八年级数学上册第13章全等三角形13.1命题定理与证明1命题习题课件新版华东师大版
华东师大版数学八年级上册1.1命题课件
如果两个角是对顶角,那么这两个角相等.
条件
结论
①两直线平行,同位角相等;②直角都相等.
这两个命题,条件和结论分别是什么?
有些命题的条件和结论不明显,可将它经过适当 变形,改写成“如果……,那么……”的情势.
①两直线平行,同位角相等;②直角都相等. ①如果两直线平行,那么同位角相等;
条件
结论
②如果给出的角是直角,那么这些角都相等.
条件成立时,不能保证结论总是正确,也就是 说结论不成立.像这样的命题,称为假命题.
命题的判断方法: 真命题:用演绎推理论证; 假命题: “举反例”.
例题
【例3】判断下列命题是真命题还是假命题. (1)互为补角的两个角相等; (2)若a=b,则a+c=b+c; (3)如果两个长方形的周长相等,那么这两个长 方形的面积相等. 分析:如果是真命题,给出理由即可,如果是 假命题,需要“举反例”.
练习
1.下列语句:①钝角大于90°;②两点之间,线
段最短;③希望明天下雨;④作AD⊥BC;⑤
同旁内角不互补,两直线不平行.其中是命题
的是( B)
A.①②③
B.①②⑤
C.①②④⑤ D.①②④
2.命题“平行于同一条直线的两条直线互相平行” 的
条件是( D )
A.平行
B.两条直线
C.同一条直线 D.两条直线平行于同一条直线
例2中的命题,是正确的吗?
根据等边三角形的判定,我们知道,例2的命题 是正确的. 如果条件成立,那么结论一定成立.像这样的 命题,称为真命题.
思考
内错角相等. 一个钝角和一个锐角的和是平角. 这两个命题是真命题吗?
我们知道,只有两直线平行时形成的内错角才 相等.所以第一个命题不是真命题. 91°和1°的和不是平角,所以第二个命题也不 是真命题.
【华师大版】初中八年级数学上册第13章全等三角形课件
∴∠1=∠2( ) ∴∠3=∠4( )
∴AC∥FD(内错角
BC=ED(已证) 相等,两直线平行
∴△ABC≌△FED(SAS)
如图小线明段的设AB计是方一案个:池先在塘池的塘长旁度取,一个能 现直在接到想达测A量和这B处个的池点塘C的,连长结度A,C并在延长至 水方D使这点上法个BC,长测较=使度E量方CA就,不便C等=连方地D于结便把CAC,池,,D连,B塘你两结用的有点B米C长什的并尺度么距延测测好离长出。量的至D请EE的点你长,说, 出明来理由吗。?想想看。
2cm
60°
80°
60°
80°
你画的三角形与同伴
画的一定全等吗?
2、角.角.边
若三角形的两个内角分别是60° 和45°,且45°所对的边为3cm, 你能画出这个三角形吗?
60°
45°
分析:
这里的条件与1中的条件有什 么相同点与不同点?你能将它 转化为1中的条件吗?
60°
75°
两角和它们的夹边对应相 等的两个三角形全等,简写 成“角边角”或“ASA”
“边边角”不能判定两个三角形全等
2.在下列推理中填写需要补 充的条件,使结论成立:
(1)如图,在△AOB和△DOC中
A
D
O
AO=DO(已知)
B
C
∠__A__O_B_=_∠___D_O__C_( 对顶角相等 )
BO=CO(已知)
∴ △AOB≌△DOC( SAS )
(2).如图,在△AEC和△ADB中, C
AB = AC,
B
C
∠A = ∠A(公共角),
AD = AE,
∴ △ ABE ≌ △ ACD(SAS).
练习二
1.若AB=AC,则添加什么条件可得
八年级数学上第13章全等三角形13.5逆命题与逆定理1互逆命题与互逆定理授课课华东师大
知2-讲
总结
判断一个定理是否有逆定理的方法:先把定理作为 命题,写出它的逆命题,然后判断其逆命题是否正 确, 如果不正确,举一个反例即可,如果是真命题,加 以证 明即可判断原定理有逆定理.
1 下列定理中,没有逆定理的是( ) A.两直线平行,同旁内角互补 B.全等三角形的对应角相等 C.直角三角形的两个锐角互余 D.两内角相等的三角形是等腰三角形
谢谢观赏
You made my day!
我们,还在路上……
题就
知1-讲
例1 判断下列命题的真假,写出逆命题,并判断逆命 题的真假:
(1)如果两条直线相交,那么它们只有一个交点; (2)如果a>b,那么a2>b2; (3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0. 导引:根据题目要求,先判断原命题的真假,再将原命 题的条件和结论部分互换,写出原命题的逆命 题,最后判断逆命题的真假.
知2-练
1.每一个命题都有逆命题,只要将原命题的条件 改成结论,并将结论改成条件,就可以得到原命 题的 逆命题.但原命题的真假与逆命题是否为真命题 没有 丝毫关系. 2.每个定理都有逆命题,但每个定理不一定都有 逆定理,只有当定理的逆命题经过证明是正确的, 才
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五2022/3/112022/3/112022/3/11 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/112022/3/112022/3/113/11/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/112022/3/11March 11, 2022 4、享受阅读快乐,提高生活质量。2022/3/112022/3/112022/3/112022/3/11
华师大版八年级上册1命题、定理与证明课件
∵ DF 平分∠ CDO,BE 平分∠ ABO(已知),
∴∠ 1= 1 ∠ CDO,∠ 2= 1 ∠ ABO(_角__平__分__线__的__定__义_ ).
2
2
∴∠ 1= ∠ 2(等量代换).
解题秘方:根据上一步的因为条件填写下一步的根据.
感悟新知
4-1. 如图, 已知: 点A,B,C 在同一条直线上.
感悟新知
知1-练
解:条件:两个角互为补角;结论:这两个角相等. 假命题. 条件:a=b;结论:a+c=b+c. 真命题. 条件:两个长方形的周长相等;结论:这两个长方
形的面积相等. 假命题.
感悟新知
知1-练
2-1. 下列命题是真命题的是( A ) A. 如果两个角不相等,那么这两个角不是对顶角 B. 如果a2=b2, 那么a=b C. 两个互补的角一定是邻补角 D. 如果两个角是同位角,那么这两个角一定相等
知2-练
感悟新知
知识点 3 命题证明的一般步骤
知3-讲
1. 证明 根据条件、定义以及基本事实、定理等,经过演绎 推理,来判断一个命题是否正确,这样的推理过程叫做 证明.
感悟新知
知3-讲
2. 命题证明的一般步骤 第一步:分清命题的条件和结论,若命题与图形有关,则
根据题意,画出图形,并在图形上标出相关的字母和符号; 第二步:根据条件、结论,结合图形,写出已知、求证; 第三步:视察图形,分析证明思路,找出证明方法; 第四步:写出证明的过程,并注明根据.
结论不成立,像这样的命题,称为假命题.
感悟新知
知1-练
例 1 把下列命题改写成“如果……,那么……”的情势: 对顶角相等; 平行于同一条直线的两条直线平行; 同角或等角的余角相等. 解题秘方:紧扣命题的结构情势进行改写.
八年级数学上册 第13章 全等三角形13.1 命题、定理与证明 2定理与证明课件
3.经过分析,找出由已知推出求证的
途径,写出证明过程.
第十一页,共二十二页。
根据下列命题,画出图形,并结合
图形写出已知、求证(不写证明过程):
1)垂直于同一直线的两直线平行;
2)内错角相等,两直线平行;
3)一个角的平分线上的点到这个角的两边
的距离相等; 4)两条平行线的一对(yī duì)内错角的平分线互相
∴ OE⊥OF 2 第十七页,共二十二页。
如何(rúhé)判断一个命题是假命题?
只要举出一个例子(反例),
它符合(fúhé)命题的题设,但不满足 结论就可以了.
第十八页,共二十二页。
判断下列(xiàliè)命题是真命题还是假命题.
如果是假命题,举出一个反例:
1)相等的角是对顶角; 2)同位角相等;
4)两条平行线的一对(yī duì)内错角的平分线互相 平行.
已知:如图,AB、CD被直线EF所截,且
AB∥CD,EG、FH分别(fēnbié)是∠AEF和
∠EFD的平分线
求证:EG∥FH
A
E
B
G CF
第十六页,共二十二页。
H D
例2.证明(zhèngmíng):邻补角的平分线互相垂直.
已知:如图,∠AOB、∠BOC互为邻补角(bǔ , jiǎo)
c
3a
1
2
b
第九页,共二十二页。
c
证明 :∵a∥已b 知( (zhèngmíng)
∴∠3=∠2
3a
1
)2
b
(两直线平行(píngxíng),同位角相) 等
∵ ∠3=∠1 ( 对顶角相等)(xiāngděng)
∴∠1=∠2 ( 等量代换)
华师版八年级数学上册作业课件(HS)第十三章 全等三角形 命题、定理与证明 第1课时 命题
(2)同一个角的两个补角相等. 解:如果两个角是同一个角的补角,那么这两个角相等
6.(4分)下列命题是真命题的是( C ) A.不相交的两条直线是平行线 B.同旁内角互补 C.对顶角的角平分线成一条直线 D.一个数能被5整除,那么这个数的末位数是0
7.(4 分)下列命题是假命题的是( B )
A.若 x<y,则 x+2 015<y+2 015 B.单项式-4x72y3 的系数是-4 C.若|x-1|+(y-3)2=0,则 x=1,y=3 D.平移不改变图形的形状和大小
两个直角 以举反例:____________.
15.把命题“平行于同一直线的两直线平行”改写成“如果……,那 么……”的形式:
___如__果__有__两__条__直__线__平__行__于__同__一__条__直__线__,__那__么__这__两__条__直__线__互__相__平__行_____. 16.对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b; ②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为 结论,组成一个你认为正确的命题: ____如__果__a_∥__b_,__b_∥__c_._那__么__a_∥__c(_答__案__不__唯__一__)______.
三、解答题(共32分) 17.(12分)写出下列各命题的条件和结论: (1)如果x=0,那么xy=0; 解:条件是x=0,结论是xy=0 (2)如果两条直线相交,那么它们只有一个交点; 解:条件是两条直线相交,结论是它们只有一个交点 (3)互补的两个角是邻补角; 解:条件是两个角互补,结论是它们是邻补角 (4)过一点有且只有一条直线与已知直线垂直. 解:条件是过一点作已知直线的垂线,结论是有且只有一条直线垂直 于已知直线
沪科版八年级数学上册第13章教学课件:13.1.2 三角形中角的关系(共19张PPT)
45°
x=50
3.如图,则∠1+∠2+∠3+∠4=____2_8_0_°____ .
C
D4
1
40° 2
3
A
E
B
4.如图,四边形ABCD中,点E在BC 上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求 ∠EDC的度数.
解:∵∠A+∠ADE=180°, ∴AB∥DE, ∴∠CED=∠B=78°. 又∵∠C=60°, ∴∠EDC=180°-(∠CED+∠C) =180°-(78°+60°) =42°.
当堂练习
1.下列各组角是同一个三角形的内角吗?为什么?
(1)3°, 150°, 27°
是
(2)60°, 40°, 90°
不是
(3)30°, 60°, 50°
不是
三角形的内角和为180°.
2.求出下列各图中的x值.
7 0
4 0
x
x=70
2x° x°
x=30
x° x° x°
x=60
x° 20°
25°
思考
三角形若按角来分类,可分为哪几类?
讲授新课
一 三角形按角分类 画一画:同学们手中有直角三角板,请再画一个内 角不是90°的三角形.
三个角都是锐角的三角形叫做锐角三角形; 有一个角是直角的三角形叫做直角三角形;
直角三角形ABC可以写成Rt△ABC; 有一个角是钝角的三角形叫做钝角三角形.
A
锐角三角形
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5
华东师大版八年级数学上册第13章全等三角形
03
全等三角形在几何图形 中的应用
利用全等三角形求线段长度
通过全等三角形的对应边相等 ,可以求出一些线段的长度。
在一些复杂的几何图形中,可 以通过构造全等三角形来简化 问题,进而求出所需线段的长 度。
利用全等三角形的性质,可以 通过已知条件推导出其他线段 的长度。
利用全等三角形求角度大小
通过全等三角形的对应角相等,可以求出一些角的大小。 在一些涉及到角度计算的几何问题中,可以通过构造全等三角形来简化计算过程。
过程中的细节和准确性避免出错。
06
章节小结与拓展延伸
知识点总结回顾
全等三角形的定义和性质
01
能够准确描述全等三角形的定义,理解全等三角形的对应边相
等、对应角相等的性质。
全等三角形的判定方法
02
掌握SSS、SAS、ASA、AAS和HL五种全等三角形的判定方法,
并能够灵活运用它们来解决实际问题。
全等三角形的应用
全等三角形的对应边上的中线 相等。
全等三角形的判定方法
ASA(角边角)
SAS(边角边)
两边和它们的夹角对应相等的两 个三角形全等。
两角和它们的夹边对应相等的两 个三角形全等。
AAS(角角边)
两角和其中一个角的对边对应相 等的两个三角形全等。
SSS(边边边)
三边对应相等的两个三角形全等 。
HL(斜边、直角边)
直角三角形全等的判定
判定方法一
判定方法二
斜边和一条直角边对应相等的两个直角三 角形全等(HL)。
两个锐角对应相等的两个直角三角形,若 斜边相等,则这两个直角三角形全等。
判定方法三
注意事项
两个锐角对应相等的两个直角三角形,若 一条直角边相等,则这两个直角三角形全 等。
华东师大版八年级数学上册上课课件 第13章 全等三角形 命题、定理与证明 定理与证明
证明:∵AB∥CD (已知),
∴∠BEF=∠CFE (两直线平行,内错角相等).
∵EM 平分∠BEF,FN 平分∠EFC (已知),
∴∠2=
12∠BEF,∠1=
1 2
∠CFE(角平分线的定义).
∴∠1=∠2(等量代换).
∴EM ∥FN (内错角相等,两直线平行).
练习
1. 把下列定理改写成“如果……,那么……”的形式, 指出它们的条件和结论,并用演绎推理证明题(1) 所示的定理:
习题13.1
1. 判断下列命题是真命题还是假命题,若是假命题, 举一个反例加以说明: (1)两个锐角的和等于直角; (2)两条直线被第三条直线所截,同位角相等.
解: (1)假命题,例: 50°和20°是两锐角, 但50°+20°=70°≠ 90°. (2)假命题,例:如图,直线 AB、CD 被 EF 所截,但 AB 不平行于 CD ,此时,∠EMB≠∠END .
(2)如图所示,一位同学在画图时发现: 三角形三条 边的垂直平分线的交点都在三角形的内部.于是他得出 结论:任何一个三角形三条边的垂直平分线的交点都在 三角形的内部.他的结论正确吗?
(3)我们曾经通过计算四边形、五边形、六边形、 七边形等的内角和,得到一个结论: n 边形的内角和 等于 ( n -2) ×180°. 这个结论正确吗?是否有一个 多边形的内角和不满足这一规律?
课堂小结
基本事实
定义 常见的几条基本事实
定理与 证明
定理
定义 与基本事实的区别
证明
定义 证明的一般步骤
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
华师大八年级数学上册《命题》课件
√ (2)等式两边都加同一个数,结果仍是等式; √ (3)互为相反数的两个数相加得0;
(4)同旁内角互补;
√ (5)对顶角相等.
命题的真假
真命题:如果条件成立,那么结论一定成立, 这样的命题叫做真命题.
假命题:如果条件成立时,不能保证结论总是正确, 也就是说结论不成立,这样的命题叫做假命题.
1熊猫没有翅膀。 2大象是红色的。 3同位角相等。 4请你吃饭。 5从3数到10。
句子 1 2 3 (能判断一件事情) 是命题
句子 4 5 (不能判断一件事情) 不是命题
问题3 请同学们观察一组命题,并思考命题是由 几部分组成的? (1)如果两条直线都与第三条)两条平行线被第三条直线所截, 同旁内角互补;
(3)如果两个角的和是90º, 那么这两个角互余;
(4)等式两边都加同一个数, 结果仍是等式.
(5)两点之间,线段最短.
命题是由条件和结论两部分组成。条件是已知 事项,结论是由已知事项推出的事项。
如果两个角的和是90º,那么这两个角互余。
条件
结论
数学中的命题常可以写成“如果…,那么…”的形式. “如果”开始的部分是条件, “那么”开始的部分是结论.
8)同角的余角相等(√ )
9)同旁内角互补(× )
问题8请同学们判断下列两个命题的真假,并思考如 何判断命题的真假.
命题1: 在同一平面内,如果一条直线垂直于两条平 行线中的一条,那么它也垂直于另一条. 命题2:一个锐角与一个钝角的和等于一个平角。
命题1是真命题(可进行推理证明),命题2是假 命题(举反例如60°的角与170°的角)。
第13章 全等三角形
3.1 命题、定理与证明 1.命题
八年级数学上册 第13章 全等三角形 13.1 命题、定理与证明 2 定理与证明导学课件
13.1 命题(mìng tí)、定理与证明
【归纳总结(zǒngjié)】证明文字叙述的真命题的一般步骤: (1)分清条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论写出
求证;(4)证明.
第十二页,共十七页。
13.1 命题、定理与证明
总结(zǒngjié)反思
小结(xiǎojié)
图 13-1-1
第九页,共十七页。
13.1 命题、定理(dìnglǐ)与证明
解:可以判定(pàndìng)AB∥CD.理由: ∵ ∠1+∠2=80°+100°=180°, ∴AB∥CD(同旁内角互补,两直线平行).
【归纳总结】证明(zhèngmíng)几何命题的依据: 已知条件、定义、基本事实、定理等.
正确性需要进行证明;如果要说明它是假命题,只要举一个反例就可以 了.
第八页,共十七页。
13.1 命题(mìng tí)、定理与证明
目标三 会进行(jìnxíng)简单的推理证明
例 3 教材补充例题如图 13-1-1,直线 AB,CD 被直线 EF 所截, 若∠1=80°,∠2=100°. 由此你可以判定 AB 和 CD 平行吗?为什 么? [全品导学号:90702083]
第十六页,共十七页。
内容(nèiróng)总结
第13章 全等三角形。13.1 命题、定理与证明。2.经过观察(guānchá)、讨论、发现,理解由特殊事例得到的结论不一 定正确.。于是小华猜想:不论a,b为何值,总有a2+b2>2ab.。理由:∵a2+b2-2ab=(a-b)2≥0,。【归纳总结】由特 殊事例递推猜想所得到的命题不一定是真命题,其正确性需要进行证明。解:可以判定AB∥CD.理由:。已知条件、定义、 基本事实、定理等.。【归纳总结】证明文字叙述的真命题的一般步骤:
华东师大版八年级数学上册第13章《全等三角形》全章课件(共285张PPT)
练习:将下列命题改写成“如果…那么…”
的形式,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的形式: 如果两个角不相等, 那么这两个角不可能是对顶角。
观察 2、下列各图中的两个三角形是全等形吗? 思考
A
D
B A
C
E
M C
F S
O
O
B
D
N
T
经过平移、旋转、翻折等位移变换
得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫做
全等三角形。
A
D
B
CE
F
2、把两个全等的三角形重叠到一起时, 重合的顶点叫做对应顶点,重合的边叫做 对应边,重合的角叫做对应角。
强调:
观察、猜想、度量、实验得 出的结论未必都正确;
一个命题的真假,常常需要 进行有理有据的推理才能作出正 确的判断,这个推理过程叫做命 题的证明.把经过证明的真命题 叫做定理.
巩固:
下列语句中哪些是命题?请判断其中命题 的真假,并说明理由。
(1)每单位面积所受到的压力叫做压强. (2)两个奇数的和是偶数. (3)两个无理数的乘积一定是无理数. (4)偶数一定是合数吗? (5)连结AB. (6)不相等的两个角不可能是对顶角.
3、全等三角形的表示法:
A
D
B
CE
F
表示图中的△ABC和△DEF全等:
记作△ABC≌△DEF, 读作△ABC全等于△DEF.
第13章 全等三角形(13.1) 华东师大版八年级数学上册同步练习(含答案)
命题 定理与证明【A层基础夯实】知识点1 命题是分式;③过点P作直线l 1.(2024·保定期中)下列句子:①负数没有相反数;②2x3x+5的平行线;④两个单项式的和一定是多项式.其中是命题的有( )A.1个B.2个C.3个D.4个2.(易错警示题·概念不清)下列命题中是假命题的是( )A.对顶角相等B.两直线平行,同旁内角互补C.同位角相等D.三角形的内角和是180°3.(2024·宁波期中)能说明“三角形的高线一定在三角形的内部(含边界)”是假命题的反例是( )4.指出下列命题的条件和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补.知识点2 定理与证明5.“同角或等角的补角相等”是( )A.定义B.基本事实C.定理D.假命题6.下列能作为证明依据的是( )A.已知条件B.定义和基本事实C.定理和推论D.以上三项都可以7.请举出一个关于角相等的定理:.8.推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B=∠CGF(已知),∴AB∥CD().∵∠BGC=∠F(已知),∴CD∥EF(),∴AB∥EF(),∴∠B+∠F=180°().又∵∠BGC+∠BGD=180°(),∠BGC=∠F(已知),∴∠F+∠BGD=180°().【B层能力进阶】9.下列命题:①各边相等的多边形是正多边形;②正多边形是轴对称图形;③正六边形的每个外角均为60°;④正n边形有(n-3)条对角线.其中是真命题的个数为( )A.4B.3C.2D.110.下列命题是定理的是( )A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2024·上海期中)把命题“关于某个点中心对称的两个三角形全等”改写成“如果……,那么……”的形式是.12.说明命题“若a>b,则ac>bc”是假命题的一个反例的c的值可以是.13.(2024·漳州期中)(1)如图,“若∠1=∠2,则AB∥CD”,该命题是(填“真命题”或“假命题”).(2)若上述命题为真命题,请说明理由;若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.【C层创新挑战(选做)】14.(推理能力)【阅读】在证明命题“如果a>b>0,c<0,那么a2+bc>ab+ac”时,小明的证明过程如下:证明:∵a>b>0,∴a2>,∴a2+bc>.∵a>b,c<0,∴bc>,∴ab+bc>,∴a2+bc>ab+ac.【问题解决】(1)请将上面的证明过程填写完整;(2)有以下几个条件①a>b,②a<b,③a<0,④b<0.请从中选择两个作为已知条件,得出结论|a|>|b|.你选择的条件序号是,并给出证明过程. 命题 定理与证明【A层基础夯实】知识点1 命题是分式;③过点P作直线l 1.(2024·保定期中)下列句子:①负数没有相反数;②2x3x+5的平行线;④两个单项式的和一定是多项式.其中是命题的有(C)A.1个B.2个C.3个D.4个2.(易错警示题·概念不清)下列命题中是假命题的是(C)A.对顶角相等B.两直线平行,同旁内角互补C.同位角相等D.三角形的内角和是180°3.(2024·宁波期中)能说明“三角形的高线一定在三角形的内部(含边界)”是假命题的反例是(C)4.指出下列命题的条件和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;【解析】(1)条件:两个角的和等于平角,结论:这两个角互为补角,是真命题. (2)内错角相等;【解析】(2)条件:两个角是内错角,结论:这两个角相等,是假命题.如图,∠1与∠2是内错角,∠2>∠1.(3)两条平行线被第三条直线所截,同旁内角互补.【解析】(3)条件:两条平行线被第三条直线所截,结论:同旁内角互补,是真命题.知识点2 定理与证明5.“同角或等角的补角相等”是(C)A.定义B.基本事实C.定理D.假命题6.下列能作为证明依据的是(D)A.已知条件B.定义和基本事实C.定理和推论D.以上三项都可以7.请举出一个关于角相等的定理: 两直线平行,同位角相等(答案不唯一) .8.推理填空:如图,已知∠B=∠CGF,∠BGC=∠F.求证:∠B+∠F=180°,∠F+∠BGD=180°.证明:∵∠B=∠CGF(已知),∴AB∥CD( 同位角相等,两直线平行 ).∵∠BGC=∠F(已知),∴CD∥EF( 同位角相等,两直线平行 ),∴AB∥EF( 平行公理的推论 ),∴∠B+∠F=180°( 两直线平行,同旁内角互补 ).又∵∠BGC+∠BGD=180°( 平角的定义 ),∠BGC=∠F(已知),∴∠F+∠BGD=180°( 等量代换 ).【B层能力进阶】9.下列命题:①各边相等的多边形是正多边形;②正多边形是轴对称图形;③正六边形的每个外角均为60°;④正n边形有(n-3)条对角线.其中是真命题的个数为(C)A.4B.3C.2D.110.下列命题是定理的是(B)A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2024·上海期中)把命题“关于某个点中心对称的两个三角形全等”改写成“如果……,那么……”的形式是 如果两个三角形关于某个点中心对称,那么这两个三角形全等 .12.说明命题“若a>b,则ac>bc”是假命题的一个反例的c的值可以是 0(答案不唯一) .13.(2024·漳州期中)(1)如图,“若∠1=∠2,则AB∥CD”,该命题是假命题(填“真命题”或“假命题”).【解析】(1)由题中图形可知,∠1,∠2既不是同位角也不是内错角,即使∠1=∠2也不能得到AB∥CD,故该命题为假命题;(2)若上述命题为真命题,请说明理由;若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.【解析】(2)添加BE∥DF(答案不唯一).理由如下:∵BE∥DF,∴∠EBD=∠FDN.又∵∠1=∠2,∴∠EBD-∠1=∠FDN-∠2,即∠ABD=∠CDN,∴AB∥CD.【C层创新挑战(选做)】14.(推理能力)【阅读】在证明命题“如果a>b>0,c<0,那么a2+bc>ab+ac”时,小明的证明过程如下:证明:∵a>b>0,∴a2> ,∴a2+bc> .∵a>b,c<0,∴bc> ,∴ab+bc> ,∴a2+bc>ab+ac.【问题解决】(1)请将上面的证明过程填写完整;(2)有以下几个条件①a>b,②a<b,③a<0,④b<0.请从中选择两个作为已知条件,得出结论|a|>|b|.你选择的条件序号是 ,并给出证明过程.【解析】(1)∵a>b>0,∴a2> ab,∴a2+bc> ab+bc.∵a>b,c<0,∴bc>ac,∴ab+bc> ab+ac,∴a2+bc>ab+ac.(2)选择②④.证明如下: ∵a<b,b<0,∴a<0,∴|a|=-a,|b|=-b.∵a < b,∴-a>-b,∴|a|>|b|.。
八年级数学上册第十三章全等三角形13.5逆命题与逆定理课件新版华东师大版
学习目标
• 1.理解原命题、逆命题、互逆命题、逆定理、互逆 定理的概念,通过比较,提高学生的辨析与表达能 力;
• 2.通过独立思考、小组合作,培养学生说理有据, 有条理地表达自己想法的良好意识.
问题4:如何判断一个命题的逆命题是假命题? 例如原命题“对顶角相等”是真命题,而它的逆命题“相等的角是对顶角” 为假命题; 【答案】举反例.
归纳总结: 一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而 第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题,如 果把其中一个命题叫做原命题,那么另一个命题就叫做它的逆命题;逆命题 是一个命题,而互逆命题指的是两个命题之间的关系.
总结升华
课堂小结
本节课主要学习了原命题、逆命题、互逆命题以及互逆定理的概念与区 别; 要学会给定一个命题或定理,能够判断其逆命题的真假; 本节课主要采用了类比的数学思想方法.
问题2.如何判断定理的逆命题能否成为原定理的逆定理?
【答案】 (1)逆命题:三个内角都相等的三角形是等边三角形;
它是一个真命题,故可成为原定理的逆定理;
(2)逆命题:各角对应相等的两个三角形是全等三角形; 它是一个假命题,故不能成为原定理的逆定理.
规律方法总结: 每一个命题都有逆命题,而一个定理不一定有逆定理.定理和逆定理都是 真命题, 而命题和逆命题却不一定都是真命题.
(4)逆命题:如果
a b ,那么 a b
题设: a b , 结论: a b, 假命题.
规律方法总结: 分清原命题的题设与结论是写出逆命题的前提; 原命题正确,它的逆命题不一定正确.
八年级数学上册第13章全等三角形13.1命题定理与证明1命题说课稿华东师大版.doc
13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。
而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题,和难以判断真假的命题,是学习的重点。
本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题。
二、说教学目标知识与技能目标:了解命题、真命题、假命题、定理的含义能识别真假命题。
会区分命题的题设和结论。
过程与方法目标:通过命题的真假,培养分类思想。
通过命题的构成,培养学生分析法。
通过命题的构成,培养语言推理技能。
情感态度与价值观目标:通过命题、定理的具体含义,让学生体会到数学的严谨性。
通过学习命题真假,培养学生尊重科学、实事求是的态度。
通过学习命题的构成,使学生获得成功的体验,锻炼克服困难的意志,建立自信心。
三、教学重点:定义、命题、公理、定理的概念;四、教学难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。
五、说教法学法通过“目标定向,自主合作”,以实现学习目标为目的,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真、假命题。
因此就内容看来,可能会较为枯燥、单调;因此在教学设计时,根据不同的学习任务进行了不同的教学设计。
在命题的概念教学中,与以往直接的告知学生概念不同,采用了让学生对两组语句进行比较、区别,然后再学生充分讨论的感性认识基础上,在提出命题的概念,能有效促进学生对命题概念的理解,然后再通过学生举例来加强巩固概念。
在命题的构成这一环节中,通过一个问题的思考与探讨,让学生了解到命题是由题设和结论两部分构成,同时感受到命题的常用表述形式,然后教师再加以总结分析,使学生对知识的认识更加透彻。
最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)
(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.
八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段授课
感悟新知
例4 如图,在△ABC 中,AD,BE 分别是△ABC, 知2-练 △ABD的中线. (1)若△ABD与△ADC的周长之差为 3,AB=8,求 AC 的长. (2)若S△AB间 的关系和面积之间的关系解题.
感悟新知
解:(1)因为AD为BC边上的中线,
B.CE是△BCD的角平分线 C. 3 1 ACB
2
D.CE是△ABC的角平分线
知1-练
感悟新知
知识点 2 三角形的中线
知2-讲
1.定义:连接三角形一个顶点和它对边的中点,所得的 线段叫做该三角形这条边上的中线.
2.位置图例:任何三角形的三条中线都交于一点,且该 点在三角形内部,如图,这 个点叫做三角形的重心.
感悟新知
总结
知2-讲
三角形的中线把边分成相等的两条线段,故BD=CD,
且△ ABD 的边BD上的高与△ACD 的边CD上的高相同,
根据等底同高的三角形的面积相等,可得所分得的两个
三角形的面积相等,即S△ ABD=S△ ADC=
1 2
S△ABC.
感悟新知
知2-练
例5 张大爷的两个儿子都长大成人了,也该分家了.
1 (中考·长沙)过△ABC的顶点A,作BC边上的高,以 下作法正确的是( )
感悟新知
知3-练
2 下列说法中正确的是( ) A.三角形的三条高都在三角形内 B.直角三角形只有一条高 C.锐角三角形的三条高都在三角形内 D.三角形每一边上的高都小于其他两边
感悟新知
知识点 4 定义
知4-讲
像这样能明确界定某个对象含义的语句叫做定义. 今后我们还会学习许多定义.
感悟新知
知3-练
解:以A,B,C,D,E中的三点为顶点的三角形有 △ABC,△ABD,△ABE,△ACD,△ACE,