人教版九年级数学上册23.1 《图形的旋转》课件
合集下载
人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.
九年级上册23.1图形的旋转(共19张PPT)
知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.
23.1图形的旋转教学课件(共35张PPT)
线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。
人教版数学九年级上册 23.1图形的旋转(课件19张PPT)
解:(1)旋转中心是A;
M. E
(2)旋转了60度;
BD
C
(3)点M转到了AC的中点位置上.
思考:图形的旋转是由什么 决定的 ?
由旋转中心、角度 和方向决定.
课堂回顾:这节课,主要学习了什么?
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转
旋转的性质:
2次 1200 , 2400
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度?
33个个 11次次 1680000
例2 :如图,ABC是等边三角形,D是BC上一点,
ABD经过 旋转后到达ACE的位置。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果M是AB的中点,那么经过上述旋
A
转后,点M转到了什么位置?
下列现象中属于旋转的有( )个
①地下水位逐年下降;②传送带的移
动;③方向盘的转动;④水龙头开关
的转动;⑤钟摆的运动;⑥荡秋千运
动.
A.2
B.3Biblioteka C.4 D.5平移和旋转的异同: 1、相同:都是一种运动;运动前后 不改变图形的形状和大小
2、不同
运动方向
平移
直线
运动量 的衡量 移动一定距离
旋转
顺时针或 逆时针
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
练习2:本图案可以看做是一个菱形通过几次
旋转得到的?每次旋转了多少度?
5次
600, 1200, 1800, 2400, 3000
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
人教版数学九年级上册23.1图形的旋转课件
(2)时钟的时针在不停地转动,从 中午 12 时到下午 4 时,时针旋转的旋 转角是多少度?从上午 9 时到上午 10 时呢?
(4)填空
O 45°
B
A
点A绕_O_点,往_顺_时_针方向,
转动了_4_5 度到点B.
B´ A
C0
100
A´
B
O
C´
△ABC绕_O_点,往_顺_时_针方向,转动了_10_0 度到△A’B’C’
旋转的三要素: 旋转中心 旋转方向
旋转角度
例题解析
例题:如图,△的对应点是____点__D__;
A
线段OB的对应线段是__线__段__O__D;
线段CD的对应线段是__线__段__A_B_;
B
∠AOB的对应角是__∠__C_O__D_;
C
∠B的对应角是____∠__D__;
旋转.
点 O 叫旋转中心,转动的角叫做旋转角.
如果图形上的点 P 经过 旋转变为点 P′,那么这 两个点叫做这个旋转的 对应点.
P
O 120° P′
3.小试牛刀
(1)下列现象中属于旋转的有( C )个
①地下水位逐年下降; ②方向盘的转动; ③水龙头开关的转动; ④钟摆的运动; ⑤荡秋千运动. A.2 B.3 C.4 D.5
温故而知新: 这种图形变换叫什么?
平移的定义:
平移变换
在平面内,将一个图形沿某个方向移 动一定的距离,叫做图形的平移.
平移的特征: 平移不改变图形的形状和大小。
平移前后图形是全等的.
轴对称变换
轴对称:把一个图形 沿着某一条直线折叠, 如果它能够与另一个 图形重合,那么就说 这两个图形关于这条 直线(成轴)对称
人教版初中数学23.1 图形的旋转 (第1课时) 课件
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCE中, ∠ACD=∠BCE
CD=CE ∴△ACD≌△BCE(SAS).
连接中考
23.1 图形的旋转/
(2)当AD=BF时,求∠BEF的度数.
解:(2)∵∠ACB=90°,AC=BC,
如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点
(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针
方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
解:(1)由题意可知:CD=CE,∠DCE=90°,
人教版 数学 九年级 上册
23.1 图形的旋转/
23.1 图形的旋转 (第1课时)
导入新知
23.1 图形的旋转/
新 疆 的 风 车 田
导入新知
23.1 图形的旋转/
荷 兰 的 大 风 车
导入新知
23.1 图形的旋转/
游 乐 场 的 摩 天 轮
导入新知
23.1 图形的旋转/
卫星 拍摄 到的 台风 “桑 美” 的中 心旋 涡
旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中 “旋转中心,旋转方向,旋转角度”称之为旋转 的三要素;②旋转变换同样属于全等变换.
探究新知
23.1 图形的旋转/
素养考点 2 旋转角度的计算
例2 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则 旋转的角度为( C )
人教版数学九年级上册:23.1《图形的旋转》 PPT课件(共24页)
转动硬纸板,再描出这个挖掉的三角形洞
(△A′B′C′),移开硬纸板.
请大家运用刻度尺和量角器度量线段和有关角,并
探索旋转的性质.
O
A'
C'
B'
归纳总结
旋转的性质
对应点到旋转中心的距离相等. 对应点与旋转中心所连线段的夹角等于旋转角. 旋转前后的图形全等.
三、掌握新知
例 如图,E是正方形ABCD中CD边上任意一点,以点A为
中心,把△ADE顺时针旋转90°,画出旋转后的图形.
分析:关键是确定△ADE三个顶点的 A
D
对应点,即它们旋转后的位置.
E
B
C
解: 因为点A是旋转中心,所以它
A
D
的对应点是它本身.
在正方形ABCD中,
E
AD=AB,∠DAB=90°,所以旋
E' B
C
转后点D与点B重合.
设点E的对应点为点E′,因为旋转后的图形与旋转
(1)选择不同的旋转中心、不同的旋转角,看看旋转 效果; (2)改变三角形的形状,看看旋转效果.
五、运用新知
请以下列图形为基纳小结
第二十三章 旋 转
23.1 图形的旋转
第1课时 旋转的概念及性质
一、复习导入
问题 我们以前学过图形的平移、对称等变换,它们 有哪些特征? 生活中是否还有其他运动变化呢?回答是肯定的,下 面我们就来研究.
二、探索新知
探索1
归纳总结
把一个图形绕着某一定点O 转动一定角度的图 形变换叫做_旋__转_____.这个定点O 叫旋__转__中__心___,转
动的角叫做_旋__转__角_. 如果图形上的点P经过旋转变为点P′,那么点P
数学人教版九年级上册23.1《图形的旋转》课件 (共13张PPT)
点,即它们旋转后的位置.
A
D
E
还有别的办
法吗?
E′ B
C
△ABE′为旋转后的图形.
7/2/2019
课堂小结
1. 旋转的定义:在平面内,把一个图形绕某一个定点 转动一个角度的图形变换称为旋转. 这个定点称为
这旋转节中课心你,学转动到的了角什称为么旋知转识角?.
2. 旋转的性质: ① 旋转前、后的图形全等. ② 对应点到旋转中心的距离相等. ③ 对应点与旋转中心所连线段的夹角等于旋转角.
④ 3.旋转应用(如作图)
7/2/2019
作业:P62-63第3,5,9
7/2/2019
祝老师们工作胜 利、身体健康!
祝同学们学习进 步,中考胜利!
7/2/2019
旋转角是_∠_A__O_D__,___∠_B__O_E_,__ ∠COF ;
7/2/2019
探究活动
A
B'
C'
B
A'
探旋究转的问性题质:
O
C
1.在图形的旋转过程中,哪些发生了改变?哪些没有发
生改变旋? 转前、后的图形全等;
2.分别连结对应点A、A'与旋转中心O,量一量线段OA与
线段对OA应',它点们到有旋什转么中关心系?的任距意离找一相对等对; 应点,量一下
南康六中 黄过房
探索新知
钟表的指针在不停地转动,如图,从3时到5时,时针转动了多少度?
12 11 10
9
8 76
1 2 3
4 5
如图,风车风轮的每个叶片在风的吹动下转动到新的位置,以上这 些现象有什么共同特点呢?
7/2/2019
指针、叶片等看作图形.
人教版九年级数学上册课件:23.1图形的旋转_(共29张PPT)
在平面内,将一个图形绕着一个定点沿 某个方向转动一个角度,这样的图形运 动称为旋转。
这个定点称为旋转中心,转动的角称
为旋转角。
A
B
旋转角
o
旋转中心
如果一个图形沿着一条直线对折,两侧的 图形能够完全重合,这个图形就是轴对称图形。
钟表的指针在不停地转动,如图,从3时到5时,时 针转动了多少度?
12 11 10
9
8 76
1 2 3
4 5
时针转了60°
物体绕定点 转动
风车风轮的每个叶片在风的吹动下转动到新的位置。 以上这些现象有什么共同的特点?
归纳定义
把一个图形绕着某一定点O转动一个角度 的图形变换叫做旋转.这个定点O叫旋转中心, 转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这 两个点P和P′叫做这个旋转的对应点.
复习:
平移的定义:在平面内,将一个图形沿某个方向移动一
定的距离,这样的图形运动称为平移. 平移不改变图形的形状和大小, 平移由移 动的方向和距离决定.
平移的性质:经过平移,对应点所连的线段平行且相
等;对应线段平行且相等,对应角相等.
在平面内,将一个图形整体沿某个方向 移动一定的距离,这样的图形运动叫做平 移。
9
8 76
1 2 3
4 5
旋转角度是90°
12 11 10
9
8 76
1 2 3
4 5
旋转角度是30°
3.如图,杠杆绕支点转动撬起重物,杠杆 的旋转中心在哪里?旋转角是哪个角?
A
B/ O
B
A/
旋转中心在支点O 旋转角为∠AOA/
实践探究
A 在硬纸板上,挖一个三角形洞,再挖一个小
人教版九年级上册数学 23.1图形的旋转 (共90张PPT)
活动二
B´ A C B O
A´
C´
找一找:找出旋转的旋转角,这些角有什么关系? ∠AOA ′ ∠COC′ =′ ∠BOB= 对应点与旋转中心所连线段的夹角等于旋转角。
活动二
B´
A C A´
B
旋转的性质:
转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角.
B
O
C´
看一看:在旋转过程中△ABC的形状大小是否 发生改变?旋转前后的两个三角形有什么关系?
旋转前后的图形全等。 (旋转不改变图形的大小和形状。)
活动二 A
C
B´
A´
B
O
C´
量一量:图中的OC和哪条线段相等?还有没有 类似这样对应相等的线段呢? OC=OC′ OA=OA ′ OB=OB ′
对应点到旋转中心的距离相等。
A D
E′
B
∴点 A 的对应点是它本身. 又∵AD = AB,∠DAB = 90°, E ∴旋转后点 D 与点 B 重合. ∴ △ABE′≌△ADE, ∴点 E 的对应点 E′在 CB 延 C 长线上,且 BE′= DE. 使 BE′= DE,连接 AE′
还有别的方法能 将△ADE旋转为 △ABE′吗?
从生活中来
23.1 图 形 的 旋 转(1)
活动1:自主学习
自学提纲:
自学课本59页练习前的内容,解决问题:
1.什么叫做图形的旋转? 2. 图形旋转的条件是什么? 3. 说一说你知道的我们生产、生活中旋转的 例子.
旋转的概念:
把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的旋转.
活动三
例:如图,E是正方形ABCD中CD边上 任意一点,以点A为中心,把△ADE顺时针 旋转90°,画出旋转后的图形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视频:正n边形的旋转特性
例3 如图,点E是正方形ABCD内一点,连接AE、BE、 CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置, 若AE=1,BE=2,CE=3则∠BE′C=__1_3_5____度.
解析:连接EE′, 由旋转性质知BE=BE′,∠EBE′=90°,
∴∠BE'E=45°,EE′ 2 2.
∠CBC1,
在△BCF与△BA1D中,
A1AB1
C, BC,
A1BD CBF,
△BCF≌△BA1D;
当堂练习
1.下列现象中属于旋转的有( C)个
①地下水位逐年下降;②传送带的移动;③方向 盘的转动;④水龙头开关的转动;⑤钟摆的运动; ⑥荡秋千运动. A.2 B.3 C.4 D.5
2. 下列说法正确的是( B )
双击打开
点击画面中按钮进行操作演示
知识要点
旋转的定义 在平面内,将一个图形绕一
个定点按某个方向转动一个角 度,这样的图形运动称为旋转.
这个定点称为旋转中心. 转动的角称为旋转角.
P
对应点
O
旋转中心
旋转角 120
P′
如果图形上的点P经过旋转变为点P',这两个点叫做 这个旋转的对应点.
转动的方向分为顺时针与逆时针.
B. 1.5 C. 2 D. 1
E
A
C
D
B
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20 °, ∠ A ′ OB =24°,
AB=3,OA=5,则A ′ B ′ = 等于 44 ° .
3 ,OA ′ = 5 ,旋转角
5.△ABC绕点A旋转一定角度后得到△ADE,若BC=4, AC=3,则下列说法正确的是( D )
必须明确 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转 中心,旋转方向,旋转角度”称之为旋转的三要素; ②旋转变换同样属于全等变换.
例2 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则 旋转的角度为( C )
A.30° B.45° C.90° D.135°
在△EE′C中,E′C=1,EC=3,
EE′ 2 2.
由勾股定理逆定理可知∠EE′C=90°, ∴∠BE′C=∠BE′E+∠EE′C=135°.
例4 如图,将等腰△ABC绕顶点B逆时针方向旋转α
度到△A1BC1的位置,AB与A1C1相交于点D,AC与 A1C1,BC1分别交于点E,F. 求证:△BCF≌△BA1D;
观察下图,你能得
到什么结论?
A'
A
B'
C
B
ቤተ መጻሕፍቲ ባይዱ
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
双击打开
知识要点
A E
F
B
D
旋转的性质
O C
1.对应点到旋转中心的距离相等; 2.两组对应点分别与旋转中心的连线所成的角相等.
3.旋转中心是唯一不动的点. 4.旋转不改变图形的形状和大小.
解析:对应点与旋转中心的连线的夹角,就是旋转角,由图 可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角 为90°.故选C.
二 旋转的性质
合作探究
A
. A′
△ABC是如何运动 到△A′B′C的位置?
.
绕点C逆时针旋转45°.
B′
... 45°
CM
B
根据上图填空. 旋转中心是点_____C_____; 图中对应点有 __点__A_与__点__A_′_,点__B_与__点__B__′,_点__M_与__点__M__′,_点__N_与__点__N_′; 图中对应线段有 __线__段__C_A__与__C_A_′_、__C_B_与__C__B_′、__A_B__与__A_′B__′ ____. 每对对应线段的长度有怎样的关系? 相等 图中旋转角等于__4_5_°____.
旋转中心是___O___,旋转角是∠__A_O__B____,旋转角
等于_6_0__度,其中的对应点有_A_与__B___、 _B_与__C___、 _C__与__D__、 _D__与__E__、 __E_与__F__、 _F_与__A___ .
B
A C
O
F
D
E
归纳总结
确定一次图形的旋转时, 旋转中心
A.DE=3 B.AE=4 C.∠CAB是旋转角 D.∠CAE是旋转角
6.如图(1)中,△ABC和△ADE都是等腰直角三角形, ∠ACB和∠D都是直角,点C在AE上,△ABC绕着A 点经过逆时针旋转后能够与△ADE重合,再将图(1) 作为“基本图形”绕着A点经过逆时针旋转得到图 (2).两次旋转的角度分别为( A )
解析:根据等腰三角形的性质得到AB=BC,∠A= ∠C,由旋转的性质得到A1B=AB=BC,∠A1=∠A= ∠C,∠A1BD=∠CBC1,根据全等三角形的判定定 理得到△BCF≌△BA1D;
证明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
由旋转的性质,可得
A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=
A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
3.如图,将Rt△ABC绕点A按顺时针方向旋转一定
角度得Rt △ADE,点B的对应点D恰好落在BC边上.
若AC= 3 , ∠B=60 °,则CD的长为( D )
A. 0.5
B
A
思考:怎样来定
义这种图形变换?
把时针当成一个图形,那么它可以绕着中心 固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时 针转动了_1_2_0_°__度.
双击打开
怎样来定义 这种图形变换?
把叶片当成一个平面图形,那么它可以绕着 平面内中心固定点转动一定角度. 风车风轮的每个叶片在风的吹动下转动到新的位置.
典例精析
例1. 三角形ABD经过旋转后到三角形ACE的位置.
(1)旋转中心是哪一点?
(2)旋转了多少度?顺时针还是逆时针?
(3)如果M是AB的中点,经过上述旋转后,点M转到什
么位置?
A
解:(1)旋转中心是点A;
M.
(2)旋转了60 °,逆时针;
E (3)点M转到了AC的中点上.
B
C
D
填一填:若叶片 A 绕 O 顺时针旋转到叶片 B,则
人教版九年级数学上册
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念与性质
学习目标
1.掌握旋转的有关概念及基本性质.(重点) 2.能够根据旋转的基本性质解决实际问题.
导入新课
情境引入
这些运动有什么共同的特点?
讲授新课
一 旋转的概念
观察与思考
问题 观察下列图形的运动,它有什么特点?
O
0
45