深圳中考数学专题复习{一元二次方程与二次函数应用题}
广东省深圳市中考数学专题专练二次函数综合专题
二次函数综合专题1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B.(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M(4,m)是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F ,E 的坐标.温馨提示:在直角坐标系中,若点P ,Q 的坐标分别为P(x 1,y 1),Q(x 2,y 2),当PQ 平行x 轴时,线段PQ 的长度可由公式PQ =|x 1-x 2|求出;当PQ 平行y 轴时,线段PQ 的长度可由公式PQ =|y 1-y 2|求出.2.如图,在平面直角坐标系xOy 中,抛物线y =x 2+14与y 轴相交于点A ,点B 与点O 关于点A 对称.(1)填空,点B 的坐标是________;(2)过点B 的直线y =kx +b(其中k <0)与x 轴相交于点C ,过点C 作直线l 平行于y 轴,P 是直线l 上一点,且PB =PC.求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由;(3)在(2)的条件下,若点C 关于直线BP 的对称点C′恰好落在该抛物线的对称轴上,求此时点P 的坐标.3.已知抛物线y =ax 2+bx -3经过(-1,0),(3,0)两点,与y 轴交于点C ,直线y =kx 与抛物线交于A ,B 两点.(1)写出点C 的坐标并求出此抛物线的解析式;(2)当原点O 为线段AB 的中点时,求k 的值及A ,B 两点的坐标;(3)是否存在实数k 使得△ABC 的面积为3102?若存在,求出k 的值;若不存在,请说明理由.4.如图,在平面直角坐标系xOy 中,一次函数y =x 与二次函数y =x 2+bx 的图象相交于O 、A 两点,点A(3,3),点M 为抛物线的顶点.(1)求二次函数的表达式;(2)长度为22的线段PQ 在线段OA(不包括端点)上滑动,分别过点P 、Q 作x 轴的垂线交抛物线于点P 1、Q 1,求四边形PQQ 1P 1面积的最大值;(3)直线OA 上是否存在点E ,使得点E 关于直线MA 的对称点F 满足S △AOF =S △AOM ?若存在,求出点E 的坐标;若不存在,请说明理由.5.如图,抛物线y =ax 2+bx -3(a≠0)的顶点为E ,该抛物线与x 轴交于A,B 两点,与y 轴交于点C ,且BO =OC =3AO ,直线y =-13x +1与y 轴交于点D.(1)求抛物线的解析式; (2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P ,使△PBC 是等腰三角形?若存在,请直接写出符合条件的P 点坐标;若不存在,请说明理由.6.如图,抛物线L :y =ax 2+bx +c 与x 轴交于A ,B(3,0)两点(A 在B 的左侧),与y 轴交于点C(0,3),已知对称轴x =1.(1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线l :x =-3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.图(1)图(2)7.如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象经过点A(-1,0)、B(0,-3)、C(2,0),其对称轴与x 轴交于点D.(1)求二次函数的表达式及其顶点坐标;(2)若P 为y 轴上的一个动点,连接PD ,则12PB +PD 的最小值为________;(3)M(s ,t)为抛物线对称轴上的一个动点.①若平面内存在点N ,使得以A,B,M,N 为顶点的四边形为菱形,则这样的点N 共有________个; ②连接MA,MB ,若∠AMB 不小于60°,求t 的取值范围.8.如图,抛物线与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x 轴方向平移,与y 轴平行的一组对边交抛物线于点P 和Q ,交直线AC 于点M 和N ,交x 轴于点E 和F.(1)求抛物线解析式.(2)当点M 和N 都在线段AC 上时,连接MF ,如果sin ∠AMF =1010,求点Q 的坐标. (3)在矩形的平移过程中,当以点P ,Q ,M ,N 为顶点的四边形是平行四边形时,求点M 的坐标.9.如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A(0,1),点B(-9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C,P,Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,已知抛物线y =ax 2+bx -8与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使△FOE≌△FCE,若存在,请直接写出点F 的坐标;若不存在,请说明理由; (3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m),直线PB 与直线l 交于点Q.试探究:当m 为何值时,△OPQ 是等腰三角形.参考答案1. 解:(1)∵直线y =5x +5与x 轴交于点A ,与y 轴交于点C ,∴A(-1,0),C(0,5).∵抛物线y =ax 2+4x +c过点A(-1,0),C(0,5),则⎩⎨⎧==+-,5,04c c a 解得c =5,a =-1,∴二次函数的表达式为y =-x 2+4x +5.图①图②(2)如图①,∵抛物线y =-x 2+4x +5与x 轴交于A ,B 两点,∴解-x 2+4x +5=0的两根为x 1=-1,x 2=5.∵点B在x 轴正半轴,∴B(5,0).设过B(5,0), C(0,5)的直线BC 解析式为y =kx +b ,则⎩⎨⎧==+,5,05b b k解得k =-1,b =5,∴直线BC 表达式为y =-x +5.∵DN ⊥x 轴,∴DN ∥y 轴.∵点N 在BC 上,点D 在抛物线上,设N(x ,y 1),D(x ,y 2),∴N(x ,-x +5),D(x ,-x 2+4x +5).∴DN =-x 2+4x +5-(-x +5)=-x 2+5x =-(x -52)2+254.当x =52时,DN 有最大值254;(3)如图②,作点H 关于y 轴的对称点H′,点M 关于x 轴的对称点M′,连接H′M′,分别交x 轴,y 轴于点F,E ,则四边形HEFM 的最小周长为HM +HE +EF +FM =HM +H′M′.∵y =-x2+4x +5=-(x -2)2+9,∴H(2,9),∴H ′(-2,9),当x =4时,y =5,∴M(4,5),∴M ′(4,-5).设直线H′M′的解析式为y =k′x+b′,则⎩⎨⎧-='+'='+'-,54,92b k b k 解得⎪⎪⎩⎪⎪⎨⎧='-='31337b k ,∴直线H′M′的解析式为y =-73x +133.当y =0时,x=137,∴F(137,0);当x =0时,y =133,∴E(0,133). 2. 解:(1)由y =x 2+14得:A(0,14)∵B,O 关于A 对称,∴B(0,12)(2)如图①,∵直线BC 过点B(0,12),图①图②∴直线BC 解析式为y =kx +12.∴C(-12k ,0),又∵P 是直线l 上一点,∴可设P(-12k ,a).过点P 作PN⊥y 轴,垂足为N ,连接PB ,则在Rt △PNB 中,由勾股定理得:PB 2=PN 2+NB 2,∵PB =PC =a ,∴a 2=(-12k )2+(a -12)2,解得a=14k 2+14,∴P 点坐标为(-12k ,14k 2+14),当x =-12k 时,y =14k 2+14,∴点P 在抛物线上. (3)如图②,由C′在y 轴上,可知∠CBP=∠C′BP,∵PB =PC ,∴∠CBP =∠PCB,∵PC ∥C ′B ,∴∠PCB =∠ABC,∴∠C′BP=∠CBP=∠ABC=60°,∴△PBC 为等边三角形,∵OB =12,∴BC =1,OC =32,∴PC =1,∴P(32,1).3. 解:(1)令x =0,得y =ax 2+bx -3=-3,∴C(0,-3),把(-1,0)和(3,0)代入y =ax 2+bx -3中,得⎩⎨⎧=-+=--,0339,03b a b a 解得⎩⎨⎧-==21b a ,∴抛物线的解析式为y =x 2-2x -3.(2)A(-3,23),B(3,-23).(3)不存在实数k 使得△ABC 的面积为3102.4. 解:(1)由题意知,A(3,3)在二次函数y =x 2+bx 图象上,将x =3,y =3代入得9+3b =3,解得b =-2, ∴二次函数表达式为y =x 2-2x.(2)如图①所示,过点P 作PB⊥QQ 1于点B ,图①∵PQ =22,且在直线y =x 上,∴PB =QB =2 ,设P(a ,a),则Q(a +2,a +2),则P 1(a ,a 2-2a),Q 1(a +2,(a +2)2-2(a +2)),即Q 1(a +2,a 2+2a),所以四边形PQQ 1P 1的面积为:S =2×(a -a 2+2a )+(a +2-a 2-2a )2=-2a 2+2a +2=-2(a -12)2+52,当Q 运动到点A 时,OP =OQ -PQ =2,a =1.∴a 的取值范围为0<a <1.∴当a =12时,四边形PQQ 1P 1的面积最大,最大值为52. (3)存在,点E 的坐标为E 1(43,43),E 2(143,143),如图②所示,连接OM ,∵点M 为抛物线顶点,∴M(1,-1),又∵OA 所在直线为y =x ,∴OM⊥OA,即∠AOM=90°,在△AOF 和△AOM 中,以OA 为底,当面积相等时,则两三角形OA 边上的高相等,又∵OM⊥OA,且OM =2,∴可作两条与OA 互相平行且距离为2的直线,如图②所示,在直线HD 、MC 上的点F 均满足S △AOF =S △AOM ,∴只需满足E 点的对称点F 在这两条直线上即可,如图②,过点A 作AC⊥MC 于点C ,易求四边形OACM 为矩形,AM 为该矩形的一条对角线,取AM 中点O′,过O′作AM 垂线,交OA 于点E 1,交MC 于点F 1,OA =32,∴AM =OA 2+OM 2=25, ∴AO ′=5,则△AO′E 1∽△AOM ,∴AO′AO =AE 1AM =AO -OE 1AM ,∴532=32-OE 125,图②解得OE 1=423,∵点E 1在y =x 上,∴E 1(43,43),同理可得HF 2=GE 2=423,又∵OG=2OA =62,∴OE 2=62-423=1423,∴ E 2(143,143).综上所述,符合条件的E 点的坐标为:E 1(43,43)、 E 2(143,143).( 5. (1)解:当x =0时,y =ax 2+bx -3=-3,∴C(0,-3),即OC =3,∵OB =OC =3OA ,∴OB =3,OA =1,∴A(-1,0),B(3,0),将点A(-1,0),点B(3,0)代入y =ax 2+bx -3得⎩⎨⎧=-+=-+,0339,03b a b a 解得a=1,b=-2,∴抛物线的解析式为y =x 2-2x -3.(2)证明:由y =x 2-2x -3=(x -1)2-4可得E(1,-4),当x =0时,由直线y =-13x +1得y =1,∴D(0,1),即OD =1,∴BD =OD 2+OB 2=10,∴CE =2,BE =25,BC =32,∴在△ODB 和△CEB 中,有DB EB =DO EC =BO BC =22,∴△DBO ∽△EBC. (3)解:存在点P ,使得△PBC 是等腰三角形,点P 的坐标分别为:P 1(1,-1),P 2(1,-3+17),P 3(1,-3-17),P 4(1,14),P 5(1,-14).6. 解:(1)把C(0,3)代入y =ax 2+bx +c ,得c =3,把B(3,0)代入y =ax 2+bx +3,得9a +3b +3=0,又∵-b 2a =1,∴a =-1,b =2,∴抛物线L 的解析式是y =-x 2+2x +3.(2)图①由y =-(x -1)2+4得抛物线的顶点D(1,4),如解图①,过点D 作y 轴的平行线分别交CB ,OB 于点E,F , 则EF OC =BF BO,∴EF =2,∴4-2≤h≤4,即2≤h≤4.(3)能,设P(x ,-x 2+2x +3),如解图②,过点P 分别作x 轴、直线l 的垂线,图②垂足分别是点M ,N ,∵∠PMB =∠PNQ=90°,∵∠QPB =90°,∠BPM =∠QPN,PB =PQ ,∴△PMB ≌△PNQ(AAS),∴PM =PN.①当点P 在x 轴上方时,-x 2+2x +3=x +3,即x 2-x =0,解得x 1=0,x 2=1,∴P 1(0,3),P 2(1,4);②当点P 在x 轴下方时,-x 2+2x +3=-(x +3),即x 2-3x -6=0,解得x =3±(-3)2-4×1×(-6)2=3±332,∴P 3(3-332,-9-332),P 4(3+332,-9+332),∴满足条件的点P 有四个点,分别是P 1(0,3),P 2(1,4),P 3(3-332,-9-332),P 4(3+332,-9+332).7. 解:(1)设二次函数的表达式为y =a(x +1)(x -2),将B(0,-3)代入,得a =32,∴二次函数的表达式为y=32(x +1)(x -2)=32(x -12)2-938,∴顶点的坐标为(12,-938).(2)334;【解法提示】连接AB ,过点P 作PH⊥AB,垂足为H ,如图①,图①∵OA =1,OB =3,∴AB =1+3=2,∴∠ABO =30°,∴PH =12PB ,∴12PB +PD =PH +PD 的值,∴要使12PB +PD 的值最小,只要使PH +PD 的值最小,此时H,P,D 在同一条直线上,且DH⊥AB,在Rt △ADH 中,∠ADH =90°-∠OAB =30°,AD =1+12=32,∴DH =AD cos 30°=334,∴12PB +PD 的最小值为334,(3)①5;【解法提示】以点B 为圆心,AB 的长为半径画圆,与对称轴有两个交点,以点A 为圆心,AB 的长为半径画圆,与对称轴有两个交点,作AB 的垂直平分线与对称轴有一个交点,共有5个点使M,N,A,B 构成的四边形为菱形.②连接AB ,作AB 的垂线,垂足为点A ,交y 轴于点E ,如图②,图②以BE 的长为直径画圆,与对称轴交于点M 1,点M 2,与x 轴交于点A ,F ,∵BE 为直径,AF ⊥BE ,∴AB =FB ,∴∠BFA =∠BAF=60°,∴AB ︵的度数为120°,∴∠AM 1B =∠AM 2B =12×120°=60°.在Rt △AOE 中,∠EAO =30°,OE =AO·tan30°=33,∴BE =OE +OB =33+3=433,∴圆心N(0,-33),∴半径NE =233,∴NM 1=NM 2=233,设M(12,t),NM 2=(12)2+(t +33)2=(233)2,t 1=396-33,t 2=-396-33, M 1(12,396-33),M 2(12,-396-33).故当-396-33≤t ≤396-33时,∠AMB 的度数不小于60°. 8. 解:(1)根据题意得,A(-5,0),B(3,0)在x 轴上,设抛物线的解析式为y =a(x +5)(x -3).∵抛物线过点(0,5),∴a =-13.∴抛物线的解析式为y =-13(x +5)(x -3)=-13x 2-23x +5.(2)如图,过点F 作FD⊥AC 于点D ,∵OA=5,OC =5,∴∠CAO =45°.设AF 的长为m ,则DF =22m ,ME =AE =m +1.∴sin ∠AMF =DF MF ,∴MF =DFsin ∠AMF =10×22m10=5m.在Rt △MEF 中,FM 2=ME 2+EF 2,∴(5m)2=(m +1)2+12,解得m 1=1,m 2=-12(不符合题意,舍去).∴AF =1,∴点Q 的横坐标为-4.又∵点Q 在抛物线y =-13x 2-23x +5上,∴Q(-4,73).(3)设直线AC 的解析式为y =kx +n(k≠0),由题意得,解得,∴直线AC 的解析式为y =x +5.由题知,点Q ,N ,F 及点P ,M ,E 的横坐标分别相同.设F(t ,0),E(t +1,0),点M ,N 均在直线y =x +5上,∴N(t ,t +5),M(t +1,t +6),∵点P ,Q 在抛物线y =-13x 2-23x +5上,∴Q(t ,-13t 2-23t +5),P(t +1,-13t 2-43t +4),在矩形平移过程中,以P 、Q 、N 、M 为顶点的平行四边形有两种情况:①点Q 、P 在直线AC 的同侧时,QN =PM.∴(-13t 2-23t +5)-(t +5)=(-13t 2-43t +4)-(t +6),解得t =-3.∴M(-2,3).②点Q ,P 在直线AC 的异侧时,QN =MP.∴(-13t 2-23t +5)-(t +5)=(t +6)-(-13t 2-43t +4),解得t 1=-3+6,t 2=-3-6,∴M(-2+6,3+6)或(-2-6,3-6).∴符合条件的点M 是(-2,3),(-2+6,3+6)或(-2-6,3-6).9. 解:(1)把点A(0,1),B(-9,10)代入y =13x 2+bx +c ,得()⎪⎩⎪⎨⎧=+--⨯=,109931,12c b c 解得,c=1, ∴抛物线的解析式是y =13x 2+2x +1.(2)当m =-92时,四边形AECP 面积的最大值是814,此时点P 的坐标是(-92,-54).(3)存在.由y =13x 2+2x +1=13(x +3)2-2,得顶点P 的坐标是(-3,-2),此时PF =y F -y P =3,CF =x F -x C =3,则在Rt △CFP 中,PF =CF ,∴∠PCF =45°,同理可求∠EAF=45°,∴∠PCF =∠EAF,∴在直线AC 上存在满足条件的点Q ,如解图,△CPQ 1∽△ABC 或△CQ 2P ∽△ABC.∵A(0,1),B(-9,10),C(-6,1),PF =CF =3,∴AB =92,AC =6,CP =32,①当△CPQ 1∽△ABC 时,设Q 1(t 1,1),由CQ 1AC =CP AB 得t 1+66=3292,解得t 1=-4.即Q 1(-4,1); ②当△CQ 2P ∽△ABC 时,设Q 2(t 2,1),由CQ 2AB =CP AC ,得t 2+692=326,解得t 2=3,即Q 2(3,1).综上所述,满足条件的点Q 有两个,坐标分别是Q 1(-4,1)或Q 2(3,1).10. 解:(1)∵抛物线y =ax 2+bx -8经过点A(-2,0),D(6,-8),将A,D 两点的坐标代入,得⎩⎨⎧-=-+=--,88636,0824b a b a 解得⎪⎩⎪⎨⎧-==321b a ,∴抛物线的函数表达式为y =12x 2-3x -8.∵y =12x 2-3x -8=12(x -3)2-252,∴抛物线的对称轴为直线x =3,又∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0),∴点B 的坐标为(8,0),设直线l 的函数表达式为y =kx ,∵点D(6,-8)在直线l 上,代入得6k =-8,解得k =-43,∴直线l 的函数表达式为y =-43x.∵点E 为直线l 和抛物线对称轴的交点,∴点E 的横坐标为3,纵坐标为-43×3=-4,即点E 的坐标为(3,-4).(2)抛物线上存在点F ,使△FOE≌△FCE.点F 的坐标为(3-17,-4),(3+17,-4).(3)需分两种情况进行讨论:①当OP =OQ 时,△OPQ 是等腰三角形,图①∵点E 的坐标为(3,-4),∴OE =32+(-4)2=5,如图①,过点E 作直线ME∥PB,交y 轴于点M ,交x 轴于点H ,则OM OP =OE OQ,∴OM =OE =5,∴点M 的坐标为(0,-5),设直线ME 的函数表达式为y =k 1x -5,将点E(3,-4)代入得3k 1-5=-4,解得k 1=13,∴直线ME 的函数表达式为y =13x -5,令y =0,得13x -5=0,解得x =15,∴点H 的坐标为(15,0).又OP OM =OB OH ,∴-m 5=815,∴m =-83;图②②当QO =QP 时,△OPQ 是等腰三角形,延长CE ,交x 轴于点N ,如图②,当x =0时,y =12x 2-3x -8=-8,∴点C 的坐标为(0,-8),∴CE =32+(8-4)2=5,又∵OE=32+42=5,∴OE =CE ,∴∠1=∠2,∵QO =QP ,∴∠1=∠3,∴∠2=∠3,∴CE ∥PB ,∴OC OP =OE OQ,设直线CE 的解析式为y =k 2x -8,代入点(3,-4),得3k 2-8=-4,∴k 2=43,∴直线CE 的解析式为y =43x -8.令y =0,则43x -8=0,解得x =6,∴点N 的坐标为(6,0),又OC OP =ON OB ,∴8-m =68,解得m =-323.综上所述,当m 的值为-83或-323时,△OPQ 是等腰三角形.。
中考数学易错题专题复习-一元二次方程组练习题及答案解析
∴ .
(2)(y+2)2=12,
∴ 或 ,
∴
2.解方程:(x+1)(x﹣3)=﹣1.
【答案】x1=1+ ,x2=1﹣
【解析】
试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.
试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,
解得:x1=1+ ,x2=1﹣ .
(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2) ;(3)
【解析】
【分析】
(1)求解该一元二次方程即可;
(2)先确定等腰三角形的边,然后求面积即可;
(3)设分为两段分别是 和 ,然后用勾股定理求出x,最后求面积即可.
【详解】
解:(1)由题意得 ,
即: 或 ,
∴两条线段长为2和6;
(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,
由勾股定理得:该等腰三角形底边上的高为:
∴此等腰三角形面积为 = .
(3)设分为 及 两段
∴ ,
∴ ,
∴面积为 .
【点睛】
本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
8.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.
【答案】1
【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.
中考数学专题复习(一)一元二次方程
专题一:一元二次方程知识要点扫描归纳一 基本概念二、一元二次方程的解法 1.直接开方法(1)用直接开平方求一元二次方程的解的方法叫做直接开平方法.如果一个一元二次方程,左边是一个含有未知数的完全平方式,右边是一个非负数,就可以用直接开平方法求解. 2.配方法(1)用配方法解方程是以配方为手段,以直接开平方法为基础的一种解题方法.是中学数学中常用的数学方法.(2)配方的关键步骤是:在方程两边同时加上一次项系数的绝对值一半的平方.理论根据是:222)(2b a b ab a ±=+±(3)配方的结果是使方程的一边化为一个完全平方式,另一边为非负实数,再利用直接开平方法求解. 3.公式法(1)用求根公式解一元二次方程的方法叫求根公式法.(2)一元二次方程)0(02≠=++a c bx ax 求根公式是:aac b b x 242-±-=(3)在解一元二次方程时,先把方程化为一般开式,确定c b a ,,的值,在042≥-ac b 的情况下:代入求根公式即可求解. 4.因式分解法1. 对于在一元二次方程的一边是0,而另一边易于分解成两个一次因式的积时,可用因式分解法来解这个方程。
2. 理论依据:两个因式的积等于零,那么这两个因式中至少有一个等于零。
例如:如果0)5)(1(=+-x x ,那么x -1=0或x +5=0。
因式分解法简便易行,是解一元二次方程的最常用的方法。
3. 因式分解法解一元二次方程的一般步骤 (1)将方程的右边化为零;(2)将方程左边分解成两个一次因式的乘积; (3)令每个因式分别为零,得两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解。
4.形如()002≠=+a bx ax 的方程,可用提公因式法求方程的根:()0021≠-==a abx x ,。
5.形如()()022=+-+n bx m ax )(22b a ≠的方程,可用平方差公式把左边分解。
中考数学重难点专题讲座一元二次方程与二次函数含答案
中考数学重难点专题讲座第四讲 一元二次方程与二次函数前言前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难;几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了;相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求;中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的;所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析;一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察;但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法;第一部分 真题精讲例12010,西城,一模已知:关于x 的方程23(1)230mx m x m --+-=.⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称.①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.思路分析本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式;由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断;第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式;第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可;事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点1,0;根据这个信息,第三问的函数如果要取不等式等号,也必须过该点;于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.解析解:1分两种情况:当0m =时,原方程化为033=-x ,解得1x =, 不要遗漏∴当0m =,原方程有实数根.当0≠m 时,原方程为关于x 的一元二次方程,∵()()()222[31]4236930m m m m m m =----=-+=-△≥.∴原方程有两个实数根. 如果上面的方程不是完全平方式该怎样办再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了综上所述,m 取任何实数时,方程总有实数根.2①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称,∴0)1(3=-m .关于Y 轴对称的二次函数一次项系数一定为0∴1=m .∴抛物线的解析式为121-=x y .②∵()()221212210y y x x x -=---=-≥,判断大小直接做差∴12y y ≥当且仅当1x =时,等号成立.3由②知,当1x =时,120y y ==.∴1y 、2y 的图象都经过()1,0. 很重要,要对那个等号有敏锐的感觉∵对于x 的同一个值,132y y y ≥≥,∴23y ax bx c =++的图象必经过()1,0.又∵23y ax bx c =++经过()5,0-,∴()()231545y a x x ax ax a =-+=+-. 巧妙的将表达式化成两点式,避免繁琐计算设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=. ∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立,∴320y y -≥,图7∴2(42)(25)0y ax a x a =+-+-≥.又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a---=最小≥.a>0时,顶点纵坐标就是函数的最小值 ∴2(42)4(25)0a a a ---≤.∴2(31)0a -≤.而2(31)0a -≥.只有013=-a ,解得13a =. ∴抛物线的解析式为35343123-+=x x y .例22010,门头沟,一模 关于x 的一元二次方程22(1)2(2)10m x m x ---+=.1当m 为何值时,方程有两个不相等的实数根;2点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; 3在2的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.思路分析第一问判别式依然要注意二次项系数不为零这一条件;第二问给点求解析式,比较简单;值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.解析:1由题意得[]22224(1)0m m ∆=---->()解得54m <210m -≠ 解得1m ≠± 当54m <且1m ≠±时,方程有两个不相等的实数根. 2由题意得212(2)11m m -+-+=-解得31m m =-=,舍 始终牢记二次项系数不为0 28101y x x =++3抛物线的对称轴是58x = 由题意得114B ⎛⎫-- ⎪⎝⎭, 关于对称轴对称的点的性质要掌握 14x =-与抛物线有且只有一个交点B 这种情况考试中容易遗漏 另设过点B 的直线y kx b =+0k ≠把114B ⎛⎫-- ⎪⎝⎭,代入y kx b =+,得14k b -+=-,114b k =- 114y kx k =+- 28101114y x x y kx k ⎧=++⎪⎨=+-⎪⎩ 整理得218(10)204x k x k +--+= 有且只有一个交点,21(10)48(2)04k k ∆=--⨯⨯-+= 解得6k =162y x =+ 综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,162y x =+例3已知P 3,m -和Q1,m 是抛物线221y x bx =++上的两点. 1求b 的值;2判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由; 3将抛物线221y x bx =++的图象向上平移k k 是正整数个单位,使平移后的图象与x 轴无交点,求k 的最小值.思路分析 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组,十分麻烦,计算量大,浪费时间并且可能出错;但是仔细看题,发现P,Q 纵坐标是一样的,说明他们关于抛物线的对称轴对称;而抛物线只有一个未知系数,所以轻松写出对称轴求出b; 第二问依然是判别式问题,比较简单;第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察;考生一定要把握平移后解析式发生的变化,即左加右减单独的x,上加下减表达式整体然后求出结果;解析1因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.所以,抛物线对称轴3142b x -+=-=,所以,4b =. 2由1可知,关于x 的一元二次方程为2241x x ++=0.因为,24b ac =-=16-8=8>0.所以,方程有两个不同的实数根,分别是1122b xa -+==-+,2122b x a -==--. 3由1可知,抛物线2241y x x =++的图象向上平移k k 是正整数个单位后的解析式为2241y x x k =+++. 若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实数解即可. 由24b ac =-=168(1)k -+=88k -<0,得1k >又k 是正整数,所以k 得最小值为2.例42010,昌平,一模已知抛物线2442y ax ax a =-+-,其中a 是常数.1求抛物线的顶点坐标;2若25a >,且抛物线与x 轴交于整数点坐标为整数的点,求此抛物线的解析式. 思路分析本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a 提出来,里面就是一个关于X 的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X 轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给25a >,合理变换以后代入判别式,求得整点的可能取值. 1依题意,得0a ≠,∴2442y ax ax a =-+-()()224422 2.a x x a x =-+-=--∴抛物线的顶点坐标为(2,2)-2∵抛物线与x 轴交于整数点,∴24420ax ax a -+-=的根是整数.∴2x == ∵0a >,∴2x = ∴2a是整数的完全平方数. ∵25a >, ∴25a <. 很多考生想不到这种变化而导致后面无从下手 ∴2a 取1,4, 当21a =时,2a =; 当24a =时,12a = . ∴a 的值为2或12. ∴抛物线的解析式为2286y x x =-+或2122y x x =-.例52010,平谷,一模已知:关于x 的一元二次方程()()21210m x m x -+--=m 为实数1若方程有两个不相等的实数根,求m 的取值范围;2在1的条件下,求证:无论m 取何值,抛物线()()2121y m x m x =-+--总过x 轴上的一个固定点;3若m 是整数,且关于x 的一元二次方程()()21210m x m x -+--=有两个不相等的整数根,把抛物线()()2121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.思路分析本题第一问比较简单,直接判别式≥0就可以了,依然不能遗漏的是m -1≠0;第二问则是比较常见的题型.一般来说求固定点既是求一个和未知系数无关的X,Y 的取值.对于本题来说,直接将抛物线中的m 提出,对其进行因式分解得到y=mx -x -1x+1就可以看出当x=-1时,Y=0,而这一点恰是抛物线横过的X 轴上固定点.如果想不到因式分解,由于本题固定点的特殊性在X 轴上,也可以直接用求根公式求出两个根,标准答案既是如此,但是有些麻烦,不如直接因式分解来得快.至于第三问,又是整数根问题+平移问题,因为第二问中已求出另一根,所以直接令其为整数即可,比较简单.解:1()()22241m m m ∆=-+-=∵方程有两个不相等的实数根,∴0m ≠∵10m -≠,∴m 的取值范围是0m ≠且1m ≠.2证明:令0y =得()()21210m x m x -+--=.∴()()()()222121m m m x m m --±--±==--. ∴()()12221121211m m m m x x m m m -+--++==-==---, 这样做是因为已经知道判别式是2m ,计算量比较小,如果根号内不是完全平方就需要注意了∴抛物线与x 轴的交点坐标为()11001m ⎛⎫- ⎪-⎝⎭,,,, ∴无论m 取何值,抛物线()()2121y m x m x =-+--总过定点()10-,3∵1x =-是整数 ∴只需11m -是整数. ∵m 是整数,且01m m ≠≠,, ∴2m =当2m =时,抛物线为21y x =-.把它的图象向右平移3个单位长度,得到的抛物线解析式为()223168y x x x =--=-+总结 中考中一元二次方程与二次函数几乎也是必考内容,但是考点无非也就是因式分解,判别式,对称轴,两根范围,平移以及直线与抛物线的交点问题;总体来说这类题目不难,但是需要计算认真,尤其是求根公式的应用一定要注意计算的准确性;这种题目大多包涵多个小问;第一问往往是考验判别式大于0,不要忘记二次项系数为0或者不为0的情况;第2,3问基于函数或者方程对其他知识点进行考察,考生需要熟记对称轴,顶点坐标等多个公式的直接应用;至于根与系数的关系韦达定理近年来中考已经尽量避免提及,虽不提倡但是应用了也不会扣分,考生还是尽量掌握为好,在实际应用中能节省大量的时间;第二部分 发散思考思考1. 2010,北京中考已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.1求k 的值;2当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;3在2的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围. 思路分析去年中考原题,相信有些同学已经做过了.第一问自不必说,判别式大于0加上k 为正整数的条件求k 很简单.第二问要分情况讨论当k 取何值时方程有整数根,一个个代进去看就是了,平移倒是不难,向下平移就是整个表达式减去8.但是注意第三问,函数关于对称轴的翻折,旋转问题也是比较容易在中考中出现的问题,一定要熟练掌握关于对称轴翻折之后函数哪些地方发生了变化,哪些地方没有变.然后利用画图解决问题.思考22009,东城,一模已知:关于x 的一元二次方程222(23)41480x m x m m --+-+= 1若0,m >求证:方程有两个不相等的实数根;2若12<m <40的整数,且方程有两个整数根,求m 的值.思路分析本题也是整根问题,但是不像上题,就三个值一个个试就可以试出来结果;本题给定一个比较大的区间,所以就需要直接用求根公式来计算.利用已知区间去求根的判别式的区间,也对解不等式做出了考察.思考32009,海淀,一模已知: 关于x 的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2-bx+kcc ≠0的图象与x 轴一个交点的横坐标为1.1若方程①的根为正整数,求整数k 的值;2求代数式akcab b kc +-22)(的值; 3求证: 关于x 的一元二次方程ax2-bx+c=0 ②必有两个不相等的实数根.思路分析本题有一定难度,属于拉分题目;第一问还好,分类讨论K 的取值即可;第二问则需要将k 用a,b 表示出来,然后代入代数式进行转化.第三问则比较繁琐,需要利用题中一次方程的根为正实数这一条件所带来的不等式,去证明二次方程根的判别式大于0.但是实际的考试过程中,考生在化简判别式的过程中想不到利用已知条件去套未知条件,从而无从下手导致失分.思考42009,顺义,一模. 已知:关于x 的一元二次方程22(21)20x m x m m -+++-=.1求证:不论m 取何值,方程总有两个不相等的实数根;2若方程的两个实数根12x x ,满足12211m x x m +-=+-,求m 的值.思路分析这一题第二问有些同学想到直接平方来去绝对值,然后用韦达定理进行求解,但是这样的话计算量就会非常大,所以此题绕过韦达定理,直接用根的判别式写出12x x ,,发现12x x ,都是关于m 的一次表达式, 做差之后会得到一个定值.于是问题轻松求解. 这个题目告诉我们高级方法不一定简单,有的时候最笨的办法也是最好的办法.第三部分 思考题解析思考1解析解:1由题意得,168(1)0k ∆=--≥.∴3k ≤.∵k 为正整数,∴123k =,,.2当1k =时,方程22410x x k ++-=有一个根为零;当2k =时,方程22410x x k ++-=无整数根;当3k =时,方程22410x x k ++-=有两个非零的整数根.综上所述,1k =和2k =不合题意,舍去;3k =符合题意.当3k =时,二次函数为2242y x x =++,把它的图象向下平移8个单位得到的图象的解析式为2246y x x =+-.3设二次函数2246y x x =+-的图象与x 轴交于A B 、两点,则(30)A -,,(10)B ,. 依题意翻折后的图象如图所示. 当直线12y x b =+经过A 点时,可得32b =; 当直线12y x b =+经过B 点时,可得12b =-. 由图象可知,符合题意的(3)b b <的取值范围为1322b -<<.思考2解析证明: []22=2(23)-4414884m m m m ---++()= 0,m > 840.m ∴+>∴方程有两个不相等的实数根;22(23)=(23)2m x m -±-±=∵方程有两个整数根,且m 为整数. 又∵12<m <40,252181.m ∴<+<∴ 59.356,.27,24.638,.2m m m =∴==∴==∴=∴m=24思考3解析解:由 kx=x+2,得k -1 x=2.依题意 k -1≠0.∴ 12-=k x . ∵ 方程的根为正整数,k 为整数,∴ k -1=1或k -1=2.∴ k1= 2, k2=3.2解:依题意,二次函数y=ax2-bx+kc 的图象经过点1,0,∴ 0 =a -b+kc, kc = b -a . ∴222222222a ab ab b a ab b a b a ab b a b akc ab b kc -+-+-=-+--=+-)()()( =.122-=--aab ab a 3证明:方程②的判别式为 Δ=-b2-4ac= b2-4ac.由a ≠0, c ≠0, 得ac ≠0.i 若ac<0, 则-4ac>0. 故Δ=b2-4ac>0. 此时方程②有两个不相等的实数 根.ii 证法一: 若ac>0, 由2知a -b+kc =0, 故 b=a+kc.Δ=b2-4ac= a+kc2-4ac=a2+2kac+kc2-4ac = a2-2kac+kc2+4kac -4ac =a -kc2+4ack -1.∵ 方程kx=x+2的根为正实数,∴ 方程k -1 x=2的根为正实数.由 x>0, 2>0, 得 k -1>0.∴ 4ack -1>0.∵ a -kc20,∴Δ=a -kc2+4ack -1>0. 此时方程②有两个不相等的实数根. 证法二: 若ac>0,∵ 抛物线y=ax2-bx+kc 与x 轴有交点,∴ Δ1=-b2-4akc =b2-4akc0.b2-4ac - b2-4akc=4ack -1.由证法一知 k -1>0,∴ b2-4ac> b2-4akc0.∴ Δ= b2-4ac>0. 此时方程②有两个不相等的实数根. 综上, 方程②有两个不相等的实数根.思考4解析1[]22(21)4(2)m m m ∆=-+-+-22441448m m m m =++--+90=> ∴不论m 取何值,方程总有两个不相等实数根2由原方程可得12(21)32m x +±==, ∴ 1221x m x m =+=-, -- ∴ 123x x -=又∵ 12211m x x m +-=+- ∴ 2311m m +=+- ∴ 4m = - 经检验:4m =符合题意. ∴ m 的值为4.。
2023年中考九年级数学高频考点专题训练--二次函数与一元二次方程
2023年中考九年级数学高频考点专题训练--二次函数与一元二次方程一、综合题1.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0)。
(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式。
(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点( 1r,0)。
(3)若函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值。
2.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.3.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.4.如图1,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0)且经过点(0,1),将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P.(1)求抛物线C1的解析式;(2)如图2,连结AP,过点B作BC△AP交AP的延长线于C,设点Q为抛物线上点P至点B 之间的一动点,连结BQ并延长交AC于点F,①当点Q运动到什么位置时,S△PBD×S△BCF=8?②连接PQ并延长交BC于点E,试证明:FC(AC+EC)为定值.5.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?6.如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.7.已知二次函数y=x2−2mx+2m−1.(1)求证:二次函数的图象与x轴总有交点;(2)若二次函数的图象与x轴的一个交点为原点,求方程x2−2mx+2m−1=0的解.8.某运动器材批发市场销售一种篮球,每个篮球进价为50元,规定每个篮球的售价不低于进价,经市场调查,每月的销售量y(个)与每个篮球的售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数关系式;(不需求自变量x的取值范围)(2)该批发市场每月想从这种篮球销售中获利8000元,又想尽量多给客户实惠,应如何给这种篮球定价?(3)物价部门规定,该篮球的每个利润不允许高于进货价的50%,设销售这种篮球每月的总利润为w(元),那么销售单价定为多少元可获得最大利润?最大利润是多少?9.如图,已知:P(-1,0),Q(0,-2).(1)求直线PQ的函数解析式;(2)如果M(0,m)是线段OQ上一动点,抛物线y=ax2+bx+c(a≠0)经过点M和点P,①求抛物线y=ax2+bx+c与x轴另一交点N的坐标(用含a,m的代数式表示);②若PN= 12是,抛物线y=ax2+bx+c有最大值m+1,求此时a的值;③若抛物线y=ax2+bx+c与直线PQ始终都有两个公共点,求a的取值范围.10.已知二次函数y=ax2+bx+3(a≠0)的最小值为1,图象上一点的坐标为(2,3)。
2020年中考数学复习二次函数和一元二次方程专题练习(部分有答案)
2020年中考数学复习二次函数与一元二次方程专题练习一、单选题1.将二次函数24y x x a =-+的图象向左平移1个单位长度,再向上平移1个单位长度,若得到的函数图象与直线2y =有两个交点,则a 的取值范围是( )A .3a <B .3a <C .5a <D .5a >2.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤43.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=k x在同一坐标系内的大致图象是( ) A . B . C . D .4.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 5.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =- B .11x =,23x = C .11x =-,23x = D .13x =-,21x =6.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根; C .当1x >时,y 的值随x 值的增大而减小; D .当13x 时,()210.ax b x c +-+> 7.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点B 坐标为(3,0),对称轴为直线x =1.下列结论正确的是( )A .abc <0B .b 2<4acC .a +b +c >0D .当y <0时,﹣1<x <3 8.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点 9.已知抛物线265y x x =-+与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连接AC ,BC ,则cos CAB ∠的值为( )A .12BC .2D 10.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②m +n =3;③抛物线与x 轴的另一个交点是(﹣1,0);④方程ax 2+bx +c =3有两个相等的实数根;⑤当1≤x ≤4时,有y 2<y 1,其中正确的是( )A .①②③B .①②④C .①②⑤D .②④⑤二、填空题 11.已知二次函数2y x bx c =++的图象与x 轴的两个交点的横坐标分别为1x 、2x ,一元二次方程22140x b x ++=的两实根为3x 、4x ,且23143x x x x -=-=,则二次函数的顶点坐标为____________. 12.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是_____.13.抛物线22y ax ax =-与直线22y x a =-在同一平面直角坐标系中,若抛物线始终在直线的同一侧不与直线相交,则a 的取值范围是_____.14.已知:y 关于x 的函数22(21)1y k x k x =--+的图象与坐标轴只有两个不同的交点A 、B ,P 点坐标为(3,2),则PAB △的面积为_____.15.对于实数a ,b ,定义新运算“⊗”:a ⊗b= ()()22a ab a b b ab a b ⎧-≤⎪⎨->⎪⎩;若关于x 的方程()()211x x t +⊗-=恰好有两个不相等的实根,则t 的值为_________________.16.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 17.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n -+<的解集是_______.18.若抛物线y=x 2+bx-3的对称轴为直线2x =,则关于x 的方程250x bx +-=的解为_______. 19.已知关于x 的一元二次方程x 2+bx ﹣c =0无实数解,则抛物线y =﹣x 2﹣bx +c 经过____象限.20.如图,抛物线2815y x x =-+与x 轴交于A B 、两点,对称轴与x 轴交于点C ,点()0,2D -,点()06,-E ,点P 是平面内一动点,且满足=90,∠︒DPE M 是线段PB 的中点,连结CM .则线段CM 的最大值是________________.三、解答题21.已知点A (1,1)在抛物线y =x 2+(2m +1)x ﹣n ﹣1上(1)求m 、n 的关系式;(2)若该抛物线的顶点在x 轴上,求出它的解析式.22.己知函数223y ax x =--(a 是常数)(1)当1a =时,该函数图像与直线1y x =-有几个公共点?请说明理由;(2)若函数图像与x 轴只有一公共点,求a 的值.23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.24.已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积.25.若一次函数y =mx +n 与反比例函数y =k x同时经过点P(x ,y)则称二次函数y =mx 2+nx -k 为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断y =2x -1与y =3x是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件t<n<8m ,并且一次函数y=(1+n)x+2m+2与反比例函数y =2020x 存在“共享函数”y=(m+t)x 2+(10m−t)x−2020,求m 的值.(3)若一次函数y =x +m 和反比例函数y =213m x+在自变量x 的值满足m ≤x ≤m +6的情况下,其“共享函数”的最小值为3,求其“共享函数”的解析式.26.在二次函数的学习中,教材有如下内容:例1 函数图象求一元二次方程212202x x --=的近似解(精确到0.1). 解:设有二次函数2122y x x =--,列表并作出它的图象(图1).观察抛物线和x 轴交点的位置,估计出交点的横坐标分别约为0.8-和4.8,所以得出方程精确到0.1的近似解为10.8x ≈-,2 4.8x ≈,利用二次函数2y ax bx c =++的图象求出一元二次方程20ax bx c ++=的解的方法称为图象法,这种方法常用来求方程的近似解.小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探宄方程32210x x -+=的近似解,做法如下:小聪的做法:令函数3221y x x =-+,列表并画出函数的图象,借助图象得到方程32210x x -+=的近似解. 小明的做法:因为0x ≠,所以先将方程32210x x -+=的两边同时除以x ,变形得到方程212x x x -=-,再令函数212y x x =-和21y x=-,列表并画出这两个函数的图象,借助图象得到方程32210x x -+=的近似解.请你选择小聪或小明的做法,求出方程32210x x -+=的近似解(精确到0.1).27.阅读材料:若抛物线1L 的顶点A 在抛物线2L 上,抛物线2L 的顶点B 也在抛物线1L 上(点A 与点B 不重合),我们称这样的两条抛物线1L 、2L 互为“友好”抛物线,如图1.解决问题:如图2,已知物线238:24L y x x =-+与y 轴交于点C .(1)若点D 与点C 关于抛物线3L 的对称轴对称,求点D 的坐标;(2)求出以点D 为顶点的3L 的“友好”抛物线4L 的解析式;(3)直接写出3L 与4L 中y 同时随x 增大而增大的自变量x 的取值范围.28.如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,﹣2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =﹣1.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且PE =14OD ,求△PBE 的面积. (3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.参考答案1.C2.D3.D4.C5.C6.C7.D8.B9.D10.B11.325,24⎛⎫-- ⎪⎝⎭ 12.k <413.1a <或1a >14.1或1215.2.25或016.-1217.13x18.121,5x x =-=19.三、四.20.7221.(1)n =2m ;(2)y =x 2或y =x 2﹣4x +4. 22.(1)函数图像与直线有两个不同的公共点;(2)0a =或13a =-.23.(1)x 1=1,x 2=3;(2)1<x <3;(3)k <2.24.(1)y=﹣x 2+4x+5;(2)15.25.(1)存在共享函数,共享点的坐标为(1,3)--,3,22⎛⎫ ⎪⎝⎭;(2)2m =;(3)2429y x x =+-或2(9155y x x =---26.选择小明的作法,10.6x ≈-,21.0x ≈,3 1.6x ≈ 27.(1)点D 坐标为(4,4)(2)抛物线4L 的解析式为22(4)4y x =--+(3)24x ≤≤28.(1)y =14x 2+12x ﹣2;(2)58;(3)M 坐标为(205+)或(﹣285,45).。
中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案
中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>−14;③二次函数y=(x−x1)(x−x2)+m的图象与x轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有()A.0B.1C.2D.33.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是()A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-54.如图,抛物线y=−x2+mx的对称轴为直线x=2,若关于x的一元二次方程−x2+mx−t=0(t为实数)在1≤x≤3的范围内有解,则t的取值错误的是()A.t=2.5B.t=3C.t=3.5D.t=45.若关于的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A.x轴的上方B.x轴下方C.x轴上D.y轴上6.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…0√54…y…0.37﹣10.37…A.0或4B.√5或4﹣√5C.1或5D.无实根7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=−m有实数根,则m的最大()A.3B.−3C.−6D.98.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1,x2,a,b的大小关系是()A.a<x1<x2<b B.x1<a<x2<b C.x1<a<b<x2D.x1<x2<a<b9.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧10.已知b>0,二次函数y=ax2+bx+a2−1的图象为下列之一,则a的值为()A.1B.-1C.−1−√52D.−1+√5211.已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.二次函数y=ax2+bx+c的部分图象如图所示,对称轴方程为x=−1,图象与x轴相交于点(1,0),则方程cx2+bx+a=0的根为()A.x1=1,x2=−3B.x1=−1C.x1=1,x2=−13D.x1=−1二、填空题(共6题;共6分)13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=−1,与x轴的一个交点为(1 , 0),与y轴的交点为(0 , 3),则方程ax2+bx+c=0(a≠0)的解为.14.如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②a﹣b+c<0;③b+2a=0;④当y<0时,x的取值范围是﹣1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是.15.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx−c=0(c为实数),在﹣1≤x≤4范围内有解,则c的取值范围为.16.已知二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和是.17.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.三、综合题(共6题;共70分)19.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.已知:二次函数y=ax2+bx+ 12(a>0,b<0)的图象与x轴只有一个公共点A.(1)当a=12时,求点A的坐标;(2)求A点的坐标(只含b的代数式来表示);(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m 的取值范围.22.已知抛物线y=x2-(m+1)x+m(1)求证:抛物线与x轴一定有交点;(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且1OA−1OB=−34,求m的值. 23.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?24.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】B11.【答案】A12.【答案】C13.【答案】x1=114.【答案】①③⑤⑥15.【答案】−1≤c≤816.【答案】217.【答案】a<518.【答案】x1=−219.【答案】(1)解:设每件降低x元,获得的总利润为y元则y=(40﹣x)(20+2x)=﹣2x2+60x+800(2)解:∵当y=1200元时,即﹣2x2+60x+800=1200∴x1=10,x2=20∵需尽快减少库存∴每件应降低20元时,商场每天盈利1200元。
2014年深圳中考数学专题复习(一元二次方程与二次函数应用题)
2014年深圳中考数学专题复习——应用题21.(山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?2.一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?4.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由。
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。
6.(襄阳)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)7.(南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部。
2021中考数学专题复习— 一元二次方程和二次函数
一元二次方程及其应用一、选择题1. 一元二次方程(x+1)(x-1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2. 一元二次方程x2-4x-1=0配方后可化为()A.(x+2)2=3 B.(x+2)2=5C.(x-2)2=3 D.(x-2)2=53. 一元二次方程x2+2x-3=0的根是()A.x1=1,x2=-3 B.x1=-1,x2=-3C.x1=-1,x2=3 D.x1=1,x2=34. 关于x的一元二次方程x2-2x+sinα=0有两个相等的实数根,则锐角α等于()A. 15°B. 30°C. 45°D. 60°5. 有5人患了流感,经过两轮传染后共有605人患了流感,假设每轮传染中一个人传染相同数量的人,则第一轮传染后患流感的人数为()A.10 B.50 C.55 D.456. 若关于x的一元二次方程x2-2x+m=0无实数根,则实数m的取值范围是() A.m<1 B.m≥1C.m≤1 D.m>17. 关于x的一元二次方程x2+kx-2=0(k为实数)根的情况是()A.有两个不相等的实数根C.没有实数根B.有两个相等的实数根D.不能确定8. 某市2018年GDP比2017年增长了11.5%,由于受到国际因素的影响,2019年的GDP 比2018年增长了7%.若这两年GDP的年平均增长率为x,则x满足的关系式是() A.11.5%+7%=xB.(1+11.5%)×(1+7%)=2(1+x)C.11.5%+7%=2xD.(1+11.5%)×(1+7%)=(1+x)29. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施.调查发现,每件衬衫每降价1元,平均每天可多售出2件,若商场每天要盈利1200元,则每件衬衫应降价()A.5元B.10元C.20元D.10元或20元10. 某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,每个月就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元二、填空题11. 一元二次方程2x2-4=-5x的根的判别式Δ=________.12. 一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为.13. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡每张的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,设每张贺年卡应降低x个0.1元,则所列方程为__________________________________.14. 相邻的两个自然数,若它们的平方和比这两数中较小数的2倍大51,则这两个自然数分别为________.15. 2018·内江已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为________.16. 某校课外生物小组的试验园地是长32 m,宽20 m的矩形,为了便于管理,现要在试验园地开辟宽度均为x m的小道(图中的阴影部分).(1)如图①,在试验园地开辟一条纵向小道,则剩余部分的面积为________m2(用含x的代数式表示);(2)如图②,在试验园地开辟三条宽度相等的小道,其中一条是横向的,另两条互相平行.若使剩余部分的面积为570 m2,则小道的宽度为________m.三、解答题17. 解方程:(y+2)2=(2y+1)2.18. 解方程:(1)3x 2-4x =2;(2)(x -6)2=2(6-x );(3)x 2-1=4x (用配方法);(4)4(x -3)2=(3x +5)2.19. 2019·北京 若关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.20. 某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加0.5万元,就会少租出商铺1间(假设年租金的增加额均为0.5万元的整数倍).该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用0.5万元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?21. 古希腊数学家丢番图在《算术》中就提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x 2+ax =b 2(a >0,b >0)的方程的图解法是:如图,以a 2和b 为两直角边作Rt△ABC ,再在斜边上截取BD =a 2,则AD 的长就是所求方程的解. (1)请用含字母a ,b 的代数式表示AD 的长;(2)请利用公式法说明该图解法的正确性,并说说这种解法的遗憾之处.答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】A4. 【答案】B 【解析】△方程有两个相等的实数根,∴b 2-4ac =2-4sin α=0,∴sin α=12,又△α为锐角,∴α=30°. 5. 【答案】C6. 【答案】D [解析] △方程无实数根,△Δ=b 2-4ac =(-2)2-4×1·m =4-4m <0,解得m >1.故选D.7. 【答案】A [解析] △a =1,b =k ,c =-2,△Δ=b 2-4ac =k 2-4×1×(-2)=k 2+8>0,△方程有两个不相等的实数根.故选A.8. 【答案】D [解析] 设2017年的GDP 为1,∵2018年的GDP 比2017年增长了11.5%,∴2018年的GDP 为1+11.5%.∵2019年的GDP 比2018年增长了7%,∴2019年的GDP 为(1+11.5%)×(1+7%).∵这两年GDP 的年平均增长率为x ,∴2019年的GDP 也可表示为(1+x )2,∴可列方程为(1+11.5%)×(1+7%)=(1+x )2.9. 【答案】C [解析] 设每件衬衫降价x 元,则每天可售出(20+2x )件,根据题意,得(40-x )(20+2x )=1200,解得x 1=10,x 2=20.∵要扩大销售,减少库存,∴x =20.10. 【答案】D [解析] 设这种机床每台的售价定为x 万元,则x ⎝⎛⎭⎫60-x -20.1=2×60×(1+25%), 解得x 1=3,x 2=5.二、填空题11. 【答案】57 [解析] 原方程移项得2x 2+5x -4=0.这里a =2,b =5,c =-4,△Δ=52-4×2×(-4)=25+32=57.12. 【答案】16[解析]解方程x2-10x+21=0,得x1=3,x2=7,因为已知两边长为3和6,所以第三边长x的范围为:6-3<x<6+3,即3<x<9,所以三角形的第三边长为7,则三角形的周长为3+6+7=16.13. 【答案】(0.3-0.1x)(500+100x)=12014. 【答案】5,6[解析] 设较小的自然数为x,则较大的自然数为(x+1).根据题意,得x2+(x+1)2=2x+51,解得x1=5,x2=-5(舍去).则这两个自然数分别为5,6.15. 【答案】1[解析] 设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0.由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3,∴x3+x4=1.16. 【答案】(1)20(32-x)(2)1[解析] (1)根据题意,得剩余部分的面积为20(32-x)m2.(2)根据题意,得(32-2x)(20-x)=570,解得x1=1,x2=35(不合题意,舍去).即小道的宽度为1 m.三、解答题17. 【答案】解:∵(y+2)2=(2y+1)2,∴(y+2)2-(2y+1)2=0,∴(y+2+2y+1)(y+2-2y-1)=0,∴3y+3=0或-y+1=0,∴y1=-1,y2=1.18. 【答案】解:(1)3x2-4x-2=0,Δ=b2-4ac=(-4)2-4×3×(-2)=40,x =4±402×3=2±103, 所以x 1=2+103,x 2=2-103. (2)(x -6)2+2(x -6)=0,(x -6)(x -6+2)=0,(x -6)(x -4)=0,x -6=0或x -4=0,所以x 1=6,x 2=4.(3)x 2-4x =1,x 2-4x +4=5,(x -2)2=5,x =2±5, 所以x 1=2+5,x 2=2- 5.(4)4(x -3)2-(3x +5)2=0,(2x -6+3x +5)(2x -6-3x -5)=0,(5x -1)(-x -11)=0,5x -1=0或-x -11=0,所以x 1=15,x 2=-11.19. 【答案】解:∵关于x 的方程x 2-2x +2m -1=0有实数根,∴b 2-4ac =4-4(2m -1)≥0,解得m ≤1.∵m 为正整数,∴m =1,∴原方程为x 2-2x +1=0,则(x -1)2=0,解得x 1=x 2=1.20. 【答案】 解:(1)30-13-100.5×1=24(间), ∴当每间商铺的年租金定为13万元时,能租出24间.(2)设每间商铺的年租金增加x 万元,则每间商铺的年租金为(10+x )万元,依题意有(30-x 0.5×1)×(10+x )-(30-x 0.5×1)×1-x 0.5×1×0.5=275, 即2x 2-11x +5=0,解得x 1=5,x 2=0.5.∴当每间商铺的年租金定为10.5万元或15万元时,该公司的年收益为275万元.21. 【答案】12解:(1)△△ACB =90°,BC =a 2,AC =b , △AB =b 2+a 24, △AD =b 2+a 24-a 2=-a +4b 2+a 22. (2)方程x 2+ax =b 2整理,得x 2+ax -b 2=0.Δ=a 2-4×1×(-b 2)=a 2+4b 2>0, △x =-a±a 2+4b 22, 即x 1=-a +4b 2+a 22,x 2=-a -4b 2+a 22. 正确性:AD 的长就是方程的正根.遗憾之处:图解法不能表示方程的负根.二次函数的图象及其性质一、选择题1. 二次函数y=(x -1)2+3的图象的顶点坐标是 ( )A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 若二次函数y =x2+bx +5配方后为y =(x -2)2+k ,则b ,k 的值分别为( )A. 0,5B. 0,1C. -4,5D. -4,13. 已知抛物线y =ax2+bx +c 经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为( )A .y =x2-3x +2B .y =2x2-6x +4C .y =2x2+6x -4D .y =x2-3x -24. 二次函数y=ax2+bx+c 的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m 为实数).其中结论正确的个数为 ( )A.1个B.2个C.3个D.4个5. 将抛物线y =-3x2平移,得到抛物线y =-3(x -1)2-2,下列平移方式中,正确的是( )A .先向左平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向下平移2个单位长度C .先向右平移1个单位长度,再向上平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度6. 海滨广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的水的最大高度为3米,此时喷水的水平距离为12米.在如图所示的平面直角坐标系中,这( )A .y =-⎝⎛⎭⎫x -122+3 B .y =3⎝⎛⎭⎫x -122+1 C .y =-8⎝⎛⎭⎫x -122+3 D .y =-8⎝⎛⎭⎫x +122+3 7. (2019•成都)如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =8. (2019•咸宁)已知点()()()()1,,1,,2,0A m B m C m n n -->在同一个函数的图象上,这个函数可能是A .y x =B .2y x =-C .2y x =D .2y x =﹣9. 已知函数y =ax2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A. 当a =1时,函数图象过点(-1,1)B. 当a =-2时,函数图象与x 轴没有交点C. 若a >0,则当x≥1时,y 随x 的增大而减小D. 若a <0,则当x≤1时,y 随x 的增大而增大10. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y =-x2+2x +c 的图象上,则y1,y2,y3的大小关系是( )A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y3二、填空题11. 如果二次函数y =a(x -h)2+k 的图象的顶点坐标为(-1,-3),那么它的对称轴为直线x =________,k 的值为________.12. (2019•株洲)若二次函数2y ax bx =+的图象开口向下,则__________0(填“=”或“>”或“<”).13. 某学习小组为了探究函数y =x2-|x|的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________.14. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.15. 已知函数y =ax2+c 的图象与函数y =-3x2-2的图象关于x 轴对称,则a =________,c =________.16. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)三、解答题17. 如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1 m处的点A飞出,其飞行的最大高度是4 m,最高处距离飞出点的水平距离是6 m,且飞行的路线是抛物线的一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:4 3≈7)(1)求足球的飞行高度y(m)与飞行的水平距离x(m)之间的函数关系式;(不必写出自变量的取值范围)(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到1 m)(3)若对方一名1.7 m的队员在距落地点C 3 m的点H处跃起0.3 m进行拦截,则这名队员能拦到球吗?18. (2019•云南)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值:(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.19. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△PAB的面积的最大值,并求出此时点P的坐标.20. 如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE.求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M ,使得△BDM 的周长为最小,并求△BDM 周长的最小值及此时点M 的坐标.21. 如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S ,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S 的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图22021中考数学 专题训练:二次函数的图象及其性质-答案 一、选择题1. 【答案】A2. 【答案】D 【解析】由y =(x -2)2+k 知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y =x2+bx +5知其对称轴为x =-b 2,得-b2=2,所以b =-4;于是可以得到函数的解析式是y =x2-4x +5,把(2,k)代入其中即得k =1.3. 【答案】B [解析] 把(1,0),(2,0),(3,4)分别代入y =ax2+bx +c ,得⎩⎪⎨⎪⎧a +b +c =0,4a +2b +c =0,9a +3b +c =4,解得⎩⎪⎨⎪⎧a =2,b =-6,c =4,所以y =2x2-6x +4.故选B.4. 【答案】C [解析]①∵抛物线开口向上,∴a>0. ∵抛物线的对称轴在y 轴右侧,∴->0, ∴b<0.∵抛物线与y 轴交于负半轴,∴c<0,∴abc>0,∴①错误; ②当x=-1时,y>0,∴a -b+c>0.∵-=1,∴b=-2a.把b=-2a 代入a -b+c>0中得3a+c>0,∴②正确; ③当x=1时,y<0,∴a+b+c<0,∴a+c<-b.∵a+c>b ,∴|a+c|<|b|,即(a+c)2-b2<0, ∴③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c , ∴a+b+c≤am2+mb+c ,即a+b≤m(am+b),∴④正确.故选C.5. 【答案】D [解析] ∵抛物线y =-3x2的顶点坐标为(0,0),抛物线y =-3(x -1)2-2的顶点坐标为(1,-2),∴将抛物线y =-3x2向右平移1个单位长度,再向下平移2个单位长度,可得到抛物线y =-3(x -1)2-2.6. 【答案】C7. 【答案】D【解析】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0,A 选项错误; 函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误; 观察图象可知x=-1时y=a -b+c>0,所以a -b+c>0,C 选项错误;根据图象与x 轴交点可知,对称轴是(1,0),(5,0)两点的中垂线,1532x +==,即x=3为函数对称轴,D 选项正确, 故选D .8. 【答案】D【解析】()()1,,1,A m B m -,∴点A 与点B 关于y 轴对称;由于2y x y x ==-,的图象关于原点对称,因此选项A ,B 错误; ∵0n >,∴m n m -<,由()()1,,2,B m C m n -可知,在对称轴的右侧,y 随x 的增大而减小,对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, ∴D 选项正确,故选D .9. 【答案】D 【解析】当a =1时,函数为y =x2-2x -1,当x =-1时,y =1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A 选项错误;当a =-2时,函数为y =-2x2+4x -1,b2-4ac =16-4×(-2)×(-1)=8>0,抛物线与x 轴有两个交点,故选项B错误;当a>0时,抛物线的开口向上,它的对称轴是直线x =--2a2a=1,当x ≥1,在对称轴的右侧,y 随x 的增大而增大,所以C 选项错误;当a<0时,抛物线的开口向下,它的对称轴是直线x =--2a2a=1,当x ≤1,在对称轴的左侧,y 随x 的增大而增大,所以D 选项正确.10. 【答案】D 【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P1(-1,y1),P2(3,y2)关于直线x =1对称,P3(5,y3)在图象的右下方部分上,因此,y1=y2>y3.二、填空题11. 【答案】-1 -312. 【答案】<【解析】∵二次函数2y ax bx =+的图象开口向下, ∴0a <.故答案为:<.13. 【答案】0.75 【解析】根据表格可得该图象关于y 轴对称,故当x =1.5和x =-1.5时,y 的值相等.∴m =0.75.14. 【答案】21(4)2y x =-【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =,解得12a =,故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-,把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =,所以平移后抛物线的解析式是:21(4)2y x =-,故答案为:21(4)2y x =-.15. 【答案】3 216. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<,即M N <, 故答案为:<.三、解答题 17. 【答案】解:(1)由题意,设y =a(x -6)2+4. △A(0,1)在抛物线上, △1=a(0-6)2+4,解得a =-112,△y =-112(x -6)2+4.(2)令y =0,则0=-112(x -6)2+4,解得x1=4 3+6≈13,x2=-4 3+6<0(舍去),△在没有队员干扰的情况下,球飞行的最远水平距离约是13 m.(3)当x =13-3=10时,y =83>1.7+0.3=2,△这名队员不能拦到球.18. 【答案】(1)∵抛物线y=x2+(k2+k -6)x+3k 的对称轴是y 轴,∴26022b k k x a +-=-=-=,即k2+k -6=0,解得k=-3或k=2, 当k=2时,二次函数解析式为y=x2+6,它的图象与x 轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x2-9,它的图象与x 轴有两个交点,满足题意, ∴k=-3.(2)∵P 到y 轴的距离为2, ∴点P 的横坐标为-2或2, 当x=2时,y=-5; 当x=-2时,y=-5,∴点P 的坐标为(2,-5)或(-2,-5).19. 【答案】解:(1)设抛物线的解析式为y =ax2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b 2a =-1,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.所以抛物线的解析式为y =-x2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m2-2m +3)-(m +3)=-m2-3m ,所以S△PAB =12×(-m2-3m)×3=-32(m2+3m)=-32(m +32)2+278,所以当m =-32时,S△PAB 有最大值278,此时点P 的坐标为(-32,154).20. 【答案】(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得,0394⎩⎨⎧=+=+b a b a解得,62⎩⎨⎧=-=b a∴抛物线的解析式为y =-2x2+6x ; (2)∵BD ⊥DE , ∴∠BDE =90°,∴∠BDC +∠EDO =90°,又∵∠ODE +∠DEO =90°, ∴∠BDC =∠DEO , 在△BDC 和△DEO 中, ⎩⎪⎨⎪⎧∠BCD =∠DOE =90°∠BDC =∠DEO BD =DE,∴△BDC ≌△DEO(AAS), ∴OD =BC =1,∴D(0,1);(3)如解图,作点B 关于抛物线的对称轴的对称点B ′,连接D B '交抛物线的对称轴于点M.解图∵抛物线对称轴为直线x =a b2-=32,∴点B ′的坐标为(2,4),∵点B 与点B ′关于x =32对称,∴MB =M B ',∴DM +MB =DM +MB ′,∴当点D 、M 、B ′在同一条直线上时,MD +MB 有最小值(即△BMD 的周长有最小值), ∵DC =OC -OD =3,CB ′=2,CB =1,∴D B '=2'2CB DC +=13,BD =22BC DC +=10,∴△BDM 周长的最小值=10+13,设直线D B '的解析式为y =kx +t ,将点D 、B ′的坐标代入得⎩⎪⎨⎪⎧t =12k +t =4,解得⎩⎪⎨⎪⎧k =32t =1,∴直线DB ′的解析式为y =32x +1,将x =32代入得y =134,∴M(32,134).21. 【答案】(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O1A1B1C1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S=36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G . 在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4。
中考数学专题复习:二次函数与一元二次方程
中考数学专题复习:二次函数与一元二次方程一、选择题1.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( ) A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<22.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y ﹣1 ﹣0.49 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.33.二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是()A.m<a<n<b B.a<m<b<nC.m<a<b<n D.a<m<n<b4.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=15.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)6.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是( )A .x 1=-3,x 2=1B .x 1=3,x 2=1C .x =-3D .x =-2 7.如图,在平面直角坐标系中,抛物线y =﹣x 2+2x 的顶点为A 点,且与x 轴的正半轴交于点B ,P 点为该抛物线对称轴上一点,则OP+AP 的最小值为( )A .B .C .3D .28.根据下表中二次函数y =ax 2+bx+c (a≠0)的对应值:x 3.23 3.24 3.25 3.26 y﹣0.06﹣0.020.030.09判断方程ax 2+bx+c =0(a≠0)的一个解x 的范围是( ) A .3.23<x <3.24 B .3.24<x <3.25 C .3.25<x <3.26 D .不能确定9. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题10.将函数y =x 2+2x ﹣3的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的是新函数y =|x 2+2x ﹣3|的图象,若该新函数图象与直线y =﹣x+b 有两个交点,则b 的取值范围为________.11.若抛物线y =﹣x 2﹣6x+m 与x 轴没有交点,则m 的取值范围是________.12. 如图,已知抛物线y=x2+2x-3与x轴的两个交点分别是A,B(点A在点B的左侧).(1)点A的坐标为__________,点B的坐标为________;(2)利用函数图象,求得当y<5时x的取值范围为________.13.已知二次函数y=ax2+bx+c(a≠0,a,b,c,为常数),对称轴为直线x=1,它的部分自变量x与函数值y的对应值如下表.请写出ax2+bc+c=0的一个正数解的近似值________(精确到0.1)x ﹣0.4 ﹣0.3 ﹣0.2 ﹣0.1 y=ax2+bx+c 0.92 0.38 ﹣0.12 ﹣0.5814.已知函数y=a(x+2)(x﹣),有下列说法:①若平移函数图象,使得平移后的图象经过原点,则只有唯一平移方法:向右平移2个单位;②当0<a<1时,抛物线的顶点在第四象限;③方程a(x+2)(x﹣)=﹣4必有实数根;④若a<0,则当x<﹣2时,y随x的增大而增大.其中说法正确的是_________.(填写序号)15. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是________.16.已知抛物线y1=(x﹣x1)(x﹣x2)与x轴交于A,B两点,直线y2=2x+b经过点(x1,0).若函数w=y1﹣y2的图象与x轴只有一个公共点,则线段AB的长为________.三、解答题17.有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象分析:平行于x轴的直线y=m与图象“G”的交点的个数情况.18. 已知二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1.(1)求m,n的值;(2)当x取何值时,y随x的增大而减小?19.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.20.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和B(3,0),与y 轴交于点C.(I)求二次函数的表达式.(2)求二次函数图象的顶点坐标和对称轴.21. 利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x2-2x-1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(精确到0.1).22.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.23.如图,抛物线y=ax2﹣3ax+4(a<0)与x轴交于A、B两点,与y轴交于点C,直线y=m,交抛物线于D、E两点.(1)当a=﹣时,求A,B两点的坐标;(2)当m=2,DE=4时,求抛物线的解析式;(3)当a=﹣1时,方程ax2﹣3ax+4=m在﹣6≤x<4的范围内有实数解,请直接写出m的取值范围:________.24.已知函数y=x2+(b﹣1)x+c(b,c为常数),这个函数的图象与x轴交于两个不同的点A(x1,0)和B(x2,0).若x1,x2满足x2﹣x1>1;(1)求证:b2>2(b+2c);(2)若t<x1,试比较t2+bt+c与x1的大小,并加以证明.参考答案10.b>或﹣<b<11.m<﹣9.12. (1)(-3,0) (1,0) (2)-4<x<213.2.2.(答案不唯一,与其相近即可)14.②③.15. x1=-2,x2=116.617.解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2),设二次函数的表达式为:y=a(x﹣3)2﹣2.∵该函数图象经过点A(1,0),∴0=a(1﹣3)2﹣2,解得a=∴二次函数解析式为:y=(x﹣3)2﹣2.(2)如图所示:当m>0时,直线y=m与G有一个交点;当m=0时,直线y=m与G有两个交点;当﹣2<m<0时,直线y=m与G有三个交点;当m=﹣2时,直线y=m与G有两个交点;当m<﹣2时,直线y=m与G有一个交点.18. 解:(1)∵二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1,∴⎩⎪⎨⎪⎧1=9-3m +n ,-m 2=-1,解得⎩⎪⎨⎪⎧m =2,n =-2.(2)由(1)知二次函数的解析式为y =x 2+2x -2. ∵a =1>0,∴抛物线的开口向上, ∴当x ≤-1时,y 随x 的增大而减小.19. 解:(1)∵抛物线y =x 2+bx+c 经过点A (﹣1,0),B (3,0), ∴,解得:.∴抛物线的解析式为:y =x 2﹣2x ﹣3; (2)如图,连接BE , ∵点E (2,m )在抛物线上, ∴m =4﹣4﹣3=﹣3, ∴E (2,﹣3), ∴BE ==,∵点F 是AE 中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点, ∴FH 是三角形ABE 的中位线, ∴FH =BE =×=.20. 解:(1)用交点式函数表达式得:y =(x ﹣1)(x ﹣3)=x 2﹣4x+3; 故二次函数表达式为:y =x 2﹣4x+3; (2)函数的对称轴为直线x =﹣=﹣=2,当x =2时,y =x 2﹣4x+3=4﹣8+3=﹣1, 故顶点坐标为(2,﹣1).21. 解:(1)答案不唯一,如在直角坐标系中画出抛物线y =x 2-1和直线y =2x ,其交点的横坐标就是方程的解.(2)在图中画出直线y =x +2,与函数y =x 3的图象交于点B ,得点B 的横坐标x ≈1.5, ∴方程的解为x ≈1.5.22.解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.23.解:(1)当a=﹣时,令y=﹣x2﹣3×(﹣)x+4=0,解得:x=5或﹣2,故点A、B的坐标分别为(5,0)、(﹣2,0);(2)函数的对称轴为x=,∵DE=4,m=2,故点D(,2),将点D的坐标代入y=ax2﹣3ax+4并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+4;(3)当a=﹣1时,y=﹣x2+3x+4,令y=0,则x=﹣6或4,当x=﹣6时,y=﹣x2+3x+4=﹣50,函数的对称轴为x=,则顶点坐标为(,),当﹣6≤x<4时,﹣50≤y≤,故m的取值范围为:﹣50≤m≤,故答案为:﹣50≤m≤.24.证明:(1)∵令y=x2+(b﹣1)x+c中y=0,得到x2+(b﹣1)x+c=0,∴x=,又x2﹣x1>1,∴,∴b2﹣2b+1﹣4c>1,∴b2>2(b+2c);(2)由已知x2+(b﹣1)x+c=(x﹣x1)(x﹣x2),∴x2+bx+c=(x﹣x1)(x﹣x2)+x,∴t2+bt+c=(t﹣x1)(t﹣x2)+t,t2+bt+c﹣x1=(t﹣x1)(t﹣x2)+t﹣x1=(t﹣x1)(t﹣x2+1),∵t<x1,∴t﹣x1<0,∵x2﹣x1>1,∴t<x1<x2﹣1,∴t﹣x2+1<0,∴(t﹣x1)(t﹣x2+1)>0,即t2+bt+c>x1.。
中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案
中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案一、单选题(共12题;共24分)1.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=12,且经过点(2,0),下列说法:①abc>0;②b2﹣4ac>0;③x=﹣1是关于x的方程ax2+bx+c=0的一个根;④a+b=0.其中正确的个数为()A.1B.2C.3D.42.若二次函数y=ax2﹣4ax+c的图象经过点(﹣1,0),则方程ax2﹣4ax+c=0的解为()A.x1=﹣1,x2=﹣5B.x1=5,x2=1C.x1=﹣1,x2=5D.x1=1,x2=﹣53.已知抛物线y=ax2+bx+c经过点(−4,m),(−3,n)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且−4<x1<−3,x2>0则下列结论一定正确的是()A.m+n>0B.m−n<0C.m⋅n<0D.m n>04.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a +c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个5.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D 的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣43.其中正确的是()A.①②④B.①③④C.②③D.②④6.已知二次函数y=x2−2x+m(m为常数)的图象与x轴的一个交点为(3,0),则关于x 的一元二次方程x2−2x+m=0的两个实数根是()A.x1=−1,x2=3B.x1=1C.x1=−1,x2=1D.x1=37.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c0.020.010.020.04D.1或28.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0)则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3其中正确的个数是()A.1B.2C.3D.49.二次函数y=ax2+bx+c的部分图像如图所示,可知方程ax2+bx+c=0的所有解的积为()A.-4B.4C.5D.-510.抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,若关于x的一元二次方程﹣x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.﹣12<t≤3B.﹣12<t<4C.﹣12<t≤4D.﹣12<t<311.二次函数y=ax2−2ax+c(a≠0)的图象过点(3,0),方程ax2−2ax+c=0的解为()A.x1=−3,x2=−1B.x1=−1C.x1=1,x2=3D.x1=−312.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论中正确的有()①4ac<b2,②方程ax2+bx+c=0的两个根是x1=−1,x2=3③3a−c>0,④当y>0时,x的取值范围是−1≤x≤3.A.①②B.①②③C.①③④D.②④二、填空题(共6题;共6分)13.已知二次函数y=﹣x2+bx+c的顶点为(1,5),那么关于x的一元二次方程﹣x2+bx+c﹣m=0有两个相等的实数根,则m=.14.已知关于x的一元二次方程(x−2)(x−3)=m有实根x1,x2,且x1<x2,现有下列说法:①当)(x−m=0时,x1=2,x2=3;②当m>0时,2<x1<x2<3;③m>−14;④二次函数y=(x−x1x2)−m的图象与x轴的交点坐标为(2,0)和(3,0). 其中正确的有.15.如图所示为抛物线y=ax2−2ax+3,则一元二次方程ax2−2ax+3=0两根为.16.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣2<x<6的范围内有解,则t的取值范围是.17.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是三、综合题(共6题;共75分)19.已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.20.已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有求出实数根;若没有请说明理由.21.在一次羽毛球比赛中,甲运动员在离地面53米的P点处发球,球的运动轨迹PAN可看作是一条抛物线的一部分,当球运动到最高点A处时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为原点建立平面直角坐标系,回答下列问题.(1)求抛物线的解析式(不要求些出自变量的取值范围);(2)羽毛球场地底线距离球网BC的水平距离为6米,此次发球是否会出界?(3)乙运动员在球场上M(m,0)处接球,乙原地起跳可接球的最大高度为2.5米,若乙因接球高度不够而失球,求m的取值范围.22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.并指出该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x 的取值范围.24.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当﹣1≤x≤2时,求y的取值范围.参考答案1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】A 7.【答案】A 8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】5 14.【答案】①③ 15.【答案】x 1=−1 16.【答案】﹣1≤t <2417.【答案】有两个同号不等实数根 18.【答案】①②④19.【答案】(1)解:∵抛物线与x 轴有两个交点∴b 2﹣4ac >0 即16+8c >0 解得c >﹣2(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1 ∵抛物线经过点(﹣1,0)∴抛物线与x 轴的另一个交点为(3,0) ∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=3.20.【答案】(1)解:∵抛物线经过P (-3,m )和Q (1,m )∴抛物线的对称轴为直线x=−3+12=-1∴-b 2×2=−1 ∴b=4;(2)解:方程有实数解.对于方程2x 2+4x+1=0 ∵Δ=42-4×2×1=8>0∴关于x 的一元二次方程2x 2+4x+1=0有两个不相等的实数根;∴x=−4±√82×2=−2±√22∴x 1=−1+√22,x 2=−1−√22.21.【答案】(1)解:设抛物线的解析式为y =a (x ﹣5)2+3,由题意,得 53=a (0﹣5)2+3;a =﹣ 475.∴抛物线的解析式为:y =﹣ 475 (x ﹣5)2+3(2)解:当y =0时,﹣ 475(x ﹣5)2+3=0解得:x 1=﹣ 52 (舍去),x 2= 252即ON = 252∵OC =6∴CN = 252 ﹣6= 132 >6∴此次发球会出界 (3)解:由题意,得 2.5=﹣ 475(m ﹣5)2+3;解得:m 1=5+ 5√64 ,m 2=5﹣ 5√64(舍去)∵m >6∴6<m <5+ 5√64. ∴m 的取值范围是6<m <5+ 5√6422.【答案】(1)解:根据题意得W =(x −20)(−2x +80) =−2x 2+120x −1600 =−2(x −30)2+200∴当x =30时,每天的利润最大,最大利润为200元. (2)令−2(x −30)2+200=150,解得:x =35或x =25 ∵这种产品的销售价不高于每千克28元 ∴x =25.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.【答案】(1)解:∵函数图象与x轴的两个交点坐标为(1,0)(3,0)∴方程的两个根为x1=1(2)解:∵二次函数的顶点坐标为(2,2)∴若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2(3)解:∵抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点由图象可知,抛物线在直线下方时x的取值范围为:x<1或x>2.24.【答案】(1)解:∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3)∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①把x=0,y=3代入y=﹣x2+bx+c得:c=3把c=3代入①,解得b=2则二次函数解析式为y=﹣x2+2x+3;(2)解:令二次函数解析式中的y=0得:﹣x2+2x+3=0可化为:(x﹣3)(x+1)=0解得:x1=3,x2=﹣1由函数图象可知:当﹣1<x<3时,y>0;(3)解:由抛物线的表达式知,抛物线的对称轴为直线x=1当﹣1≤x≤2时,y在x=﹣1和顶点处取得最小和最大值当x=﹣1时,y=0当x=1时,y=﹣x2+2x+3=4故当﹣1≤x≤2时,求y的取值范围0≤y≤4.。
2022中考数学专题复习 一元二次方程与二次函数的含参问题
一元二次方程与二次函数的含参问题一,堂前测1.如果关于x 的方程(m+2)x 2-2(m+1)x+m=0有且只有一个实数根,那么关于x 的 方程(m+1)x 2-2mx+m-1=0的根为( )A. -1或-3B. 1或3C. -1或3D. 1或-3 2. 已知关于x 的方程2(12)2110k xk x --+-=有两个不相等的实数根,求k 的取值范围。
3. 当m 取何值时,关于x 的方程22210x mx m m ++--=有两个小于1的根?4. 已知函数y=x 2-x+4-2m 在-1≤x≤1时与x 轴有交点,求实数m 的取值范围。
5,已知关于x 的方程. 220 (0)kx x k k--=≠ (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值。
6已知关于 x 的方程x 2-(m+1)x+ =0 的两根是一矩形的两邻边长,当矩形的对角线长为 时,求m 的值7已知函数y= x 2-6x+m+4与x 轴有两个交点(x1,0),(x2,0),若x1,x2满足3x1=|x2|+2,求m 的值。
二,例题1,已知关于x 的一元二次方程x 2﹣(m +1)x + =0有实根。
(1)求m 的值(2)先作函数 的图像关于x 轴的对称图形,然后将所作图形向左平移3个单位,再向上平移2个单位,写出变化后的图像解析式。
(3)在(2)的条件下,第直线y=2x+n(n>m)与变化后的图像有公共点时,求n2-4n 的最大值和最小值。
2, 已知:关于x 的一元二次方程mx 2﹣(3m +1)x +2m +2=0 (m >1)。
(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x 1,x 2(其中x 1>x 2),若y 是关于m 的函数,且y =m x 2﹣2x 1,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m =2的左侧部分沿直线m =2翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当关于m 的函数y =2m +b 的图象与此图象有两个公共点时,求b 的取值范围。
2022届初三数学中考复习《二次函数与一元二次方程》专项复习练习题 (含答案解析)
2022届初三数学中考复习《二次函数与一元二次方程》专项复习练习题一、单选题1.已知二次函数22=-++的部分图象如图所示,则关于x的一元二次方程y x x m220-++=的解为()x x mA.-1 ,0B.-1,1C.1,3D.-1,32.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;①3a+c=0;①当y>0时,x的取值范围是﹣1≤x<3;①方程ax2+bx+c﹣3=0有两个不相等的实数根;①点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是().A.1个B.2个C.3个D.4个3.二次函数y=3(x–2)2–5与y轴交点坐标为()A.(0,2)B.(0,–5)C.(0,7)D.(0,3)4.根据下列表格对应值:判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.2.1<x <2.2B.2.2<x<2.3C.2.3<x<2.4D.2.4<x<2.55.如图是抛物线y =ax 2+bx+c (a≠0)图象的一部分,已知抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0),那么抛物线与x 轴的另一个交点是( )A .(3,0)B .(4,0)C .(5,0)D .(6,0)6.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a < B .1a >-C .12a -<≤D .12a -≤<二、填空题7.已知抛物线2y x bx c =++的部分图象如图所示,当3y <-时,x 的取值范围是______.8.已知二次函数2y ax bx c =++的部分图像如图所示,对称轴为直线1x =,则关于x 的方程23ax bx c ++=的解为__________.9.二次函数22(1)1y a x a =-+-的图象经过原点,则a 的值为______. 10.在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于A 、B 两点,若2b +c =﹣2,b =﹣2﹣t ,且AB 的长为kt ,其中t >0,k 的值为___. 三、解答题11.随着地球上的水资源日益枯竭,各级政府越来越重视节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中 x 表示人均月生活用水的吨数,y 表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过 5 吨,每吨按 元收取; 超过 5 吨的部分,每吨按 元收取; (2)当 x >5 时,求 y 与 x 的函数关系式;(3)若某个家庭有 5 人,五月份的生活用水费共 76 元,则该家庭这个月用了多少吨生活用水?12.已知关于x 的方程:2244(3)x m x m --=(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实数根1x 、2x 满足211x x -=,求m 的值及相应的1x 、2x .13.如图,抛物线y=ax 2+c 经过A (1,0),B (0,﹣2)两点.连结AB ,过点A 作AC①AB ,交抛物线于点C .(1)求该抛物线的解析式; (2)求点C 的坐标;(3)将抛物线沿着过A 点且垂直于x 轴的直线对折,再向上平移到某个位置后此抛物线与直线AB 只有一个交点,请直接写出此交点的坐标.14.已知二次函数2y x bx c =-++的图象如图所示,它与x 轴的一个交点坐标为()10-,,与y 轴的交点坐标为()03,.(1)求此二次函数的表达式及对称轴;(2)直接写出当函数值0y >时,自变量x 的取值范围. (3)直接写出当函数值3y >时,自变量x 的取值范围. 15.定义[],p q 为一次函数y =px +q 的特征数.(1)若特征数是[]2,1m +的一次函数为正比例函数,求m 的值;(2)已知抛物线y =(x +n )(x -2)与x 轴交于点A 、B ,其中n >0,点A 在点B 的左侧,与y 轴交于点C ,且①OAC 的面积为4,O 为原点,求图象过A 、C 两点的一次函数的特征数.参考答案:1.D 【解析】 【分析】先求出二次函数的对称轴,然后利用二次函数的对称性即可求出抛物线与x 轴的另一个交点坐标,最后根据二次函数与x 轴交点坐标与一元二次方程解的关系即可得出结论. 【详解】解:二次函数22y x x m =-++的对称轴为直线()2121x =-=⨯-由图象可知:二次函数22y x x m =-++的图象与x 轴的一个交点坐标为(3,0) ①二次函数22y x x m =-++的图象与x 轴的另一个交点坐标为(-1,0) ①关于x 的一元二次方程220x x m -++=的解为x 1=-1,x 2=3 故选D . 【点睛】此题考查的是求抛物线的对称轴、抛物线与x 轴的交点和求一元二次方程的解,掌握抛物线的对称轴公式和二次函数与x 轴交点坐标与一元二次方程解的关系是解决此题的关键. 2.D 【解析】 【分析】根据抛物线的开口,对称轴,特殊值x=-1可判断①①正确,根据图像可得,当y>0时,是x 轴上方的图像,可判断①错误,对方程230ax bx c ++-=进行变形,看成抛物线2y ax bx c =++与3y =的交点即可判断①正确,把点(﹣2,y 1),(2,y 2)描到图像上可判断出①正确. 【详解】抛物线的开口向下,a<0,对称轴为x=1,①12ba-=,①20b a =->,抛物线与y 轴交于(0,3),①c>0,①0abc <,故①正确;当x=-1时,0a b c -+=,①2b a =-代入得:3a +c=0,故①正确;根据图像可得,当y>0时,是x 轴上方的图像,抛物线过点(﹣1,0),对称轴为x=1,根据抛物线的对称性可得,抛物线过点(3,0),①13x ,故①错误;对方程230ax bx c ++-=进行变形得:23ax bx c ++=,可看成抛物线2y ax bx c =++与3y =的交点,由图像可得:抛物线2y ax bx c =++与3y =有两个交点,①方程ax 2+bx +c ﹣3=0有两个不相等的实数根,故①正确;把点(﹣2,y 1),(2,y 2)描到图像上可知,10y <,20y >,①y 1<0<y 2,故①正确, 故选:D . 【点睛】本题考查了二次函数的图像和性质,解决这类题需要掌握:a 看抛物线开口方向,b 往往看对称轴,c 看抛物线与y 轴的交点,24b ac -看抛物线与x 轴的交点,抛物线的对称性以及代入特殊点等. 3.C 【解析】 【分析】由题意使x=0,求出相应的y 的值即可求解. 【详解】①y=3(x ﹣2)2﹣5, ①当x=0时,y=7, ①二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7). 故选C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式. 4.C 【解析】 【分析】由于x =2.3时,ax 2+bx +c =﹣0.01;x =2.4时,ax 2+bx +c =0.06,则在2.3和2.4之间有一个值能使ax 2+bx +c 的值为0,据此即可判断. 【详解】①x =2.3时,ax 2+bx +c =﹣0.01;x =2.4时,ax 2+bx +c =0.06, ①方程ax 2+bx +c =0的一个解的范围为2.3<x <2.4. 故选:C .【点睛】本题考查了估算一元二次方程的近似解,关键是观察表格,确定函数值由负到正时,对应的自变量取值范围. 5.C 【解析】 【分析】直接利用抛物线的对称性进而得出另一个交点坐标. 【详解】①抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0), ①抛物线与x 轴的另一个交点是:(5,0). 故选C . 【点睛】此题主要考查了抛物线与x 轴的交点,正确利用抛物线的对称性分析是解题关键. 6.D 【解析】 【分析】由抛物线与x 轴没有公共点,可得∆<0,求得2a <,求出抛物线的对称轴为直线x a =,抛物线开口向上,再结合已知当1x <-时,y 随x 的增大而减小,可得1a ≥-,据此即可求得答案. 【详解】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点,22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线 22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值范围是12a -≤<,故选D . 【点睛】本题考查了二次函数图象与x 轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键. 7.0<x <2 【解析】 【分析】根据函数图象和二次函数的性质,可以得到(0,-3)关于对称轴对称的点,再结合图像可得x 的范围. 【详解】 解:由图象可得,该抛物线的对称轴为直线x =1,与y 轴的交点为(0,-3), 故(0,-3)关于对称轴对称的点为(2,-3), 故当y <-3时,x 的取值范围是0<x <2, 故答案为:0<x <2. 【点睛】本题考查了二次函数的图像和性质,解题的关键是理解3y <-,结合函数的对称性得到结果. 8.10x =,22x =【解析】 【详解】根据二次函数图象可得:当x =0时,y =3,又因为二次函数关于直线x =1对称,所以当x =2时,y =3,所以关于x 的方程23ax bx c ++=的解为10x =,22x =,故答案为10x =,22x =. 9.-1 【解析】 【分析】根据题意将(0,0)代入二次函数22(1)1y a x a =-+-,即可得出a 的值,最后根据二次函数的定义进行求解即可. 【详解】解:①二次函数22(1)1y a x a =-+-的图象经过原点,①210a -=, ①1a =±, ①10a -≠ ①1a ≠ ①a 的值为-1. 故答案为:-1. 【点睛】本题考查二次函数图象上点的特征以及二次函数的定义,图象过原点,可得出当x =0时,y =0,从而分析求值. 10.2 【解析】 【分析】由题意得抛物线为y =12x 2+(﹣2﹣t )x +(2t +2),设抛物线212y x bx c =++与x 轴交于点A (x 1,0)、B (x 2,0),则x 1+x 2=4+2t ,x 1x 2=4t +4,由AB 的长为kt ,得出(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=k 2t 2,即(4+2t )2﹣4(4t +4)=k 2t 2,进而即可求得k 的值. 【详解】解:①2b +c =﹣2,b =﹣2﹣t , ①c =2t +2,①抛物线为y =12x 2+(﹣2﹣t )x +(2t +2), 设抛物线212y x bx c =++与x 轴交于点A (x 1,0)、B (x 2,0),则x 1+x 2=212t---=4+2t ,x 1x 2=2212t +=4t +4,①AB 的长为kt , ①|x 1﹣x 2|=kt ,①(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=k 2t 2,即(4+2t )2﹣4(4t +4)=k 2t 2, 整理得:4t 2=k 2t 2, ①k 2=4, ①kt >0,t >0,①k =2, 故答案为:2. 【点睛】本题考查了二次函数的性质,抛物线与x 轴的交点,交点坐标和系数的关系是解题的关键.11.(1)1.6; 2.4;(2) y = 125x ﹣4;(3) 该家庭这个月用了 40 吨生活用水. 【解析】 【分析】(1)分析图像可得答案;(2) 当x >5时设y =kx +b ,代入(5,8)、(10,20)可得一次函数解析式; (3)把 y =代入 y =x ﹣4 可得答案.【详解】(1)该市人均月生活用水的收费标准是:不超过 5 吨,每吨按 1.6 元收取; 超过 5 吨的部分,每吨按 2.4 元收取; 故答案为1.6;2.4; (2)当 x >5 时,设 y =kx +b ,代入(5,8)、(10,20)得,解得 k =,b =﹣4, ①y =x ﹣4;(3)把 y =代入 y =x ﹣4 得x ﹣4=, 解得 x =8,5×8=40(吨).答:该家庭这个月用了 40 吨生活用水. 【点睛】本题主要考查一次函数的应用,根据题意列出并解除一次方程是解题的关键.12.(1)证明见解析(2)①1x =2x =②1x =212x =【解析】【详解】试题分析:(1)求出b 2-4ac>0,即可判断方程总有两个实数根;(2)根据根与系数的关系求得123x x m +=-,21204m x x ⋅=-≤,即可得1x 、2x 异号或有1个为0.再根据211x x -=,分①10x ≥,20x <和②10x ≤,2>0x 两种情况求m 的值及相应的1x 、2x . 试题解析:(1)()2216316m m ∆=-+23296144m m =-+ 2332722m ⎛⎫=-+ ⎪⎝⎭ 72≥.①无论m 取何值,方程有两个异根.(2)()224430x m x m ---=.∵4a =,124b m =-,2c m =-.∵123x x m +=-,21204m x x ⋅=-≤, ∵1x 、2x 异号或有1个为0.211x x -=,①10x ≥,20x <,211x x --=即121x x +=-,31m -=-,∵2m =.24440x x +-=.1x =,2x =. ②10x ≤,2>0x .211x x +=,4m =.244160x x --=.240x x --=.1x =2x =. 13.(1)y=2x 2﹣2;(2)(﹣,);(3)(,3).【解析】【详解】试题分析:(1)因为抛物线y=ax 2+c 经过A (1,0),B (0,﹣2)两点,则有:解得:,所求的抛物线的解析式是:y=2x 2﹣2;(2)①AC①AB ,又根据题意可知:OA①BD ,①Rt①AOD①Rt①BOA ,①,①OD=,又根据A (1,0),B (0,﹣2),则有:AO=1,BO=2,①OD=,①D (0,),设直线AC 的解析式是y=kx+b ,则有,解得:,①所求的解析式是:y=﹣x+,由直线AC 与抛物线y=2x 2﹣2相交,则有:﹣x+=2x 2﹣2,解得:x 1=﹣,x 2=1,当x=﹣时,y=﹣×(﹣)+=,①点C 的坐标是(﹣,);(3)抛物线沿着过A 点且垂直于x 轴的直线对折后与x 轴的交点坐标为(1,0)和(3,0),此时抛物线解析式为y=2(x ﹣2)2﹣2,向上平移此时解析式为y=2(x ﹣2)2+k ,直线AB 的解析式为y=2x ﹣2,则2(x ﹣2)2+k=2x ﹣2,①=100﹣80﹣8k=0,解得k=,即2(x ﹣2)2+=2x ﹣2,解得x=,所求交点的坐标是(,3).考点:二次函数综合题.14.(1)2y x 2x 3=-++,x=1;(2)−1<x <3;(3)0<x <2.【解析】【分析】(1)将(−1,0)和(0,3)两点代入二次函数2y x bx c =-++,求得b 和c ;从而得出抛物线的解析式,进而得出对称轴;(2)令y =0,解得1x ,2x ,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y >0时,自变量x 的取值范围.(3)令y =3,解得1x ,2x ,结合图像即可分析出当函数值3y >时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过(−1,0)和(0,3)两点,得1+03b c c --=⎧⎨=⎩ , 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2y x 2x 3=-++, 对称轴()21221b x a =-=-=⨯- . (2)令y =0,得2x -+2x +3=0.解这个方程,得1x =3,2x =−1.①此二次函数的图象与x 轴的另一个交点的坐标为(3,0).当−1<x <3时,y >0.(3)令y =3,得2x -+2x +3=3,解这个方程得:1x =0,2x =2.①由图像可知,当0<x <2时,y >3.【点睛】本题考查了二次函数与x 轴的交点问题以及用待定系数法求二次函数的解析式,解题的关键是正确求出抛物线的解析式,此题难度不大.15.(1)m =-1;(2)[]24-,-【解析】【分析】(1)根据正比例函数的一般形式y=kx (k≠0),则m+1=0,进而求出即可;(2)根据题意得出n 的值,进而得出直线AC 的解析式,进而得出图象过A 、C 两点的一次函数的特征数.【详解】解:(1)①特征数是[2,m+1]的一次函数为正比例函数,①m+1=0,解得:m =-1;(2)由题意得点A 的坐标为(-n ,0),点C 的坐标为(0,-2n).①①OAC 的面积为4, ①1242n n ⨯⨯=, ①n =2,① 点A 的坐标为(-2,0),点C 的坐标为(0,-4).设直线AC 的解析式为 y =kx +b.①204k b b -+=⎧⎨=-⎩, ①24k b =-⎧⎨=-⎩, ① 直线AC 的解析式为:y =-2x -4;① 图象过A 、C 两点的一次函数的特征数为[]24-,-.【点睛】此题主要考查了待定系数法求一次函数解析式以及新定义,根据题意得出直线AC 的解析式是解题关键.。
2013年深圳中考数学专题复习第八讲:一元二次方程及应用(含详细参考答案)
2013年深圳中考数学专题复习第八讲:一元二次方程及应用 【基础知识回顾】 一、 一元二次方程的定义: 1、一元二次方程:含有 个未知数,并且未知数最 方程 2、一元二次方程的一般形式: 其中二次项是 一次项是 , 是常数项 【名师提醒:1、在一元二次方程的一般形式要特别注意强调a ≠o 这一条件 2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】 二、一元二次方程的常用解法: 1、直接开平方法:如果aX 2 =b 则X 2 = X1= X2= 2、配方法:解法步骤:1、化二次项系数为 即方程两边都 二次项系数 2、移项:把 项移到方程的 边3、配方:方程两边都加上 把左边配成完全平方的形式4、解方程:若方程右边是非负数,则可用直接开平方法解方程 3、公式法:如果方程aX 2 +bx+c=0(a ±0) 满足b 2-4ac ≥0,则方程的求根公式为 4、因式分解法:一元二次方程化为一般形式式,如果左边分解因式,即产生A.B=0的形式,则可将原方程化为两个 方程,即 从而方程的两根 【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是 法和 法】 三、一元二次方程根的判别式 关于X 的一元二次方程aX 2 +bx+c=0(a ±0)根的情况由 决定,我们把它叫做一元二次方程根的判别式,一般用符号 表示 ①当 时,方程有两个不等的实数根 ②当 时,方程看两个相等的实数根 ③当 时,方程没有实数根 【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数 】 一、 一元二次方程根与系数的关系: 关于X 的一元二次方程aX 2 +bx+c=0(a ±0)有两个根分别为X1X2则X1+X2 =X2 = 二、 一元二次方程的应用:解法步骤同一元一次方程一样,仍按照审、设、列、解、验、答六步进行 常见题型 1、 增长率问题:连续两率增长或降低的百分数Xa(1+X )2=b 2、 利润问题:总利润= X 或利润 — 3、 几个图形的面积、体积问题:按面积的计算公式列方程 【名师提醒:因为通常情况下一元二次方程有两个根,所以解一元二次方程的应用题一定要验根,检验结果是否符合实际问题或是否满足题目中隐含的条件】【重点考点例析】 考点一:一元二次方程的有关概念(意义、一般形式、根的概念等) 例1 (2012•兰州)下列方程中是关于x 的一元二次方程的是( ) A .x 2+21x=0 B .ax 2+bx+c=0C .(x-1)(x+2)=1 D .3x 2-2xy-5y 2=0对应训练 考点二:一元二次方程的解法例2 (2012•安徽)解方程:x 2-2x=2x+1. 例3 (2012•黔西南州)三角形的两边长分别为2和6,第三边是方程x 2-10x+21=0的解,则第三边的长为( ) A .7 B .3 C .7或3 D .无法确定 对应训练 2.(2012•台湾)若一元二次方程式x 2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b 之值为何?( )A .-57B .63C .179D .1813.(2012•南充)方程x (x-2)+x-2=0的解是( ) A .2 B .-2,1 C .-1 D .2,-1 考点三:根的判别式的运用 实数根,那么k 的取值范围是( )方程有两个实数跟,则A.k<12B.k<12且k≠0 C.-12≤k<12D.-12≤k<12且k≠0例4 (2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.对应训练3.(2012•桂林)关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k<-1 D.k>-14.(2012•珠海)已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.考点四:一元二次方程的应用例5 (2012•南京)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月返利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)对应训练5.(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.5.解(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.【聚焦山东中考】一、选择题1.(2012•日照)已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>43且k≠2 B.k≥43且k≠2 C.k>34且k≠2 D.k≥34且k≠2 3.(2012•潍坊)如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.1445.(2012•日照)已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是()A.k>且k≠2B.k≥且k≠2 C.k>且k≠2 D.k≥且k≠2 6.(2012•烟台)下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0 B.x2﹣4x+4=0 C.x2+4x+10=0 D.x2+4x﹣5=0二、填空题7.(2012•聊城)一元二次方程x2-2x=0的解是.8.(2012•青岛)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.9.(2012•德州)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是.10.(2012•莱芜)为落实“两免一补”政策,某市2011年投入教育经费2500万元,预计2013年要投入教育经费3600万元.已知2011年至2013年的教育经费投入以相同的百分率逐年增长,则2012年该市要投入的教育经费为万元.12.(2012•威海)若关于x的方程x2+(a﹣1)x+a2=0的两根互为倒数,则a= .13.(2012•日照)已知x1、x2是方程2x2+14x﹣16=0的两实数根,那么的值为.三、解答题14.(2012•菏泽)解方程:(x+1)(x-1)+2(x+3)=8.14.解:原方程可化为 x2+2x-3=0.∴(x+3)(x-1)=0,∴x1=-3,x2=1.15.(2012•滨州)滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过程,并完成填空.解:设应邀请x支球队参赛,则每对共打场比赛,比赛总场数用代数式表示为.根据题意,可列出方程.整理,得.解这个方程,得.合乎实际意义的解为.答:应邀请支球队参赛.【备考真题过关】一、选择题1.(2012•乌鲁木齐)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A.-1 B.0 C.1 D.-1或11.A1.解:把x=0代入方程得:|a|-1=0,∴a=±1,∵a-1≠0,∴a=-1.故选A.2.(2012•荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=16 2.A3.(2012•宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7 C.(x+3)2-11 D.(x+2)2+4 3.B.4.(2012•莆田)方程(x-1)(x+2)=0的两根分别为()A.x1=-1,x2=2 B.x1=1,x2=2C.x1=-1,x2=-2 D.x1=1,x2=-24.D5.(2012•淮安)方程x2-3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=-3 D.x1=0,x2=35.D6.(2012•南昌)已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a 的值是()A.1 B.-1 C.14D.-146.B.7.(2012•常德)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m≤-1 B.m≤1 C.m≤4 D.m≤1 27.B 8.(2012•泰州)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1-x)2=36-25 B.36(1-2x)=25C.36(1-x)2=25 D.36(1-x2)=258.C.9.(2012•河池)一元二次方程x2+2x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根考点:根的判别式。
深圳中考数学一元二次方程组(大题培优 易错 难题)
深圳中考数学一元二次方程组(大题培优 易错 难题)一、一元二次方程1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.阅读下列材料计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t ,则:原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣+t 2=在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4(3)解方程:(x2+4x+1)(x2+4x+3)=3【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2【解析】【分析】(1)仿照材料内容,令+=t代入原式计算.(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.【详解】(1)令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=(2)令a2﹣5a=t,则:原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2(3)令x2+4x=t,则原方程转化为:(t+1)(t+3)=3t2+4t+3=3t(t+4)=0∴t1=0,t2=﹣4当x2+4x=0时,x(x+4)=0解得:x1=0,x2=﹣4当x2+4x=﹣4时,x2+4x+4=0(x+2)2=0解得:x3=x4=﹣2【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.3.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.4.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.5.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】6.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.7.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.8.已知关于x 的一元二次方程()2204m mx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根; (2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,2x =. 【解析】【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可.【详解】(1)由题意得:24b ac ∆=- =()22404m m m +->g g ,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得134x +=,234x =. 【点睛】 本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.9.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.10.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1+2x 2=-1-22)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴1=-∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32.11.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x 元(40≤x ≤60),每星期的销售量为y 箱.(1)求y 与x 之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y =-10x +780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x 元,则多销售的数量为60-x, (2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x 元(40≤x≤60),则y=180+10(60-x )=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w ,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10<0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.12.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).(1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值.【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x 1=3m ,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,∴△=(m -3)2-4m ×(-3)=(m +3)2,∵(m +3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x =()()332m m m --±+ ,∴x1=-3,x2=1,m∵m为正整数,且方程的两个根均为整数,∴m=-1或-3.点睛: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.13.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.14.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【答案】(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a ﹣b=0,∴a=b ,∴△ABC 是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b )2﹣4(a+c )(a ﹣c )=0,∴4b 2﹣4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形;(3)当△ABC 是等边三角形,∴(a+c )x 2+2bx+(a ﹣c )=0,可整理为:2ax 2+2ax=0,∴x 2+x=0,解得:x 1=0,x 2=﹣1.考点:一元二次方程的应用.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩,解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
广东深圳中考专题二次函数的应用精编
中考专题一、二次函数的应用题一、中考应用题简介中考应用题一般出现在倒数第三题,也就是第21题;分值大约是8分;考试的常见题型是利润类问题、面积类问题;其中包含了二元一次方程组、不等式、二次函数的最大值的应用等考点,属于必拿分的题型!非常重要,这部分内容难度不是非常大,但是考试的时候讲求:效率和质量!一定要非常熟练,快速的解决应用题,并且保证计算一遍过,不浪费时间!二、常见题型面积问题:例题1.(南山1模8分)如图所示,要用防护网围成长方形花坛,其中一面利用现有的一段墙,且在与墙平行的一边开一个2米宽的门,现有防护网的长度为91米,花坛的面积需要1080平方米,若墙长50米,求花坛的长和宽.(1)一变:若墙长46米,求花坛的长和宽;(2)二变:若墙长40米,求花坛的长和宽;(3)通过对上面三题的讨论,你觉得墙长对题目有何影响?2 变式1、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a 为15米),围成中间隔有一道篱笆的长方形花圃。
(1)如果要围成面积为45平方米的花圃,AB 的长是多少米?(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。
利润问题:利润问题:公式:单件利润X 数量=总利润例2.某百货商店服装柜在销售中发现:某品牌童装每天可售出 20 件,每件盈利40 元,经市场调查发现,在进货价不变的情况下,若每件童装每降价 1 元,日 销售量将增加 2 件. 1)当每件童装降价多少元时,一天的盈利最多?(2)若商场要求一天的盈利为 1200 元,同时又使顾客得到实惠,每件童装降价 多少元?变式2.(10深圳21)儿童商场购进一批M 型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x 元之间的函数关系为y=20+4x(x>0)(1)求M型服装的进价;(3分)(2)求促销期间每天销售M型服装所获得的利润W的最大值.(5分)分段收费问题(模拟考试常见)例3.(2015)下表为深圳市居民每月用水收费标准,(单位:元/m3)。
2022年中考数学专题复习(一元二次方程及其应用)
-3<x1<-1,1<x2<3,则符合条件的一个方程为.
5.(2021·海南)用配方法解方程x2-6x+5=0,配方后所得的方程是( )
A.(x+3)2=-4B.(x-3)2=-4C.(x+3)2=4D.(x-3)2=4
11.(2021·河南)若方程x2﹣2x+m=0没有实数根,则m的值可以是( )
A.-1B.0C.1D.
12.(2021·泰安)已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等
的实数根,则实数k的取值范围是( )
A.k>﹣ B.k< C.k>﹣ 且k≠0D.k< 且k≠0
13.(2021·怀化)对于一元二次方程2x2-3x+4=0,则它根的情况为( )
23.(2020·济南)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.
24.(2021·山西)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).
A.没有实数根B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
9.(2021·通辽)关于x的一元二次方程x2-(k-3)x-k+1=0的根的情况,下列说法正确的是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.无实数根D.无法确定
10.(2021·吉林)若关于x的一元二次方程x2+3x+c=0有两个相等的实数根,则c的值为.
19.(2021·永州)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,则x1+x2= ,x1x2= .现已知一元二次方程px2+2x+q=0的两根分别为m,n.
深圳中考数学《一元二次方程的综合》专项训练
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ 的面积等于4cm 2. 【解析】 【分析】作出辅助线,过点Q 作QE ⊥PB 于E ,即可得出S △PQB =12×PB×QE ,有P 、Q 点的移动速度,设时间为t 秒时,可以得出PB 、QE 关于t 的表达式,代入面积公式,即可得出答案. 【详解】解:如图,过点Q 作QE ⊥PB 于E ,则∠QEB =90°. ∵∠ABC =30°, ∴2QE =QB . ∴S △PQB =12•PB•QE . 设经过t 秒后△PBQ 的面积等于4cm 2, 则PB =6﹣t ,QB =2t ,QE =t .根据题意,12•(6﹣t )•t =4. t 2﹣6t+8=0. t 2=2,t 2=4.当t =4时,2t =8,8>7,不合题意舍去,取t =2. 答:经过2秒后△PBQ 的面积等于4cm 2. 【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.2.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得.()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】 解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=,224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.3.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因. 涵涵的作业解:x 2﹣7x+10=0 a=1 b=﹣7 c=10 ∵b 2﹣4ac=9>0∴732±∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+m2﹣14=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.4.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】6.已知关于x 的一元二次方程()220x m x m -++=(m 为常数)(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0. 【解析】 【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根; (2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可. 【详解】 (1)证明:△=(m+2)2−4×1⋅m=m 2+4, ∵无论m 为何值时m 2≥0, ∴m 2+4≥4>0, 即△>0,所以无论m 为何值,方程总有两个不相等的实数根. (2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0, 所以m=0,即m 的值为0,方程的另一个根为0. 【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.7.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.8.关于x 的方程()2204kkx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【解析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404kk k =+-⋅>, 1k ∴>-, 又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204kkx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x kx x +⎧+=-⎪⎪⎨⎪=⎪⎩,又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-,由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。