用变分法求解最优控制问题共104页

合集下载

变分法与最优控制

变分法与最优控制

2.1 变分法概述
1、泛函定义
定义: 如果变量y对于某一函数类中的每一个函数 x(t),都有一个确定的值与之对应,那么就 称变量y为依赖于函数x(t)的泛函,记为: y=J [x(t)]。
说明:由于函数的值是由自变量的选取而确定的,而泛函 的值是由自变量的函数的选取而确定的,所以将泛函理解 为“函数的函数”。
点向较低的B点滑动,如果不考
虑各种阻力的影响,问应取怎样 的路径,才能使所经历的时间最 短?
结论:最速降线是一条圆滚线。
B(xf,yf)
y
在A、B两点所在的竖
直平面内选择一坐标系,
如上图所示。A点为坐 标原点,水平线为x轴, 铅垂线为y轴。
向量欧拉方程
对于向量空间的泛函,也存在着欧拉方程,不 过是欧拉方程组(即向量欧拉方程)。
若给定曲线x(t)的始端x(t0)= x0和终端x(tf)= xf,
J[x(t) ] tf L[x(t)x ,(t)t,]dt t0
达到极值的必要条件是,曲线x(t)满足欧拉方程
Lx ddtLx0 或
欧拉(Euler)方程
其中x(t)应有连续的二阶导数, L[x(t)x ,(t)t,] 则至少应是二次连续可微的。 (证明略)
2.2 无约束最优化问题
1、无约束固定端点泛函极值必要条件
问题 2-1 无约束固定终端泛函极值问题为:
其中, L[x(t),及x(tx)(,tt)]在[t0,tf]上连续可微, t0及tf固定, x(t0)= x0,x(tf)= xf, x(t)Rn
求满足上式的极值轨线x*(t)。
边界条件
定理2-5 则泛函
(证明略)
定理2-2 连续泛函J(x)的二次变分定义为
(证明略)

最优控制变分法

最优控制变分法

x(t ) x (t ) (t )

将式(1· 2—5)两边对 t 求导,可得
将式(1· 2—5)、(1· 2—6)代入式(1· 2—3),又得
x(t ) x (t ) (t )
(1· 2—6)
J [ x] L[ x (t ) (t ), x (t ) (t ), t ]dt (1· 2—7) 在式(1· 2—7)中,每选择一个 (t ) ,都可作一条 J [x] 曲 线。选择各式各样的容许的 (t ),可以作出一族 J [x] 曲线,
二、固定端点时间、无约束条件的变分问题 这一节,我们讨论一类最简单的变分问题,即无约束条件、 端点时间固定,只有一个自变量函数的拉格郎问题。通过这个问 题来引出欧拉方程和横截条件。 求解变分问题,就是要把使泛函达到极值的那个自变量函数 找出来,这就需要利用欧拉方程和横截条件。因此,欧拉方程和 横截条件是求解变分问题的基础。 在推导欧拉方程和横截条件时要使用一个定理,这个定理叫 作变分法的基本颈备定理。 本节首先介绍基本预备定理,接着推导欧拉方程,然后讨论 横截条件,最后讨论泛函取极值的充分条件。
2. 欧拉方程 现在,我们来推导欧拉方程和相应的横截条件。首先讨论固定 端点问题,然后讨论未定端点问题。 考虑最简单的泛函
(1· 2—3) L 的极值。其中x(t ) 是 t 二次可微函数; [ x(t ), x(t ), t ],是变量 x, x和 t 连函函数,并且有连续二阶偏导数,端点时间 t 0 和 t f 固定。 首先研究容许函数(或曲线)端点固定的情况,即规定 x(t 0 ) x0 和 x(t f ) x f 。图1—4示出了一族容许函数。现在的 的问题是要从这一族容许函数(或曲线)中找出使泛函J取极值的函数(或 曲线),即极值函数或极值曲线。

第6章 用变分法求解最优控制问题

第6章 用变分法求解最优控制问题

x(t) = x*(t) +εη(t) = x*(t) +δ x(t)
§6-2 泛函与变分的基本概念
3.泛函的变分 ● 泛函的增量 由自变量函数 x(t) 的变分δ x(t)引起泛函 J[ x(t)]的增量
∆J = J[ x*(t) +δ x(t)] − J[x*(t)] 为泛函 J[ x(t)] 的增量。
§6-2 泛函与变分的基本概念
一. 泛函与泛函的变分 1. 泛函的定义 对于某一类函数集合{x(t)} 中的每一个函数 x(t),均有一个确定的数 J 与之对应,则称 J 为依赖于函数 x(t) 的泛函,记作
J = J[x(⋅)] = J[x(t)]
函数值。 例泛函:
J[x(t)] 中的 x(t)应理解为某一特定函数的整体,而不是对应于 t 的
α = ∫ 2[x(t) + δ x(t)]δ x(t)dt α=0
0
1
= ∫ 2x(t)δ x(t)dt
0
1
§6-2 泛函与变分的基本概念
二. 泛函的极值 1. 泛函极值的定义 如果泛函 J[x(t)] 在 x(t) = x (t) 的邻域内,其增量
*
∆J = J[x(t) − x*(t)] = J[x(t)] − J[x*(t)] ≥ 0
∂ J[x*(t) +αδ x(t)] α=0 = 0 ∂α ∂ J[x*(t) +αδ x(t)] α=0 = δ J[x*(t)] = 0 ∂α
§6-3 无约束条件的变分问题
引理:如果函数 F(t) 在区间 [t0, t f ] 上是连续的,而且对于只满足某些 一般条件的任意选定的函数
η(t) 有
第六章 用变分法求解最优控制问题

现代控制理论最优控制(1)

现代控制理论最优控制(1)

1)泛函自变量的变分
δ x x(t ) x (t )
*
2)泛函的变分 泛函的增量:由自变量函数x(t)的变分δx(t)的泛函J[x(t)]
增量为
Δ J [x] J [x(t) δ x(t)] J [x(t)] L[x(t ), δ x(t)] o[x(t), δ x(t)]
泛函的变分:泛函J[x(t)]的增量ΔJ[x(t)]的线性主部称为 泛函的一阶变分,简称泛函变分记为δJ,即
J J [ x(t ) x(t )] 0 L[ x(t ), x(t )]
类比于函数y=f(x),其增量为 Δy= f(x+Δx)-f(x)=f’(x)dx+o(Δx) y=f(x)的微分 dy=f’(x)dx
2. 确定容许控制域
对于r维控制向量u(t),要满足客观约束条件
i ( x, u ) 0 j 1, 2,, m mr 把u {u (t ) i ( x, u ) 0}称为控制域
满足u (t ) u的u (t )称为容许控制
3.确定始端与终端条件 若系统的初始时刻t0确定,则:
3) 泛函的极值
若泛函J[x(t)]在曲线x(t)= x*(t)上达到极值,则有
J J [ x(t ) x(t )] 0 0

ΔJ=J[x(t)]-J[x*(t)] ≥0
则称泛函J[x(t)]在曲线x*(t)上达到极小值;若
ΔJ=J[x(t)]-J[x*(t)] ≤0
3)综合型性能指标( 波尔扎型)
J x t , u t , t dt x(t f ), t f t 0 L 或J x(k f ), k f L[ x (k ), u ( k ), k ]

变分法求解最优控制

变分法求解最优控制
控制的最优化性能指标:
J (u(t )) (t f , x(t f )) F (t, x(t ), u(t ))dt
t0 tf
性能指标J(u(t))在数学上称为泛函,在控 制系统中称为损失函数。
变分法基本概念
1.泛函
设S 为一函数集合,若对于每一个函数 x(t)∈S有一个实数J 与之对应,则称J 是 定义在S 上的泛函,记作J (x(t))。S 称为 J 的容许函数集。
t0
tf
再令 J 1 0 ,由 便得:
dt f ,x(t f ),x,u, 的任意性,
(i) x * , * 必满足正则方程: 1.状态方程
x H f (t, x, u)
2.协态方程
H x
* *
(ii)哈密顿函数 H (t, x , u, ) 作为u的函数,也 必须满足
定义一个标量函数:
H (t, x, u, ) F (t, x, u) T (t ) f (t, x, u)
称为哈密顿函数。所以新的性 能指标为
J 1 ( x, u, ) (t f , x(t f )) [ H (t, x, u, ) T x]dt
t0 tf
t0 tf
d (dt fy) [t f fF xt ,yxdx , t ) t t f F'( ) y ) ( (, ) , u dy a (
T
b( y )
] [x(t f )] x (t f )
T
T tf
[(x) H x (u) H u ( ) H ( ) x]dt (t f )x t t f (x)T dt t0 f y ( x, y)dx f [b( y), y)]b' ( y) f [a( y), y)]at'0( y)

最优控制变分法

最优控制变分法

AB



x2 x1
1 y ' 2 dx
通过A,B两点的函数若为 y f (x) ,则不同的函数有不同的 弧长,即弧长是 y 的函数,记为 J ( y ) ,即
x2 1 y 2 dx J ( y ) AB x1

因此,求弧长的定积分是一种变换,它把x1与x2之间各点相应 的y变换为标量(弧长)。由此例可以看出定积分为泛函。 以下是各章经常要用到下列形式的目标函数
以下计算第二个积分,实际上是估计余项。 按泛函求极值的
ˆ 与 y 的一级距离应落入ε邻区内(由于本节的泛函 定义, y
只对 y 与 y’提出要求,故只用到一级距离),即令
ˆ y| d 0 max | y
x [ x 0 , x1 ]
ˆ ' y ' | d 1 max | y
x [ x 0 , x1 ]
第一章

变分法
1.1 泛函 1.2变分的推演 1.3Euler方程 1.4向量情形 1.5有约束的情形 1.6端点可变情形 1.7变分的另一种定义
1.1 泛函
(1)定义(泛函)
泛函是一映射L : J K , J Y , Y为一向量空间, K 一般为实数 域R或复数域C。 这说明泛函是一种变换,它把向量空间Y中某一子集J 映射为 K的某个子集。 例:曲线的弧长 在xy平面上过A(x1 ,y1),B(x2,y2)两点之间的曲线弧长公式为
| [ ( Fy Fy ) ' (F y ' Fy ' )]dx | | |dx
x0 x0
x1
x1
[| (Fy Fy ) | | ' ( F y ' Fy ' ) |]dx

用变分法求解最优控制问题

用变分法求解最优控制问题

t
tt0 f F xx F xx o (x )2 ,(x )2 d t
上式中 o[(x)2,(x)2]是高阶项。
(泰勒级数展开)
根据定义,泛函的变分 J 是 J的线性
主部,即
J
tf t0
F xx F x x dt
对上式第二项作分部积分,按公式
可得
tf t0
5.1 变分法基础回顾
相关的定义:
1、泛函: 如果对某一类函数X(t)中的每一个函
数X (t),有一个实数值J与之相对应,则称J为依赖于
函数X (t) 的泛函,记为
JJX(t)
简单来说,泛函是以函数为自变量的函数。
2、泛函的连续性:若对任给的 0,存在 0
当 X(t)Xˆ(t) 时,就有
J(X)J(Xˆ)
为了判别是极大还是极小,要计算二阶变 分 2 J。但在实际问题中根据问题的性质容易
判别是极大还是极小,故一般不计算 2 J 。
5.2 无约束条件的泛函极值问题
5.2.1 泛函的自变量函数为标量函数的情况
为简单起见,先讨论自变量函数为标量函数 (一维)的情况。我们要寻求极值曲线 x(t)x*(t), 使下面的性能泛函取极值
于是有约束条件的泛函 J 的极值问题化为无约
束条件的增广泛函 J a 的极值问题。 再引入一个标量函数
H (X ,U ,,t) F (X ,U ,t) T f(X ,U ,t) (5-18)
它称为哈密顿(Hamilton)函数,在最优控制中 起着重要的作用
于是J a 可写成
J aX ( tf)tf, tt 0 f H (X ,U ,,t) T X dt
的线性主部。
6、泛函的极值:若存在 0 ,对满足的 X X* 一切X,J(X)J(X*)具有同一符号,则

变分法及其在最优控制中的应用

变分法及其在最优控制中的应用

2.欧拉方程的全导数形式
基础知识:设函数 z f (x, y, z)
则: dz f dx f dy f dz dt x dt y dt z dt
在<10>式中, d 为全导数
dt x(t)

z
d dt
x
g(x, x,t)
dz dt
d dt
x
x
x
dx dt
x
x
dx dt
t
x
dt dt
当 : x(t) t 2 x(t) 0.2t 时
x(t)
(1,1) (1,0.2) (1,0.1)
t
J 10.2t 3dt 1
0
20
J
1
0.4t
3dt
1
0
10
< 定理1 > 如果泛函J[ y(x)] 是可微的,则泛函的变分为:
J[ y(x)] J[ y(x) y(x)]
0
证明从略,见P 46页 证明进一步,多元函数的变分为: 即:
t0
tf
注: = + t f t f t0 t0
tf t0 t0
t f t f tf
— = — — t0 t0
t0
t0 t0
tf
tf
t0
对 函数 L 在[x, x,t] 处进行泰勒展开,则:
J t f L(x, x,t)dt t0
tf t0
(
L x
h
L x
h)dt
t f L(x, x,t)dt t0
x(t f )
xf t
<4> 端点变动的情况:(3.2.2)
1>自由端点,无约束条件的变分,如图:

最优控制第三章用变分法解最优控制问题

最优控制第三章用变分法解最优控制问题

H 2x
x
H 0 2u 0 2u
u
u x
x u x u u x x x 0
2023/12/27
x(t ) c1et c2et x(t) c1et c2et u
由边界条件和横截条件 x(0) x0
H (t f ) [ t ]t f
cc11
c2 x0 c2 0
约束条件 x(t0 ) x0 , M [x(t f ), t f ] 0
正则方程 x H
H x
控制方程 H 0 u
2023/12/27
边界条件和横截条件
终端固定
x(t0 ) x0 ,
M [x(t f )] 0 x(t f ) x f
tf
给定
终端自由 终端约束
终端固定
tf
自由
终端自由 终端约束
2 (t f
)
x2 (t f
)
M (
x2 (t f
)T )
v(t f
)
2 (2) x2 (2) 2 5v c2e2 c1
代入 x1 (2), x2 (2)
2023/12/27
14
解得
0.5c2 c3 c1 0.5c2
c4 c3
0 0
7c1 3e2c2 4e2c3 c4 15 x1 (2) 5x2 (2) 15
(t f
)
[ x
(M x
)T v] tt f
M [x(t f ), t f ] 0
H (t f
)
[
t
vT
M t
] tt f
9
例2 已知系统状态方程为 x u(t), x(0) 1
求最优控制 u* (t) 使性能指标 J 1e2t (x 2 u 2 )dt 为最小 0

优化理论课件(变分法与最优控制理论)

优化理论课件(变分法与最优控制理论)

优化理论课件(2)第二部分动态优化:变分法和最优控制理论变分法是处理动态优化的古典方法,现在较少使用,在蒋中一的书中,变分法的思路可用来解释庞特里亚金最大值原理(一阶条件)。

本部分内容主要来自蒋中一《动态最优化基础》。

目录一、什么是动态优化? (3)(一)动态优化问题的基本要素 (4)(二)泛函及其相关概念 (4)(三)可变终结点 (5)(四)横截条件 (6)(五)目标泛函 (6)二、变分法 (7)(一)基本问题:固定终结点问题 (7)(1)基本问题及其假定 (7)(2)一阶条件:欧拉方程 (8)(二)推广:多状态变量与高阶导数 (10)(1)多状态变量 (10)(2)高阶导数 (10)(三)可变端点问题 (10)(1)一般性横截条件 (11)(2)垂直终结线问题 (12)(3)水平终结线问题 (12)(4)终结曲线问题,即错误!不能通过编辑域代码创建对象。

(12)(5)截断的垂直终结线问题 (12)(6)截断的水平终结线问题 (13)(7)多变量和高阶导数情形 (13)(四)二阶条件(充分条件) (14)(1)固定端点问题的二阶条件及其二次型检验 (14)(2)凹凸性充分条件 (14)(3)变分 (15)(五)无限期界问题 (16)(1)收敛性 (16)(2)横截条件 (17)(3)充分条件 (17)(六)带约束的优化问题 (17)(1)等式约束 (17)(2)不等式约束 (18)(3)积分约束(等周问题) (19)三、最优控制理论 (20)(一)最优控制理论导论 (20)(二)最大值原理及其横截条件 (21)(1)最简单问题及最大值原理(一阶必要条件) (21)(2)最大值原理的理论基础及其横截条件 (23)(3)自控问题的汉密尔顿函数不变性 (26)(4)推广到多变量 (26)(三)最大值原理的经济学解释及现值的汉密尔顿函数 (27)(1)最大值原理的经济学解释 (27)(2)现值的汉密尔顿函数 (28)(四)充分条件(二阶条件) (29)(1)曼加萨林定理 (29)(2)阿罗条件 (31)(五)无限期界问题 (31)(1)横截条件与反例 (32)(2)作为充分条件一部分的横截条件 (32)(六)有约束的最优控制问题 (33)(1)涉及控制变量的约束 (33)(2)状态空间约束 (39)四、拉姆齐模型 (43)(一)相关理论发展背景 (43)(二)最简单的拉姆齐模型及其动力系统 (45)(三)微分方程定性稳定性判别方法简介 (47)(1)稳定性与渐进稳定性 (47)(2)稳定性判别基本定理 (48)(2)平面动力系统的奇点 (49)一、什么是动态优化?例:一个企业将原料从初始状态A通过五道工序,变为总结状态Z,每个阶段的选择对应一个阶段的成本,如何选择路径使得总成本最小化?从这个例子中可以看到:首先,动态强调的是时期之间的联系,而不仅仅是有时间的顺序;其次,这里也包含了Bellman方程的基本原理。

用变分法求解最优控制问题

用变分法求解最优控制问题

与以前不同的是,在动态问题中拉格朗日乘子 向量(t) 是时间函数。
在最优控制中经常将 (t )称为伴随变量,协态(协状 态向量)或共轭状态。引入 (t) 后可作出下面的增 广泛函
Ja X (t f ),t f

tf t0
FX ,U,t T (t) f (X ,U,t) X
对上式第二项作分部积分,按公式
可得
t f t0
udv uv
tf t0

t f vdu
t0
J
tf t0
F x

d dt
(
F x
)xdt

F x
x
tf t0
(5-2)
J取极值的必要条件是 J 等于零。因 x是 任意的,要使(5-2)中第一项(积分项)为 零,必有
x* (t) sht sh1
例5-2 求使指标
J 1 (x 2 x3 )dt 0
取极值的轨迹 x* (t) ,并要求 x* (0) 0 ,但对 x* (1) 没有限制。
解 这是终端自由的情况。欧拉—拉格朗日方程为
d (2x 3x 2 ) 0 dt即2x Fra bibliotek 3x 2 常数

d dt
(
F X
)
dt

X
T
F X
tf t0
向量欧拉——拉格朗日方程为
F X

d dt
(
F X
)

0
式中
F

x1

F
F X


x
2



F

变分法在最优控制中的应用PPT课件

变分法在最优控制中的应用PPT课件
x1(0) = θ(0) = 1, x2 (0) = θ(0) = 1
经过 t = 2s 转移到状态空间原点, 即
x1(2) = θ(2) =0, x2 (2) = θ(2) = 0
且使如下性能指标取极小。
J 1
2
u
2
(t
)dt
20
第七页,编辑于星期五:十三点 二十二分。
具有等式约束条件下的变分问题 (7/10)
式中,
为m维 (mn) 关于t, x 和的非线性向量函数。 (t, x(t), x(t)) 0
(t, x(t), x(t))
第二页,编辑于星期五:十三点 二十二分。
具有等式约束条件下的变分问题 (2/10)
这里,极值曲线x(t)除满足边界条件和古典变分学中规定的连续 可微条件外, 还须满足该等式约束条件。 ➢ 由于动态系统的状态方程可归为等式约束, 因此该等式约束变分 问题是研究最优控制的基础。 ➢ 下面就给出并证明处理等式约束变分问题的等式约束变分定理。
1) 规范方程
x(t) H f ( x(t), u(t),t) (60) λ
λ(t) H L f τ λ (61) x x x
2) 边界条件
3) 极值条件
x(t0 ) x0 ,
λ(t
f
)
S( x(t f ),t x(t f )
f
)
H 0
(64)
u
第十八页,编辑于星期五:十三点 二十二分。
➢ 哈密顿函数对时间t的全导数为
dH dt
H x τ
x
H λτ
λ
H uτ
u
H t
➢ 考虑到规范方程,则有
H x τx H λ τλ H x τ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用变分法求解最优控制问题
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
பைடு நூலகம்
104
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔

相关文档
最新文档