点分别是A1,B1,C1,P1.若点P1的坐标为(a,b).在坐标系中画出△A1B1C1.(3)若坐标轴上存在一点M,使△BCM的面积等于△ABC的面积,求点M的坐标.23.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?24.设x为实数,我们用{x}表示不小于x的最小整数,如:{3.2}=4,{﹣2}=﹣2.在此规定下,任一实数都能写成x={x}﹣a的形式.(1)若﹣1.2={﹣1.2}﹣a,则a=;(2)直接写出{x}、x与x+1这三者的大小关系:;(3)满足{2x+5}=4的x的取值范围是;满足{2.5x﹣3}=4x﹣的x的取值是.参考答案一、选择题(每题3分,共30分)1.的算术平方根是()A.±B.C.﹣D.±【分析】根据算术平方根定义可得答案.解:的算术平方根是,故选:B.2.若x<y,则下列式子错误的是()A.x﹣2<y﹣2B.2﹣x>2﹣y C.﹣>﹣D.x+3>y+2【分析】根据不等式的性质对各选项进行判断.解:A、由x<y得x﹣2<y﹣2,所以A选项的式子正确;B、由x<y得﹣x>﹣y,则2﹣x>2﹣y,所以B选项的式子正确;C、由x<y得﹣x>﹣y,所以C选项的式子正确;D、由x<y得x+3<y+3,所以D选项的式子错误.故选:D.3.下列语句:①点(4,5)与点(5,4)是同一点;②点(4,2)在第二象限;③点(1,0)在第一象限;④点(0,5)在x轴上.其中正确的是()A.①②B.②③C.①②③④D.没有【分析】直接利用各象限内点的坐标特点得出答案.解:①点(4,5)与点(5,4)是不同的点,故此选项错误;②点(4,2)在第一象限,故此选项错误;③点(1,0)在x轴上,故此选项错误;④点(0,5)在y轴上,故此选项错误.故选:D.4.下列说法错误的是()A.﹣1的立方根是﹣1B.4的平方根是2C.是2的一个平方根D.﹣是的一个平方根【分析】分别根据立方根的定义,平方根的定义逐一判断即可得出正确选项.解:A.﹣1的立方根是﹣1,说法正确;B.4的平方根是±2,故原说法错误;C.是2的一个平方根,说法正确;D.是的一个平方根,说法正确.故选:B.5.估算+3的值是在()A.8和9之间B.7和8之间C.6和7之间D.5和6之间【分析】首先确定的范围,再确定+3的范围即可.解:∵<,∴5<<6,∴8+3<9,故选:A.6.某不等式组中的两个不等式的解集在数轴上表示如图,则该不等式组的解集为()A.x<4B.x<2C.x≤2D.2≤x<4【分析】根据“同小取小”可得答案.解:由数轴知该不等式组的解集为x≤2,故选:C.7.如意运输公司要将500吨物资运往某地,现有A、B两种型号的车可供调用.已知A型车每辆可装30吨,B型车每辆可装25吨.在每辆车不超载的条件下,把500吨物资装运完.在已确定调用8辆A型车的前提下,至少需要调用B型车的辆数是()A.11B.14C.13D.12【分析】设需要调用x辆B型车,根据调用的两种型号的车一次运货辆不少于500吨,即可得出关于x的一元一次不等式,解之取其中最小的整数值即可得出结论.解:设需要调用x辆B型车,依题意,得:30×8+25x≥500,解得:x≥10.∵x为正整数,∴x的最小值为11.故选:A.8.为加强锻炼增强体魄,我校初三(1)班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与各活动小组人数分布情况的扇形图和条形图如图所示:①该班学生50名学生②篮球有16人③跳绳人数所占扇形圆心角为57.6°④足球人数所占扇形圆心角为120°这四种说法中正确的有()A.2个B.0个C.1个D.3个【分析】①根据乒乓球的人数和所占的百分比求出总人数;②用总人数减去其它项目的人数,求出篮球的人数;③用360°乘以跳绳人数所占的百分比即可得出答案;④用360°乘以足球人数所占的百分比即可得出答案.解:①该班学生数是:12÷=48(名),故本选项错误;②篮球有:48﹣16﹣12﹣8=12(人),故本选项错误;③跳绳人数所占扇形圆心角为360°×=60°,故本选项错误;④足球人数所占扇形圆心角为360°×=120°,故本选项正确;这四种说法中正确的有1个,故选:C.9.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣2,﹣1)(﹣2,2)和(4,﹣1),则第四个顶点的坐标为()A.(﹣2,2)B.(4,2)C.(4,4)D.(4,3)【分析】先在平面直角坐标系中描出点(﹣2,﹣1)(﹣2,2)和(4,﹣1),然后根据矩形的性质画出矩形得到第四个点的位置,再写出第四个顶点的坐标.解:如图,∵A(﹣2,﹣1),B(﹣2,2),C(4,﹣1),∴BD=AC=2+4=6,∴第四个顶点D的坐标为(6﹣2,2),即(4,2).故选:B.10.小明和小亮周末相约去电影院看电影,下面是他们的一段对话:小明:小亮,你下了300路公交车后,先向前走300米,再向左转走200米,就到电影院了,我现在在电影院门口等你呢!小亮:我按你说的路线走到了W超市,不是电影院啊?小明:你走到W超市是因为你下车后先向西走了,如果你先向北走就能到电影院了.根据上面两个人的对话记录,小亮现在从W超市去电影院的路线是()A.向南直走500米,再向西直走100米B.向北直走500米,再向西直走100米C.向南直走100米,再向东直走500米D.向北直走500米,再向东直走100米【分析】根据对话画出图形,进而得出从W超市去电影院的路线.解:如图所示:从W超市去电影院的路线:向北直走200+300=500米,再向东直走300﹣200=100米.故选:D.二、填空题(每题3分,共24分)11.若3x﹣5的算术平方根是4,则它的另一个平方根是﹣4,x=7.【分析】根据平方根的性质可得另一个平方根是﹣4,再根据算术平方根的定义计算即可.解:3x﹣5的算术平方根是4,则它的另一个平方根是﹣4,由题意得:3x﹣5=42,解得:x=7,故答案为:﹣4;7.12.为确保“中国共产党十九次代表大会”的安全,对进入会场的党代表的安全检查应采用全面调查(填“全面调查”或“抽样调查”)【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进而得出答案.解:为确保“中国共产党十九次代表大会”的安全,对进入会场的党代表的安全检查应采用全面调查.故答案为:全面调查.13.不等式﹣3x﹣9≤0的非正整数解为﹣3、﹣2、﹣1、0.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得其解集,再得出其非正整数解.解:由原不等式得﹣3x≤9,x≥﹣3,则不等式的非正整数解为﹣3、﹣2、﹣1、0,故答案为:﹣3、﹣2、﹣1、0.14.课间操时小华、小军、小刚的位置如图所示,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以用坐标表示成(4,3).【分析】以小华的位置为坐标原点建立直角坐标系,然后写出小刚所在位置的坐标即可.解:如图,小刚的位置可以用坐标表示成(4,3).故答案为(4,3).15.所有满足<x<的整数x有3,4.【分析】首先确定和的范围,然后可得整数x的值.解:∵<<,∴2<3,∵<,∴4<<5,∴<x<的整数x=3或4,故答案为:3,4.16.在平面直角坐标系中,若点P(m﹣4,m+2)在y轴上,则m=4,点P的坐标为(0,6).【分析】直接利用y轴上点的坐标特点得出m的值,进而得出答案.解:∵点P(m﹣4,m+2)在y轴上,∴m﹣4=0,解得:m=4,∴m+2=6,∴点P的坐标为:(0,6).故答案为:4,(0,6).17.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊600只.【分析】捕捉60只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有20只,根据所占比例解得.解:20 =600(只).故答案为600.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣b,﹣a),如f(1,3)=(﹣3,﹣1);②g(a,b)=(b,a),如g(1,3)=(3,1);③h(a,b)=(﹣a,b),如h(1,3)=(﹣1,3).且规定了运算顺序是“由内到外”,例如按照以上规定有:f(g(2,﹣3))=f(﹣3,2)=(﹣2,3),那么f(g(h(5,﹣3)))=(5,3).【分析】根据题意找到运算法则f、g、h,然后运用相应的运算法则解答.解:由题意知,f(g(h(5,﹣3)))=f(g(﹣5,﹣3))=f(﹣3,﹣5)=(5,3).故答案是:(5,3).三、解答题(第19题8分,第20题10分,第21-24每题7分,共46分)19.(1)计算:(﹣2)3+﹣;(2)﹣+2+|2﹣|.【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用立方根以及二次根式的性质分别化简得出答案.解:(1)原式=﹣8+2﹣3=﹣9;(2)原式=﹣3﹣2+2+﹣2=﹣7+3,20.(1)解不等式3x+5<8(x﹣1)+3,并写出满足此不等式的最小整数解.(2)解不等式组,并把它的解集在数轴上表示出来.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:(1)3x+5<8x﹣8+3,3x﹣8x<﹣8+3﹣5,﹣5x<﹣10,x>2,所以此不等式的最小整数解为3;(2)解不等式﹣2(x+3)≤7x+3,得:x≥﹣1,解不等式﹣<,得:x<4,则不等式组的解集为﹣1≤x<4,将不等式组的解集表示在数轴上如下:21.近年来,我国汽车销售市场较为低迷,2018年国内汽车市场进入拐点,汽车产销同比均呈较快下降趋势,受销售不佳的影响,汽车厂商开始减少汽车的生产,2018年中国汽车产销率首次突破100%.2019年汽车行业发展状况仍然不太乐观,截至2019年11月,中国汽车累计销量2311万辆,同比下降9.1%.如图是根据中国汽车工业协会的有关数据整理的统计图.根据以上信息,回答下列问题:(1)2018年国内汽车市场进入拐点,意思是说比2017年的汽车销量减少,减少了79.83万辆(保留小数点后两位);(2)从2010年到2019年,汽车销售增速最快大约是13.95%;(3)请依次回答以下5个问题:从2010年到2019年11月,哪一年的汽车销量最高?是多少万辆?与上一年相比,增速约为多少?预估2020年我国汽车销量将达到多少万辆?你的预估理由是什么?【分析】(1)根据条形统计图,用2017年汽车销量减去2018年汽车销量即可;(2)由图可得,从2010年到2019年,汽车销售增速最快的是2016年,根据数据计算即可;(3)由条形统计图可知,从2010年到2019年11月,2017年的汽车销量最高,是2887.89万辆;根据数据可求与上一年相比的增速;根据题意,结合实际情况可预估2020年我国汽车销量.解:(1)2887.89﹣2808.86=79.83(万辆).故答案为:79.83;(2)由图可得,从2010年到2019年,汽车销售增速最快的是2016年,增速大约是:×100%≈13.95%.故答案为:13.95;(3)从2010年到2019年11月,2017年的汽车销量最高,是2887.89万辆;与上一年相比,增速约为:×100%≈3.04%;预估2020年我国汽车销量将达到2297.27万辆,预估理由是:截至2019年11月,中国汽车累计销量2311万辆,同比下降9.1%,2020年,受新冠肺炎影响,预估同比下降10%.2020年,汽车销量:2808.06×(1﹣9.1%)×(1﹣10%)≈2297.27(万辆).22.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (﹣1,0).(1)在坐标系中画出△ABC并写出△ABC的面积为5.(2)点P(a﹣4,b+2)是△ABC内任意一点.将△ABC平移至△A1B1C1的位置,点A,B,C,P的对应点分别是A1,B1,C1,P1.若点P1的坐标为(a,b).在坐标系中画出△A1B1C1.(3)若坐标轴上存在一点M,使△BCM的面积等于△ABC的面积,求点M的坐标.【分析】(1)根据点A(﹣3,2),B(0,4),C(﹣1,0),即可在坐标系中画出△ABC并写出△ABC的面积;(2)点P(a﹣4,b+2)是△ABC内任意一点.将△ABC向右平移4个单位,再向下平移2个单位即可在坐标系中画出△A1B1C1;(3)根据△BCM的面积等于△ABC的面积,即可在坐标轴上找到点M.解:(1)如图,△ABC即为所求,△ABC的面积为:12﹣3﹣2﹣2=5;故答案为:5;(2)如图,△A1B1C1即为所求;(3)因为△BCM的面积等于△ABC的面积,所以点M的坐标为(﹣3.5,0)或(1.5,0).23.列方程组或不等式解决实际问题:某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元.(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?【分析】(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,根据“1辆A型车和2辆B型车,销售额为70万元;本周已售出3辆A型车和1辆B型车,销售额为80万元”即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A型车m辆,则购进B型车(7﹣m)辆,根据总价=单价×数量结合购车总费用不超过154万元,A型号车不少于2辆,即可得出关于m的一元一次不等式组,再解即可.解:(1)设每辆车A型车的售价为x万元,每辆车B型车的售价为y万元,依题意,得:,解得:,答:每辆车A型车的售价为18万元,每辆车B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得:,解得:3.5≥m≥2.∵m为整数,∴m=2或3,答:有2种购车方案:购进A型车2辆,购B型5辆;购进A型车3辆,购B型4辆.24.设x为实数,我们用{x}表示不小于x的最小整数,如:{3.2}=4,{﹣2}=﹣2.在此规定下,任一实数都能写成x={x}﹣a的形式.(1)若﹣1.2={﹣1.2}﹣a,则a=0.2;(2)直接写出{x}、x与x+1这三者的大小关系:x≤{x}<x+1;(3)满足{2x+5}=4的x的取值范围是﹣1<x≤﹣;满足{2.5x﹣3}=4x﹣的x 的取值是﹣或﹣.【分析】(1)利用{x}表示不小于x的最小整数,可得方程﹣1.2=﹣1﹣a,解方程即可求解;(2)利用x={x}﹣b,其中0≤b<1得出0≤{x}<x+1,进而得出答案;(3)利用(2)中所求得出2x+5≤4<2x+5+1,进而得出即可;利用(2)中所求得出2.5x﹣3≤4x﹣<(2.5x﹣3)+1,进而得出即可.解:(1)∵﹣1.2={﹣1.2}﹣a,∴﹣1.2=﹣1﹣a,解得a=0.2;(2)x≤{x}<x+1,理由:∵x={x}﹣b,其中0≤b<1,∴b={x}﹣x,∴0≤{x}<x+1,∴x≤{x}<x+1;(3)依题意有2x+5≤4<2x+5+1,解得:﹣1<x≤﹣;依据题意有2.5x﹣3≤4x﹣<(2.5x﹣3)+1且4x﹣为整数,解得:﹣≤x<﹣,∴﹣≤4x﹣<﹣,∴整数4x﹣为﹣6,﹣5,解得:x=﹣或x=﹣.故答案为:0.2;x≤{x}<x+1;﹣1<x≤﹣,﹣或﹣.。