原核蛋白表达
维真生物-原核蛋白的表达、分离和纯化
![维真生物-原核蛋白的表达、分离和纯化](https://img.taocdn.com/s3/m/e8833bf2f8c75fbfc77db2b9.png)
原核蛋白的表达、分离和纯化实验原理:携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG 诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC)。
蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。
实验材料:大肠杆菌BL21试剂、试剂盒:LB液体培养基、氨苄青霉素、Washing Buffer、Elution Buffer、IPTG、蒸馏水、胰蛋白胨、酵母粉、氯化钠仪器、耗材:摇床、离心机、层析柱、离心管、移液枪、枪头盒、烧杯、玻璃棒实验步骤:一、试剂准备1. LB液体培养基:Trytone 10 g,yeast extract 5 g,NaCl 10 g,用蒸馏水配至1000 mL。
2. 氨苄青霉素:100 mg/mL。
3. 上样缓冲液:100 mM NaH2PO4,10 mM Tris,8M Urea,10 mM2-ME,pH8.0。
4. Washing Buffer:100 mM NaH2PO4,10 mM Tris,8 M Urea,pH6.3。
5. Elution Buffer:100 mM NaH2PO4,10 mMTris,8M Urea,500 mM Imidazole,pH8.0。
6. IPTG:100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O中,0.22μm滤膜抽滤,-20℃保存。
二、获得目的基因1. 通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。
2. 通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。
原核蛋白表达流程
![原核蛋白表达流程](https://img.taocdn.com/s3/m/7ca28f0feffdc8d376eeaeaad1f34693daef1093.png)
原核蛋白表达是一种常用的蛋白质生产方法,可以通过大肠杆菌等原核细菌表达目标蛋白。
以下是一个典型的原核蛋白表达流程:1. 选择表达系统和载体:选择适合的原核表达系统和载体。
常用的原核表达系统包括大肠杆菌系统(如E.coli),常用的载体包括pET、pGEX等。
2. 构建重组质粒:将目标基因克隆到选定的表达载体上,通常采用限制性内切酶切割和连接方法,确保目标基因正确插入载体。
3. 转化宿主菌:将构建好的重组质粒转化入宿主菌中,一般选择适当的大肠杆菌菌株,如BL21(DE3)等。
4. 培养菌液:将含有重组质粒的宿主菌接种到适当的培养基中,进行菌液的培养。
培养条件可根据所选的菌株和载体进行优化,包括温度、培养时间、培养基成分等。
5. 诱导表达:在适当的生长阶段,向培养基中加入适量的诱导剂,常用的诱导剂包括异丙基-β-D-硫代半乳糖苷(IPTG)。
6. 细胞破碎:经过一定时间的表达后,收集培养菌液并将细菌进行破碎,释放目标蛋白。
破碎方法可以选择超声波破碎、高压破碎等。
同时添加适量的蛋白酶抑制剂,避免蛋白质的降解。
7. 蛋白纯化:通过一系列的蛋白纯化步骤,如亲和层析、离子交换层析、凝胶过滤层析等,分离纯化目标蛋白。
此步骤可以根据目标蛋白的特性和需求进行优化。
8. 鉴定和确认:对纯化得到的蛋白进行鉴定和确认,如SDS-PAGE凝胶电泳、Western blot等。
确保表达的目标蛋白符合预期。
9. 储存和应用:将纯化好的目标蛋白进行适当的保存和储存,确保其稳定性和活性。
根据需要,可以进行后续的功能研究、结构分析、制备抗体等应用。
需要注意的是,原核蛋白表达流程可以根据实验目的和具体要求进行调整和优化。
不同的表达系统和载体可能需要适应性调整。
此外,对特定蛋白的表达可能需要进一步优化培养条件和蛋白纯化步骤。
蛋白质表达系统介绍不同的蛋白质表达系统及其优缺点
![蛋白质表达系统介绍不同的蛋白质表达系统及其优缺点](https://img.taocdn.com/s3/m/2b9f985efd4ffe4733687e21af45b307e971f964.png)
蛋白质表达系统介绍不同的蛋白质表达系统及其优缺点蛋白质表达是生物学研究中一项重要的技术,它可以通过合成蛋白质来研究其结构和功能。
蛋白质表达系统是实现这一过程的关键工具,主要包括原核表达系统和真核表达系统两种。
本文将对这两种蛋白质表达系统进行介绍,并分析它们的优缺点。
一、原核表达系统原核表达系统是利用原核生物(如大肠杆菌)来表达外源蛋白质的系统。
该系统具有以下特点:1. 高表达水平:大肠杆菌是常用的原核表达宿主,具有高表达水平的优势。
通过利用原核细胞的强大蛋白质合成机器,可以获得高产量的外源蛋白质。
2. 易操作性:原核表达系统相对简单,操作步骤少,易于操作和控制。
不需要复杂的细胞培养条件,可以在常见培养基中进行表达。
3. 快速表达:从启动表达到获得蛋白质通常只需要数小时至数天,速度较快。
这使得原核表达系统在高通量表达和快速实验中具有优势。
然而,原核表达系统也存在一些缺点:1. 外源蛋白质折叠问题:由于原核细胞的机器无法正确折叠某些复杂蛋白质,这可能导致外源蛋白质的不正确折叠和失活。
2. 原核特异性翻译后修饰:原核细胞缺乏一些真核细胞所具有的翻译后修饰机制,这可能影响蛋白质的功能和稳定性。
3. 复杂蛋白质表达困难:对于复杂蛋白质(如膜蛋白),原核表达系统通常无法达到理想的表达水平和正确的折叠结构。
二、真核表达系统真核表达系统主要利用真核生物(如酵母、昆虫细胞和哺乳动物细胞)来表达外源蛋白质。
真核表达系统具有以下特点:1. 正确的折叠和修饰:真核细胞具有复杂的蛋白质折叠和修饰机制,能够产生正确折叠和修饰的蛋白质。
2. 适用于复杂蛋白质:真核表达系统适用于复杂蛋白质(如膜蛋白)的表达。
真核细胞提供了正确的环境和细胞器,能够较好地表达这类蛋白质。
3. 适用于大规模表达:真核细胞通常可以进行大规模培养和表达,适用于工业化生产。
然而,真核表达系统也存在一些缺点:1. 低表达水平:相对于原核表达系统,真核表达系统的表达水平较低,可能无法满足高产量蛋白质的需求。
sdd-age原核表达蛋白
![sdd-age原核表达蛋白](https://img.taocdn.com/s3/m/7957ebe8b1717fd5360cba1aa8114431b90d8ea2.png)
sdd-age原核表达蛋白
原核表达蛋白是指在原核生物(如细菌)中表达的蛋白质。
sdd-age是一种原核表达系统,它是一种基因工程技术,用于在细
菌中大量表达外源蛋白。
sdd-age系统通常包括一个质粒载体,该
载体含有编码目标蛋白的基因序列,以及一些调控元件,如启动子
和终止子,用于控制基因的转录和翻译。
在sdd-age系统中,质粒
被转化到细菌中,然后细菌被培养在含有适当抗生素的培养基中,
以促使质粒在细菌内大量复制。
同时,通过适当的诱导剂(如IPTG)的添加,可以启动目标基因的表达,从而使细菌产生大量目标蛋白。
原核表达系统的优点之一是高效性,sdd-age系统特别适合大
规模生产蛋白质。
此外,由于细菌的生长周期短,这意味着蛋白质
的生产周期也相对较短。
然而,原核表达系统也存在一些局限性,
例如蛋白质可能无法正确折叠或进行后翻译修饰,这可能会影响蛋
白质的功能性。
因此,在选择原核表达系统时,需要考虑目标蛋白
的特性以及后续的应用需求。
总的来说,sdd-age原核表达系统是一种常用的工具,用于在
细菌中高效表达外源蛋白,具有高效、快速和相对低成本等优点,
适用于科研和工业生产中。
蛋白的原核表达、纯化及多克隆抗体的制备方法参考
![蛋白的原核表达、纯化及多克隆抗体的制备方法参考](https://img.taocdn.com/s3/m/8b265226a66e58fafab069dc5022aaea988f4147.png)
蛋白的原核表达、纯化及多克隆抗体的制备方法参考一、蛋白的原核表达实验目的蛋白的原核质粒的构建。
适用范围蛋白原核表达。
实验原理参考实验室工具书《分子克隆实验指南》《抗体制备与使用实验指南》实验试剂病毒RNA的提取(Trizol法)相关试剂,反转录相关试剂(M-MLV Buffer、10M dNTPs、DEPC水、随机引物、RNA酶抑制剂、反转录酶M-MLV),GenStar高保真酶,T4连接酶,菌液PCR相关试剂,Western blot试剂盒实验设备和材料DH5a感受态细胞、BL21感受态细胞操作步骤(一)病毒RNA的提取(Trizol法)参照分子克隆的方法进行,(1)将250 μL液体样品加入1.5 mL Ep 管中,再加入750 μL冰预冷的TRIZOL。
(2)将样品剧烈混合后,在室温静置5 min。
(3)加入200 μL氯仿,颠倒Ep管混和两次,并剧烈振荡混和,使液体充分混匀呈乳白状(无分相现象)后,再室温静置5 min。
(4)在4℃条件下,以12000×g 离心15 min。
(5)将上层水相转移到一个新的Ep 管中,加入等体积的异丙醇并上下颠倒混匀,然后在室温静置至少 10min。
(6)在4℃条件下,以12000×g 离心15 min 后,小心并尽可能地去除全部上清液。
(7)用1 mL 75% DEPC 乙醇洗涤RNA 沉淀和管壁,4℃ 12000×g离心5 min后小心弃去乙醇。
(8)将RNA沉淀进行干燥(不能完全干燥)处理后,用 10μL 无 DEPC 水(无RNA酶的水)将RNA溶解并于-20℃保存。
(二)反转录反应体系(20 μL):按下列顺序加样M-MLV Buffer 4 μL10M dNTPs 1 μLDEPC 水 3 μL随机引物 1 μL RNA酶抑制剂 0.5 μL反转录酶 M-MLV 1 μL提取的 RNA 9.5 μL总体积20 μL反应条件:42℃水浴 1~1.5 h(三)引物设计与合成依据新城疫毒株全基因序列,运用Oligo或者Primer Premier5.0软件设计上下游引物,设计引物是注意选择常用的酶切位点以及保护性碱基的添加引物使用前用灭菌超纯水配成相应浓度,-20℃保存备用。
原核表达系统蛋白表达问题解析
![原核表达系统蛋白表达问题解析](https://img.taocdn.com/s3/m/edfa490a6bd97f192379e901.png)
活性蛋白整体方案原核表达系统蛋白表达问题解析摘要:本文主要对原核蛋白表达纯化体系中的常见问题进行收集整理,并附有解决思路和相应的实际操作。
外源DNA片段成功插到载体里面(PCR鉴定),但无法表达蛋白一般判断目的基因是否表达,首先要进行SDS-PAGE检测。
跑胶的时候一定要设对照:Marker,标准品阳性对照,以及空白载体(诱导)和重组载体(不诱导)2个阴性对照,再加上诱导不同时间的表达结果。
跑SDS-PAGE的话可以用考马斯亮兰染,它灵敏度在100ng左右;但是不能跟着做western blot了。
银染的灵敏度在0.1~1ng;或是Sypro Red,灵敏度高还可以继续做Western blot。
在做过Western Blot仍没有检测到表达带,那么就要先判断载体的多克隆位点和片断插入的序列,是否有因为酶切连接而意外引入了转录终止信号。
其次要对测序结果进行确定,确定插入的每个碱基都是正确的,没有意外终止的情况。
最后,也需要注意基因中是否有稀有密码子,可更换表达菌株。
每种菌株都有自己独特的设计,或者是蛋白酶缺陷,或者是重组酶缺陷,改造的目的都是为了让质粒在细菌中存在更稳定,表达的产物不易被降解。
不同的载体要配合一定的菌株使用,像pET系列就一定需要有T7RNA聚合酶片段整合在细菌中的菌株才可用于表达。
采用不同调控机制会使用不同的表达菌株,所以换菌株一定要仔细看过载体的调控方式再换。
例如,使用BL21(DE3)菌株表达不成功可以尝试用Rosetta系列菌株表达,它能够由一种氯霉素抗性的、与pET相容的质粒提供AUA,AGG,AGA,CUA,CCC和GGA的tRNA。
所以这类菌株能够明显改善大肠杆菌中由于稀有密码子造成的表达限制。
有时不明原因的表达蛋白截短(比预期的分子量要小很多)也可能是由于稀有密码子造成的。
没有发现原则性错误之后,可以从表达条件入手,梯度条件改变表达温度、IPTG浓度,低温、较长时间的表达有利于蛋白稳定、融合表达;低浓度的IPTG可以减少化学物质对细胞的损伤。
原核蛋白表达
![原核蛋白表达](https://img.taocdn.com/s3/m/536ef450a36925c52cc58bd63186bceb19e8edaf.png)
原核蛋白表达原核蛋白表达是一种十分重要的生物化学研究,它主要的目的是通过提高原核生物中蛋白质的表达水平,从而获得更高的蛋白质表达产品,并用于各种生物学研究和应用。
原核蛋白表达技术是当今生物技术发展中最重要的技术之一,它可以大量表达蛋白质,并且还可以检测其功能特性。
该技术有效地定位和表达蛋白质,从而使研究人员能够更好地研究蛋白质的结构及其功能,解析疾病机理及其相关的治疗途径。
原核蛋白表达的基本原理是通过提取基因的DNA序列,然后将其转录成mRNA,最后再通过转录因子结合到mRNA上,来决定蛋白质的表达水平。
一般情况下,原核蛋白表达技术主要有三种:重组质粒系,质粒表达系统和转染表达系统。
其中,重组质粒表达系统的基本原理是将选定的DNA序列插入质粒,然后将质粒转染到宿主生物体中,从而获得蛋白质的表达产物。
质粒表达系统的核心是将所需DNA序列植入质粒,再将其注入细胞中,以此实现蛋白质的表达。
转染表达系统是使用rDNA技术将cDNA插入病毒DNA,然后将病毒植入宿主细胞中,从而实现蛋白质的表达。
原核蛋白表达技术在某些领域有着重要的应用,比如在药物研发、药物调控、基因治疗等等,可以大大提升药物的效率与疗效。
同时,原核蛋白表达技术还可以用于生物学研究,比如分子诊断、器官模型、生物反应器等,为基础研究科学的发展提供了重要的基础。
在原核蛋白表达的实验中,准确性和精确性是最重要的因素,有必要通过一些控制试验来确定最佳实验条件。
在实施原核蛋白表达实验前,必须测定细胞表达的最佳培养条件。
例如,可以根据细胞能否正确表达蛋白质来调节培养基中添加的营养成分,如氨基酸、类固醇、抗生素等等,并且还要确定最佳温度、湿度、pH等参数,以优化蛋白质的表达水平。
此外,在实施原核蛋白表达实验过程中也要注意实验操作的洁净度,使用洁净的容器和设备,并且严格按照规定的时间和步骤进行实验,以确保实验的准确性和精确性。
原核蛋白表达技术是当今生物技术发展中一个重要的技术,它已被广泛应用于药物研发、药物调控、基因治疗等等,为人们的健康带来巨大的便利。
原核表达目的蛋白的方法
![原核表达目的蛋白的方法](https://img.taocdn.com/s3/m/b2d2136459fb770bf78a6529647d27284b73378d.png)
原核表达目的蛋白的方法原核表达目的蛋白的方法1. 引言原核表达是一种常用的表达蛋白质的方法,其主要基于原核细胞(如大肠杆菌)的天然表达系统。
通过使用不同的表达载体和相关技术,研究人员可以将目的蛋白质在原核细胞中高效表达,并借此进行产量大、成本低的蛋白质生产。
2. 选择合适的表达载体在原核表达中,选择合适的表达载体是非常重要的。
常见的表达载体有质粒和噬菌体。
质粒表达系统依赖于质粒DNA在细胞内的复制和转录作用,噬菌体表达系统则是通过感染细胞引起的溶菌作用来释放表达产物。
根据需求和实验目的,可以选择适当的表达载体。
3. 选择适当的表达宿主常用的原核表达宿主是大肠杆菌,因其具有较强的表达能力和简单的培养条件。
其他一些菌株如酵母、双歧杆菌等也可以用于原核表达。
根据目的蛋白的特性和表达要求,选择合适的表达宿主。
4. 优化基因序列在进行原核表达之前,需要对目的蛋白的基因序列进行优化。
合成较高优化的核酸序列,包括优化翻译起始子和优化密码子使用。
这样可以提高蛋白质的表达水平和折叠状态。
5. 转化目的蛋白质转化是指将目的蛋白质基因导入表达宿主中的过程。
最常用的方法是通过化学转化或电转化将表达载体导入细胞。
还可以利用病毒、质粒导弹等方法进行转化,具体选择方法取决于实验需求和表达系统。
6. 诱导表达转化后,需要选择适当的诱导方法来激活表达载体中的目的蛋白基因。
常用的诱导剂有异丙基β-D-硫代半乳糖苷(IPTG)、丝氨酸酶等。
根据表达宿主和表达载体的不同,可选择不同的诱导浓度和诱导时间。
7. 提取和纯化目的蛋白经过表达和诱导后,目的蛋白质可在细胞内或细胞外表达。
具体提取和纯化方法可以根据蛋白质的特性和需求选择,常用的方法包括离心法、柱层析法、亲和层析法等。
8. 评估表达蛋白质的性质和功能通过一系列生化、免疫学、生物学等实验方法,可以对表达蛋白质的性质和功能进行评估。
可以利用SDS-PAGE检测蛋白质的表达水平和相对分子质量。
原核蛋白包涵体表达案例
![原核蛋白包涵体表达案例](https://img.taocdn.com/s3/m/508958c00242a8956bece4db.png)
原核蛋白(包涵体)表达案例
原核蛋白(包涵体)表达案例
1.实验目的
以客户提供的目的蛋白基因构建表达载体,通过原核蛋白表达体系获得目的蛋白A。
2.实验设计
(1)分析客户提供的目的蛋白序列,设计蛋白表达方案;
(2)选择钟鼎特色载体pCzn1,构建表达质粒pCzn1-A;
(3)IPTG诱导进行目的蛋白表达,并且优化表达条件,将诱导条件调整至37℃,经分析目标蛋白主要呈包涵体形式,通过Western Blot检测蛋白A是否表达;(4)通过Ni柱纯化获得目的蛋白A,SDS-PAGE检测纯化蛋白纯度,BSA方法测定蛋白浓度。
3.蛋白分析
(1)经EditSeq翻译目的蛋白A序列:m.w.=23.25kd,pI=5.22
(2)经UniProt匹配,蛋白A物种来源:人类
(3)蛋白性质分析
蛋白亲疏水分析
蛋白跨膜结构域分析
蛋白信号肽预测
分析结果:
目的蛋白整体呈亲水性、无跨膜结构域、无信号肽序列,可尝试全长表达。
结论:将目的基因构建在钟鼎特色载体pCzn1上,利用载体自带信号肽分泌表达。
4.表达载体构建
4.1pCzn1-A质粒酶切验证:
4.2 pCzn1-A 质粒测序验证:
部分序列比对结果图
5. 蛋白表达及纯化
钟鼎特色载体pCzn1 酶切鉴定
Marker: 200,500,800,1200,2000,3000,4500
Line1: 酶切前质粒 Line2: 酶切后质粒
基因名称:A (OD260/OD280:1.82) 酶切位点:NdeI /XhoI
6.实验结论
目的蛋白A在IPTG诱导下进行包涵体形式表达,蛋白表达成功。
原核蛋白表达与纯化
![原核蛋白表达与纯化](https://img.taocdn.com/s3/m/c4c0d3db5022aaea998f0f72.png)
GE tac (Pharmacia) NEB tac
pMal
Amp
MBP· Tag
pET
Merck (Novagen) Transgen
T7 T7lac T7lac
Amp Kan Amp
His· Tag
pEASY
His· Tag
选择表达菌株
菌株
BL21 BL21(DE3) BL21(DE3)pLysS
pGEX pET
Lane 2:30℃ Lane 3:25℃
促进包涵体形成
• 目的 高浓度,高纯度 毒基因表达
免受蛋白酶水解(小蛋白,多肽)
• 手段 胞质表达 提升表达速率(诱导温度,IPTG浓度,etc) 特定的表达载体(pET-17xb,pET-31b(+))
蛋白纯化障碍 • 表达——纯化是一个完整的、密切联系的过程,蛋 白纯化过程中,很多问题的根源来自上游表达 • 蛋白不结合,洗脱杂带多,包涵体不易溶解…… • 下篇详述
常用表达载体系统
系统名称 公司 pGEX 启动子 抗性 Amp 常用标签 GST· Tag 特点 可溶性表达,纯化难以控制,谷 胱甘肽 一步洗脱,得到的蛋白纯 度较低,通常需要去掉GST· Tag 可溶性表达,纯化难以控制,麦 芽糖一步洗脱,得到的蛋白纯度 较低,通常需要去掉MBP· Tag 种类丰富。标签小,无需切割, 一般来说,对蛋白活性无影响。 纯化及其方便。 同pET系统
GE tac (Pharmacia) NEB tac
pMal
Amp
MBP· Tag
pET
Merck (Novagen) Transgen
T7 T7lac T7lac
Amp Kan Amp
His· Tag
原核表达系统三大要素的选择及优化
![原核表达系统三大要素的选择及优化](https://img.taocdn.com/s3/m/324a077414791711cc7917bf.png)
原核表达系统是目前使用最广泛、最完善的重组蛋白表达系统,具有遗传背景清晰、表达周期快、表达量高、成本低等优势,缺点是无法进行蛋白的翻译后修饰,得到具有生物活性蛋白的几率较小。
原核表达系统适用于表达原核来源的蛋白或不需要翻译后修饰的真核来源蛋白。
在原核蛋白表达过程中,需要综合考虑表达菌株、质粒载体、表达条件三大因素,以获得最满意的表达效果。
下面为大家一一介绍这三大因素的选择和优化。
1. 表达菌株菌株的选择往往是大家最容易忽视的,大多数人会选择使用自己实验室有的或用过的表达菌株。
当蛋白表达效果不佳时,大多会在质粒载体或表达条件上找原因,而不会考虑菌株的选择是否合适。
但作为表达宿主,菌株一定会对外源基因表达蛋白产生影响。
图1 大肠杆菌原核表达系统常用的菌株包括大肠杆菌、芽孢杆菌和链霉菌。
其中运用最为广泛的就是大肠杆菌表达系统。
以下为大家列出了一些常用的大肠杆菌表达菌株,可根据不同的需求进行选择。
2. 质粒载体质粒表达载体上的重要元件包括启动子,多克隆位点,终止子,复制子,信号肽,融合标签,筛选标记等。
根据载体上这些元件的特性,有多种质粒可供选择。
图2 大肠杆菌表达质粒pET-22b(+)图谱启动子:根据启动子的强弱考虑,强启动子可以提高蛋白表达量;弱启动子可以降低本底表达、增加可溶表达、表达小量伴侣蛋白等。
根据启动子的作用方式考虑,组成型启动子使宿主不停的表达重组蛋白;诱导型启动子使宿主在特定诱导条件下表达重组蛋白。
终止子:终止子的作用在于保护mRNA在核外不被降解,延长mRNA的寿命,以提高重组蛋白表达量。
对于T7系统来说,由于T7 RNA聚合酶效率非常高,保证一直有充足的mRNA 提供翻译,所以终止子对其影响不大,只有一些自身带有起始密码子的外源基因需要终止子。
~复制子:复制子决定质粒载体拷贝数,拷贝数越高,重组蛋白表达量就越高。
表达载体通常会选用高拷贝的复制子,但过高的拷贝数会影响质粒稳定性和宿主生长。
原核蛋白表达纯化条件优化方案
![原核蛋白表达纯化条件优化方案](https://img.taocdn.com/s3/m/0fefd463852458fb770b566d.png)
原核蛋白表达纯化条件优化方案1,收菌每10ml一EP管,弃上清后-40度冻存。
(一)缓冲液PH的确定:2,处理镍柱:(流速控制在30d/min, 5ml注射器)1)用3-5ml去离子水洗柱;2)1ml硫酸镍挂柱;3)3-5ml去离子水洗去余镍;3,取出菌体20管,每4管(40ml)为一组,分为5组。
菌体沉淀置于冰浴中解冻,分别用1ml PH6.0,6.5,7.0,7.5,8.0的PBS重悬,分别超声至澄清。
离心15000rpm,10min,弃沉淀。
4,纯化:4)binding buffer 3ml平衡柱子;5)上样,保留穿透液;6)洗脱,使用100(or200 mM)咪唑洗2个柱体积;7)3-5ml去离子水洗柱,再用另一PH缓冲液重复步骤4)-6)洗柱:先用去离子水洗3-5个柱体积,用EDTA(50mM)洗去NI 3个柱体积,用去离子水洗3-5个柱体积;用NaOH(1M)洗5个柱体积,用去离子水洗3-5个柱体积,用20%乙醇洗3-5个柱体积,封柱于20%乙醇,4度保存;5,结果用SDS-PAGE检测(配小孔15%胶),变性/非变性对比。
找到Trimer含量最高的缓冲液PH,并进行后面的优化。
对照/全菌/各PH穿透/各PH样品。
6,该步骤中选定的缓冲PH固化用于以下纯化、透析、ELISA包被、筛选等各个步骤。
(二)咪唑浓度的选择8,取出新1组,选用上一步骤确定的缓冲液超声;9,上样后分别使用60/80/100/150/200mM咪唑洗脱,每次2个柱体积,10,结果用SDS-PAGE检测(配小孔15%胶),变性电泳,选用含量最高的咪唑浓度作为洗脱条件。
顺序:对照/全菌/穿透/各浓度咪唑洗脱样品;(三)疏水抑制剂的选择11,选用第一步确定PH值的缓冲液,取12组;12,分别在体系中加入咪唑(10/20/40/50mM/L)/脲(<4M/L:1/2/4M/L)/吐温(<1%)/甘油(5%,10%,15%)/tritonX-100(0.1%)/不加;13,重复步骤重复步骤4)-6),使用第二步选定的咪唑浓度洗脱;14,结果用SDS-PAGE检测(配小孔15%胶),非变性电泳。
蛋白原核表达纯化原理
![蛋白原核表达纯化原理](https://img.taocdn.com/s3/m/5510e0b4710abb68a98271fe910ef12d2af9a90a.png)
蛋白原核表达纯化原理蛋白原核表达纯化是一种常用的生物技术方法,用于大量制备目标蛋白质。
该方法可以在原核细胞中直接表达目标蛋白,然后通过一系列的纯化步骤获得高纯度的蛋白质样品。
以下将详细介绍蛋白原核表达纯化的原理和步骤。
蛋白原核表达纯化的原理主要基于细菌细胞的生物特性。
在表达过程中,目标蛋白的基因会被插入到表达载体中,该载体会被转化到细菌细胞中。
转化后的细菌细胞会利用其自身的代谢机制表达目标蛋白。
蛋白原核表达纯化的步骤主要包括以下几个方面:第一步,构建表达载体。
在这一步骤中,目标蛋白的基因会被插入到表达载体的多克隆位点中。
这个过程可以通过PCR扩增目标基因,然后将其连接到表达载体上。
第二步,转化细菌细胞。
在这一步骤中,经过构建的表达载体会被转化到细菌细胞中。
转化可以使用化学方法或电穿孔等物理方法进行。
第三步,培养表达菌株。
转化后的细菌细胞会被培养在含有适当抗生素的培养基中。
培养的条件包括温度、pH值、搅拌速度等,这些条件可以根据目标蛋白的特性进行优化。
第四步,诱导表达。
在菌株达到一定的生长密度后,可以通过添加适当的诱导剂来诱导目标蛋白的表达。
诱导剂的选择可以根据目标蛋白的特性进行优化。
第五步,收获细胞。
在表达过程中,细菌细胞会合成大量的目标蛋白。
可以通过离心等方法,将细菌细胞从培养基中收获下来。
第六步,裂解细胞。
收获的细菌细胞需要被裂解,以释放目标蛋白。
常用的方法包括超声波、高压等物理方法,以及酶解等化学方法。
第七步,纯化目标蛋白。
裂解后的混合物中含有大量的杂质,需要通过一系列的纯化步骤来获得高纯度的目标蛋白。
常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤等。
经过以上步骤,蛋白原核表达纯化的过程就完成了。
这种方法可以高效地制备目标蛋白,并且可以根据需要进行优化。
蛋白原核表达纯化在生物医药、生物工程等领域有着广泛的应用前景,对于研究目标蛋白的结构和功能具有重要意义。
原核蛋白表达细胞裂解方法
![原核蛋白表达细胞裂解方法](https://img.taocdn.com/s3/m/1e0a0fe1f424ccbff121dd36a32d7375a417c608.png)
原核蛋白表达细胞裂解方法原核蛋白表达细胞裂解是获取目标蛋白的重要步骤之一,以下是具体方法:一、试剂准备1.Triton X-100:1 % (w/v),溶于异丙醇中;2.EDTA:0.5 mol/L,pH 8.0;3.100 mmol/L Tris-HCl,pH 8.0;4.150 mmol/L NaCl;5.1 mmol/L PMSF;6.50 μg/mL溶菌酶。
二、细胞裂解1.将表达目标蛋白的细菌接种于适量的LB培养基中,37℃振荡培养至对数生长期;2.将细菌转移到离心管中,离心收集菌体;3.用预冷的PBS洗涤菌体2次,去除上清;4.重悬菌体于适量的细胞裂解缓冲液中,加入溶菌酶,使终浓度为50 μg/mL,37℃孵育1 h;5.加入Triton X-100,使终浓度为1 % (v/v),轻柔混匀,冰浴30 min;6.4℃离心,转速为12000 g,离心15 min;7.取上清液,即为包涵体。
三、洗涤包涵体1.将上清液转移至新的离心管中,加入等体积的洗涤液(由2 % Triton X-100、20 mmol/L Tris-HCl、pH 8.0和250 mmol/L NaCl配制而成),轻柔混匀,冰浴30 min;2.4℃离心,转速为12000 g,离心15 min;3.重复洗涤2-3次,直至洗涤液不再浑浊。
四、包涵体溶解与重折叠1.将洗涤后的包涵体悬浮于适量的溶解液(由2 mol/L尿素、50 mmol/L Tris-HCl、pH 8.0和1 mmol/L DTT配制而成)中,4℃孵育过夜;2.4℃离心,转速为12000 g,离心15 min;3.取上清液,即为溶解后的包涵体溶液。
重折叠操作是将溶解后的包涵体溶液进行透析,去除尿素,使蛋白质重新折叠成天然构象。
五、蛋白质纯化根据目标蛋白的性质选择合适的纯化方法进行进一步纯化。
常用的纯化方法包括离子交换色谱、凝胶过滤色谱、亲和色谱等。
在纯化的过程中,可以加入适量的还原剂(如DTE)和氧化剂(如H2O2)来维持蛋白质的稳定性。
原核蛋白表达 问题解析
![原核蛋白表达 问题解析](https://img.taocdn.com/s3/m/a3197d0e2a160b4e767f5acfa1c7aa00b52a9ddb.png)
原核蛋白表达问题解析
原核蛋白表达是一种人工实验技术,用于在原核生物(如细菌)中表达特定的
蛋白质。
它是研究生物学、药物开发和生物工程领域中常用的工具之一。
在原核蛋白表达中,研究者通常通过将目标基因转移到表达载体中来实现蛋白
表达。
表达载体是一种特殊的DNA分子,其中包含目标基因的编码序列和其他必
要的调控元件。
通过将表达载体导入到适合的宿主细胞中,目标基因可以被转录和翻译为蛋白质。
原核蛋白表达有许多优点,其中包括高表达水平、简单和经济等。
原核生物的
生长速度通常很快,所以可以在短时间内大量表达目标蛋白质。
此外,原核蛋白表达体系相对较简单,无需特殊的培养条件或复杂的培养基,这降低了实验的成本和难度。
然而,原核蛋白表达也存在一些挑战和限制。
由于原核生物的细胞环境与真核
生物不同,某些复杂的蛋白质可能无法正确地折叠或修饰。
此外,某些蛋白质可能对原核表达系统的毒性有较高的敏感性,从而降低了表达效率。
为了克服这些问题,研究者通常采用各种策略来优化原核蛋白表达。
例如,他
们可以通过优化转化条件、选择适当的宿主细胞或使用辅助蛋白质来提高表达效率。
此外,关于蛋白质折叠和修饰的研究也可以提供有价值的信息。
在总结一下,原核蛋白表达是一项重要的实验技术,可用于快速高效地表达目
标蛋白质。
尽管存在一些挑战,但通过优化实验条件和相关研究的进行,原核蛋白表达仍然是生物学和生物工程领域中广泛使用的工具之一。
原核表达蛋白鉴定
![原核表达蛋白鉴定](https://img.taocdn.com/s3/m/c0aa9b4624c52cc58bd63186bceb19e8b9f6ec57.png)
原核表达蛋白鉴定
在现代生物学研究中,重要的一个方向是研究蛋白质的结构与功能。
而“原核表达蛋白鉴定”就是一种非常重要的方法,可帮助我们
了解蛋白质的结构与功能,进而更深入地研究生物学及其相关领域。
原核表达蛋白鉴定一般包括以下几个步骤:
1. 基因表达与重组:首先,需要获取目标蛋白的基因序列,并
将其纳入表达载体,然后再将表达载体与细胞进行重组,从而实现目
标蛋白的表达。
2. 经过大量的培养及纯化过程:接下来,目标蛋白需要经过大
量的培养及纯化过程,以消除或减少其他蛋白质或杂质的干扰,并使
目标蛋白更加纯净。
3. 对目标蛋白进行二级结构研究:在经过前两个步骤之后,我
们需要进行对目标蛋白的二级结构进行研究。
这可以通过许多技术来
实现,例如傅里叶变换红外光谱法、圆二色光谱法、核磁共振法等等。
4. 研究目标蛋白的三维结构:接下来,我们需要通过X射线晶
体学和核磁共振等方法对目标蛋白的三维结构进行研究。
这将有助于
我们更全面地了解蛋白质分子的结构和功能,有助于推进生物学及其
他相关领域的研究。
总之,原核表达蛋白鉴定是一种非常重要的生物学研究方法,使
得我们能够更深入地了解蛋白质的性质和结构,从而推进生物学及其
他相关领域的研究。
目前蛋白质结构与功能的研究仍然是一个非常广
泛的领域,未来研究还将涵盖更多的细节和更全面的实验,以帮助我
们更好地探究生物学世界的奥秘。
原核表达蛋白不表达原因
![原核表达蛋白不表达原因](https://img.taocdn.com/s3/m/a3257ef4a48da0116c175f0e7cd184254b351b68.png)
原核表达蛋白不表达原因
原核表达蛋白不表达原因可能与以下因素有关:
1. 编码序列缺失或不完整
部分原核菌体的基因组存在缺失或未完整编码的基因,因此未能成功
合成蛋白质。
此外,某些原核菌体也可能存在基因突变或缺失,导致
相关蛋白质无法被成功合成。
2. 翻译后修饰不足
蛋白质翻译后需要经过一系列修饰才能成为功能完整的成熟蛋白质。
在一些原核菌体中,可能存在相关修饰酶的缺失或修饰过程受到抑制,导致蛋白质无法成功合成和修饰。
3. 转录和翻译水平低下
某些原核菌体的细胞周期较短,转录和翻译能力较弱。
在这种情况下,它们可能无法在完成生命周期前成功合成足够的蛋白质。
4. 蛋白质抑制作用
有一些蛋白质可以抑制原核菌体的转录和翻译过程,从而阻断蛋白质的合成。
这些蛋白质可能是内源性的,即由细胞自身产生,也可能是外源性的,即来自其他微生物的毒素或环境因素。
5. 环境因素的影响
一些环境因素,例如高温、低温、酸性、碱性和高盐浓度等,可能会对原核菌体中的基因表达产生负面影响,从而导致蛋白质的合成受到限制。
综上,原核表达蛋白不表达的原因可能涉及基因缺失、翻译后修饰不足、转录和翻译水平低下、蛋白质抑制作用以及环境因素的影响等多种因素。
对这些原因的深入研究将有助于提高原核表达系统的表达效率和成功率。
原核蛋白表达方法
![原核蛋白表达方法](https://img.taocdn.com/s3/m/e85a9dfcd4bbfd0a79563c1ec5da50e2524dd18a.png)
原核蛋白表达方法简介:蛋白质是生物体内最基本的分子组成单位,对于生命体的正常功能起着至关重要的作用。
在研究和应用中,为了获得特定的蛋白质产物,科学家们常常需要对目标蛋白进行大量表达。
原核蛋白表达方法是一种常用的蛋白质表达方法,通过利用原核生物体的表达系统,使目标基因在细菌或古细菌中高效表达,从而获得大量目标蛋白。
原核蛋白表达方法的基本流程:1. 选择适当的表达载体:表达载体是原核蛋白表达的基础,一般包括启动子、转录终止子、选择标记等。
常用的表达载体有质粒、噬菌体等。
根据实验需求,选择合适的表达载体进行目标基因的克隆。
2. 转化宿主细胞:将经过重组的表达载体转化至宿主细胞。
常用的宿主细胞有大肠杆菌(E.coli)、酵母菌等。
转化方法可以是热激转化、电转化等。
3. 优化表达条件:调控表达载体的启动子、温度、培养基等条件,以提高目标蛋白的表达水平。
此外,还可以通过添加诱导剂、调整培养时间等方式来优化表达条件。
4. 提取目标蛋白:待细菌或古细菌在培养基中生长一定时间后,收取菌液。
通过离心、破碎细胞壁等方式,将目标蛋白从细菌或古细菌中提取出来。
提取方法可以是化学提取、超声波破碎等。
5. 纯化目标蛋白:通过蛋白质纯化技术,将提取得到的目标蛋白从混合物中分离出来。
纯化方法可以是亲和层析、离子交换层析、凝胶过滤层析等。
6. 验证目标蛋白:通过蛋白质电泳、Western blot等方法对目标蛋白进行验证,确认其纯度和活性。
原核蛋白表达方法的优势:1. 原核生物体生长速度快,表达周期短,可以快速获得目标蛋白。
2. 表达水平高,可以得到较高产量的目标蛋白。
3. 表达系统相对简单,易于操作。
原核蛋白表达方法的应用:1. 科学研究:用于获得特定的蛋白质,以研究其结构、功能和相互作用等。
2. 药物研发:用于大规模合成蛋白药物,如重组蛋白、抗体等。
3. 工业应用:用于生产酶制剂、饲料添加剂等。
原核蛋白表达方法的改进和发展:为了进一步提高原核蛋白表达方法的效率和产量,科学家们不断进行改进和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solving Problems in Bacterial Protein Expression
vector
host
growth conditions
Page 8
Page 9
pETcoco™
Page 12
Tuner™(DE3) cells carrying pETcoco TM-1 containing
Ann. Rev. Genet
Page 18
Page 21
Page 22
pETcoco™
inNovations 15)
Page 24
Page 25
Page 27Page 28
124
3
Page 32
host vector
growth conditions
Page 44
Cells were grown at 37C to OD 600of 0.8 and induced with 1mM IPTG for 2.5 h. Total cell protein samples were electrophoresed in a 4-20%acrylamide gel.
inNovations Cells were grown at 37C to OD 600of 0.8 and induced with 1mM IPTG for 2.5 h. Total cell protein samples were electrophoresed in a 4-20% acrylamide gel.
Page 46
J . Biol . Chem . 272: 15661 (1997)
Wild type trx B
-
trx B -gor
-
Effect of consecutive CGG rare codons on target protein
expression
A pET-15b recombinant plasmid containing five consecutive
CGG codons near the 5’end of the β-gal coding region was
transformed into Rosetta™(DE3) amd Rosetta 2(DE3) cells.
The cells were induced with IPTG for 3 hr and harvested by
centrifugation.
Page 49Page 50
Vector Host
Growth Conditions
Page 60SDS-PAGE analysis of eukaryotic target proteins purified from cultures induced with Overnight Express verses IPTG
SDS-PAGE analysis of crude and purified proteins from cultures induced with Overnight Express verses IPTG
50 ml portions of induced BL21(DE3) containing
pET-41a(+) (GST) were harvested by centrifugation and
resuspended in 2 ml PBS (1), another lysis reagent (2),
or BugBuster® Reagent (3). The sample in PBS was
lysed by sonication. Extracts were clarified by
Page 64
•T7•Tag sequence
Page 67
chromatography Magnetic h
Page 73
BL21(DE3) cells containing pET-41b(+)
(GST /His•Tag sequence) were induced
with 1mM IPTG for 3 hr, lysed
culture medium with PopCulture™ Reagent
and Benzonase®Nuclease and purified on
magnetic IDA resin (lane 2).
inNovations magnetic-based
magnetic stand and remove
Page 76
M 1 2 3 4 5 6 M
Biotinylated Thrombin digestion Page 81
host vector
growth conditions。