高考定积分练习题
高三数学积分试题答案及解析
高三数学积分试题答案及解析1.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.【答案】C【解析】由题意知,这是一个几何概型概率的计算问题.正方形的面积为,阴影部分的面积为,故选.【考点】1.定积分的应用;2.几何概型.2.如图,在边长为(为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【答案】【解析】由对数函数与指数函数的对称性,可得两块阴影部分的面积相同..所以落到阴影部分的概率为.【考点】1.几何概型.2.定积分.3.二项式()的展开式的第二项的系数为,则的值为( ) A.B.C.或D.或【答案】A【解析】∵展开式的第二项的系数为,∴,∴,∵,∴,当时,.【考点】二项式定理、积分的运算.4. [2013·江西高考]若S1=,S2=,S3=,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【答案】B【解析】S1==x3=,S2==lnx=ln2,S3==e x=e2-e=e(e-1)>e>,所以S2<S1<S3,故选B.5. [2014·琼海模拟]如图所示,则由两条曲线y=-x2,x2=-4y及直线y=-1所围成图形的面积为________.【答案】【解析】由图形的对称性,知所求图形的面积是位于y轴右侧图形面积的2倍.由得C(1,-1).同理,得D(2,-1).故所求图形的面积S=2{[--(-x2)]dx+[--(-1)]dx}=2[-]=2[-(-x)]=.6.如图,阴影区域是由函数的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是()A.B.C.D.【答案】B【解析】根据余弦函数的对称性可得,曲线从到与x轴围成的面积与从到与轴围成的面积相等,∴由函数的一段图象与轴围成的封闭图形的面积,,故选B.【考点】定积分求面积。
高考定积分分类汇总及答案汇编
第十四节 定积分与微积分基本定理(理)一、选择题1.(2013·江西卷)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 解析 本题考查微积分基本定理.S 1=⎠⎛12x 2d x =x 33|21=73. S 2=⎠⎛121x d x =ln x |21=ln 2-ln 1=ln 2.S 3=⎠⎛12e x d x =e x |21=e 2-e =e (e -1). 令e =2.7,∴S 3>3>S 1>S 2.故选B .A .3B .4C .3.5D .4.5答案 C3.如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是( )A .⎪⎪⎪⎪⎠⎛02(x 2-1)d x B .⎠⎛02(x 2-1)d x C.⎠⎛02|x 2-1|d x D .⎠⎛01(x 2-1)d x +⎠⎛02(x 2-1)d x解析 面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.4.(2012·湖北卷)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π25.(2013·湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln5B .8+25ln 113 C .4+25ln5D .4+50ln2解析 令v (t )=0,7-3t +251+t=0 ∴3t 2-4t -32=0,∴t =4,则汽车行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )|40=7×4-32×42+25ln5-0=4+25ln5,故选C.6.(2014·武汉调研)如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x (x >0)图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A.ln22B.1-ln22C.1+ln22D.2-ln22二、填空题(本大题共3小题,每小题5分,共15分) 7.(2013·湖南卷)若⎠⎛0T x 2d x =9,则常数T 的值为________.解析 ∵⎠⎛0T x 2d x =x 33|T 0=T 33=9,∴T =3.答案 38.(2014·厦门市质检)计算:⎠⎛01(x 2+1-x 2)d x =______.解析 ⎠⎛01(x 2+1-x 2)d x =⎠⎛01x 2d x +⎠⎛011-x 2d x =x 3310+14π=13+π4.9.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0)、B ⎝ ⎛⎭⎪⎫12,5、C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.解析 设直线为y =kx +b ,代入A ,B 两点,得y =10x .代入B ,C 两点,则⎩⎨⎧5=12k +b ,0=k +b ,∴k =-10,b =10.∴f (x )=⎩⎪⎨⎪⎧10x , 0≤x ≤12,-10x +10, 12<x ≤1.∴y =xf (x )=⎩⎪⎨⎪⎧10x 2, 0≤x ≤12,-10x 2+10x , 12<x ≤1.三、解答题(本大题共3小题,每小题10分,共30分)10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f (x )x d x 的值.解 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0). 由⎠⎛01(ax +b )d x =5,得⎝ ⎛⎭⎪⎫12ax 2+bx |10=12a +b =5.①由⎠⎛01xf (x )d x =176,得⎠⎛01(ax 2+bx )d x =176. 即⎝ ⎛⎭⎪⎫13ax 3+12bx 2|10=176. ∴13a +12b =176.②解①②,得a =4,b =3.∴f (x )=4x +3.于是⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12(4+3x )d x=(4x +3ln x )|21=8+3ln2-4=4+3ln2.11.(2013·日照调研)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1, 所以抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-x 33|10=12-13=16.又可得抛物线y =x -x 2与y =kx 两交点的横坐标为x ′1=0,x ′2=1-k , 所以S 2=∫1-k 0(x -x 2-kx )d x=⎝ ⎛⎭⎪⎫1-k 2x 2-x 33|1-k 0 =16(1-k )3.又知S =16,所以(1-k )3=12.于是k =1-312=1-342.12.设函数f (x )=x 3+ax 2+bx 在点x =1处有极值-2.(1)求常数a ,b 的值;(2)求曲线y =f (x )与x 轴所围成的图形的面积.解 (1)由题意知,f ′(x )=3x 2+2ax +b ,f (1)=-2,且f ′(1)=0, 即⎩⎪⎨⎪⎧ 1+a +b =-2,3+2a +b =0,解得⎩⎪⎨⎪⎧a =0,b =-3.(2)由(1)可知,f (x )=x 3-3x .作出曲线y =x 3-3x 的草图如图,所求面积为阴影部分的面积,由x 3-3x =0得曲线y =x 3-3x 与x 轴的交点坐标是(-3,0),(0,0)和(3,0),而y =x 3-3x 是R 上的奇函数,所以函数图象关于原点成中心对称.所以所求图形的面积为。
高考数学定积分应用选择题
高考数学定积分应用选择题1. 定积分在几何应用中,计算一个矩形的面积,面积为10平方单位,则该矩形的长和宽分别为()A. 2, 5B. 10, 2C. 5, 2D. 2, 22. 定积分在物理应用中,一个物体从静止开始沿直线加速运动,已知初速度为2m/s,加速度为5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程3. 定积分在物理应用中,已知物体沿直线运动的位移s与时间t 的关系为s=3t^2-2t+1,求物体在t=1秒时的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程4. 定积分在物理应用中,一个物体沿直线加速运动,已知初速度为5m/s,加速度为2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程5. 定积分在物理应用中,一个物体沿直线加速运动,已知初速度为3m/s,加速度为4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程6. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为5m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程7. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为3m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程8. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为2m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程9. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为1m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程10. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为2m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程11. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为3m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分D. 积分方程12. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为4m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程13. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为5m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程14. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为6m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()B. 不定积分C. 微积分D. 积分方程15. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为7m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程16. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为8m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程17. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为9m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程18. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为10m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程19. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为11m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程20. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为12m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程21. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为13m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程22. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为14m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程23. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为15m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程24. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为16m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程25. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为17m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程26. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为18m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程27. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为19m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程28. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为20m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程29. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为21m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程30. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为22m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程31. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为23m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程32. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为24m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程33. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为25m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程34. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为26m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程35. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为27m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程36. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为28m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程37. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为29m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程38. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为30m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程39. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为31m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程40. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为32m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程41. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为33m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程42. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为34m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程43. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为35m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程44. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为36m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程45. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为37m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程46. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为38m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程47. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为39m/s,加速度为-5m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程48. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为40m/s,加速度为-2m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程49. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为41m/s,加速度为-3m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程50. 定积分在物理应用中,一个物体沿直线减速运动,已知初速度为42m/s,加速度为-4m/s^2,求物体运动1秒后的速度,应使用()A. 定积分B. 不定积分C. 微积分D. 积分方程。
2023年高考数学微专题练习专练15定积分与微积分基本定理含解析理
专练15 定积分与微积分基本定理命题范围:积分的概念与运算、微积分基本定理.[基础强化]一、选择题1.⎠⎛12(x -2)d x 的值为( )A .-1B .0C .1D .-122.若f(x)=x 2+2⎠⎛01f(x)d x ,则⎠⎛01f(x)d x =( )A .-1B .-13C .13D .13.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A .22B .4 2C .2D .44.若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b5.⎠⎛-11(1-x 2+sin x)d x =( )A .π4B .π2C .πD .π2+26.设k =⎠⎛0π(sin x -cos x)d x ,若(1-kx)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 8=( )A .-1B .0C .1D .2567.设f(x)=⎩⎨⎧1-x 2,x∈[-1,1),x 2-1,x∈[1,2],则⎠⎛-12f(x)d x 的值为( )A .π2+43B .π2+3C .π4+43D .π4+38.如图是函数y =cos (2x -5π6)在一个周期内的图像,则阴影部分的面积是( )A .34B .54C .32D .32-349.已知等差数列{a n }中,a 5+a 7=⎠⎛0πsin x d x ,则a 4+2a 6+a 8的值为( )A .8B .6C .4D .2二、填空题10.[2022·安徽滁州二模]设f(x)=e x,则⎠⎛01[f′(x)+2x]d x________.11.曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.12.已知函数f(x)=x 3+ax 2+bx(a ,b∈R )的图像如图所示,它与直线y =0在原点处相切,此切线与函数图像所围区域(图中阴影部分)的面积为274,则a 的值为________.13.[2022·西藏拉萨中学月考]由曲线y =x ,直线y =x -2及y 轴所围成的平面图形的面积为________.14.[2022·甘肃张掖期末]如图,在矩形ABDC 中,AB =1,AC =2,O 为AC 中点,抛物线的一部分在矩形内,点O 为抛物线顶点,点B ,D 在抛物线上,在矩形内随机地放一点,则此点落在阴影部分的概率为________.15.[2022·宁夏石嘴山一模]⎠⎛-11(e x+|x|)d x =________.16.[2022·黑龙江一模]在棱长为2的正方体ABCDA 1B 1C 1D 1的侧面ABB 1A 1内有一动点P 到直线A 1B 1与直线BC 的距离相等,则在侧面ABB 1A 1上动点P 的轨迹与棱AB 、BB 1所围成的图形面积是________.专练15 定积分与微积分基本定理1.D ⎠⎛12(x -2)d x =⎝ ⎛⎭⎪⎫12x 2-2x |21 =12×22-2×2-⎝ ⎛⎭⎪⎫12-2=-12.2.B 令⎠⎛01f(x)d x =m ,则f(x)=x 2+2m ,∴⎠⎛01f(x)d x =⎠⎛01x 2d x +⎠⎛012m d x =(13x 2+2mx)|10=m ,得m =-13.3.D 由⎩⎪⎨⎪⎧y =4x ,y =x 3,得x =0或x =2或x =-2(舍), ∴S=⎠⎛02(4x -x 3)d x =⎝ ⎛⎭⎪⎫2x 2-14x 4|20 =4.4.D a =⎠⎛02x 2d x =13x 3|20 =83,b =⎠⎛02x 3d x =14x 4|20 =4,c =⎠⎛02sin x d x =(-cos x )|20 =1-cos2,∵1-cos2<83<4,∴c <a <b .5.B ⎠⎛-11(1-x 2+sin x )d x =⎠⎛-111-x 2d x +⎠⎛-11sin x d x ,∵y =sin x 为奇函数,∴⎠⎛-11sin x d x =0,又⎠⎛-111-x 2d x 表示以坐标原点为圆心,以1为半径的上半个圆的面积,∴⎠⎛-111-x 2d x=π2, ∴⎠⎛-11( 1-x 2+sin x )d x =π2.6.B 因为k =⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x =-cos x |π0 -sin x |π0 =2,所以(1-kx )8=(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8.令x =1,得a 0+a 1+a 2+…+a 8=(1-2)8=1,令x =0,得a 0=1,所以a 1+a 2+…+a 8=(a 0+a 1+a 2+…+a 8)-a 0=1-1=0.故选B.7.A ⎠⎛-12f(x)d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+(13x 3-x)|21 =π2+43.故选A .8.B S =-∫π60cos (2x -5π6)d x +∫2π3π6cos (2x -5π6)d x=-⎣⎢⎡⎦⎥⎤12sin (2x -5π6)|π60+[12sin (2x -5π6)]|2π3π6=-[12sin (-π2)-12sin (-5π6)]+[12sin π2-12sin (-π2)]=14+1=54.故选B .9.C ∵a 5+a 7=⎠⎛0πsin x d x =(-cos x)|π0 =-(cosπ-cos 0)=2,又{a n }为等差数列, ∴a 5+a 7=2a 6=2,∴a 6=1, ∴a 4+2a 6+a 8=4a 6=4. 10.e解析:因为f(x)=e x, 所以错误!错误!0=e +1-1=e . 11.16解析:如图,阴影部分的面积即为所求.解⎩⎪⎨⎪⎧y =x 2,y =x ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,则A(1,1). 故所求面积为S =⎠⎛01(x -x 2)d x =(12x 2-13x 3)|10 =16.12.-3解析:由已知得f′(0)=0,因为f′(x)=3x 2+2ax +b ,所以b =0,则f(x)=x 3+ax 2,令f(x)=0,得x 1=0,x 2=-a.由切线y =0与函数图像所围区域(题图中阴影部分)的面积为274,得 -⎠⎛0-a f(x)d x =274,即-⎠⎛0-a (x 3+ax 2)d x =274,即-(14x 4+a 3x 3)-a 0 =274,所以-⎣⎢⎡⎦⎥⎤a 44+a3×(-a )3=274,即a 412=274,解得a =±3,由题图可知a<0,∴a=-3. 13.163解析:由定积分知 S =⎠⎛4x -(x -2)d x =(23x 32-12x 2+2x)|1=(23×8-8+8)-0=163. 14.13解析:由题可知矩形面积为2,建立如图所示的平面直角坐标系,则抛物线方程为y 2=2x(0≤x≤1), 抛物线及BD 围成的面积为2(1-⎠⎛01x d x)=23,点落在阴影部分的概率为232=13.15.e -1e+1解析:⎠⎛-11(e x+|x|)d x =⎠⎛-1(e x-x)d x +⎠⎛01(e x+x)d x =(e x-x 22)|0-1 +(e x +x 22)|10 =(e-0)[e -1-(-1)22]+(e 1+122)-[e 0+0]=1-1e +12+e +12-1=e -1e +1.16.43解析:以点A 为坐标原点,AB 、AD 、AA 1所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,设点P(x ,0,z),则0≤x≤2,0≤z≤2,则点P 到直线A 1B 1的距离为2-z , 因为BC⊥平面AA 1B 1B ,BP ⊂平面AA 1B 1B , 所以,BC⊥BP,所以,点P 到直线BC 的距离为|BP →|=(x -2)2+z 2, 由已知可得(z -2)2+z 2=2-z ,化简可得z =x -x24,当x =2时,z =1,即点P 的轨迹交棱BB 1于点(2,0,1),因此,在侧面ABB 1A 1上动点P 的轨迹与棱AB 、BB 1所围成的图形面积是⎠⎛02(x -x 24)d x =(12x 2-x 312)|20 =43.。
导数与定积分(一):高考数学一轮复习基础必刷题
导数与定积分(一):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.已知991001101,,ln100100a b e c -===,则,,a b c 的大小关系为()A .a b c <<B .a c b <<C .c a b<<D .b a c<<2.曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积是()A .0B .2C .4D .π3.已知某商品的进价为4元,通过多日的市场调查,该商品的市场销量y (件)与商品售价x (元)的关系为e x y -=,则当此商品的利润最大时,该商品的售价x (元)为()A .5B .6C .7D .84.21232x dx x -+=+⎰()A .22ln +B .32ln -C .62ln -D .64ln -5.数列{}n a 为等差数列,且2020202204a a x π+=⎰,则()2021201920212023a a a a ++=()A .1B .3C .6D .126.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征,如函数2()af x x x=+(a R ∈)的图像不.可能..是()A .B .C .D .7.设函数()()211ln 2f x x a x a x =-++有两个零点,则实数a 的取值范围为()A .()1,0-B .1,02⎛⎫- ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭8.已知21232m x dx =-⎰,则4()(2)m m x y x y ++-中33x y 的系数为()A .80-B .40-C .40D .80二、填空题9.211x dx x ⎛⎫+= ⎪⎝⎭⎰=________.10.若211(2)3ln 2mx dx x+=+⎰,则实数m 的值为____________.11.设R a ∈,若不等式ln xa x>在()1,x ∈+∞上恒成立,则a 的取值范围是______.三、解答题12.已知函数21(log )f x x x=-(1)求()f x 的表达式;(2)不等式2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.13.求由曲线2y x=与直线3x y +=所围图形的面积.14.已知函数3()2f x x ax b =++在2x =-处取得极值.(1)求实数a 的值;(2)若函数()y f x =在[0,4]内有零点,求实数b 的取值范围.15.已知函数()ln f x ax x x =+的图像在e x =(e 为自然对数的底数)处取得极值.(1)求实数a 的值;(2)若不等式()(1)f x k x >+在[e,)+∞恒成立,求k 的取值范围.参考答案:1.C 【解析】【分析】利用两个重要的不等式1x e x ≥+,ln 1≤-x x 说明大小即可【详解】先用导数证明这两个重要的不等式①1x e x ≥+,当且仅当0x =时取“=”()1x y e x =-+'1x y e =-()',0,0x y ∈-∞<,函数递减,()'0,,0x y ∈+∞>函数递增故0x =时函数取得最小值为0故1x e x ≥+,当且仅当0x =时取“=”②ln 1≤-x x ,当且仅当1x =时取“=”()ln 1y x x =--'11y x=-()'0,1,0x y ∈>,函数递增,()'1,,0x y ∈+∞<函数递减,故1x =时函数取得最大值为0,故ln 1≤-x x ,当且仅当1x =时取“=”故991009911100100e->-+=1011011ln 1100100100c =<-=故选:C 2.C 【解析】根据积分的几何意义化为求20sin (sin )S xdx x dx πππ=+-⎰⎰可得结果.【详解】曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积20sin (sin )S xdx x dx πππ=+-⎰⎰20cos cos x xπππ=-+(cos cos 0)cos 2cos πππ=--+-(11)1(1)=---+--4=.故选:C 【点睛】结论点睛:由上下两条连续曲线2()y f x =与1()y f x =及两条直线x a =与x b =()b a >所围成的平面图形的面积为[]21()()baS f x f x dx =-⎰.3.A 【解析】【分析】根据题意求出利润函数的表达式,结合导数的性质进行求解即可.【详解】根据题意可得利润函数()()4e xf x x -=-,()e x f x -'=()()4e 5e x x x x ----=-,当5x >时,0,()f f x '<单调递减,当05x <<时,0,()f f x '>单调递增,所以当5x =时,函数()f x 取最大值,故选:A .4.D 【解析】先求出不定积分,再代入上下限来求定积分.【详解】由题,2211231d 2d 22x x x x x --+⎛⎫=- ⎪++⎝⎭⎰⎰21[2ln(2)]x x -=-+(4ln 4)(2ln1)6ln 4=----=-.故选:D 【点睛】本题考查定积分的运算,属于基础题.【解析】【分析】根据定积分的几何意义求20202022a a +,再应用等差中项的性质求目标式的值.【详解】∵0x ⎰表示半径为2的四分之一圆面积(处于第一象限),∴20202022044a a x π+==⎰,又{}n a 为等差数列,∴20212020202224a a a =+=,则()220212019202120232021312a a a a a ++==.故选:D.6.A 【解析】【分析】根据函数的奇偶性,分类0a =,0a <和0a >三种情况分类讨论,结合选项,即可求解.【详解】由题意,函数2()()af x x a R x=+∈的定义域为(,0)(0,)x ∈-∞⋃+∞关于原点对称,且()()f x f x -=,所以函数()f x 为偶函数,图象关于原点对称,当0a =时,函数2()f x x =且(,0)(0,)x ∈-∞⋃+∞,图象如选项B 中的图象;当0a <时,若0x >时,函数2()a f x x x =+,可得322()0x af x x-'=>,函数()f x 在区间(0,)+∞单调递增,此时选项C 符合题意;当0a >时,若0x >时,可得2()a f x x x =+,则3222()2a x af x x x x -'=-=,令()0f x '=,解得x =当x ∈时,()0f x '<,()f x 单调递减;当)x ∈+∞时,()0f x '>,()f x 单调递增,所以选项D 符合题意.故选:A.【解析】【分析】求出导函数()()()1x x a f x x--'=,分a 的符号,以及a 与1的大小关系讨论函数的单调性,从而分析其零点情况,得出答案.【详解】由()()211ln 2f x x a x a x =-++()0x >,则()()()()11x x a a f x x a x x--'=-++=,①0a <时,()f x 在()0,1上递减,在()1,+∞上递增,0x →时,()f x →+∞,x →+∞时,()f x →+∞,所以,要使函数()f x 有2个零点,则()10f <,所以有102a -<<,②0a =时,()212f x x x =-在()0,∞+上只有1个零点,不符合题意,③01a <<时,()f x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增,因为()21ln 02f a a a a a =--+<,所以()f x 在()0,∞+上不可能有2个零点,不符合题意,④1a =时,()f x 在()0,∞+上递增,不可能有2个零点,不符合题意,⑤1a >时,()f x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增,因为()1102f a =--<,所以()f x 在()0,∞+不可能有2个零点,综上,1,02a ⎛⎫∈- ⎪⎝⎭时,方程()f x 有两个零点.故选:B .8.C 【解析】【分析】先计算积分得到m =1,利用二项式展开式对33x y 的构成进行分类,求出33x y 的系数.【详解】32232222213321122322(32)2(32)2[(3)|]2[(3)|]1m x dx x dx x dx x x x x =-=-+-=-+-=⎰⎰⎰,则45()(2)()(2)m m x y x y x y x y ++-=+-,5(2)x y -的通项公式555155(2)()(1)2r r r r r r r r r T C x y C x y ---+=⋅⋅-=-⋅⋅⋅⋅,则两个通项公式为5615(1)2r r r r r r x T C x y --+⋅=-⋅⋅⋅⋅,当3r =时3335440C x y -⋅⋅=-,55115(1)2r r r r r r y T C x y --++⋅=-⋅⋅⋅⋅,当2r =时2335880C x y ⋅⋅=,则33x y ⋅的系数为408040-+=.故选:C.【点睛】方法点睛:在与二项式定理有关的问题中,主要表现为一项式和三项式转化为二项式来求解;若干个二项式积的某项系数问题转化为乘法分配律问题.9.3ln 2+2【解析】【分析】直接利用微积分基本原理求211x dx x ⎛⎫+ ⎪⎝⎭⎰的值.【详解】根据题意得211x dx x ⎛⎫+ ⎪⎝⎭⎰=221113ln |ln 22(0)ln 2222x x +=+-+=+.故答案为3ln2+2【点睛】本题主要考查微积分基本原理求定积分,意在考查学生对该知识的掌握水平和分析推理能力.10.1【解析】【分析】先求12mx x+的原函数()F x ,再令(2)(1)3ln 2F F -=+即可.【详解】易得12mx x+的原函数2()ln F x x mx =+,所以211(2)(2)(1)3ln 2mx dx F F x +=-=+⎰,即ln 243ln 2m m +-=+,故1m =故答案为1【点睛】本题主要考查定积分的基本运算,属于基础题型.11.1e>a 【解析】【分析】构造ln ()xf x x=,利用导数求其最大值,结合已知不等式恒成立,即可确定a 的范围.【详解】令ln ()xf x x=,则21ln ()x f x x -'=且()1,x ∈+∞,若()0f x '>得:1e x <<;若()0f x '<得:e x >;所以()f x 在(1,e)上递增,在(e,)+∞上递减,故1()(e)ef x f ≤=,要使ln xa x >在()1,x ∈+∞上恒成立,即1e>a .故答案为:1e>a .12.(1);(2).【解析】【详解】试题分析:(1)令,利用换元法进行求解;(2)分离参数,将不等式恒成立问题转化为求函数的最值问题.试题解析:(1)令,则,则,即;(2)22112(2)(222t t tt tm o -+-≥即1112(2)(2(20222t tt t t t tm +-+-≥1[1,2],202t tt ∈-> 2(21)t m ∴≥-+所以对于上恒成立;因为,即,所以考点:1.函数的解析式;2.不等式恒成立问题.13.32ln 22-.【解析】【分析】联立方程组,求得积分上限和下限,结合微积分基本定理,即可求解.【详解】由方程组32x y y x +=⎧⎪⎨=⎪⎩,解得1x =或2x =,由定积分的几何意义,可得面积为2221123=[(3)](32ln )|2ln 222x S x dx x x x --=--=-⎰.14.(1)6a =-;(2)1616b - .【解析】【分析】(1)由题意可得(2)1220f a -=+=',从而可求出a 的值;(2)先对函数求导,求得函数的单调区间,从而可由函数的变化情况可知,要函数()y f x =在[0,4]内有零点,只要函数在[0,4]内的最大值大于等于零,最小值小于等于零,然后解不等式组可得答案【详解】解:(1)23()32,()2f x x a f x x ax b =+=++'在2x =-处取得极值,∴(2)1220f a -=+=',∴6a =-.经验证6a =-时,()f x 在2x =-处取得极值.(2)由(1)知32()12,()3123(2)(2)f x x x b f x x x x =-+=-=-+',∴()y f x =极值点为2,2-.将x ,()f x ,()'f x 在[0,4]内的取值列表如下:x0(0,2)2(2,4)4()'f x /-0+/()f x b极小值16b -16b +由此可得,()y f x =在[0,4]内有零点,只需max min ()160,()160,f x b f x b =+⎧⎨=-⎩∴1616b -.15.(1)2a =-(2)ee 1k <-+【解析】【分析】(1)由(e)0f '=求得a 的值.(2)由()(1)f x k x >+分离常数k ,通过构造函数法,结合导数求得k 的取值范围.(1)因为()ln f x ax x x =+,所以()ln 1f x a x '=++,因为函数()ln f x ax x x =+的图像在点e x =处取得极值,所以(e)20f a '=+=,2a ∴=-,经检验,符合题意,所以2a =-;(2)由(1)知,()2ln f x x x x =-+,所以()1f x k x <+在[e,)+∞恒成立,即2ln 1x x x k x -+<+对任意e x ≥恒成立.令2ln ()1x x xg x x -+=+,则2ln 1()(1)x x g x x +-'=+.设()ln 1(e)h x x x x =+-≥,易得()h x 是增函数,所以min ()(e)e 0h x h ==>,所以2ln 1()0(1)x x g x x +-'=>+,所以函数()g x 在[e,)+∞上为增函数,答案第9页,共9页则min e ()(e)e 1g x g ==-+,所以e e 1k <-+.。
定积分练习题
定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。
2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。
3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。
4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。
5. 计算 $\int_{0}^{\pi} \sin x \, dx$。
二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。
7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。
8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。
9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。
三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。
11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。
12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。
13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。
14. 计算 $\int_{0}^{2} |x 1| \, dx$。
四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。
高三数学积分试题
高三数学积分试题1..【答案】【解析】=.考点:定积分2.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.3.直线在第一象限内围成的封闭图形的面积为()A.B.C.D.4【答案】D【解析】由已知得,,故选D.【考点】定积分的应用.4. [2014·汕头模拟]设f(x)=,则等于()A.B.C.D.不存在【答案】C【解析】本题画图求解,更为清晰,如图,=+=x3+(2x-x2)=+(4-2-2+)=.5.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于() A.B.2C.D.【答案】C【解析】由C:x2=4y,知焦点P(0,1).直线l的方程为y=1.所求面积S===.6.已知二次函数的图象如图所示,则它与轴所围图形的面积为()A.B.C.D.【答案】B【解析】根据图像可得:,再由定积分的几何意义,可求得面积为.7.设函数的图象与直线轴所围成的图形的面积称为在上的面积,则函数上的面积为.【答案】【解析】用积分表示面积.【考点】定积分8.设,若曲线与直线,,所围成封闭图形的面积为2,则()A.2B.e C.2e D.【答案】D【解析】,∴.【考点】定积分.9.已知t>0,若(2x-1)dx=6,则t的值等于()A.2B.3C.6D.8【答案】B【解析】(2x-1)dx=2xdx-1·dx=x2-x=t2-t,由t2-t=6得t=3或t=-2(舍去).【方法技巧】定积分的计算方法(1)利用定积分的几何意义,转化为求规则图形(三角形、矩形、圆或其一部分等)的面积.(2)应用微积分基本定理:求定积分f(x)dx时,可按以下两步进行,第一步:求使F'(x)=f(x)成立的F(x);第二步:计算F(b)-F(a).10.已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为.【答案】-1【解析】f'(x)=-3x2+2ax+b,∵f'(0)=0,∴b=0,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).=-(-x3+ax2)dx=a4=,∴a=-1.S阴影11.________.【答案】1【解析】.【考点】定积分的应用.12.dx + .【答案】+1【解析】,,所以的图像是半圆,由定积分的几何意义可知,所以。
(完整版)定积分习题及答案
第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。
(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。
4.设1,211,12xx x x xf ,求20dx x f 。
5.1lim22xdtarctgt xx 。
6.设其它,00,sin 21xx xf ,求x dt t f x。
7.设时当时当0,110,11xex xxf x,求201dx xf 。
8.2221limnn nnn。
9.求nk nknknnen e 12lim 。
10.设x f 是连续函数,且12dt t f x x f ,求x f 。
11.若2ln 261xtedt ,求x 。
12.证明:212121222dxeex。
13.已知axxx dx ex axa x 224lim,求常数a 。
(完整版)高中数学高考总复习定积分与微积分基本定理习题及详解
定积分与微积分基本定理习题一、选择题1. a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.由曲线y =x 2,y =x 3围成的封闭图形面积为( )练习、设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝⎛⎭⎫43,169B.⎝⎛⎭⎫45,169C.⎝⎛⎭⎫43,157 D.⎝⎛⎭⎫45,1373.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .64. ⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos15.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2πB .3π C.3π2D .π6.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值 D .既无最大值也无最小值7.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎫36,+∞ B .(0,e 21) C .(e -11,e ) D .(0,e 11) 8.如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π49.函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( ) A.32B .1C .4D.1210.设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7611.甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c (b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为( )A.13B.23C.12D.3412.已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题13.已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.已知a =∫π20(sin x +cos x )d x ,则二项式(a x -1x )6的展开式中含x 2项的系数是________.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.三、解答题18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.1、 [答案] D[解析] a =⎠⎛02x d x =12x 2|02=2,b =⎠⎛02e x d x =e x |02=e 2-1>2,c =⎠⎛02sin x d x =-cos x |02=1-cos2∈(1,2),∴c <a <b .A.112B.14C.13D.7122、[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =x 3得交点为(0,0),(1,1). ∴S =⎠⎛01(x 2-x 3)d x =⎪⎪⎝⎛⎭⎫13x 3-14x 401=112.练习; [答案] A[解析] 设P (t ,t 2)(0≤t ≤2),则直线OP :y =tx ,∴S 1=⎠⎛t (tx -x 2)d x =t 36;S 2=⎠⎛t2(x 2-tx )d x =83-2t +t 36,若S 1=S 2,则t =43,∴P ⎝⎛⎭⎫43,169. 3、[答案] A[解析] S =⎠⎛2x 3d x =⎪⎪x 4402=4.4、[答案] B[解析] ⎠⎛1(sin x +1)d x =(-cos x +x )|-11=(-cos1+1)-(-cos(-1)-1)=2.5、[答案] A[解析] 如右图,S =∫02π(1-cos x )d x =(x -sin x )|02π=2π.6、[答案] B[解析] F ′(x )=x (x -4),令F ′(x )=0,得x 1=0,x 2=4, ∵F (-1)=-73,F (0)=0,F (4)=-323,F (5)=-253.∴最大值为0,最小值为-323. 7、[答案] D ;[解析] f (x )=⎠⎛1x 1td t =ln t |1x =ln x ,a 3=S 3-S 2=21-10=11,由ln x <11得,0<x <e 11.8、[答案] A[解析] 由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得S =⎠⎛0πsin x d x=-cos x |0π=-(cosπ-cos0)=2,再根据几何概型的算法易知所求概率P =S S 矩形OABC =22π=1π.9、[答案] C[解析] 面积S =∫π2-2f (x )d x =⎠⎛0-2(x +2)d x +∫π202cos x d x =2+2=4.10、 [答案] A[解析] 由题意可得,当0<x <1时,[x ]=0,f (x )=x ,当1≤x <2时,[x ]=1,f (x )=x -1,所以当x ∈(0,2)时,函数f (x )有一个零点,由函数f (x )与g (x )的图象可知两个函数有4个交点,所以m =1,n =4,则⎠⎛mn g (x )d x =⎠⎛14⎝⎛⎭⎫-x 3d x =⎪⎪-x 2614=-52.11、[答案] A ;[解析] 方程x 2+2bx +c =0有实根的充要条件为Δ=4b 2-4c ≥0,即b 2≥c , 由题意知,每场比赛中甲获胜的概率为p =⎠⎛01b 2db 1×1=13.12、[答案] C ;[解析] 如图,正方形面积1,区域M 的面积为S =⎠⎛01x 2d x =13x 3|01=13,故所求概率p =13.13、 [答案] -1或13;[解析] ∵⎠⎛1-1f (x )d x =⎠⎛1-1(3x 2+2x +1)d x =(x 3+x 2+x )|-11=4,⎠⎛1-1f (x )d x =2f (a ),∴6a 2+4a +2=4,∴a =-1或13.14、 [答案] -192;[解析] 由已知得a =∫π20(sin x +cos x )d x =(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C 6r ×26-r ×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 61×25=-192.15、[答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x y =4-x解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y∴S =⎠⎛2-4[(4-y )-y 22]dy =(4y -y 22-y 36)|-42=18.16、 [答案] 16x -8y +1=0[解析] 由题意知⎠⎛01ax d x =23,∴a =1,设l :y =2x +b 代入y 2=x 中,消去y 得,4x 2+(4b -1)x +b 2=0,由Δ=0得,b =18,∴l 方程为16x -8y +1=0. 17、 [答案] -1[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0,∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,∴a =-1.18、 [解析] 由题意得S 1=t ·t 2-⎠⎛0t x 2d x =23t 3,S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13,所以S =S 1+S 2=43t 3-t 2+13(0≤t ≤1).又S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12,令S ′(t )=0,得t =12或t =0. 因为当0<t <12时,S ′(t )<0;当12<t ≤1时,S ′(t )>0.所以S (t )在区间⎣⎡⎦⎤0,12上单调递减,在区间⎣⎡⎦⎤12,1上单调递增.所以,当t =12时,S min =14.。
高考数学定积分应用选择题
高考数学定积分应用选择题1. 定积分可以用来求解什么问题?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是2. 定积分表示的物理意义是什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是3. 求解曲线下的面积,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分4. 定积分的基本性质是什么?A. 定积分与被积函数单调性无关B. 定积分与积分区间长度无关C. 定积分与积分上下限无关D. 以上都是5. 定积分在物理学中的一个应用是求解什么?A. 物体的质量B. 物体的速度C. 物体的加速度D. 物体的位移6. 求解物体的质量,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分7. 定积分可以用来求解物体的体积,这是因为在三维空间中,物体的体积可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 以上都是8. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分9. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分10. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分11. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分12. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分13. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分14. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分15. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分16. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分17. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分18. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分D. 三重积分19. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分20. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分21. 求解物体的位移,应该使用哪种积分?A. 定积分C. 双重积分D. 三重积分22. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分23. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分24. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分25. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分26. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分27. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分28. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分29. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分30. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分31. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分32. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分33. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分34. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分35. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分36. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分37. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分38. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分39. 求解物体的速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分40. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分41. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量D. 物体的速度与时间的积分42. 求解物体的加速度,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分43. 定积分可以用来求解物体的速度,这是因为在物理学中,物体的速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分44. 定积分在物理学中的一个应用是求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积C. 物体的体积D. 物体的速度与时间的积分45. 求解物体的位移,应该使用哪种积分?A. 定积分B. 不定积分C. 双重积分D. 三重积分46. 定积分可以用来求解物体的加速度,这是因为在物理学中,物体的加速度可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分47. 求解物体的速度,应该使用哪种积分?A. 定积分C. 双重积分D. 三重积分48. 定积分可以用来求解物体的质量,这是因为在物理学中,物体的质量可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的位移与时间的积分49. 定积分在物理学中的一个应用是求解物体的位移,这是因为在物理学中,物体的位移可以表示为什么?A. 曲线下的面积B. 物体的质量C. 物体的体积D. 物体的速度与时间的积分50. 求解物体的加速度,应该使用哪种积分?B. 不定积分C. 双重积分D. 三重积分。
高考定积分分类汇总及答案
第十四节 定积分与微积分基本定理(理)一、选择题1.(2013·江西卷)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 解析 本题考查微积分基本定理.S 1=⎠⎛12x 2d x =x 33|21=73. S 2=⎠⎛121x d x =ln x |21=ln 2-ln 1=ln 2.S 3=⎠⎛12e x d x =e x |21=e 2-e =e (e -1). 令e =2.7,∴S 3>3>S 1>S 2.故选B .A .3B .4C .3.5D .4.5答案 C3.如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是( )A .⎪⎪⎪⎪⎠⎛02(x 2-1)d x B .⎠⎛02(x 2-1)d x C.⎠⎛02|x 2-1|d x D .⎠⎛01(x 2-1)d x +⎠⎛02(x 2-1)d x解析 面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.4.(2012·湖北卷)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π25.(2013·湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln5B .8+25ln 113 C .4+25ln5D .4+50ln2解析 令v (t )=0,7-3t +251+t=0 ∴3t 2-4t -32=0,∴t =4,则汽车行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )|40=7×4-32×42+25ln5-0=4+25ln5,故选C.6.(2014·武汉调研)如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x (x >0)图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A.ln22B.1-ln22C.1+ln22D.2-ln22二、填空题(本大题共3小题,每小题5分,共15分) 7.(2013·湖南卷)若⎠⎛0T x 2d x =9,则常数T 的值为________.解析 ∵⎠⎛0T x 2d x =x 33|T 0=T 33=9,∴T =3.答案 38.(2014·厦门市质检)计算:⎠⎛01(x 2+1-x 2)d x =______.解析 ⎠⎛01(x 2+1-x 2)d x =⎠⎛01x 2d x +⎠⎛011-x 2d x =x 3310+14π=13+π4.9.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0)、B ⎝ ⎛⎭⎪⎫12,5、C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.解析 设直线为y =kx +b ,代入A ,B 两点,得y =10x .代入B ,C 两点,则⎩⎨⎧5=12k +b ,0=k +b ,∴k =-10,b =10.∴f (x )=⎩⎪⎨⎪⎧10x , 0≤x ≤12,-10x +10, 12<x ≤1.∴y =xf (x )=⎩⎪⎨⎪⎧10x 2, 0≤x ≤12,-10x 2+10x , 12<x ≤1.三、解答题(本大题共3小题,每小题10分,共30分)10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f (x )x d x 的值.解 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0). 由⎠⎛01(ax +b )d x =5,得⎝ ⎛⎭⎪⎫12ax 2+bx |10=12a +b =5.①由⎠⎛01xf (x )d x =176,得⎠⎛01(ax 2+bx )d x =176. 即⎝ ⎛⎭⎪⎫13ax 3+12bx 2|10=176. ∴13a +12b =176.②解①②,得a =4,b =3.∴f (x )=4x +3.于是⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12(4+3x )d x=(4x +3ln x )|21=8+3ln2-4=4+3ln2.11.(2013·日照调研)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1, 所以抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-x 33|10=12-13=16.又可得抛物线y =x -x 2与y =kx 两交点的横坐标为x ′1=0,x ′2=1-k , 所以S 2=∫1-k 0(x -x 2-kx )d x =⎝ ⎛⎭⎪⎫1-k 2x 2-x 33|1-k 0 =16(1-k )3.又知S =16,所以(1-k )3=12. 于是k =1- 312=1-342.12.设函数f (x )=x 3+ax 2+bx 在点x =1处有极值-2. (1)求常数a ,b 的值;(2)求曲线y =f (x )与x 轴所围成的图形的面积.解 (1)由题意知,f ′(x )=3x 2+2ax +b ,f (1)=-2,且f ′(1)=0,即⎩⎪⎨⎪⎧ 1+a +b =-2,3+2a +b =0,解得⎩⎪⎨⎪⎧a =0,b =-3. (2)由(1)可知,f (x )=x 3-3x . 作出曲线y =x 3-3x 的草图如图,所求面积为阴影部分的面积,由x 3-3x =0得曲线y =x 3-3x 与x 轴的交点坐标是(-3,0),(0,0)和(3,0),而y =x 3-3x 是R 上的奇函数,所以函数图象关于原点成中心对称.所以所求图形的面积为。
定积分高考真题及答案
一、选择题(共16小题)1、(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为()A、B、1C、D、2、(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A、B、C、D、3、(2009•广东)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为V甲和V已(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是()A、在t1时刻,甲车在乙车前面B、t1时刻后,甲车在乙车后面C、在t0时刻,两车的位置相同D、t0时刻后,乙车在甲车前面4、由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A、B、2﹣ln3C、4+ln3D、4﹣ln35、从如图所示的正方形OABC区域内任取一个点M(x,y),则点M取自阴影部分的概率为()A、B、C、D、6、如图中阴影部分的面积是()A、B、C、D、7、由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()8、(2011•福建)(e x+2x)dx等于()A、1B、e﹣1C、eD、e2+19、(2010•湖南)dx等于()A、﹣2ln2B、2ln2C、﹣ln2D、ln210、(2009•福建)(1+cosx)dx等于()A、πB、2C、π﹣2D、π+211、已知则∫﹣a a cosxdx=(a>0),则∫0a cosxdx=()A、2B、1C、D、12、曲线y=x2+2与直线y=3x所围成的平面图形的面积为()A、B、C、D、113、下列计算错误的是()A、∫﹣ππsinxdx=0B、∫01=C、cosxdx=2cosxdxD、∫﹣ππsin2xdx=014、计算的结果是()A、4πB、2πC、πD、15、若∫0k(2x﹣3x2)dx=0,则k等于()A、0B、1C、0或1D、以上均不对16、如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()二、填空题(共8小题)17、(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为_________.18、如图所示,计算图中由曲线y=与直线x=2及x轴所围成的阴影部分的面积S=_________.19、由曲线y2=2x 和直线y=x﹣4所围成的图形的面积为_________.20、由曲线和直线y=x﹣4,x=1,x=2围成的曲边梯形的面积是_________.21、(2010•陕西)从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分部分的概率为_________.22、(2008•山东)设函数f(x)=ax2+c(a≠0),若,0≤x0≤1,则x0的值为_________.23、(2002•天津)求由三条曲线y=x2,4y=x2,y=1 所围图形的面积.24、若y=f(x)的图象如图所示,定义,则下列对F(x)的性质描述正确的有_________.(1)F(x)是[0,1]上的增函数;(2)F′(x)=f(x);(3)F(x)是[0,1]上的减函数;(4)∃x0∈[0,1]使得F(1)=f(x0).三、解答题(共6小题)25、(1977•福建)求定积分∫10(x+x2e2)dx.26、(1977•黑龙江)求曲线y=sinx在[0,π]上的曲边梯形绕x轴旋转一周所形成的旋转体的体积.27、(1977•河北)利用定积分计算椭圆所围成的面积.28、(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).29、(1977•江苏)求不定积分.30、已知y=e﹣x sin2x,求微分dy.答案与评分标准一、选择题(共16小题)1、(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为()A、B、1C、D、考点:定积分在求面积中的应用。
定积分高考试题
定积分高考试题一选择题1.由直线与曲线y=cosx所围成的封闭图形的面积为()A、B、1 C、D、2.由曲线y=x2,y=x3围成的封闭图形面积为()A、B、C、D、3.由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A、B、4 C、D、64.(e x+2x)dx等于()A、1B、e﹣1C、eD、e2+15.dx等于()A、﹣2ln2B、2ln2C、﹣ln2D、ln26.(1+cosx)dx等于()A、πB、2C、π﹣2D、π+27. 已知则∫﹣a a cosxdx=(a>0),则∫0a cosxdx=()A、2B、1C、D、8. 曲线y=x2+2与直线y=3x所围成的平面图形的面积为()A、B、C、D、19. 下列计算错误的是()A、∫﹣ππsinxdx=0B、∫01=C、cosxdx=2cosxdxD、∫﹣ππsin2xdx=010. 计算的结果是()A、4πB、2πC、πD、11. 若∫0k(2x﹣3x2)dx=0,则k等于()A、0B、1C、0或1D、以上均不对12. 如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()A 、1B 、C 、D 、二填空题13.由曲线和直线y=x ﹣4,x=1,x=2围成的曲边梯形的面积是___________.14. 设函数f (x )=ax 2+c (a≠0),若,0≤x 0≤1,则x 0的值为 ____. 15.=⎰dx x T029,则T=_______.16.若dx x S ⎰=2121,dx x S ⎰=2121,dx e S x ⎰=213,则S 1,S 2,S 3的大小关系是__________. 三解答题 17.求由两抛物线28x y -=,2x y =所围成的图形的面积.18. 求定积分:(1)dx x ⎰--33|23|;(2)dx x x ⎰-222},max {19.求由曲线1=xy ,及直线x y =,3=y 所围成平面图形的面积.。
高考数学定积分应用选择题
高考数学定积分应用选择题1. 定积分可以用来求解函数在区间上的最大值和最小值,已知函数f(x)在区间[a, b]上的最大值为M,最小值为m,则定积分∫[a,b]f(x)dx等于什么?2. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递增的,那么在区间[a, b]上f(x)的值域为[____,____]。
3. 已知函数f(x)在区间[a, b]上是单调递减的,那么在区间[a,b]上f(x)的定积分∫[a,b]f(x)dx等于什么?4. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递减的,那么在区间[a, b]上f(x)的值域为[____,____]。
5. 函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx等于什么?6. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,那么在区间[a, b]上f(x)的值域为[____,____]。
7. 已知函数f(x)在区间[a, b]上是单调递增的,那么在区间[a,b]上f(x)的定积分∫[a,b]f(x)dx等于什么?8. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递减的,那么在区间[a, b]上f(x)的值域为[____,____]。
9. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx等于什么?10. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,那么在区间[a, b]上f(x)的值域为[____,____]。
11. 已知函数f(x)在区间[a, b]上是单调递增的,那么在区间[a,b]上f(x)的定积分∫[a,b]f(x)dx等于什么?12. 已知函数f(x)在区间[a, b]上的定积分∫[a,b]f(x)dx为10,且f(x)在[a, b]上是单调递减的,那么在区间[a, b]上f(x)的值域为[____,____]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考定积分应用常见题型大全一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.2.(2010•山东)由曲线2,3围成的封闭图形面积为()A.B.C.D.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.4.定积分的值为()A.B.32 C.3﹣2 D.625.如图所示,曲线2和曲线围成一个叶形图(阴影部分),其面积是()A.1B.C.D.6.=()A.πB.2C.﹣πD.47.已知函数f(x)的定义域为[﹣2,4],且f(4)(﹣2)=1,f′(x)为f(x)的导函数,函数′(x)的图象如图所示,则平面区域f(2)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.8 8.∫01与∫01相比有关系式()A.∫01<∫01B.∫01>∫01C.(∫01)2=∫01D.∫01∫019.若,,则a与b的关系是()A.a<b B.a>b C.D.0 10.的值是()A.B.C.D.11.若f(x)=(e为自然对数的底数),则=()A.2﹣e B.C.﹣e2D.﹣2﹣e12.已知f(x)=2﹣,则()A.3B.4C.3.5 D.4.513.设f(x)=3﹣﹣1|,则∫﹣22f(x)()A.7B.8C.7.5 D.6.5 14.积分=()A.B.C.πa2D.2πa215.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2 16.由函数(0≤x≤2π)的图象与直线及1所围成的一个封闭图形的面积是()高考定积分练习题A.4B.C.D.2π17.曲线3在点(1,1)处的切线与x轴及直线1所围成的三角形的面积为()A.B.C.D.18.图中,阴影部分的面积是()A.16 B.18 C.20 D.2219.如图中阴影部分的面积是()A.B.C.D.20.曲线与坐标轴围成的面积是()A.B.C.D.21.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.B.C.D.高考定积分练习题高考定积分应用常见题型大全(含答案)参考答案与试题解析一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.考点:定积分在求面积中的应用;几何概型.专题:计算题.分析:根据题意,易得正方形的面积,观察图形可得,阴影部分由函数与围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.解答:解:根据题意,正方形的面积为1×1=1,而阴影部分由函数与围成,其面积为∫01(﹣x)(﹣)|01=,则正方形中任取一点P,点P取自阴影部分的概率为=;故选C.点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.2.(2010•山东)由曲线2,3围成的封闭图形面积为()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:要求曲线2,3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)即可.解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)═,故选A.点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()考点:分段函数的解析式求法及其图象的作法;函数的图象;定积分在求面积中的应用.专题:计算题;数形结合.分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.解答:解:根据题意作出函数的图象:根据定积分,得所围成的封闭区域的面积故选C点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.4.定积分的值为()A.B.32 C.3﹣2 D.62考点:定积分;微积分基本定理;定积分的简单应用.专题:计算题.分析:由题设条件,求出被积函数的原函数,然后根据微积分基本定理求出定积分的值即可.解答:解:=(x2)|12=(222)﹣(121)=32故选B.点评:本题考查求定积分,求解的关键是掌握住定积分的定义及相关函数的导数的求法,属于基础题.5.如图所示,曲线2和曲线围成一个叶形图(阴影部分),其面积是()考点:定积分;定积分的简单应用.专题:计算题.分析:联立由曲线2和曲线两个解析式求出交点坐标,然后在x∈(0,1)区间上利用定积分的方法求出围成的面积即可.解答:解:联立得,解得或,设曲线与直线围成的面积为S,则∫01(﹣x2)故选:C点评:考查学生求函数交点求法的能力,利用定积分求图形面积的能力.6.=()A.πB.2C.﹣πD.4考点:微积分基本定理;定积分的简单应用.专题:计算题.分析:由于F(x)2为f(x)的一个原函数即F′(x)(x),根据∫(x)(x)公式即可求出值.解答:解:∵(x2)′,∴()=(x2)=2.故答案为:2.点评:此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道基础题.7.已知函数f(x)的定义域为[﹣2,4],且f(4)(﹣2)=1,f′(x)为f(x)的导函数,函数′(x)的图象如图所示,则平面区域f(2)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.8考点:定积分的简单应用.分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.解答:解:由图可知[﹣2,0)上f′(x)<0,∴函数f(x)在[﹣2,0)上单调递减,(0,4]上f′(x)>0,∴函数f(x)在(0,4]上单调递增,故在[﹣2,4]上,f(x)的最大值为f(4)(﹣2)=1,∴f(2)<1(a≥0,b≥0)⇒表示的平面区域如图所示:故选B.点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.8.∫01与∫01相比有关系式()A.∫01<∫01B.∫01>∫01C.(∫01)2=∫01D.∫01∫01考点:定积分的简单应用;定积分.专题:计算题.分析:根据积分所表示的几何意义是以直线0,1及函数或在图象第一象限内圆弧与坐标轴围成的面积,只需画出函数图象观察面积大小即可.解答:解:∫01表示的几何意义是以直线0,1及函数在图象第一象限内圆弧与坐标轴围成的面积,∫01表示的几何意义是以直线0,1及函数在图象第一象限内圆弧与坐标轴围成的面积,如图∵当0<x<1时,>,故有:∫01>∫01故选B.点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.9.若,,则a与b的关系是()A.a<b B.a>b C.D.0考点:定积分的简单应用.专题:计算题.分析:(﹣)=(﹣2)﹣(﹣)=﹣2≈24.6°,1﹣01≈57.3°.解答:解:∵(﹣)=(﹣2)﹣(﹣)=﹣2≈﹣114.6°24.6°,1﹣01≈57.3°,∴b>a.故选A.点评:本题考查定积分的应用,是基础题.解题时要认真审题,仔细解答.10.的值是()A.B.C.D.考点:定积分的简单应用.专题:计算题.分析:根据积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线2在第一象限的部分坐标轴围成的面积,只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线1围成的图形的面积即可.解答:解;积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线1围成的图形的面积之差.即=﹣=﹣=故答案选A点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题11.若f(x)=(e为自然对数的底数),则=()A.2﹣e B.C.﹣e2D.﹣2﹣e考点:定积分的简单应用.专题:计算题.分析:由于函数为分段函数,故将积分区间分为两部分,进而分别求出相应的积分,即可得到结论.解答:解:故选C.点评:本题重点考查定积分,解题的关键是将积分区间分为两部分,再分别求出相应的积分.12.已知f(x)=2﹣,则()A.3B.4C.3.5 D.4.5考点:定积分的简单应用.专题:计算题.分析:由题意,,由此可求定积分的值.解答:解:由题意,2﹣+4﹣2=3.5故选C.点评:本题考查定积分的计算,解题的关键是利用定积分的性质化为两个定积分的和.13.设f(x)=3﹣﹣1|,则∫﹣22f(x)()A.7B.8C.7.5 D.6.5考点:定积分的简单应用.专题:计算题.分析:∫﹣22f(x)∫﹣22(3﹣﹣1|),将∫﹣22(3﹣﹣1|)转化成∫﹣21(2)∫12(4﹣x),然后根据定积分的定义先求出被积函数的原函数,然后求解即可.解答:解:∫﹣22f(x)∫﹣22(3﹣﹣1|)∫﹣21(2)∫12(4﹣x)(22)|﹣21+(4x﹣x2)|12=7故选A.点评:本题主要考查了定积分,定积分运算是求导的逆运算,同时考查了转化与划归的思想,属于基础题.14.积分=()A.B.C.πa2D.2πa2考点:定积分的简单应用;定积分.专题:计算题.分析:本题利用定积分的几何意义计算定积分,即求被积函数与x轴所围成的图形的面积,围成的图象是半个圆.解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故.故选B.点评:本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.15.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2考点:定积分在求面积中的应用.专题:计算题.分析:根据几何图形用定积分表示出所围成的封闭图形的面积,求出函数f(x)的积分,求出所求即可.解答:解:由题意图象与x轴所围成图形的面积为=(﹣)|011=故选D.点评:本题考查定积分在求面积中的应用,求解的关键是正确利用定积分的运算规则求出定积分的值,本题易因为对两个知识点不熟悉公式用错而导致错误,牢固掌握好基础知识很重要.16.由函数(0≤x≤2π)的图象与直线及1所围成的一个封闭图形的面积是()A.4B.C.D.2π考点:定积分在求面积中的应用.专题:计算题.分析:由题意可知函数(0≤x≤2π)的图象与直线及1所围成的一个封闭图形可利用定积分进行计算,只要求∫0(1﹣)即可.然后根据积分的运算公式进行求解即可.解答:解:由函数(0≤x≤2π)的图象与直线及1所围成的一个封闭图形的面积,就是:∫0(1﹣)(x﹣)|0=.故选B.点评:本题考查余弦函数的图象,定积分,考查计算能力,解题的关键是两块封闭图形的面积之和就是上部直接积分减去下部积分.17.曲线3在点(1,1)处的切线与x轴及直线1所围成的三角形的面积为()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.解答:解:∵3,∴y'=3x2,当1时,y'=3得切线的斜率为3,所以3;所以曲线在点(1,1)处的切线方程为:y﹣1=3×(x﹣1),即3x﹣y﹣2=0.令得:,∴切线与x轴、直线1所围成的三角形的面积为:×(1﹣)×1=故选B.点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,属于基础题.18.图中,阴影部分的面积是()A.16 B.18 C.20 D.22考点:定积分在求面积中的应用.专题:计算题.分析:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,利用定积分的方法分别求出它们的面积并相加即可得到阴影部分的面积.解答:解:从图象中知抛物线与直线的交点坐标分别为(2,﹣2),(8,4).过(2,﹣2)作x轴的垂线把阴影部分分为S1,S2两部分,分别求出它们的面积A1,A2:A1=∫02[]2 ,A2=∫28[]所以阴影部分的面积1218故选B.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.考查学生利用定积分求阴影面积的方法的能力.19.如图中阴影部分的面积是()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.解答:解:直线2x与抛物线3﹣x2解得交点为(﹣3,﹣6)和(1,2)抛物线3﹣x2与x轴负半轴交点(﹣,0)设阴影部分面积为s,则==故选C.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.20.曲线与坐标轴围成的面积是()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.解答:解:先根据题意画出图形,得到积分上限为,积分下限为0曲线与坐标轴围成的面积是:∫0(﹣)∫=∴围成的面积是故选D.点评:本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数.21.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()考点:定积分在求面积中的应用.专题:计算题;数形结合.分析:根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.解答:解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:2.∵点P(3a,a)是反比例函(k>0)与⊙O的一个交点.∴3a2且∴a2=×(2)2=4.∴3×4=12,则反比例函数的解析式是:.故选C.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.。