中频电源的原理与维修

合集下载

中频电源工作原理

中频电源工作原理

中频电源的工作原理1. 引言中频电源是一种用于将高频交流电转换为中频交流电的设备,广泛应用于各种工业和科研领域。

它的主要作用是为高频设备提供稳定的电源,同时还能实现功率调节和频率调节等功能。

本文将详细解释中频电源的工作原理,包括整体结构、基本原理、输入输出特性和控制方式等内容。

2. 中频电源的结构中频电源通常由以下几个部分组成: - 输入滤波器:用于滤除输入端的高频噪声和干扰信号,保证输入信号的纯净度。

- 整流变压器:将交流输入信号通过整流桥等元件进行整流,并降低电压。

- 中间直流环节:通过直流滤波器对整流后的信号进行滤波,得到稳定的直流电压。

- 逆变器:将直流信号经过逆变器转换为中频交流信号。

- 输出变压器:对逆变后的中频交流信号进行升降压处理,得到所需输出。

3. 中频电源的基本原理中频电源是通过将高频交流信号经过整流、滤波和逆变等处理,最终得到所需的中频交流信号。

下面将详细介绍中频电源的基本原理。

3.1 整流中频电源的输入信号通常是高频交流信号,为了将其转换为直流信号,需要进行整流处理。

整流可以通过多种方式实现,常见的有单相桥式整流和三相桥式整流。

3.1.1 单相桥式整流单相桥式整流采用4个二极管构成一个桥形结构,如图所示:当输入交流信号的正半周时,二极管D1和D3导通,而D2和D4截止;当输入交流信号的负半周时,则D2和D4导通,而D1和D3截止。

通过这样的工作原理,可以将输入交流信号转换为具有同样幅值但只有正半周或负半周的脉动直流信号。

3.1.2 三相桥式整流三相桥式整流与单相桥式整流类似,不同之处在于它采用了6个二极管构成一个桥形结构,如图所示:通过这样的结构,可以将三相交流信号转换为具有同样幅值但只有正半周或负半周的脉动直流信号。

3.2 滤波经过整流后的信号仍然存在较大的脉动成分,为了得到稳定的直流电压,需要进行滤波处理。

滤波通常采用电容器和电感器等元件组成的滤波电路。

3.2.1 电容滤波电容滤波是一种常见且简单有效的滤波方式。

重新解析中频电源的工作原理

重新解析中频电源的工作原理

重新解析中频电源的工作原理重新解析中频电源的工作原理第一部分:引言中频电源是一种常见的电力转换设备,广泛应用于工业生产、通信设备以及医疗器械等领域。

它可以将高频交流电转换为所需的中频电流,以满足不同电子设备的工作要求。

然而,对于非专业人士来说,中频电源的工作原理可能有些复杂难以理解。

在本文中,我们将重新解析中频电源的工作原理,通过深入探讨其多个方面,帮助读者更全面、深刻地理解这一重要设备。

第二部分:中频电源的基本原理在重新解析中频电源的工作原理之前,首先需要了解它的基本原理。

中频电源主要由一个高频发生器、一个变压器和一个整流电路组成。

高频发生器产生高频交流信号,经过变压器降压后,通过整流电路转换为中频电流输出。

中频电源通常具有较高的输出功率和高效率,能够稳定地为电子设备供电。

第三部分:高频发生器的原理和作用高频发生器是中频电源的核心组成部分之一。

它主要负责产生高频交流信号,为后续的电能转换提供基础。

高频发生器通常采用晶体管或功率场效应管等器件,通过电路设计和频率控制实现高频信号的产生。

同时,高频发生器还需要具备稳定性和调节性能,以确保中频电源输出的稳定性和适应性。

第四部分:变压器的原理和作用变压器是中频电源的另一个重要组成部分,负责将高频交流信号降压至所需的电压水平。

变压器基于电磁感应的原理工作,将输入端的高压电流经过绕组的变换,输出所需的中低电压。

变压器具有较高的转换效率和较低的能量损耗,是中频电源中不可或缺的部分。

第五部分:整流电路的原理和作用整流电路是中频电源的最后一个关键组成部分,负责将高频交流信号转换为直流信号输出。

整流电路通常采用二极管整流器和滤波器结合的方式,将交流信号的负半周去除,只保留正半周的信号。

这样可以将高频交流信号转换为稳定的直流电流,以供电子设备正常工作。

第六部分:总结和回顾通过重新解析中频电源的工作原理,我们可以得出以下结论:1. 中频电源是一种将高频交流电转换为中频电流的电力转换设备。

中频电源原理

中频电源原理

中频电源原理
中频电源原理是一种将交流电转换为具有高频振荡特性的电源装置。

它主要应用于各种电子设备中,如无线通信、电视机、电脑等。

中频电源的原理基于变压器和电容器的工作原理,其具体过程如下:
1. 交流电输入:将普通的交流电输入到中频电源中。

2. 变压器工作:交流电首先经过变压器,变压器根据需要将输入电压升高或降低,然后通过磁耦合将电能传递给次级线圈。

3. 电容器充电:次级线圈输出的电能通过电容器进行存储和平滑处理。

电容器的作用是使电压波形更加平稳,减小电压的波动。

4. 高频振荡:经过电容器处理后的电流变成了高频振荡的电流。

这个过程是通过变压器和电容器相互作用的结果。

5. 输出电流调节:高频振荡的电流经过调节电路进行调整,使其达到设备所需的电流大小。

调节电路可以根据需要进行不同的调节,以满足不同设备的需求。

通过以上步骤,中频电源将原本的交流电转换为高频振荡的电流输出,以提供给不同的电子设备使用。

这样的转换过程可以增加电能的稳定性和效率,提高设备的工作效果。

中频电源的应用广泛,为各种电子设备的正常运行提供了可靠的能源支持。

项目五 中频感应加热电源的原理与检修

项目五 中频感应加热电源的原理与检修
整流电路。 2)电路工作原理 ①0≤α≤30°
②30≤ α ≤150°° 当触发角α ≥30°时,此时的电压和电流波形断续,各个晶闸管的 导通角小于120°,α =60°的波形。
3)基本的物理量计算 ①整流输出电压的平均值计算:
当0°≤ α ≤30°时,此时电流波形连续,通过分析可得到:
载阻抗的影响。 4)当电路出现故障时,电路能自动停止直流功率输出,整流电
路必须有完善的过电压、过电流保护措施。 5)当逆变器运行失败时,能把储存在滤波器的能量通过整流电
路返回工频电网,保护逆变器。
(3)平波电抗器 平波电抗器在电路中起到很重要的作用,归纳为以下几点:
1)续流 保证逆变器可靠工作。 2)平波 使整流电路得到的直流电流比较滑。 3)电气隔离 它连接在整流和逆变电路之间起 到隔离作用。 4)限制电路电流的上升率di/dt值,逆变失败 时,保护晶闸管。
(4)控制电路 中频感应加热装置的控制电路比较复杂,可以包括以下几种:整流触发电路、
逆变触发电路、起动停止控制电路。 1)整流触发电路
整流触发电路主要是保证整流电路正常可靠工作,产生的触发脉冲必 须达到以下要求:
①产生相位互差60º的脉冲,依次触发整流桥的晶闸管。 ②触发脉冲的频率必须与电源电压的频率一致。 ③采用单脉冲时,脉冲的宽度应该大与90º,小于120º。采用双脉冲
3)起动、停止控制电路 起动、停止控制电路主要控制装置的起动、运行、停止。一般由 按纽、继电器、接触器等电器元件组成。
(5)保护电路 中频装置的晶闸管的过载能力较差,系统中必须有比较完善的保 护措施,比较常用的有阻容吸收装置和硒堆抑制电路内部过电压, 电感线圈、快速熔断器等元件限制电流变化率和过电流保护。 必须根据中频装置的特点,设计安装相应的保护电路。

中频感应加热电源 原理

中频感应加热电源 原理

中频感应加热电源原理中频感应加热电源是一种常用的加热设备,它利用中频电流的感应作用将电能转化为热能。

该电源的工作原理主要包括电源单元、谐振电路、功率变换单元和控制单元等几个关键部分。

电源单元是提供电能的装置,通常由三相交流电源和整流电路组成。

交流电源通过整流电路将交流电转化为直流电,然后进一步进行滤波,以保证电源稳定。

谐振电路是中频感应加热电源的核心部分,它由电容器和电感器组成。

谐振电路的作用是将直流电转化为中频交流电,并将其输出到功率变换单元。

功率变换单元主要由功率开关管和输出变压器组成,其作用是将中频交流电通过功率开关管的控制进行变换,使其达到所需的电压和电流。

功率开关管可以根据负载的变化来调整输出功率,从而实现对加热过程的控制。

输出变压器则是将电源提供的中频交流电转化为适用于加热设备的高电压和高电流。

控制单元是中频感应加热电源的智能化部分,它通过传感器实时监测加热过程中的温度、电流和电压等参数,并根据设定的加热要求进行调节。

控制单元可以实现加热功率的精确控制和加热时间的设定,从而提高加热效率和产品质量。

中频感应加热电源具有许多优点。

首先,它具有高效率和节能的特点。

由于中频电流只在工件表面产生感应加热效应,因此加热效率较高,可以减少能量的浪费。

其次,中频感应加热电源具有快速加热和均匀加热的特点。

由于电磁感应的作用,加热速度快且加热均匀,可以提高生产效率和产品质量。

此外,中频感应加热电源还具有操作简便、自动化程度高等特点,可以提高工作环境的安全性和操作的便利性。

中频感应加热电源广泛应用于金属加热、焊接和热处理等领域。

在金属加热方面,中频感应加热电源可以用于钢铁、铜、铝等金属材料的加热和熔炼。

在焊接方面,中频感应加热电源可以实现金属材料的局部加热,从而实现高效的焊接。

在热处理方面,中频感应加热电源可以用于金属材料的淬火、回火和退火等工艺,以改善材料的性能和延长使用寿命。

中频感应加热电源是一种高效、节能的加热设备,其工作原理简单明了。

中频电源的维修与操作

中频电源的维修与操作

中频电源的维修与操作据我个人对中频电源的维修经验,和现场调试。

总结以下几点维修经验,不完善的地方请加以改进。

仅供用户维修参考!首先在出现问题的时候,要问清现象、查明原因`。

如:多大功率、那一组功率大或小、炉况、以便确定重点维护对象。

如:炉衬过薄,易引起过流保护等。

在正常停电的情况下:不拆除放电电阻的时候,正、负母排之间的电阻约为40欧姆左右。

当拆除放电阻线(20#线),用万用表二级管档测正负母排之间应有明显的充放电,正排与M排、负排与M排之间应有充放电。

1:缓冲器:从母排拆除带水冷电阻,测电容约为12微法;而快恢复二极管,正向约300—400压降;而反向则不通,安装时特别须注意各部位的螺栓有无松动,压片正确。

2:触发板:(适用于小IGBT上下桥、代脉冲分配板)接通控制电;在没启动中频电源时;G、E之间的电压应为—13V----—15V左右,启动以后应有15V方波脉冲。

对于新的触发板,在安装完毕以后要在线调试,把相应的脉冲分配板1、2、3小开关置于ON,调节小电位器G、E为10V;把1、2、3、4置于ON,调节另一小电位器G、E为15V,调节完毕后小电位器全部置于OFF,(切记),此时G、E为—13V——15V。

如果不正常需更换触发板,触发板上保护C线上要串联3个IN4007。

3:整流部分:主要是快速熔断器及二极管要一一检查,如发现问题请更换。

4:显示器:不要自行拆卸,有问题请与厂家联系解决。

用户应了解显示器的基本操作及参数设置,特别是水温设置与测温头更换,内部参数做一份书面备份。

防止由于误操作导致数据丢失,有据可查。

5:IGBT:正常情况下,IGBT如有损坏常伴有爆裂现象;或触发极短路,无论是电流击穿、还是电压击穿。

如果外部无损坏痕迹,应该没有太大问题。

需进一步检测。

常见问题:A:如果正、负母排与M母排之间电压不均。

可能是由于均压电阻损坏;快恢复二极管损坏;电容损坏;IGBT损坏;根据现场情况一一检查。

中频电炉原理是什么?中频电炉常见故障检修方法有哪些?

中频电炉原理是什么?中频电炉常见故障检修方法有哪些?

中频电炉原理是什么?中频电炉常见故障检修方法有哪些?中频电源在运行中可能会出现这样那样的故障,我们可以把故障分成几个部分加以区分。

1)整流部分的故障 2)逆变部分的故障 3)保护部分的故障。

下面我们将介绍这三个部分,特别是老的中频电源装置(包括其他厂家的中频装置)出现的几种典型故障原因及排除方法,供大家参考。

1.1整流部分的故障1. 设备在运行中直流电抗器发出嗡嗡声。

故障原因是整流桥输出不平衡造成的,排除方法是调整电位器W7,W8,W9使整流桥输出的六个波头平衡即可。

2 .老中频装置在运行中直流电抗器发出较大的嗡嗡声。

故障原因是整流桥六只可控硅的一只不导通造成的,用示波器可以看到如图17(b)三相整流桥的输出波形。

大部分是触发脉冲到可控硅导线接触不良或断线引起的。

用万用表R1Ω挡测量主控板触发脉冲输出端的正向电阻值是否在20Ω左右,如大于40Ω可能是接触不良,阻值很大就是断线。

但也不排除可控硅控制极内部断线及老化的可能。

此种故障从仪表可以看出中频电压和直流电压的比值很高。

在检修中要和其它近似现象加以区分,防止走些弯路3.设备在运行中突然电流增大直流电压降低中频电压比直流电压高出很多,直流电抗器蹦的厉害。

故障原因;1)三相电缺相,2)快速熔断器烧毁,3)控制回路电源烧保险使同步电源缺相,4)电力变压器高压保险烧毁造成的。

恢复后即可正常工作。

4. 设备在开机时,功率电位器旋动就是最大功率,没有小功率。

此故障突出表现在老中频装置中,最容易出现。

原因是功率电位器内部断线所造成的,更换新的电位器即可恢复正常工作。

1.2逆变电路出现的故障1. 中频功率上不去1)中频装置只能在低功率下工作,当直流电压Ud调高时,过流保护动作。

故障原因是负载交流等效电阻偏小。

尤其是炉子到了后期炉衬厚度减小,启动后往往是直流电压小,电流大,中频电压也小,换流比较困难,逆变器容易颠覆,功率升不上去,此时适当加大tf,即调大电流信号瓷盘电位器。

中频电源常见故障的维修方法

中频电源常见故障的维修方法

中频电源常见故障的维修方法1、主要是大电流和大电压失控,引起的1高电压失控:中频电压升到一定的值时,逆变器颠覆,无法在高阻抗情况下运行,元件的耐压降低或冷却效果不好,系统的绝缘性能降低,中频电压升高时机器对地短路,检查中频电容和炉子。

干扰也可能引起,逆变触发线要离主电路远一些,2大电流失控,中频电压的反压角过小,触发电路是否有接触不良,另外还要注意关断时间的一直性。

2、现在由于元件的质量已经过关,如果工艺良好,可靠性已经非常高。

逆变可控硅管相对来讲是比较薄弱的部件。

如果频繁地损坏,必然有原因。

应着重检查:1)逆变管的阻容吸收回路,重点检查吸收电容器是否断路。

这时,应该采用能够测量电容量的数字万用表检测电容器,仅仅测量它的通断是不够的。

如果逆变吸收回路断线,极易损坏逆变管;2)检查管子的电气参数是否满足要求,杜绝使用不合格厂家流入的元件;3)逆变管的水冷套及其他冷却水路是否堵塞,虽然这种情况较少,但确实出现过,容易忽略。

4)注意负载有无对地打火的现象,这种情况会形成突变的高电压,造成逆变管击穿损坏。

5)运行角度偏大或偏小,都会引起逆变管频繁过流,从而损伤管子,容易造成永久性的损坏。

6)在不影响启动的情况下,适当加大中频电源至炉体的中频回路接线电感,可以缓解因逆变管承受过大的di/dt造成的损坏中频电源常见故障的维修方法,对于从事中频维修的同行有一定的帮助.中频电源晶闸管中频感应加热电源是利用晶闸管将三相工频交流电能变换成几百或几千赫兹的单相交流电能。

具有控制方便、效率高、运行可靠、劳动强度低的特点,广泛用于铸钢、不锈钢或合金钢的冶炼、真空冶炼、锻件的加热和钢管的弯曲、挤压成型、工件的预热、钢件表面淬火、退火热处理、金属零件的焊接、粉末冶金、输送高温工质的管道加热、晶体的生长等不同场合。

在我厂,中频电源装置主要用于铸钢、不锈钢和青铜等的冶炼。

中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率(一般为1000至8000Hz)的单相中频电流。

中频电源的故障检查及原因分析

中频电源的故障检查及原因分析

中频电源的故障检查及原因分析晶闸管中频感应加热电源是利用晶闸管将三相工频交流电能变换成几百或几千赫兹的单相交流电能。

具有控制方便、效率高、运行可靠、劳动强度低的特点,广泛用于铸钢、不锈钢或合金钢的冶炼、真空冶炼、锻件的加热和钢管的弯曲、挤压成型、工件的预热、钢件表面淬火、退火热处理、金属零件的焊接、粉末冶金、输送高温工质的管道加热、晶体的生长等不同场合。

在我厂,中频电源装置主要用于铸钢、不锈钢和青铜等的冶炼。

中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率(一般为1000至8000Hz)的单相中频电流。

负载由感应线圈和补偿电容器组成,连接成并联谐振电路。

一般情况下,可以把中频电源的故障按照故障现象分为完全不能起动和起动后不能正常工作两大类。

作为一般的原则,当出现故障后,应在断电的情况下对整个系统作全面检查,它包括以下几个方面:(一)电源:用万用表测一下主电路开关(接触器)和控制保险丝后面是否有电,这将排除这些元件断路的可能性。

(二)整流器:整流器采用三相全控桥式整流电路,它包括六个快速熔断器、六个晶闸管、六个脉冲变压器和一个续流二极管。

在快速熔断器上有一个红色的指示器,正常时指示器缩在外壳里边,当快熔烧断后它将弹出,有些快熔的指示器较紧,当快熔烧断后,它会卡在里面,所以为可靠起见,可以用万用表通断档测一下快熔,以判断它是否烧断。

测量晶闸管的简单方法是用万用表电阻挡(200挡)测一下其阴极阳极、门极阴极电阻,测量时晶闸管不用取下来。

正常情况下,阳极阴极间电阻应为无穷大,门极阴极电阻应在1050之间,过大或过小都表明这只晶闸管门极失效,它将不能被触发导通。

脉冲变压器次边接在晶闸管上,原边接在主控板上,用万用表测量原边电阻约为50。

续流二极管一般不容易出现故障,检查时用万用表二极管挡测其二端,正向时万用表显示结压。

中频电源原理图及调试方法、故障排除与实例

中频电源原理图及调试方法、故障排除与实例

中频电源原理图及调试方法、故障排除与实例中频电源调试步骤首先把调节板中W1过流、W2过压电位器右旋到底;W6电位器右旋到底少回旋;W3、W4电位器调到中间基本水平位置;启动中频电源,调到直流电压到200V,再调W3,直到中频电压是直流电压的1.5倍,停止中频电源,把控制板DIP-1开关拨到下侧(开)再启动中频电源,调到直流电压到200V,再调W4,直到中频电压是直流电压的1.2倍,停止中频电源,频电压是直流电压的1.5倍,停止中频电源,把控制板DIP-1开关拨到上侧(关),启动中频电源,看中频电压是否能升到750V,直流电压是否能升到500V,如果达不到以上数值,可调节W2达到以上额定值;中频电压再调到200V,加料使电流升高,左旋W1电位器,使电流调至额定电流。

中频电源的故障排除与实例1 维修前的准备工作a) 维修时所需的工具有:数字万用表或指针万用表、20M以上双踪示波器、500V摇表、25W 电烙铁、螺丝刀、扳手等。

b) 维修时所需的资料有:设备有关电气图、说明书等技术资料。

c) 维修前应先了解设备的故障现象,出现故障时所发生的情况,以及查看设备的记录资料。

d) 备一些易损件和常用的元器件。

e) 维修前有必要对设备进行一下全面检查,紧固所有连接线和端子,看一下有无出现发黑、打火、短接、虚接等。

2 故障排除初调的电源出现故障,整机启动失败,并伴随一定的现象,现说明如下:A) 按下中频启动按钮,调节功率电位器,电源毫无反应或只有直流电压无中频电压,其原因可能是:a.负载开路及感应器未接入;b.逆变脉冲功率过小或无脉冲,逆变管未被触发;c.整流电路发生故障,无整流输出。

B) 按下中频启动按钮后,过流保护动作,整流拉入逆变状态。

对新安装的电源,应检查电压极性是否正确,逆变脉冲的极性是否正确,引前角是否太小。

对已运行的电源不存在极性问题,可以从以下几方面分析:a. 晶闸管有无损坏,用万用表测量判断b. 快熔是否损坏,若坏更换c. 负载回路是否短路,负载过重d. 引前角是否太小e. 逆变脉冲是否有干扰,晶闸管特性是否变坏f. 过流整定值是否有改变,重新整定】g. 电流反馈是否过大,反馈量过大也使振荡停止h. 整流电路出故障,直流输出太低i. 中频电源绝缘是否降低j. 电压反馈信号是否断开3 故障排除实例1) 故障现象:设备无法启动,启动时只有直流电流表有指示,直流电压、中频电压均无指示。

中频感应加热电源的设计及原理

中频感应加热电源的设计及原理

中频感应加热电源的设计及原理
中频感应加热电源是通过交流电源的变换和逆变过程,将低频电源转换成所需输出频率的高频电源的装置。

它是实现电磁感应加热的关键设备之一。

中频感应加热电源的设计原理是通过电源的变频和变压技术,将电源输入的低频电能转换成高频电能。

其主要包括以下几个模块:
1. 变频器:将输入的交流低频电源转换成高频电源。

常用的变频器有大功率管管式变频器和大功率矩阵变频器。

2. 逆变器:将变频器输出的高频电源逆变成交流高频电源。

逆变器一般采用全桥逆变电路,通过控制开关管的导通和关断来实现高频交流电源的输出。

3. 输出滤波器:对逆变器输出的高频电源进行滤波,去除谐波和杂散信号,得到纯净的高频交流电源。

4. 输出匹配网络:将滤波后的高频交流电源与工作线圈进行匹配,以达到最大功率传输。

5. 控制系统:对电源的输出功率、频率和保护等进行控制和调节,保证电源的稳定工作和安全性。

中频感应加热电源的工作原理是利用电流通过工作线圈时产生的磁场来感应工件内部的涡流,达到加热的效果。

当高频电流通过工作线圈时,会在工作线圈和工件之间形成一个交流磁场。

由于工件的电阻和屏蔽效应,高频磁场会在工件表面产生涡流。

涡流通过电阻转化为热量,达到加热的效果。

中频感应加热电源具有加热速度快、效果好、加热均匀等优点,广泛应用于金属加热、金属熔化、热处理等领域。

中频电源原理图及调试方法故障排除与实例

中频电源原理图及调试方法故障排除与实例

中频电源原理图及调试方法故障排除与实例The Standardization Office was revised on the afternoon of December 13, 2020中频电源原理图及调试方法、故障排除与实例中频电源调试步骤首先把调节板中W1过流、W2过压电位器右旋到底;W6电位器右旋到底少回旋;W3、W4电位器调到中间基本水平位置;启动中频电源,调到直流电压到200V,再调W3,直到中频电压是直流电压的倍,停止中频电源,把控制板DIP-1开关拨到下侧(开)再启动中频电源,调到直流电压到200V,再调W4,直到中频电压是直流电压的倍,停止中频电源,频电压是直流电压的倍,停止中频电源,把控制板DIP-1开关拨到上侧(关),启动中频电源,看中频电压是否能升到750V,直流电压是否能升到500V,如果达不到以上数值,可调节W2达到以上额定值;中频电压再调到200V,加料使电流升高,左旋W1电位器,使电流调至额定电流。

中频电源的故障排除与实例1 维修前的准备工作a) 维修时所需的工具有:数字万用表或指针万用表、20M以上双踪示波器、500V摇表、25W电烙铁、螺丝刀、扳手等。

b) 维修时所需的资料有:设备有关电气图、说明书等技术资料。

c) 维修前应先了解设备的故障现象,出现故障时所发生的情况,以及查看设备的记录资料。

d) 备一些易损件和常用的元器件。

e) 维修前有必要对设备进行一下全面检查,紧固所有连接线和端子,看一下有无出现发黑、打火、短接、虚接等。

2 故障排除初调的电源出现故障,整机启动失败,并伴随一定的现象,现说明如下:A) 按下中频启动按钮,调节功率电位器,电源毫无反应或只有直流电压无中频电压,其原因可能是:a.负载开路及感应器未接入;b.逆变脉冲功率过小或无脉冲,逆变管未被触发;c.整流电路发生故障,无整流输出。

B) 按下中频启动按钮后,过流保护动作,整流拉入逆变状态。

对新安装的电源,应检查电压极性是否正确,逆变脉冲的极性是否正确,引前角是否太小。

中频电源工作原理

中频电源工作原理

中频电源工作原理一、引言中频电源是一种重要的电源设备,广泛应用于各种工业领域。

它主要用于将高频信号转换为直流电压或交流电压,并提供给负载使用。

本文将详细介绍中频电源的工作原理。

二、中频电源的基本结构中频电源由变压器、整流器、滤波器和逆变器等组成。

其中,变压器是中频电源的核心部件,它可以将输入的高频信号转换为低频信号,并提供给整流器使用。

整流器主要用于将变压器输出的低频交流信号转换为直流信号,滤波器则用于对直流信号进行滤波处理,以去除杂波和干扰。

逆变器是中频电源的最后一个部分,它可以将直流信号转换为需要的交流信号,并输出给负载使用。

三、变压器原理变压器是中频电源最重要的组成部分之一。

它由两个或多个线圈组成,并通过磁场相互作用来实现能量转移。

在中频电源中,变压器主要起到降低输入信号频率和提高输出功率的作用。

具体来说,在输入端,高频信号首先经过一个调谐电路,使其频率与变压器的谐振频率相匹配。

然后,高频信号进入变压器的一侧线圈中,并在磁场作用下产生电流。

这个电流通过磁场传递到另一侧线圈中,从而产生输出信号。

由于输出端的线圈匝数比输入端的线圈匝数大,因此输出信号的电压会比输入信号的电压高。

四、整流器原理整流器是中频电源中将交流信号转换为直流信号的部分。

它通常由多个二极管和滤波电容组成。

在整流器工作时,交流信号首先经过一个桥式整流电路,将其转换为单向直流信号。

然后,直流信号通过滤波电容进行滤波处理,以去除杂波和干扰。

具体来说,在桥式整流电路中,四个二极管被连接成一个桥形结构,并将其连接到变压器输出端。

当输入交流信号为正半周时,D1和D3导通;当输入交流信号为负半周时,则D2和D4导通。

这样就可以将输入交流信号转换为单向直流信号。

五、滤波器原理滤波器是中频电源中对直流信号进行滤波处理的部分。

它通常由电容和电感等组成。

在滤波器工作时,直流信号首先通过一个电容器,将其平滑化。

然后,直流信号通过一个电感器,以去除高频杂波和干扰。

中频电源原理图及调试方法、故障排除与实例

中频电源原理图及调试方法、故障排除与实例

中频电源原理图及调试方法、故障排除与实例X1L1L2L3X2X314151617S1F7QST6-T814C4C5C6T1T3T5R11R12R13R14R15R16T4T6T2F1F2F3F4F5F6K1G1G3K5G5G4G6G2K4K6K2TP1TP2T7T8R19R20TP3TP4T9T10R21R22C10C12C11C133-33-33-33-33-53-43-43-5A BC 02-52-42-318V6VH1H2T1100V20V3-23-11-31-2K32-22-1R17C7C8C9A1V1V2C1-C318111213L8T2KW中频电压表中频功率表直流电抗器分流器600A/75mV可不用R1R2R3R-RR-6SB2T5T4T3中频电流互感器00/5中频电压互感器负载中频电源原理图2-5CON1CON2CON22-92-82-72-62-42-32-22-11-31-21-13-93-83-73-63-53-43-33-23-1VCC+15V Vg 3.3K-4.7K GND RST IF 5/0.1IF 5/0.1IF 5/0.1FVCC GNDWP OUT+22V 频率表5m A0-2500HZ水压报警继电器控制板电源AC18VT6-T8T3-T5去脉冲变压器G1K1G4K4G3K3G6K6G5K5G2K2A 相W6W2W4Qmin10KVF 3.3K Fmax10KW3Qmax 100KIF 2.2KW1F 1KW5DIP L .F 1.5S T A R T321开关VF 中频电压互感器20VR18F1水压报警继电器频率表5m A0-2500HZK1SB1B 相C 相中频电源微电脑控制板复位按钮调功电位器中频电源调试步骤首先把调节板中W1过流、W2过压电位器右旋到底;W6电位器右旋到底少回旋;W3、W4电位器调到中间基本水平位置;启动中频电源,调到直流电压到200V,再调W3,直到中频电压是直流电压的 1.5倍,停止中频电源,把控制板DIP-1开关拨到下侧(开)再启动中频电源,调到直流电压到200V,再调W4,直到中频电压是直流电压的 1.2倍,停止中频电源,频电压是直流电压的 1.5倍,停止中频电源,把控制板DIP-1开关拨到上侧(关),启动中频电源,看中频电压是否能升到750V,直流电压是否能升到500V,如果达不到以上数值,可调节W2达到以上额定值;中频电压再调到200V,加料使电流升高,左旋W1电位器,使电流调至额定电流。

中频电源

中频电源

中频电源
中频电源概念1:
中频电源是一种静止变频装置,将三相工频电源变换成单相电源,对各种负载适应力强、适用范围广。

中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率(一般为1000至8000Hz)的单相中频电流。

负载由感应线圈和补偿电容器组成,连接成并联谐振电路。

中频电源概念2:
中频电源的具体整流步骤及具体原理:中频感应炉主要电路为AC-DC-AC变频结构,由整流电路、滤波、逆变电路和保护电路组成。

其工作原理是将三相50Hz 工频交流电经过三相全控整流桥整流成电压可调的中频电源脉动直流,再通过电容将脉动的直流电滤波变成光滑平稳的直流电送到单相逆变桥,最后通过逆变桥将直流电变成单相频率可调的中频交流电供给负载。

简单的来说,中频电源就是将普通的交流电通过三相整流桥整流成直流,在通过电容过滤送至单相逆变桥
变成单相可用稳定直流。

(频率可调整1000-8000HZ 为中频)
中频变压器
中频变压器的初级线圈一般在10到25匝之间,很少会超出这个范围。

初级线圈绕城螺旋状,且通常是单层的。

线匝的层数如加多时,由于每一层卷匝处于内部基层卷匝的总电流所造成的磁场内,因而线圈内的铜损大增。

初级线圈的宽度因尽可能与次级线圈的宽度相等,因此时漏磁通最小。

初级线圈是绕在铁心上,所以初级线圈的直径以及包于其外的初级线圈的直径,主要取决于铁心的尺寸。

中频电源故障分析及维修

中频电源故障分析及维修

形 。两 家 公司 的中频 电源均 是采 用 晶振 产 生高频信
号 ,经 分频 器分 别送 至三 角波和 正弦波 发 生器 ,产 生1 K Z角波 ̄ 4 0 正弦波 。标 准正弦数据存 于 OH z [ 0H 1 Z ERM P O 中,按输出频率选通E R M P O ,经t A ) 转换输 出标 / 准正弦信号。 由于三相E R M P O 地址选通 为同一信号 , 所存数据 互差1 0 2 。, 因而产 生的三路标准 正弦波互
电路按照三套独立 的单相 电源设计 :三套完全相 同的
及波形的控制 ,I B 驱动 ,故障检测及保护 ,状态显 GT
示等功能。
逆变器 、变压器 、L 滤波器 ,共用一条直流母线,输 c
出互 差 10 2 。,在 变压器副边 接成星型 ,输 出所 需三
相交流电。
收稿 日期:2 1 — 9 1 000-4 作者简 介:褚晓虹,硕士 ,工程师 。
流 :开机 时先启动限流电阻,将 冲击 电流限定在 一定
的范 围内,实现输入限流缓启动,此时逆变器 的驱动
信 号是关 闭的,然 后通过 操作者手动 按下复位 按钮 , 短路 启动 电阻,逆 变器驱 动信 号同时送 出,电源 正常
工作 。
为提高 不平衡 负载的适应 能力,两 种三相 电源主
2 1 年第5 0 1 期
总第 17 1期
中 砚戒 装 国 孝 备
SN4-_ C1718 S124 N693 19, 4 r
中频电源故障分析及维修
褚 晓虹
南京 电子技术研究所 江苏南京 203 109
摘 要 :介绍 了中频 电源的工作 原理 ,分 析了几种 中频 电源 中常见的故障 ,并 以实例 阐述 了电源故障的处理方法和维修经

中频电源原理及调试步骤

中频电源原理及调试步骤

中频电源原理及调试步骤主电路原理本系列中频电源装置是采用晶闸管元件,将三相工频交流电整流为直流,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率的单相中频电流。

负载是由感应线圈和补偿电容器组成的。

联接成并联谐振电路。

详细原理图见主电路图《1200KW/2.6KHz中频电源原理图》。

三相工频交流电(550V、三相四线制)送至本装置隔离开关的三个进线端,自动空气开关ZK作为主回路的电源开关。

电流检测采用电流互感器,该电流信号被电流互感器及5/0.1A电流变换器二次转换后送到控制电路板《KSRL.SCH》作为电流闭环信号和过电流保护信号。

快速熔断器作为控制电路失控时的短路保护。

为了减少开关操作过电压及由SCR换相时产生的"毛刺",在进线处设置了阻容滤波电路及压敏过电压吸收电路。

本装置采用三相桥式全控整流电路,可以获得较为平滑的电流波形,并且通过脉冲移相,可实现拉逆变工作状态。

三相全控桥式整流电路的工作原理从略。

2.控制电路原理整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为整流触发部分、调节器部分、逆变部分、启动演算部分。

详细电路见《KSRL.SCH控制电路原理图》。

2.1 整流触发工作原理这部分电路包括三相同步、数字触发、末级驱动等电路。

触发部分采用的是数字触发,具有可靠性高、精度高、调试容易等特点。

数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉冲频率受α移相控制电压Vk的控制,Vk降低,则振荡频率升高,而计数器的计数量是固定的(256),计数脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短,α角减小,反之α角增大。

计数器开始计数时刻同样受同步信号控制,在α=0°时开始计数。

现假设在某Vk 值时, 根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为25KHZ , 则在计数到256 个脉冲所需的时间为(1/50000)×256=10.2 (mS) ,相当于约180°电角度,该触发器的计数清零脉冲在同步电压(线电压)的30°处,这相当于三相全控桥式整流电路的β=30°位置,从清零脉冲起,延时10.2mS产生的输出触发脉冲,接近于三相桥式整流电路某一相晶闸管α=150°的位置。

中频电源控制板工作原理

中频电源控制板工作原理

中频电源控制板工作原理中频电源控制板是一种电子设备,用于控制中频电源的工作。

它的工作原理是通过控制电路和电子元件的配合,将输入的电源信号转换为适合中频电源使用的输出信号,从而实现中频电源的正常工作。

中频电源控制板的主要组成部分包括输入电路、控制电路和输出电路。

其中,输入电路负责接收外部电源输入,将其转换为控制电路能够处理的信号;控制电路负责对输入信号进行处理和控制,以达到所需的中频电源输出;输出电路负责将控制电路输出的信号经过进一步处理,得到最终的中频电源输出。

在中频电源控制板的工作过程中,输入电路首先对外部电源进行滤波和稳压处理,以确保输入信号的稳定性和可靠性。

然后,输入信号经过控制电路进行处理,包括调节、放大、反馈等操作,以实现对中频电源输出的精确控制。

最后,经过输出电路的进一步处理,包括滤波、调节、保护等操作,得到最终的中频电源输出。

为了提高中频电源控制板的工作效率和稳定性,通常会采用一些特殊的电子元件和技术。

例如,可以使用高频变压器进行信号传递和隔离,以减少信号损耗和干扰;还可以采用负反馈控制技术,通过对输出信号进行监测和调节,以保持中频电源输出的稳定性和精确性。

中频电源控制板还可以配备一些辅助功能,如过压保护、短路保护、温度保护等。

这些功能可以有效地保护中频电源控制板和相关设备的安全和稳定运行。

中频电源控制板是一种关键的电子设备,用于控制中频电源的工作。

它通过输入电路、控制电路和输出电路的配合,将输入信号转换为适合中频电源使用的输出信号,从而实现中频电源的正常工作。

通过采用特殊的电子元件和技术,以及配备辅助功能,可以提高中频电源控制板的工作效率和稳定性,保证相关设备的安全和稳定运行。

中频交流电原理

中频交流电原理

通过这些故障检查,可以排除中频电源的故障,并确保其正常工作。中频交流 电在感应加热等领域中具有广泛应用,通过理解其工作原理和进行定期维护, 可以确保系统的可靠性和稳定性。
Байду номын сангаас
中频交流电原理
中频电源的工作原理基于将三相交流电转换为特定频率的单相中频电流。以下 是中频交流电原理的详细解释:
1. 三相桥式全控整流电路: 中频电源首先采用三相桥式全控整流电路,将 输入的三相交流电转换为直流电。这个整流电路包括六个快速熔断器、 六个晶闸管、六个脉冲变压器以及一个续流二极管。在正常情况下,整 流器输出的直流电成为一个稳定的直流电流源。
• 整流器: 使用万用表检查快速熔断器、晶闸管、脉冲变压器和续流二极 管。特别注意检查晶闸管是否触发正常,通过测量门极电阻来判断。
• 电源: 通过万用表测量主电路开关和控制保险丝后面是否有电,以排除 元件断路的可能性。
• 逆变器: 逆变器包括快速晶闸管和脉冲变压器,通过测量它们的电阻和 观察波形来检查其工作状态。
• 变压器: 检查每个变压器的每个绕组,确保它们通路正常。中频电压互 感器的电阻值为零,因为它与负载并联。
• 电容器: 检查并联的电容器,注意可能的击穿和漏油。使用万用表测量 电容器的电阻,以及外壳引线和电容器架之间的电阻。
• 水冷电缆: 检查水冷电缆是否断裂,使用示波器观察负载两端的波形, 检查是否存在电缆断芯。
2. 电抗器平波: 直流电流通过电抗器以平滑波形,使其变为稳定的直流电 源。
3. 单相逆变桥: 经过平波后的直流电流通过单相逆变桥,将其逆变为一定
频率(通常为 1000 至 8000Hz)的单相中频电流。
4. 负载: 负载由感应线圈和补偿电容器组成,它们连接成并联谐振电路, 形成中频电源的输出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶闸管中频感应加热电源是利用晶闸管将三相工频交流电能变换成几百或几千赫兹的
单相交流电能。

具有控制方便、效率高、运行可靠、劳动强度低的特点,广泛用于铸钢、不锈钢或合金钢的冶炼、真空冶炼、锻件的加热和钢管的弯曲、挤压成型、工件
的预热、钢件表面淬火、退火热处理、金属零件的焊接、粉末冶金、输送高温工质的
管道加热、晶体的生长等不同场合。

在我厂,中频电源装置主要用于铸钢、不锈钢和
青铜等的冶炼。

中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定
频率(一般为1000至8000Hz)的单相中频电流。

负载由感应线圈和补偿电容器组成,连接成并联谐振电路。

一般情况下,可以把中频电源的故障按照故障现象分为完全不能起动和起动后不
能正常工作两大类。

作为一般的原则,当出现故障后,应在断电的情况下对整个系统
作全面检查,它包括以下几个方面:
(一)电源:用万用表测一下主电路开关(接触器)和控制保险丝后面是否有电,这将排除这些元件断路的可能性。

(二)整流器:整流器采用三相全控桥式整流电路,它包括六个快速熔断器、六
个晶闸管、六个脉冲变压器和一个续流二极管。

在快速熔断器上有一个红色的指示器,正常时指示器缩在外壳里边,当快熔烧断后它将弹出,有些快熔的指示器较紧,当快
熔烧断后,它会卡在里面,所以为可靠起见,可以用万用表通断档测一下快熔,以判
断它是否烧断。

测量晶闸管的简单方法是用万用表电阻挡(200Ω挡)测一下其阴极—阳极、门极—阴极电阻,测量时晶闸管不用取下来。

正常情况下,阳极—阴极间电阻应为无穷大,门极—阴极电阻应在10—50Ω之间,过大或过小都表明这只晶闸管门极失效,它将不能被触发导通。

脉冲变压器次边接在晶闸管上,原边接在主控板上,用万用表测量原边电阻约为50Ω。

续流二极管一般不容易出现故障,检查时用万用表二极管挡测其二端,正向时
万用表显示结压降约有500mV,反向不通。

(三)逆变器:逆变器包括四只快速晶闸管和四只脉冲变压器,可以按上述方法
检查。

(四)变压器:每个变压器的每个绕组都应该是通的,一般原边阻值约有几十欧姆,次极几欧姆。

应该注意:中频电压互感器的原边与负载并联,所以其电阻值为零。

(五)电容器:与负载并联的电热电容器可能被击穿,电容器一般分组安装在电
容器架上,检查时应先确定被击穿电容器所在的组。

断开每组电容器的汇流母排与主
汇流排之间的连接点,测量每组电容器两个汇流排间的电阻,正常时应为无穷大。


认坏的组后,再断开每台电热电容器引至汇流排的软铜皮,逐台检查即可找到击穿的
电容器。

每台电热电容器由四个芯子组成,外壳为一极,另一极分别通过四个绝缘子
引到端盖上,一般只会有一个芯子被击穿,跳开这个绝缘子上的引线,这台电容器可
以继续使用,其容量是原来的3/4。

电容器的另一个故障是漏油,一般不影响使用,但要注意防火。

安装电容器的角钢与电容器架是绝缘的,如果绝缘击穿将使主回路接地,测量电
容器外壳引线和电容器架之间的电阻,可以判断这部分的绝缘状况。

(六)水冷电缆:水冷电缆的作用是连接中频电源和感应线圈,它是用每根直径Φ0.6–Ф0.8紫铜线绞合而成。

对于500公斤电炉,电缆截面积为480平方毫米,对于250公斤电炉,电缆截面积采用300至400平方毫米。

水冷电缆外胶管采用耐压5公
斤的压力橡胶管,里面通以冷却水,它是负载回路的一部分,工作时受到拉力和扭力,与炉体一起倾动而发生曲折,因此时间长后容易在柔性连接处断裂开。

水冷电缆断裂
过程,一般是先断掉大部分后,在大功率运行时把未断小部分很快烧断,这时中频电
源就会产生很高的过电压,如果过电压保护不可靠,就会烧坏晶闸管。

水冷电缆断开后,中频电源无法启动工作。

如不检查出原因而*,就很可能烧坏中频电压互感器。

检查故障时可用示波器,把示波器探头夹在负载两端,观察按启动按钮时有无衰减波形。

确定电缆断芯时先把水冷电缆与电热电容器输出铜排脱开,用万用表电阻挡(200Ω挡)测量电缆的电阻值,正常时电阻值为零,断开时为无穷大。

用万用表测量时,应把炉
体翻到倾倒位置,使水冷电缆掉起,这样使断处彻底脱离,才能正确判断是否断芯。

通过以上几个方面的检查,一般能查出大部分的故障原因,接下来可以接通控制
电源,作进一步的检查。

中频电源主电路合闸有手动和自动两种。

对于自动合闸的系统,应该先将电源线暂时断开,以确保主电路不会合上。

接通控制电源后,可以作下
面几个方面的检查。

1.将示波器探头接在整流晶闸管的门极和阴极上,示波器置于电源同步,按下启动按钮后即可看到触发脉冲波形,应为双脉冲,幅度应大于2V。

按一下停止按钮,脉冲将立即消失。

重复六次,将每个晶闸管都看一下,如果门极没有脉冲,可以将示波
器的探头移到脉冲变压器的原边看一下,如果原边有脉冲而次边没有,说明脉冲变压
器损坏,否则问题可能出在传输线或主控板上。

2.将示波器探头接在逆变晶闸管的门极和阴极上,示波器置于内同步,接通控制电源后可以看到逆变触发脉冲,它是一串尖脉冲,幅度应大于2V,通过示波器的时标读出脉冲周期,算出触发脉冲频率,正常时应比电源柜的标称频率高约20%,这个频率称为启动频率。

按下启动按钮后,脉冲的间距加大,频率变低,正常时应比电源柜
的标称频率低约40%,按一下停止按钮,脉冲频率立即跳回启动频率。

通过上列检查,基本上能排除完全不能启动的故障。

启动以后工作不正常,一般表现在下列几个方面:
1.整流器缺相:故障表现为工作时声音不正常,最大输出电压升不到额定值,且
电源柜怪叫声变大,这时可以调低输出电压在200V左右,用示波器观察整流器的输出电压波形(示波器应置于电源同步),正常时输入电压波形每周期有六个波形,缺相
时会缺少二个,如图2所示。

这一故障一般是由于整流器某只晶闸管没有触发脉冲或
触发不导通引起的,这时应先用示波器看一下六个整流晶闸管的门极脉冲,如果有的话,关机后用万用表200Ω档测量一下各个门极电阻,将不通或者门极电阻特别大的那只晶闸管换掉即可。

2.逆变器三桥臂工作:故障表现为输出电流特别大,空炉时也一样,且电源柜工
作时声音很沉重,启动后把功率旋钮调到最小位置,会发现中频输出电压比正常时高。

用示波器依次观察四个逆变晶闸管的阳极—阴极之间的电压波形,正常时每一只的波
形都如图3所示。

如果三桥臂工作,可以看到逆变器中有相邻的二只晶闸管的波形正常,另外相邻的二只有一只没有波形,另一只为正弦波,如图4所示,KK2触发不通,其阳极—阴极之间的波形就是正弦波;同时KK2不导通会导致KK1无法关断,所以
KK1二端就没有波形。

3.感应线圈故障:感应线圈是中频电源的负载,它采用壁厚3至5毫米的方形紫
铜管制成。

它的常见故障有以下几种:
感应线圈漏水,这可能引起线圈匝间打火,必须及时补焊才能运行。

钢水粘在感应线圈上,钢渣发热、发红,会引起铜管烧穿,必须及时清除干净。

感应线圈匝间短路,这类故障在小型中频感应炉上特别容易发生,因为炉子小,
在工作时受热应力作用而变形,导致匝间短路,故障表现为电流较大,工作频率比平
常时高。

综上所述,为了能采用正确的方法进行中频电源的故障维修,就必须熟悉中频电
源常见故障的特点及原因,才能少走弯路,节省时间,尽快的将故障排除,恢复中频
电源的正常运行,从而保证生产的顺利进行。

相关文档
最新文档