专题:双曲线
双曲线专题 (优秀经典练习题及答案详解)
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。
专题10双曲线问题(解答题)
专题10双曲线问题(解答题)一、解答题1.已知双曲线C 的中心为坐标原点,左焦点为()-.(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.2.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =. (1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.3.已知双曲线222Γ:1,(0),y x b b -=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=u u u r u u u u r ,求b 的取值范围. 4.已知动点P 与定点(),0A m 的距离和P 到定直线2n x m=的距离的比为常数m n .其中0,0m n >>,且m n ≠,记点P 的轨迹为曲线C .(1)求C 的方程,并说明轨迹的形状;(2)设点(),0B m -,若曲线C 上两动点,M N 均在x 轴上方,AM BN P ,且AN 与BM 相交于点Q .①当4m n ==时,求证:11AM BN+的值及ABQ V 的周长均为定值;②当m n >时,记ABQ V 的面积为S ,其内切圆半径为r ,试探究是否存在常数λ,使得S r λ=恒成立?若存在,求λ(用,m n 表示);若不存在,请说明理由.5.已知双曲线2222:1(0,0)x y C a b a b-=>>过点A ,且焦距为10. (1)求C 的方程;(2)已知点3),B D -,E 为线段AB 上一点,且直线DE 交C 于G ,H 两点.证明:||||||||GD HD GE HE =.6.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,右焦点为). (1)求双曲线C 的方程;(2)已知直线2y x =+与双曲线C 交于不同的两点A ,B ,求AB . 7.已知双曲线E :2214x y -=与直线l :3y kx =-相交于A 、B 两点,M 为线段AB 的中点. (1)当k 变化时,求点M 的轨迹方程;(2)若l 与双曲线E 的两条渐近线分别相交于C 、D 两点,问:是否存在实数k ,使得A 、B 是线段CD 的两个三等分点?若存在,求出k 的值;若不存在,说明理由.8.已知双曲线C :22221x y a b-=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92. (1)求双曲线的方程;(2)若过F 的直线l '与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.9.过点()4,2的动直线l 与双曲线()2222:10,0x y E a b a b-=>>交于,M N 两点,当l 与x 轴平行时,MN =l 与y 轴平行时,MN =(1)求双曲线E 的标准方程;(2)点P 是直线1y x =+上一定点,设直线,PM PN 的斜率分别为12,k k ,若12k k 为定值,求点P 的坐标.10.已知双曲线E :22221x y a b-=的左右焦点为1F ,2F ,其右准线为l ,点2F 到直线l 的距离为32,过点2F 的动直线交双曲线E 于A ,B 两点,当直线AB 与x 轴垂直时,6AB =. (1)求双曲线E 的标准方程;(2)设直线1AF 与直线l 的交点为P ,证明:直线PB 过定点.11.双曲线()2222:10,0x y C a b a b-=>>的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且ABD △是直角三角形.(1)求双曲线C 的方程;(2)M 、N 是C 右支上的两动点,设直线AM 、AN 的斜率分别为1k 、2k ,若122k k =-,求点A 到直线MN 的距离d 的取值范围.12.已知双曲线2222:1(0)x y C a b a b-=>>的一个焦点为()2,0,F O 为坐标原点,过点F 作直线l 与一条渐近线垂直,垂足为A ,与另一条渐近线相交于点B ,且,A B 都在y 轴右侧,OA OB +=(1)求双曲线C 的方程;(2)若直线1l 与双曲线C 的右支相切,切点为1,P l 与直线23:2l x =交于点Q ,试探究以线段PQ 为直径的圆是否过x 轴上的定点.13.在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,,F F C 的离心率为2,直线l 过2F 与C 交于,M N 两点,当2OM OF =时,12MF F △的面积为3.(1)求双曲线C 的方程;(2)已知,M N 都在C 的右支上,设l 的斜率为m .①求实数m 的取值范围;②是否存在实数m ,使得MON ∠为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由.14.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b-=>>的焦距为4,且经过点. (1)求C 的方程:(2)若直线l 与C 交于A ,B 两点,且0OA OB ⋅=u u u r u u u r ,求AB 的取值范围:(3)已知点P是C上的动点,是否存在定圆222:()0O x y r r+=>,使得当过点P能作圆O的两条切线PM,PN时(其中M,N分别是两切线与C的另一交点),总满足PM PN=?若存在,求出圆O的半径r:若不存在,请说明理由.15.已知双曲线2222:1(0,0)x yC a ba b-=>>的焦点与椭圆2215xy+=的焦点重合,其渐近线方程为y=. (1)求双曲线C的方程;(2)若,A B为双曲线C上的两点且不关于原点对称,直线1:3l y x=过AB的中点,求直线AB的斜率.。
18 高中解析几何-双曲线的问题
专题18高中解析几何-双曲线的问题【知识总结】 1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|). (3)焦点:两个定点F 1,F 2.(4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________.2.(2022·全国甲理) 若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________.3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D5.(2022·浙江) 已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,过F 且斜率为4b a 的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=12.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=13.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=15.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=16.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=18.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( )A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=19.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=110.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=1题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( )A .32B .3C .23D .412.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324B .322C .22D .3213.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π414.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4317.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4318.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1219.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 220.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使 sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-2 题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或222.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .225.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .626.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .1027.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5228.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17430.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .10 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =0 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .19 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .743.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.。
高考数学专题复习:双曲线(含解析)
高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
专题——双曲线定值问题
专题——双曲线定值问题
双曲线是解析几何中的一种特殊曲线,具有许多重要的性质和应用。
在研究双曲线时,了解和解决双曲线的定值问题是一个关键的任务。
本文将介绍双曲线的定值问题,并探讨其中的一些重要概念和应用。
定值问题的概念
定值问题是指给定一个曲线,求解曲线上满足某些特定条件的点或曲线方程的问题。
对于双曲线而言,定值问题可以包括求解双曲线上的点的坐标、求解过给定点的双曲线的方程等。
常见的双曲线定值问题
以下是一些常见的双曲线定值问题:
1. 求解双曲线上的点的坐标:给定一个双曲线的方程,求解曲线上满足特定条件的点的坐标,如与坐标轴的交点、离焦点一定距离的点等。
2. 求解过给定点的双曲线的方程:给定一个点,求解过该点的双曲线的方程。
3. 求解满足双曲线与其他曲线的交点:给定双曲线和另一条曲线的方程,求解两条曲线的交点。
双曲线定值问题的应用
双曲线的定值问题在数学和物理学等领域中有着广泛的应用。
以下是一些常见的应用:
1. 抛物面反射定律:双曲线的性质使得它在描述光线在抛物面上的反射问题时起到重要的作用。
2. 天体轨道计算:天体的运动轨迹可以用双曲线描述,通过解决双曲线的定值问题,可以计算天体的轨道参数。
3. 电磁场分布:双曲线的形状可以用来描述电磁场在空间中的分布情况,通过解决双曲线的定值问题,可以计算电磁场的强度和分布。
结论
双曲线定值问题是研究双曲线的重要内容之一。
通过解决双曲线的定值问题,我们可以更好地理解和应用双曲线的性质。
双曲线定值问题在数学和物理学等领域中有着广泛的应用,对于推动科学和技术的发展具有重要意义。
圆锥曲线专题二:双曲线(含详细答案)
基础知识:一 双曲线的定义:在平面内,到两个定点21F F 、的距离之差的绝对值等于常数a 2(a 大于0且212F F a <)的动点P 的轨迹叫作双曲线.这两个定点21F F 、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1. 双曲线的定义中,常数a 2应当满足的约束条件:21212F F a PF PF <=-,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2. 若去掉定义中的“绝对值”,常数满足约束条件:21212F F a PF PF <=-)0(>a ,则动点轨迹仅表示双曲线中靠焦点2F 的一支;若21122F F a PF PF <=-()0(>a ),则动点轨迹仅表示双曲线中靠焦点1F 的一支;3. 若常数满足约束条件:21212F F a PF PF ==-,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);4.若常数满足约束条件:21212F F a PF PF >=-,则动点轨迹不存在; 5.若常数0=a ,则动点轨迹为线段21F F 的垂直平分线。
二 双曲线的标准方程:1.当焦点在轴上时,双曲线的标准方程:)0,0(12222>>=-b a b y a x ,其中222b a c +=;2.当焦点在y 轴上时,双曲线的标准方程:)0,0(12222>>=-b a bx a y ,其中222b a c +=;3.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x ;如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x ;4. 共焦点的双曲线系方程12222=--+k b y k a x 或 12222=--+kb x k a y三 双曲线的几何性质:双曲线)0,0(12222>>=-b a by a x 的几何性质1.对称性:对于双曲线标准方程)0,0(12222>>=-b a by a x ,把x 换成―x ,或把y 换成―y ,或把x 、y 同时换成―x 、―y ,方程都不变,所以双曲线)0,0(12222>>=-b a by a x 是以x 轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
专题 双曲线的定义
专题 双曲线的定义、标准方程、几何性质1.双曲线的定义平面内到两个定点F 1,F 2的距离的差的绝对值等于常数2a(2a <|F 1F 2|)的点P 的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 当|PF 1|-|PF 2|=2a a <|F 1F 2时,点P 的轨迹为靠近F 2的双曲线的一支. 当|PF 1|-|PF 2|=-2aa <|F 1F 2时,点P 的轨迹为靠近F 1的双曲线的一支.若2a =2c ,则轨迹是以F 1,F 2为端点的两条射线;若2a >2c ,则轨迹不存在;若2a =0,则轨迹是线段F 1F 2的垂直平分线.2.双曲线的标准方程(1)中心在坐标原点,焦点在x 轴上的双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).(2)中心在坐标原点,焦点在y 轴上的双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0).3.双曲线的几何性质常用结论:(1)过双曲线的一个焦点且与实轴垂直的弦的长为2b2a,也叫通径.(2)与双曲线x 2a 2-y 2b2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(3)双曲线的焦点到其渐近线的距离为b .(4)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c -a .8.一动圆过定点A (-4,0),且与定圆B :(x -4)2+y 2=16相外切,则动圆圆心的轨迹方程为________. 9.根据下列条件,求双曲线的标准方程. (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7).。
高考数学专题《双曲线》习题含答案解析
专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )ABC .2D【答案】D 【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D.2.(2021·北京高考真题)若双曲线2222:1x y C a b-=离心率为2,过点,则该双曲线的程为()A .2221x y -=B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得b =,再将点代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a == ,则2c a =,b =,则双曲线的方程为222213x y a a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故b ,因此,双曲线的方程为2213y x -=.故选:B3.(2021·山东高考真题)已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,那么双曲线的离心率是()练基础A B C .2D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20by a=,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可.【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =,因为直线1PF 与x 轴垂直,且1PF a =,所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e =故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D |AB .则双曲线的离心率为( )A B C .2D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)a =( )AB .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c = ,=,解得12a = ,故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,焦点到渐近线的,则C 的焦距等于( ).A.2B. C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )A. B. C. D.【答案】D 【解析】22221(0,0)x y a b a b -=>>F A OAF △O 221412x y -=221124x y -=2213x y -=2213y x -=由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:.本题选择D选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)xC y mm-=>的一条渐近线为my+=,则C的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出,a b的关系,再结合双曲线中22,a b对应关系,联立求解m,再由关系式求得c,即可求解.【详解】my+=化简得y=,即ba,同时平方得2223ba m=,又双曲线中22,1a m b==,故231m m=,解得3,0m m==(舍去),2223142c a b c=+=+=⇒=,故焦距24c=.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y=.【解析】由已知得222431b-=,解得b=或b=,因为0b>,所以b=.因为1a=,所以双曲线的渐近线方程为y=.10.(2020·全国高考真题(文))设双曲线C:22221x ya b-= (a>0,b>0)的一条渐近线为y= 2222tan60cc a bba⎧⎪=⎪=+⎨⎪⎪==⎩221,3a b==2213yx-=x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若则的离心率为( )ABC .D【答案】B 【解析】由题可知在中,在中,故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心1F 2F 2222:1x y C a b-=O 2F C P 1PF =C222,PF b OF c==PO a∴=2Rt POF V 222cos P O PF b F OF c∠==12PF F △22221212212cos P O 2PF F F PF b F PF F F c+-∠==223bc a c=⇒=e ∴=练提升率为( )A B .C D 【答案】D 【解析】由已知得M 为APQ V 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2B .C D 【答案】A 【解析】因为OPQ △为等边三角形,所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴=所以2222223,4,4,2c a a c a e e -=∴=∴=∴=.故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213xy -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅= ,利用向量垂直的坐标表示,列方程求0x 即可.【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+ ,200(2,)F P x =- ,又220120403x F P F P x ⋅=-+= ,∴0x =故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1,所以圆心()0,5到0bx ay -=的距离d 的范围为24d <<即24<<,而222+=a b c 所以524a c <<,即5542e <<故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c=(c =0的一点,则当M 的纵坐标为2MAF V 外接圆的面积最小【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确;由正弦定理得到2MAF V 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确.【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确;对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,FF F P FP 分别切于点1,,A B C ,设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确;对于D 中,由正弦定理,可知2MAF V 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=,在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=,又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( )A .点P 的轨迹是椭圆B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN V 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN V 的面积6PMN S =V 【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项.【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =,当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩,所以132PMN S PM PN ==△,故C 对;选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩,所以162PMN S PM MN ==△,故D 对,故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b-=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案.【详解】因为双曲线()22122:10,0x y C a b a b-=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案.【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯= .当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=.故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=,1=c e a .1+1. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )ABCD【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )ABCD【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==.故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( )ABC .2D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c == ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,1122PFO P S OF y ∴=⋅==△,故选A .5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为____________.【答案】2.【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =g ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==,所以该双曲线的离心率为2c e a ====.。
专题复习:双曲线
第七讲 双曲线一、学习目标1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. 2.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. 3.了解圆锥曲线的简单应用. 4.理解数形结合的思想. 二、疑 难 辨 析1.关于双曲线的定义(1)集合P ={M |||MF 1|-|MF 2||=2a },其中|F 1F 2|=2c ,a >0,c >0,a ,c 为常数,则集合P 表示以F 1,F 2为焦点的双曲线.( )(2)集合P ={M ||MF 1|-|MF 2|=2a,0<2a <|F 1F 2|},其中|F 1F 2|=2c ,a >0,c >0,a ,c 为常数,则集合P 表示以F 1,F 2为焦点的双曲线.( )2.关于双曲线的方程(1)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(2)方程mx 2+ny 2=1(mn <0)表示的曲线是双曲线.( ) 3.关于双曲线的几何性质(1)双曲线方程为x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( )(2)双曲线的离心率越小,双曲线的开口越宽阔.( ) 4.关于特殊双曲线(1)等轴双曲线的渐近线互相垂直、离心率等于 2.( )(2)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与y 2a 2-x 2b 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1.(本题中的两条双曲线称为共轭双曲线)( )三、典例分析例1、(1)[2012·三明联考] 若双曲线x 24-y 212=1上的一点P 到它的右焦点的距离为8,则点P 到它的左焦点的距离是( )A .4B .12C .4或12D .6(2)[2012·湖南卷] 已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 例2、 (1)[2012·浙江卷] 如图8-50-1所示,F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的左,右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )图8-50-1A.233 B.62C. 2D. 3 例3、已知双曲线的中心在原点,坐标轴为对称轴,一条渐近线方程为y =43x ,右焦点F (5,0),双曲线的实轴为A 1A 2,P 为双曲线上一点(不同于A 1,A 2),直线A 1P ,A 2P 分别与直线l :x =95交于M ,N 两点.(1)求双曲线的方程; (2)求证:FM →·FN →为定值. 四、追踪1.(2012·大纲全国)已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45 解析:依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m . 又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=(42)2+(22)2-422×42×22=34.故选C. 答案:C2.(2012·湖南)已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1解析:设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±b ax 上,得a =2b .结合c =5,得4b 2+b 2=25,解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1.答案:A3.(2012·课标全国)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .8解析:设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C.答案:C4.(2012·福建)已知双曲线x 24-y 2b2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3 D .5解析:y 2=12x 的焦点为(3,0),由题意得,4+b 2=9,b 2=5,双曲线的右焦点(3,0)到其渐近线y =52x 的距离d =|5×3-0|5+4= 5. 答案:A5.(2012·浙江)如图,F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a ,b >0)的左、右焦点,B是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )A.233 B.62C. 2D. 3 解析:依题意得直线F 1B 的方程为y =bcx +b ,M 点坐标为(3c,0),那么可知线段PQ 的垂直平分线的方程为y =-c b(x -3c ),由⎩⎪⎨⎪⎧ y =bc x +b ,y =-ba x ,解得点P 的坐标为⎝ ⎛⎭⎪⎫-ac a +c ,bc a +c ,由⎩⎪⎨⎪⎧y =bc x +b ,y =ba x ,解得点Q 的坐标为⎝⎛⎭⎪⎫ac c -a ,bc c -a ,那么可得线段PQ 的中点坐标为⎝ ⎛⎭⎪⎫a 2c b 2,c 2b ,代入y =-c b (x -3c )并整理,可得2c 2=3a 2,可得e =ca =32=62,故应选B. 答案:B6.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13 C .b 2=12D .b 2=2解析:依题意a 2-b 2=5,根据对称性,不妨取一条渐近线y =2x ,由⎩⎪⎨⎪⎧y =2x ,x 2a 2+y 2b2=1,解得x =±ab 4a 2+b 2,故被椭圆截得的弦长为25ab 4a 2+b 2,又C 1把AB 三等分,所以25ab4a 2+b2=2a 3,两边平方并整理得a 2=11b 2,代入a 2-b 2=5得b 2=12,故选C. 答案:C 二、填空题7.(2012·江苏)在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为______.解析:由题意,双曲线的焦点在x 轴上且m >0,所以e =m 2+m +4m=5,所以m =2.答案:28.(2013·山东泰安调研)P 为双曲线x 2-y 215=1右支上一点,M 、N 分别是圆(x +4)2+y 2=4和(x -4)2+y 2=1上的点,则|PM |-|PN |的最大值为__________.解析:已知两圆圆心(-4,0)和(4,0)(记为F 1和F 2)恰为双曲线x 2-y 215=1的两焦点.当|PM |最大,|PN |最小时,|PM |-|PN |最大,|PM |最大值为P 到圆心F 1的距离|PF 1|与圆F 1半径之和,同样|PN |最小=|PF 2|-1,从而|PM |-|PN |的最大值为|PF 1|+2-(|PF 2|-1)=|PF 1|-|PF 2|+3=2a +3=5.答案:59.(2012·湖北)如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则(1)双曲线的离心率e =__________.(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=__________. 解析:(1)由图可知,点O 到直线F 1B 2的距离d 与圆O 的半径OA 1相等, 又直线F 1B 2的方程为x -c +yb=1,即bx -cy +bc =0.所以d =bc b 2+c2=a ,整理得b 2(c 2-a 2)=a 2c 2,即(c 2-a 2)2=a 2c 2,得c 2-a 2=ac . 所以e 2-e -1=0,解得e =5+12(负值舍去). (2)连接OB (图略),设BC 与x 轴的交点为E ,由勾股定理得|BF 1|=c 2-a 2=b . 由等面积法得|BE |=|F 1B ||OB ||F 1O |=abc,则|OE |=|OB |2-|BE |2=a 2c.进一步得到S 2=2|OE |·2|EB |=4a 3bc2.又因为S 1=12|F 1F 2||B 1B 2|=2bc ,所以S 1S 2=c 32a 3=12e 3=5+22.答案:(1)5+12;(2)5+22三、解答题10.(2013·安徽质检)已知点M 是圆B :(x +2)2+y 2=12上的动点,点A (2,0),线段AM 的中垂线交直线MB 于点P .(1)求点P 的轨迹C 的方程;(2)若直线l :y =kx +m (k ≠0)与曲线C 交于R ,S 两点, D (0,-1),且有|RD |=|SD |,求m 的取值范围.解析:(1)由题意得|PM |=|PA |,结合图形得||PA |-|PB ||=|BM |=23,∴点P 的轨迹是以A ,B 为焦点的双曲线,且2a =23,a =3,c =2,于是b =1,故P 点的轨迹C 的方程为x 23-y 2=1.(2)当k ≠0时,由⎩⎪⎨⎪⎧x 23-y 2=1,y =kx +m ,得(1-3k 2)x 2-6kmx -3m 2-3=0,(*)由直线与双曲线交于R ,S 两点,显然1-3k 2≠0,Δ=(6km )2-4(1-3k 2)(-3m 2-3)=12(m 2+1-3k 2)>0,设x 1,x 2为方程(*)的两根,则x 1+x 2=6km1-3k 2,设RS 的中点为M (x 0,y 0),则x 0=3km 1-3k 2,y 0=kx 0+m =m1-3k2,故线段RS 的中垂线方程为y -m1-3k 2=⎝ ⎛⎭⎪⎫-1k ⎝ ⎛⎭⎪⎫x -3km 1-3k .将D (0,-1)代入化简得4m =3k 2-1,故m ,k 满足⎩⎪⎨⎪⎧m 2+1-3k 2>0,4m =3k 2-1.消去k 2即得m 2-4m >0,即得m <0或m >4, 又4m =3k 2-1≥-1,且3k 2-1≠0, ∴m ≥-14,且m ≠0,∴m ∈⎣⎢⎡⎭⎪⎫-14,0∪(4,+∞). 11.(2013·云南检测)双曲线S 的中心在原点,焦点在x 轴上,离心率e =62,直线3x -3y +5=0上的点与双曲线S 的右焦点的距离的最小值等于433. (1)求双曲线S 的方程;(2)设经过点(-2,0),斜率等于k 的直线与双曲线S 交于A ,B 两点,且以A ,B ,P (0,1)为顶点的△ABP 是以AB 为底的等腰三角形,求k 的值.解析:(1)根据已知设双曲线S 的方程为x 2a 2-y 2b 2=1(a >0,b >0).∵e =c a =62,∴c =62a ,b 2=c 2-a 2=a 22.∴双曲线S 的方程可化为x 2-2y 2=a 2,∵直线3x -3y +5=0上的点与双曲线S 的右焦点的距离的最小值等于433,右焦点为⎝ ⎛⎭⎪⎫62a ,0, ∴⎪⎪⎪⎪⎪⎪3×6a 2+523=433,解方程得a = 2.∴双曲线S 的方程为x 2-2y 2=2.(2)经过点(-2,0),斜率等于k 的直线的方程为y =k (x +2). 根据已知设A (x 1,kx 1+2k ),B (x 2,kx 2+2k ),则AB 的中点为M ⎝ ⎛⎭⎪⎫x 1+x 22,k (x 1+x 2)+4k 2,△ABP 是以AB 为底的等腰三角形⇔PM ⊥AB .①如果k =0,直线y =k (x +2)与双曲线S 交于(-2,0),(2,0)两点,显然满足题目要求.②如果k ≠0,由PM ⊥AB 得k ×k PM =-1. ∵k PM =k (x 1+x 2)+4k -2x 1+x 2,∴k ×k (x 1+x 2)+4k -2x 1+x 2=-1.由⎩⎪⎨⎪⎧x 2-2y 2=2,y =k (x +2)得(1-2k 2)x 2-8k 2x -8k 2-2=0.根据已知得⎩⎪⎨⎪⎧1-2k 2≠0,Δ=64k 4+4(1-2k 2)(8k 2+2)=16k 2+8>0,∴k ≠±22. ∵x 1+x 2=8k21-2k2,∴k PM =k (x 1+x 2)+4k -2x 1+x 2=2k 2+2k -14k. ∴k ×k PM =k ×2k 2+2k -14k 2=2k 2+2k -14k =-1,即2k 2+6k -1=0, 解方程得k 1=-3-112,k 2=-3+112.综上,k =-3-112,或k =0,或k =-3+112.12.(2012·上海)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ; (3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解析:(1)双曲线C 1:x 212-y 2=1,左顶点A ⎝ ⎛⎭⎪⎫-22,0,渐近线方程为:y =±2x .过点A 与渐近线y =2x 平行的直线方程为y =2⎝ ⎛⎭⎪⎫x +22,即y =2x +1. 解方程组⎩⎨⎧y =-2x ,y =2x +1,得⎩⎪⎨⎪⎧x =-24,y =12.∴所求三角形的面积为S =12|OA ||y |=28.(2)证明:设直线PQ 的方程是y =x +b , ∵直线PQ 与已知圆相切,∴|b |2=1,即b 2=2. 由⎩⎪⎨⎪⎧y =x +b ,2x 2-y 2=1,得x 2-2bx -b 2-1=0.设P (x 1,y 1)、Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ), ∴OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2=2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明:当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时, 设直线ON 的方程为y =kx ⎝ ⎛⎭⎪⎫显然|k |>22, 则直线OM 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎪⎨⎪⎧x 2=14+k 2,y 2=k24+k 2,∴|ON |2=1+k 24+k 2.同理|OM |2=1+k 22k 2-1. 设O 到直线MN 的距离为d . ∵(|OM |2+|ON |2)d 2=|OM |2|ON |2,∴1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33. 综上,O 到直线MN 的距离是定值.。
(完整版)双曲线函数含参综合专题
完整版)双曲线函数含参综合专题简介本文档是关于双曲线函数含参综合专题的完整版,将介绍双曲线函数的定义、图像、性质以及含参双曲线函数的综合运用。
1.双曲线函数的定义和图像双曲线函数是一类与直线和圆相关的二次函数。
一般地,双曲线函数的定义如下:f(x) = a(x - h)²/b² - k其中,a、b、h、k为实数,a和b不同时为0.双曲线函数的图像可以分为两种情况:当a>0时,双曲线的两支分别开口朝上和朝下;当a<0时,双曲线的两支分别开口朝下和朝上。
2.双曲线函数的性质双曲线函数具有以下性质:双曲线的顶点为(h。
k);双曲线的两支的对称轴为直线x = h;双曲线的两支与对称轴的交点称为焦点,记为F1和F2;双曲线的焦距为c,即F1F2 = 2c;双曲线与对称轴之间的距离为a;双曲线的两支的离心率为e = c/a。
以上性质都是基于无缺损的双曲线函数,即没有额外的变化参数。
3.含参双曲线函数的综合运用含参双曲线函数是指在双曲线函数的基础上引入了其他参数,这扩展了双曲线函数的运用范围。
例如,对于含参双曲线函数:f(x) = a(x - h)²/b² - k + d其中还引入了参数d。
含参双曲线函数的综合运用包括以下几个方面:根据给定的参数值求解双曲线的相关性质,如顶点、焦点、离心率等;根据图像中的特征,确定参数的取值范围,进而解决相关问题;给定一组参数值,分析双曲线图像的变化趋势,对比并总结不同参数值对图像的影响。
总结本文档介绍了双曲线函数的定义、图像和性质,并讨论了含参双曲线函数的综合运用。
通过深入理解双曲线函数的特征和参数的作用,我们可以更好地应用双曲线函数解决实际问题。
双曲线函数含参综合专题是数学中的重要内容,对于提高学生的数学素养和解决实际问题具有重要意义。
希望本文档能够帮助读者对双曲线函数的含参综合问题有更深入的理解,并在实践中灵活运用。
双曲线专题辅导完整版(非常好)(可索要答案)
双曲线专题辅导双曲线知识点总结1、双曲线的定义:a MF MF 221=-(122a F F <) ①当2a ﹤2c 时,轨迹是双曲线; ②当2a =2c 时,轨迹是两条射线; ③当2a ﹥2c 时,轨迹不存在;2、双曲线标准方程焦点在x 轴上时:12222=-b y a x ;焦点在y 轴上时:12222=-bx a y ;★焦点坐在轴判断方法:看系数的正负;3、字母a b c 、、的关系:222b ac +=4、双曲线12222=-by a x 基本性质:①顶点:()0,),0,(21a A a A - ()b B b B -,0),,0(21 ②实轴:21A A 长为2a , a 叫做半实轴长; ③虚轴:21B B 长为2b ,b 叫做虚半轴长; ④焦距:12F F 长为2c ,c 叫做半焦距长;5、离心率:c e a === 6、 双曲线渐近线:(分焦点在x 轴与焦点在y 轴)①若双曲线方程为12222=-b y a x 则有:⇒渐近线方程⇒=-02222b y a x x aby ±=;②若双曲线方程为22221y x a b -=则有:⇒渐近线方程22220y x a b -=⇒ay x b=±;③若渐近线方程为x aby ±=⇒0=±b y a x① 222b AF BF a==②22bAB a=题型一:双曲线的标准方程的有关问题1、求双曲线14491622-=-y x 的实轴长、虚轴长、离心率以及渐近线方程;2、讨论192522=-+-ky k x 表示何种圆锥曲线,它们有何共同特征;3、根据条件求双曲线的标准方程; (1)过点⎪⎭⎫ ⎝⎛4153,P ,⎪⎭⎫⎝⎛-5316,Q 且焦点在坐标轴上; 提示:设122=+n y m x ;参考答案:116922=-x y(2)6=c ,经过点(-5,2),焦点在x 轴上;提示:设1622=--λλy x ;参考答案:1522=-y x(3)与双曲线141622=-y x 有相同的焦点,并且经过点()223,;提示:设141622=+--λλy x ;(4)双曲线为等轴双曲线,并且经过点)1,3(-M ; 提示:设m y x =-22;题型二、双曲线定义的运用(轨迹方程)1、P 是双曲线1366422=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值;(参考:33)变式:已知1F 、2FP 在双曲线上,若点P 到焦点P 到焦点F 2的距离;2、在ABC ∆中,2=BC ,且A B C sin 21sin sin =-,求点A 的轨迹;3、求与圆A :9)5(22=++y x 以及圆B :1)5(22=+-y x 都外切的圆的圆心P 的轨迹方程;变式题:求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A ;(2)已知一个圆与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切;(3)已知一个圆与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切;(4)双曲线4222=-y x C :的两焦点分别为21F F ,A 为双曲线上任一点。
专题11 双曲线及其性质(知识梳理+专题过关)(解析版)
专题11双曲线及其性质【知识梳理】知识点一:双曲线的定义平面内与两个定点12,F F 的距离的差的绝对值.....等于常数(大于零且小于12F F )的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).用集合表示为{}12122(02)MMF MF a a F F -=<<.注意:(1)若定义式中去掉绝对值,则曲线仅为双曲线中的一支.(2)当122a F F =时,点的轨迹是以1F 和2F 为端点的两条射线;当20a =时,点的轨迹是线段12F F 的垂直平分线.(3)122a F F >时,点的轨迹不存在.在应用定义和标准方程解题时注意以下两点:①条件“122F F a >”是否成立;②要先定型(焦点在哪个轴上),再定量(确定2a ,2b 的值),注意222a b c +=的应用.知识点二:双曲线的方程、图形及性质双曲线的方程、图形及性质A 222121sinsin21cos tanFr r bθθθ==⋅=-考点2:双曲线方程的充要条件考点3:双曲线中焦点三角形的周长与面积及其他问题考点4:双曲线上两点距离的最值问题考点5:双曲线上两线段的和差最值问题考点6:离心率的值及取值范围考点7:双曲线的简单几何性质问题考点8:利用第一定义求解轨迹考点9:双曲线的渐近线考点10:共焦点的椭圆与双曲线【典型例题】考点1:双曲线的定义与标准方程1.(2022·江西科技学院附属中学高二期中(理))已知O为坐标原点,设F1,F2分别是双曲线x2-y2=1的左、右焦点,P为双曲线左支上任意一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A.1B.2C .4D .12【答案】A【解析】如图所示,延长F 1H 交PF 2于点Q ,由PH 为∠F 1PF 2的平分线及PH ⊥F 1Q ,易知1PHF PHQ ∽,所以|PF 1|=|PQ |.根据双曲线的定义,得|PF 2|-|PF 1|=2,即|PF 2|-|PQ |=2,从而|QF 2|=2.在△F 1QF 2中,易知OH 为中位线,则|OH |=1.故选:A.2.(2022·黑龙江·铁人中学高二期中)双曲线222112x y a -=(0a >)的左、右两个焦点分别是1F 与2F ,焦距为8;M 是双曲线左支上的一点,且15MF =,则2MF 的值为()A .1B .9C .1或9D .9或13【答案】B【解析】依题意4c =,所以21216a +=,即2a =,因为15MF =,且2124MF MF a -==,所以29MF =.故选:B3.(2022·天津·耀华中学高二期中)与椭圆22:11612y x C +=共焦点且过点(的双曲线的标准方程为()A .2213y x -=B .2221yx -=C .22122y x -=D .2213y x -=【答案】C【解析】椭圆C 的焦点坐标为()0,2±,设双曲线的标准方程为()222210,0y xa b a b -=>>,由双曲线的定义可得2a ==-=a ∴,2c =,b ∴==,因此,双曲线的方程为22122y x -=.故选:C.4.(2022·河北·高二期中)已知双曲线22221x y a b-=的左、右焦点分别为1F ,2F ,O 为坐标原点,1210F F =,点M 是双曲线左支上的一点,若OM =1243MF MF =,则双曲线的标准方程是()A .224121x y -=B .221214x y -=C .22124y x -=D .22124x y -=【答案】C【解析】由题意知:双曲线22221x y a b -=的焦距为210c =,22225a b c ∴+==,125OM OF OF ===,12MF MF ∴⊥.1243MF MF =,不妨设13MF k =,24MF k =,由双曲线的定义可得:212MF MF k a -==,16MF a ∴=,28MF a =,由勾股定理可得:()()222222121268100100MF MF a a a F F +=+===,解得:21a =,224b ∴=,∴双曲线方程为22124y x -=.故选:C.5.(2022·北京工业大学附属中学高二期中)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为()A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【解析】设双曲线的标准方程为()222210,0y x a b a b-=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .6.(2022·广西·钦州一中高二期中(文))已知平面内两定点()13,0F -,()23,0F ,下列条件中满足动点P 的轨迹为双曲线的是()A .127PF PF -=±B .126PF PF -=±C .124PF PF -=±D .22126PF PF -=±【答案】C【解析】由题意,因为126F F =,所以由双曲线的定义知,当1206PF PF <-<时,动点P 的轨迹为双曲线,故选:C.7.(2022·福建·南靖县第一中学高二期中)(1)求以(-4,0),(4,0)为焦点,且过点的椭圆的标准方程.(2)已知双曲线焦点在y 轴上,焦距为10,双曲线的渐近线方程为20x y ±=,求双曲线的方程.【解析】(1)由题意可设所求椭圆的标准方程为221259x y λλ+=++.又椭圆过点,将x =3,y9151259λλ+=++,解得λ=11或=21λ-(舍去).故所求椭圆的标准方程为2213620x y +=.(2)由题意,设双曲线的标准方程为22221(0,0)y x a b a b -=>>,设焦距为2c ,∴22212210a b c a b c ⎧+=⎪⎪=⎨⎪=⎪⎩,解得5a b c ⎧=⎪⎪=⎨⎪=⎪⎩,∴该双曲线的方程为221520y x -=.8.(2022·黑龙江·大兴安岭实验中学高二期中)求满足下列条件的双曲线的标准方程:(1)焦点分别为(0,6)-,(0,6),且经过点(5,6)A -;(2)经过点,(4,--;【解析】(1)由题易知焦点在y 轴上,设双曲线的方程22221y x a b -=则222223636251c a b a b ⎧=+=⎪⎨-=⎪⎩解得:221620a b ⎧=⎨=⎩所以所求双曲线的标准方程为2211620y x -=(2)设双曲线的方程为:221(0)Ax By AB +=<代入点坐标得到:9+10=11624=1A B A B ⎧⎨+⎩解得:1418A B ⎧=⎪⎪⎨⎪=-⎪⎩故双曲线的标准方程为:22148x y -=考点2:双曲线方程的充要条件9.(多选题)(2022·全国·高二期中)已知曲线22:1C mx ny +=.则()A .若m >n >0,则C 是椭圆B .若m =n >0,则C 是圆C .若mn <0,则C 是双曲线D .若m =0,n >0,则C 是两条直线【答案】ABCD【解析】A 选项,当0m n >>时,22221111x y mx ny m n+=⇒+=,110m n<<,方程表示焦点在y 轴上的椭圆,A 选项正确.B 选项,当0m n =>时,222211mx ny x y n+=⇒+=,表示圆,B 选项正确.C 选项,当0mn <时,22221111x y mx ny m n+=⇒+=,表示双曲线,C 选项正确.D 选项,当0,0m n =>时,22211mx ny y y n +=⇒=⇒=±±D 选项正确.故选:ABCD10.(2022·河南·高二期中(文))已知k ∈R ,则“23k <<”是“方程22162x y k k -=--表示双曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由方程22162x y k k -=--表示双曲线可得()()620k k -->,解得26k <<,显然23k <<能推出26k <<,反之26k <<不能推出23k <<,故“23k <<”是“方程22162x y k k -=--表示双曲线”的充分不必要条件.故选:A.11.(2022·吉林·辽源市田家炳高级中学校高二期中(理))“0mn <”是“方程221x y m n+=表示的曲线为双曲线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】当0mn <,则0m >且0n <或0m <且0n >,此时方程221x y m n+=表示的曲线一定为双曲线;则充分性成立;若方程221x y m n+=表示的曲线为双曲线,则0mn <,则必要性成立,故选:C .考点3:双曲线中焦点三角形的周长与面积及其他问题12.(2022·安徽·淮北师范大学附属实验中学高二期中)已知1F 、2F 是等轴双曲线22:1C x y -=的左、右焦点,点P 在C 上,1260F PF ∠=,则12PF PF ⋅等于___________.【答案】4【解析】∵双曲线C 的方程为:221x y -=,∴221a b ==,得c =由此可得()1F 、)2F ,焦距12=F F ∵1260F PF ∠=,∴2221212122cos 60F F PF PF PF PF =+-,即2212128PF PF PF PF -⋅=+,①又∵点P 在双曲线22:1C x y -=上,∴1222PF PF a -==,平方得22112224PF PF PF PF -⋅+=,②①-②,得124PF PF ⋅=,故答案为:4.13.(2022·上海金山·高二期中)已知1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 到该双曲线的渐近线的距离为2,点P 在双曲线上,且1260F PF ∠=︒,则三角形12F PF 的面积为___________.【答案】【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线的方程为b y x a=±,右焦点2(,0)F c 由点2F 到该双曲线的渐近线的距离为22bca =,则2b =由()12222121222||2cos 60PF PF a c PF PF PF PF ⎧-=⎪⎨=+-⋅⎪⎩,可得212416PF PF b ⋅==则三角形12F PF的面积为1211sin 601622PF PF ⋅⋅=⨯=故答案为:14.(多选题)(2022·湖南省汨罗市第二中学高二期中)已知点P 是双曲线E :221169x y -=的右支上一点,1F ,2F 为双曲线E 的左、右焦点,12PF F △的面积为20,则下列说法正确的是()A .点P 的横坐标为203B .12PF F △的周长为803C .12F PF ∠小于3πD .12PF F △的内切圆半径为34【答案】ABC【解析】因为双曲线22:1169x y E -=,所以5c =,又因为12112102022PF F P P Sc y y =⋅=⋅⋅=,所以4P y =,将其代入22:1169x yE -=得2241169x -=,即203x =,所以选项A 正确;所以P 的坐标为20,43⎛⎫± ⎪⎝⎭,由对称性可知2133PF ==,由双曲线定义可知1213372833PF PF a =+=+=所以12PF F △的周长为:12133780210333PF PF c ++=++=,所以选项B 正确;可得11235PF k =,2125PF k =,则(121212360535tan 12123191535F PF -==∈⨯+⨯,则123F PF π<∠,,所以选项C 正确;因为12PF F △的周长为803,所以121202803PF F S r =⋅⋅=,所以32r =,所以选项D 不正确.故选:ABC.15.(2022·四川·阆中中学高二期中(文))已知12F F ,为双曲线C :221164x y-=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】由题意得,4,2,a b c ===,由双曲线的对称性以及12PQ F F =可知,四边形12PFQF 为矩形,所以122221228480PF PF a PF PF c ⎧-==⎪⎨+==⎪⎩,解得128PF PF =,所以四边形12PFQF 的面积为128PF PF =.故答案为:8.16.(2022·广东·江门市第二中学高二期中)双曲线2216416y x -=上一点P 与它的一个焦点的距离等于1,那么点P 与另一个焦点的距离等于___________.【答案】17【解析】由双曲线的方程可得实半轴长为8a =,虚半轴长为4b =,故8045c =因为点P 与一个焦点的距离等于1,而8451a c +=+>,故点P 与该焦点同在x 轴的上方或下方,故点P 与另一个焦点的距离为1217a +=,故答案为:17.17.(2022·新疆维吾尔自治区喀什第二中学高二期中(理))已知双曲线22145x y -=的左、右焦点分别为1F ,2F ,点P 是双曲线左支上一点且128PF PF +=,则1221sin sin PF F PF F ∠=∠______.【答案】3【解析】因为双曲线为22145x y -=,所以2a =、3c =,因为点P 是双曲线左支上一点且128PF PF +=,所以214PF PF -=,所以12=PF ,26PF =,在12PF F △中,由正弦定理可得122112sin sin PF PF PF F PF F =∠∠,所以212211sin 3sin PF PF F PF F PF ∠==∠;故答案为:318.(2022·天津市咸水沽第二中学高二期中)已知1F ,2F 分别是双曲线221916x y -=的左、右焦点,AB 是过点1F 的一条弦(A ,B 均在双曲线的左支上),若2ABF 的周长为30,则||AB =___________.【答案】9【解析】双曲线221916x y -=,得a =3,因为A ,B 均在双曲线的左支上,所以21212,2AF AF a BF BF a -=-=,则△ABF 2的周长为()()22112224AF BF AB AF a BF a AB AB a ++=++++=+,所以2|AB |+4×3=30,所以9AB =.故答案为:9.19.(2022·吉林·白城一中高二期中)双曲线221916x y -=的两个焦点为12,F F ,点P 在双曲线上,若1PF ·2PF =0,则点P 到x 轴的距离为________.【答案】165【解析】设()12,,PF m PF n m n ==>,由题意可知3,4,5a b c ==∴=,=6m n -1PF ·2PF =0,2221212PF PF F F ∴+=2224m n c ∴+=,22100m n ∴+=,22=6100m n m n -⎧⎨+=⎩,32m n ∴=1211=222F PF Smn c y =,=c y mn ∴,=mn y c ∴,16=5y ∴,∴点P 到x 轴的距离为165.故答案为:16520.(2022·上海市崇明中学高二期中)已知双曲线221169x y -=的两个焦点分别为1F 、2F ,P 为双曲线上一点,且122F PF π∠=,则12F PF △的面积为_________.【答案】9【解析】依题意,双曲线221169x y -=的焦点1(5,0)F -、2(5,0)F ,12||||||8PF PF -=,因122F PF π∠=,则有222212121212||||||(||||)2||||F F PF PF PF PF PF PF =+=-+,即有22122||||10836PF PF =-=,解得12||||18PF PF =,所以12F PF △的面积121||||92S PF PF ==.故答案为:921.(2022·江苏·高二专题练习)双曲线()222210,0x y a b a b-=>>过焦点1F 的弦AB ,A 、B 两点在同一支上且长为m ,另一焦点为2F ,则2ABF 的周长为().A .4aB .4a -mC .4a +2mD .4a -2m【答案】C【解析】由双曲线的定义得:212BF BF a -=①,212AF AF a -=②,两式相加得:21214BF BF AF AF a -+-=,即22224BF AF AB BF AF m a +-=+-=,所以224BF AF a m +=+,故2ABF 的周长为2242BF AF AB a m ++=+.故选:C22.(2022·新疆·乌鲁木齐101中学高二期中(文))设1F ,2F 是双曲线22146x y -=的左、右焦点,P 为双曲线上一点,且213PF PF =,则12PF F △的面积等于()A .6B .12C.D.【答案】A【解析】双曲线22146x y -=的实半轴长2a =,半焦距c =12||F F =,因213PF PF =,由双曲线定义得22124PF PF PF -==,解得22PF =,16PF =,显然有22122124||0PF PF F F +==,即12PF F △是直角三角形,所以12PF F △的面积12121||||62PF F S PF PF ==.故选:A23.(2022·辽宁大连·高二期中)已知1F ,2F 分别是双曲线221916x y -=的左、右焦点,若P 是双曲线左支上的点,且1232PF PF ⋅=.则12F PF △的面积为()A .8B.C .16D.【答案】C【解析】因为P 是双曲线左支上的点,所以216PF PF -=,两边平方得221212236PF PF PF PF +-⋅=,所以22121236236232100PF PF PF PF +=+⋅=+⨯=.在12F PF △中,由余弦定理得2221212121212100100cos 022PF PF F F F PF PF PF PF PF +--∠==⋅⋅,所以1290F PF ∠=︒,所以121211321622F PF S PF PF =⋅=⨯=△.故选:C考点4:双曲线上两点距离的最值问题24.(2022·上海中学东校高二期末)过椭圆221(9)9x y m m m +=>-右焦点F 的圆与圆22:4O x y +=外切,该圆直径FQ 的端点Q 的轨迹记为曲线C ,若P 为曲线C 上的一动点,则FP 长度最小值为()A .0B .12C .1D .2【答案】C【解析】椭圆221(9)9x y m m m +=>-,3c ==,所以()3,0F .设以FQ 为直径的圆圆心为C ,如图所示:因为圆O 与圆C 外切,所以2OC CF -=,因为12QF OC =,2QF CF =,所以()1124QF QF OC CF F F -=-=<,所以Q 的轨迹为:以1,F F 为焦点,24a =的双曲线的右支.即2,3,a c b ====:C ()221245x y x -=≥.所以P 为曲线C 上的一动点,则FP 长度最小值为1c a -=.故选:C25.(2022·安徽省宣城市第二中学高二阶段练习(理))已知12,F F 分别是双曲线2214xy -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为()A .2B1C .1D 2【答案】C【解析】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上,12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=,12||||2F M F M a ∴-=①,又12||||2F M F M c +=②,由①+②,解得1||F M a c =+,又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y ,设圆22(1)1y x +-=的圆心为C ,则(0,1)C ,所以||CI =,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选:C .26.(2022·101中学高二期末)双曲线22142x y C -=:的右焦点为F ,点P 在椭圆C 的一条渐近线上.O 为坐标原点,则下列说法错误的是()A B .双曲线22142-=y x 与双曲线C 的渐近线相同C .若PO PF ⊥,则PFO △D .PF【答案】B【解析】A.因为双曲线方程为22142x y C -=:,所以2,a b c ===,则c e a ==故正确;B.双曲线22142x y C -=:的渐近线为y =,双曲线22142-=y x 的渐近线方程为y =,故错误;C.设(),P x y ,因为点P在渐近线上,不妨设渐近线方程为y =,即为直线PO 的方程,又因为PO PF ⊥,所以直线PF的方程为y x =,由22y x y x ⎧=⎪⎨⎪=⎩,解得3x y ⎧=⎪⎪⎨⎪=⎪⎩,即P ⎝⎭,所以12S =,故正确;D.)F,其中一条渐近线为y =,则PF 的最小值为点F到渐近线的距离,即d ==.故选:B27.(2022·北京八中高二期中)已知定点A 、B ,且|AB |=4,动点P 满足||PA |﹣|PB ||=3,则|PA |的最小值是()A .12B .32C .72D .5【答案】A【解析】由动点P 满足||PA |﹣|PB ||=3,且3AB <故可得点P 的轨迹为以,A B 为左右焦点的双曲线,故可得23,24a c ==,解得3,22a c ==,由双曲线的几何性质可得PA 的最小值为12c a -=.故选:A.考点5:双曲线上两线段的和差最值问题28.(2022·湖南·长沙市南雅中学高二期中)设双曲线C :22124y x -=的左焦点和右焦点分别是1F ,2F ,点A 是C 右支上的一点,则128AF AF +的最小值为___________.【答案】8【解析】由双曲线C :22124y x -=,可得21a =,224b =,所以22225c a b =+=,所以1a =,5c =,由双曲线的定义可得1222AF AF a -==,所以122AF AF =+,所以1222882AF AF AF AF +=++,由双曲线的性质可知:24AF c a ≥-=,令2AF t =,则4t ≥,所以122288822AF AF t AF AF t +=++=++,记82y t t=++,设124t t ≤<,则121212882(2)y y t t t t -=++-++121212()(8)t t t t t t --=0<,所以12y y <,即82y t t=++在[)4,+∞上单调递增,所以当4t =时,取得最小值84284++=,此时点A 为双曲线的右顶点(1,0).故答案为:8.29.(2022·黑龙江·鸡西市第一中学校高二期中)P 是双曲线22145x y -=的右支上一点,M 、N 分别是圆()2232x y ++=和()2231x y -+=上的点,则|PM |-|PN |的最大值为_________.【答案】5【解析】设双曲线的左右焦点为12,F F ,则1224PF PF a -==,圆()2232x y ++=的圆心为1(3,0)F -,半径为1r =.圆()2231x y -+=的圆心为2(3,0)F ,半径为21r =,由圆的对称性可得1111||PF r PM PF r -+∣ ,2222||PF r PN PF r -≤≤+,所以1122||||5PM PN PF r PF r -≤+-+=|PM |-|PN |的最大值为5故答案为:530.(2022·黑龙江·哈九中高二期中)已知双曲线的方程为2214y x -=,如图所示,点()A ,B是圆(221x y +=上的点,点C 为其圆心,点M 在双曲线的右支上,则MA MB +的最小值为______1.【解析】由双曲线2214y x -=,可得1,2a b ==,则c =如图所示,设点D 的坐标为,则点,A D 是双曲线的焦点,根据双曲线的定义,可得22-==MA MD a ,所以22+=++≥+MA MB MB MD BD ,又由B 是圆(221x y +-=上的点,圆的圆心为C ,半径为1r =,所以11BD CD ≥-=,所以21MA MB BD +≥++,当点,M B 在线段CD 上时,取得等号,即MA MB +1.1.31.(2022·北京·高二期中)已知点()2,0A -,()2,0B ,(C ,动点M 到A 的距离比到B 的距离多2,则动点M 到B ,C 两点的距离之和的最小值为___________.【答案】4【解析】点()2,0A -,()2,0B ,且动点M 到A 的距离比到B 的距离多2,所以24MA MB AB -=<=,故动点M 的轨迹为双曲线右侧一支,则动点M 到B ,C 两点的距离之和2224MB MC MA MC AC +=+-≥-==,当且仅当M ,A ,C 三点共线时取等号,所以动点M 到B ,C 两点的距离之和的最小值为4.故答案为:4.32.(2022·湖南·嘉禾县第一中学高二阶段练习)过双曲线2218y x -=的右支上的一点P 分别向圆221:(3)4C x y ++=和圆222:(3)1C x y -+=作切线,切点分别为M ,N ,则22||||PM PN -的最小值为()A .8B .9C .10D .11【答案】B【解析】设双曲线的左、右焦点分别为12,F F ,()()2222221212||||413PM PN PF PF PF PF -=---=--()()()121212323PF PF PFPF PF PF =+--=+-()222223414219PF PF =+-=+≥⨯+=.故选:B33.(2022·四川省江油市第一中学高二期中(文))已知12F F ,为双曲线222:1(0)16x yC a a -=>的左、右焦点,点A 在双曲线的右支上,点(72)P ,是平面内一定点.若对任意实数m ,直线430x y m ++=与双曲线C 的渐近线平行,则2AP AF +的最小值为()A .6B .10-C .8D .2【答案】A【解析】∵双曲线C :()2221016x y a a -=>,∴双曲线的渐近线方程为4y x a =±,∵对任意实数m ,直线430x y m ++=与双曲线C 的渐近线平行,∴直线430x y m ++=与双曲线的渐近线方程为4y x a=±平行,∴3a =,∴5c =,∴1F 为()5,0-,∵()7,2P ,∴1PF ==∴211666AP AF AP AF PF +=+-≥-=,∴2AP AF +的最小值为6.故选:A.34.(2022·吉林市田家炳高级中学高二期中)设F 是双曲线221412x y -=的左焦点,()1,4A ,P 是双曲线右支上的动点,则PF PA +的最小值为()A .5B .5+C .7D .9【答案】D【解析】由双曲线221412x y -=,可知24a =,212b =,则22216c a b =+=,所以2a =,4c =,()1,4A 点在双曲线的两支之间,且双曲线右焦点为()4,0F ',由于P 是双曲线右支上的动点,∴由双曲线定义可得,24PF PF a '-==,而5PA PF AF ''+≥==,两式相加得9PF PA +≥,当且仅当A 、P 、F '三点共线时等号成立,则PF PA +的最小值为9.故选:D .35.(2022·江西南昌·高二期中(理))设(),P x y 是双曲线22154x y -=的右支上的点,则代数)AB .CD 3【答案】B设()()0,1,3,0A F ,上式表示PA PF -,由于双曲线22154x y-=的左焦点为()()3,0,3,0F F '-,双曲线的实轴2a =, 2PF PF a PF ''=-=-()2525PA PF PA PF PF PA ''-=-+=--+223110PF PA AF ''-≤=+当P 在F A '的延长线与双曲线右支的交点处时取到等号,所以()25PA PF PF PA '-=--+510故选:B考点6:离心率的值及取值范围36.(2022·广东·汕头市潮南区陈店实验学校高二阶段练习)已知0a b >>,1F ,2F ,是双曲线22122:1x y C a b-=的两个焦点,若点Р为椭圆22222:1x y C a b +=上的动点,当P 为椭圆的短轴端点时,12F PF ∠取最小值,则椭圆2C 离心率的取值范围为()A .22⎛ ⎝⎦B .2⎫⎪⎪⎣⎭C .20,3⎛ ⎝⎦D .23⎫⎪⎢⎪⎣⎭【答案】A【解析】假设点P 在x 轴上方,设()cos ,sin P a b θθ,则()0,πθ∈,由已知得()221F a b +,)222,0F a b +,设直线1PF 的倾斜角为α,直线2PF 的倾斜角为β,∴122sin tan cos PF k a a b αθ==++,222sin tan cos PF k a a b βθ==-+,∴()12tan tan F PF βα∠=-tan tan 1tan tan βααβ-=+()222sin b a b θ+=+-()222222sin sin b a b b a b θθ+=+-()222222sin sin b a b a b θθ=-⎡⎤⎢⎥--+⎢⎥⎢⎥⎢⎥⎣⎦考虑对勾函数()222sin 0sin 1sin b a b y θθθ-=+<≤,由于P 为椭圆的短轴端点时,π2θ=,12F PF ∠取最小值,即12tan F PF ∠取最小值,()222sin 0sin 1sin b a b y θθθ-=+<≤也取最小值,此时sin 1θ=,∵函数在⎛ ⎝上单调递减,∴1≤222a b ≤,解得202e <≤.即椭圆2C离心率的取值范围为2⎛ ⎝⎦.故选:A .37.(2022·四川省仁寿县文宫中学高二阶段练习(文))已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点1F 关于渐近线的对称点恰好落在以2F 为圆心,2OF 为半径的圆上,则该双曲线的离心率为()ABC .2D1【答案】C【解析】由题意,F 1(−c ,0),F 2(c ,0),设一条渐近线方程为y =b a x ,则F 1b =.设F 1关于渐近线的对称点为M ,F 1M 与渐近线交于A ,∴|MF 1|=2b ,A 为F 1M 的中点,又O 是F 1F 2的中点,∴OA ∥F 2M ,∴∠F 1MF 2为直角,∴△MF 1F 2为直角三角形,∴由勾股定理得4c 2=c 2+4b 2∴3c 2=4(c 2−a 2),∴c 2=4a 2,∴c =2a ,∴e =2.故选:C38.(2022·福建·泉州市城东中学高二期中)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,若以点A 为圆心,以b 为半径的圆与C 的一条渐近线交于M ,N 两点,且2OM ON =,则C 的离心率为()A .43BC.3D.2【答案】C【解析】过点A 作AP MN ⊥于点P ,则点P 为线段MN的中点,因为点A 为(,0)a ,渐近线方程为by a=±,所以点A 到渐近线b y x a =的距离为||=ab AP c ,在Rt OAP △中,2||==a OP c ,在Rt NPA中,2||===b NP c ,因为2OM ON =,所以||||||2||||3||=+=+=OP ON NP NP NP NP ,所以223=⨯a b c c,即223a b =,所以离心率e 3==c a .故A ,B ,D 错误.故选:C .39.(2022·江西省万载中学高二阶段练习(理))已知双曲线两条渐近线的夹角为60°,则该双曲线的离心率为()A .2BC .2D .12【答案】C【解析】由题设,渐近线与x 轴夹角θ可能为30°或60°,当30θ=︒,则tan 303b a =︒=,故e =;当60θ=︒,则tan 60ba=︒=2e =;所以双曲线的离心率为2故选:C40.(2022·福建·厦门外国语学校高二期末)如图所示,1F ,2F 是双曲线C :22221()00a x y a b b >-=>,的左、右焦点,过1F 的直线与C 的左、右两支分别交于A ,B 两点.若22345AB BF AF =∶∶∶∶,则双曲线的离心率为()A .2BCD【答案】C 【解析】22345AB BF AF =::::,不妨令3AB =,24BF =,25AF =,22222||||AB BF AF +=,290ABF ∠∴=,又由双曲线的定义得:122BF BF a -=,212AF AF a -=,11345AF AF ∴+-=-,13AF ∴=.123342BF BF a ∴-=+-=,1a \=.在12Rt BF F 中,222221212||||6452F F BF BF =+=+=,又2212||4F F c =,2452c ∴=,c ∴∴双曲线的离心率c e a=.故选;C41.(2022·广东汕头·高二期末)已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-)ABC .D .2【答案】D【解析】双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2bAB a=,所以12AOBA S AB x =⋅=AB ∴=,即2ba =b a=所以2c e a ==;故选:D42.(2022·湖北·鄂州市教学研究室高二期末)已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,以12F F 为直径的圆与双曲线C 有一个交点P ,设12PF F △的面积为S ,若()21212PF PF S +=,则双曲线C 的离心率为()A .2B .2C D .【答案】C【解析】依题意,12PF PF ⊥,令1(,0)F c -,2(,0)F c ,则有22221212||||||4PF PF FF c +==,由212||(12||)PF PF S +=得:21211222||2||||6||||||PF PF PF PF PF PF =++,即有212||||PF PF c =,而222221221214(||)||2||2||||||a PF PF PF PF PF c PF =-=+-=,所以ce a==故选:C43.(2022·安徽省临泉第一中学高二期末)已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1,0F c -,()2,0F c ,M 是双曲线C 上一点,若120MF MF ⋅=,2212OM OF c ⋅=,则双曲线C 的离心率为()A .3B .31+C .2D .21+【答案】B【解析】()()22121221111242OM OF MO F F MF MF MF MF c⎛⎫⋅=-⋅=-+⋅-= ⎪⎝⎭,则222122MF MF c -=,又因为120MF MF ⋅=,12MF MF ⊥,即222124MF MF c +=,所以13MF c =,2MF c =,所以1223a MF MF c c =-=-,则31e =+,故选:B.44.(2022·江西上饶·高二期末(文))已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为122,,c F F 为其左右两个焦点,直线l 经过点(0,)b 且与渐近线平行,若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线C 离心率的取值范围为()A .(1,2)B .(2,3)C .(1,3)D .(2,)+∞【答案】A【解析】因为满足122PF PF b -=的所有点在以12,F F 为焦点,长轴长为2b ,短轴长为2222c b a -=的双曲线,即22221x y b a-=上.故若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线22221x y b a -=与直线l 有交点即可.又直线:b l y x b a =±+,数形结合可得,当b a <或22221x y b a-=的经过一象限的渐近线的斜率a b b a >即可,两种情况均有2222a b c a >=-,故222c a <,故离心率(1,2)e ∈故选:A考点7:双曲线的简单几何性质问题45.(多选题)(2022·河北·衡水市第二中学高二期中)已知曲线C :221mx ny +=,则()A .若0m n =>,则曲线CB .若0m n >>,则曲线C 是椭圆,其焦点在y 轴上C .若曲线C过点(,⎛⎫⎪ ⎪⎝⎭,则C 是双曲线D .若0mn =,则曲线C 不表示任何图形【答案】BC【解析】对于A ,0m n =>时,曲线C 可化为221x y n+=A 错误;对于B ,0m n >>时,曲线C 可化为22111x y m n+=表示的是椭圆,而11 0m n<<,所以其焦点在y 轴上,故B 正确;对于C,将点(,3⎛⎫- ⎪ ⎪⎝⎭,代入曲线C :221mx ny +=,有2311512133m n m m n n ⎧+==⎧⎪⎪⇒⎨⎨+==-⎪⎪⎩⎩,0mn <,所以曲线C 是双曲线,故C 正确;对于D ,若1m =,0n =,满足条件,此时曲线C :21x =,表示两条直线,故D 错误,故选:BC.46.(多选题)(2022·江苏连云港·高二期中)关于,x y 的方程2222126x y m m+=+-(其中26m ≠)表示的曲线可能是()A .焦点在y 轴上的双曲线B .圆心为坐标原点的圆C .焦点在x 轴上的双曲线D.长轴长为【答案】BC【解析】()()2222622m m m +--=-,当m =22264m m +=-=,此时2222126x y m m +=+-表示圆,故B 正确.当m <<22620m m ->+>,故2222126x y m m+=+-表示焦点在y 轴上的椭圆,若此时长轴长为268m -=即22m =-,矛盾,故D 错误.若m <m >260m -<,故2222126x y m m +=+-表示焦点在x 轴上的双曲线,故A 错误,C 正确.若m <<m <<22260m m +>->,故方程2222126x y m m+=+-表示焦点在x 轴上的椭圆,若长轴长为228m +=即m =,矛盾,故D 错误.故选:BC.47.(多选题)(2022·河北省曲阳县第一高级中学高二期中)若方程22131x y t t +=--所表示的曲线为C ,则下面四个选项中正确的是()A .若13t <<,则曲线C 为椭圆B .若曲线C 为椭圆,且长轴在y 轴上,则23t <<C .若曲线C 为双曲线,则3t >或1t <D .曲线C 可能是圆.【答案】BCD【解析】A.若方程22131x y t t +=--表示椭圆,则301031t t t t ->⎧⎪->⎨⎪-≠-⎩,解得13t <<且2t ≠,故错误;B.若曲线C 为椭圆,且长轴在y 轴上,则301031t t t t ->⎧⎪->⎨⎪-<-⎩,解得23t <<,故正确;C.若曲线C 为双曲线,则()()310t t --<,解得3t >或1t <,故正确;D.曲线C 是圆,则301031t t t t ->⎧⎪->⎨⎪-=-⎩,解得2t =,故正确;故选:BCD48.(多选题)(2022·云南·罗平县第一中学高二开学考试)已知曲线22:124x y C m m+=+-,则()A .当2m =时,则C的焦点是)1F,()2F B .当6m =时,则C 的渐近线方程为12y x =±C .当C 表示双曲线时,则m 的取值范围为2m <-D .存在m ,使C 表示圆【答案】ABD【解析】对于A ,当2m =时,曲线22:142x y C +=,则C 的焦点是)1F ,()2F ,所以A 正确;对于B ,当6m =时,曲线22:182x y C -=,则C 的渐近线方程为12y x =±,所以B 正确;对于C ,当C 表示双曲线时,()()240m m +-<,解得:4m >或2m <-,所以C 不正确;对于D ,当24m m +=-,即1m =时,曲线C 表示圆,所以D 正确.故选:ABD.49.(多选题)(2022·江苏江苏·高二期中)已知双曲线C :2213x y -=,则()A .双曲线C 的焦距为4B .双曲线C 的两条渐近线方程为:y =C .双曲线C 的离心率为3D .双曲线C 有且仅有两条过点()1,0Q 的切线【答案】ABD【解析】由双曲线标准方程得a =1b =,所以2c ==,焦距为4,A 正确;b a ==y =,B 正确;离心率为3c e a ===,C 错误;设过(1,0)Q 的直线的方程为(1)y k x =-,代入双曲线方程得:2222(13)6(33)0k x k x k -+-+=(*),2130k -=,即3k =±时,方程(*)只有一解,此时直线与渐近线平行,与双曲线相交,又由422364(13)(33)0k k k ∆=+-+=得2k =±,此时方程(*)有两个相等的实数解,此时直线与双曲线相切,即相切的直线有两条,D 正确.故选:ABD .50.(多选题)(2022·黑龙江·哈师大附中高二开学考试)双曲线的标准方程为2213y x -=,则下列说法正确的是()A .该曲线两顶点的距离为B .该曲线与双曲线2213x y -=有相同的渐近线C .该曲线上的点到右焦点的距离的最小值为1D .该曲线与直线l :)2y x =-,有且仅有一个公共点【答案】CD【解析】由已知双曲线中1,a b =2c =,顶点为(1,0)和(1,0)-,距离为2,A 错;该双曲线的渐近线方程是y =,而双曲线2213x y -=的渐近线方程是y =,不相同,B 错;该双曲线上的点到焦点的距离的最小值为1c a -=,C 正确;直线l 与该双曲线的一条渐近线平行,与双曲线有且只有一个公共点,D 正确,故选:CD .51.(2022·上海市新场中学高二期中)当0ab <时,方程22ax ay b -=所表示的曲线是()A .焦点在x 轴的椭圆B .焦点在x 轴的双曲线C .焦点在y 轴的椭圆D .焦点在y 轴的双曲线【答案】D【解析】当ab <0时,方程22ax ay b -=化简得221y x b ba a-=--,∴方程表示双曲线.焦点坐标在y 轴上;故选:D .考点8:利用第一定义求解轨迹52.(2022·河南·濮阳一高高二期中(理))若双曲线C 的方程为22145x y -=,记双曲线C 的左、右顶点为A ,B .弦PQ ⊥x 轴,记直线PA 与直线QB 交点为M ,其轨迹为曲线T ,则曲线T 的离心率为________.【解析】设P (0x ,0y ),则Q (0x ,-0y ),设点M (x ,y ),又A (-2,0),B (2,0),所以直线PA 的方程为00(2)2y y x x =++①,直线QB 的方程为00(2)2y y x x -=--②.由①得0022y yx x =++,由②得0022y y x x =---,上述两个等式相乘可得22022044y y x x =---,∵P (0x ,0y )在双曲线22145x y -=上,∴2200145x y -=,可得2200454y x -=,∴2020544y x =-∴22544y x =--,化简可得22145x y +=,即曲线T 的方程为22145x y +=53.(2022·吉林·白城一中高二期中)已知ABC 的两个顶点A B ,分别为椭圆2255x y +=的左焦点和右焦点,且三个内角A B C ,,满足关系式1sin sin sin 2B AC -=.(1)求线段AB 的长度;(2)求顶点C 的轨迹方程.【解析】(1)椭圆的方程为2255x y +=∴椭圆的方程为2215x y +=222=514a b c ∴==,,2c ∴=A B ,分别为椭圆2215x y +=的左焦点和右焦点,()()2,02,0A B ∴-,=4AB ∴∴线段AB的长度4(2)ABC 中根据正弦定理得:=2sin sin sin AB BC ACR C A B==(R 为ABC 外接圆半径),sin =,sin 222BC AC ABA B C R R R∴==1sin sin sin 2B A C -=12222AC BC AB R R R∴-=⨯1242AC BC AB AB ∴-==<=∴C 点的轨迹是以A B ,为左右焦点的双曲线的右支,且22AC BC a -==,=4=2AB c=12a c ∴=,,2223b c a =-=,∴顶点C 的轨迹方程为()22113yx x -=>54.(2022·全国·高二专题练习)如图所示,已知定圆1F :()2251x y ++=,定圆2F :()22516x y -+=,动圆M 与定圆1F ,2F 都外切,求动圆圆心M的轨迹方程.【解析】圆1F :()2251x y ++=,圆心()15,0F -,半径11r =;圆2F :()22516x y -+=,圆心()25,0F ,半径24r =.设动圆M 的半径为R ,则有11=+MF R ,24=+MF R ,∴2112310MF MF F F -=<=.∴点M 的轨迹是以1F ,2F 为焦点的双曲线的左支,且32a =,5c =,于是222914b c a =-=.∴动圆圆心M 的轨迹方程为2231991244≤-⎛⎫-= ⎪⎝⎭x y x .55.(2022·福建·厦门一中高二期中)已知动圆M 与圆221:(4)4C x y ++=外切与圆222:(4)4C x y -+=内切,则动圆圆心M 的轨迹C 的方程为___________.【答案】()2212412x y x -=≥【解析】设动圆圆心(),M x y ,半径为r ,因为圆M 与圆221:(4)4C x y ++=外切与圆222:(4)4C x y -+=内切,圆心()()124,0,4,0C C -,12||8C C =,所以1222MC r MC r ⎧=+⎪⎨=-⎪⎩,则12||||48MC MC -=<,于是点M 的轨迹是以点12,C C 为焦点的双曲线的右支.由题意,224,282,4,12a c a c b ==⇒===,于是,C 的方程为:()2212412x y x -=≥.故答案为:()2212412x y x -=≥.56.(2022·上海市新场中学高二期中)已知两点()(),3,03,0A B -,若4PA PB -=±,那么P 点的轨迹方程是______.【答案】22145x y -=【解析】设P 点的坐标为(),x y 因为44PA PB PA PB -=±⇒-=所以P 点的轨迹为焦点在x 轴的双曲线且3,242c a a ==⇒=所以b ==所以P 点的轨迹方程为:22145x y -=故答案为:22145x y -=57.(2022·吉林一中高二期中)若动圆过定点A ()3,0-且和定圆C :()2234x y -+=外切,则动圆圆心P 的轨迹方程是_________.【答案】2218y x -=()1x ≤-【解析】定圆的圆心为C()3,0,与A ()3,0-关于原点对称,设动圆P 的半径为r ,则有PA r =,因为两圆外切,所以2=+PC r ,即26PC PA AC -=<=,所以点P 的轨迹是以A ,C 为焦点的双曲线的左支,则1a =,3c =,2228b c a =-=,所以轨迹方程为2218y x -=()1x ≤-故答案为:2218y x -=()1x ≤-58.(2022·广东·深圳市宝安中学(集团)高二期中)已知点(3,0),(3,0),(1,0)M N B -,动圆C 与直线MN 相切于点B ,过M ,N 与圆C 相切的两直线相交于点P ,则点P 的轨迹方程为()A .221(1)8y x x -=>B .221(1)8y x x -=<-C .221(0)8y x x +=>D .221(1)10y x x -=>【答案】A【解析】设直线PM ,PN 与圆C 相切的切点分别为点Q ,T,如图,由切线长定理知,MB =MQ ,PQ =PT ,NB =NT ,于是有|PM|-|PN|=|MQ|-|NT|=|MB|-|NB|=2<6=|MN|,则点P 的轨迹是以M ,N 为左右焦点,实轴长2a =2的双曲线右支,虚半轴长b 有22238b a =-=,所以点P 的轨迹方程为221(1)8y x x -=>.故选:A59.(2022·江苏省镇江中学高二期中)动圆M 与圆1C :()2241x y ++=,圆2C :22870x y x +-+=,都外切,则动圆圆心M 的轨迹方程为()A .22115x y +=B .22115y x -=C .()221115y x x -=≥D .()221115y x x -=≤-【答案】D【解析】圆1C :()2241x y ++=,圆心()14,0C -,半径11r =.圆2C :()222287049x y x x y +-+=⇒-+=,圆心()24,0C ,半径23r =.设(),M x y ,半径为r ,因为动圆M 与圆1C ,2C 都外切,所以121122123MC r MC MC C C MC r ⎧=+⎪⇒-=<⎨=+⎪⎩,所以M 的轨迹为以12,C C 为焦点,22a =的双曲线左支.所以1a =,4c =,解得b =即M 的轨迹方程为:()221115y x x -=≤-.故选:D60.(2022·新疆·博尔塔拉蒙古自治州蒙古中学高二期中)动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是()A .双曲线B .双曲线的一支C .两条射线D .一条射线【答案】D。
(完整版)双曲线专题复习(精心整理).
《圆锥曲线》 ---------双曲线主要知识点1、双曲线的定义 :(1)定义: _____________________________________________________________(2)数学符号: ________________________(3)应注意问题:2、双曲线的标准方程:图像标准方程不一样点同样点注意:怎样依据双曲线的标准方程判断出它的焦点在哪个轴上?进一步,怎样求出焦点坐标?3、双曲线的几何性质标准方程焦点焦距性范围极点质实轴虚轴对称性离心率渐近线注意:( 1)怎样比较标准地在直角坐标系中画出双曲线的图像?(2)双曲线的离心率的取值范围是什么?离心率有什么作用?(3)当a b时,双曲线有什么特色?4.双曲线的方程的求法(1)双曲线的方程与双曲线渐近线的关系①已知双曲线段的标准方程是x2y21 (a 0, b 0)x2y21(a 0, b 0) ),a2b2(或2a2b则渐近线方程为________________________________________________________________ ;②已知渐近线方程为 bx ay0 ,则双曲线的方程可表示为__________________________ 。
(2)待定系数法求双曲线的方程x2y21 有共同渐近线的双曲线的方程可表示为_______________________ ;①与双曲线b2a2②若双曲线的渐近线方程是y b_____________________ ;x ,则双曲线的方程可表示为ax2y21 共焦点的双曲线方程可表示为_______________________________ ;③与双曲线b2a2④过两个已知点的双曲线的标准方程可表示为______________________________________ ;x2y2⑤与椭圆a2b2 1 (a b 0) 有共同焦点的双曲线的方程可表示为______________________________________________________________________________ 。
高考数学专题——双曲线的定义及几何性质
高三数学一轮复习专讲专练——双曲线一、要点精讲1、双曲线的定义与几何性质:定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22b x =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x ab y ±= x ba y ±= 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F ()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=2、双曲线的形状与e 的关系:因为双曲线的斜率1222-=-==e aa c ab k ,所以e 越大,则渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。
故双曲线的离心率越大,它的开口就越宽阔。
3、共渐近线的双曲线系方程:与-22a x 22b y =1有相同渐近线的双曲线系方程可设为-22ax ()022≠=λλb y ,若0>λ,则双曲线的焦点在 轴上;若0<λ,则双曲线的焦点在 轴上。
二、高考链接1、(2010安徽理)双曲线方程为2221x y -=,则它的右焦点坐标为A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、52⎛⎫⎪ ⎪⎝⎭C 、62⎛⎫⎪ ⎪⎝⎭D 、)3,02.(2013年湖北)已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 ( ) A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.(2013课标)已知双曲线2222:1x y C a b -=(0,0)a b >>52则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±4.(2013湖南)设F 1、F 2是双曲线C,22221a x y b-= (a>0,b>0)的两个焦点。
期末专题复习-双曲线
5、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法
6、椭圆、双曲线、抛物线与直线问题的解题步骤:
(1)根据已知条件设合适的直线方程
(2)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y或x
(3)求出判别式,并设点使用韦达定理
(4)若求弦长使用弦长公式;
期末专题复习:双曲线
一、双曲线的定义、双曲线的标准方程和性质
双曲线的图象和性质
双曲线定义
若 为双曲线上任意一点,则有 (2a<2c)
若 =2c,则点M的轨迹为两条射线
若 >2c,则点M无轨迹
焦点位置
x轴
y轴
图形
标准方程
焦点坐标
F1(c, 0 ), F2( c, 0 )
F1(0,c, ), F2( 0, c )
12、设P是双曲线 右支上的一点,M和N分别是圆 上的点,则 的最大值为。
对称轴
关于x轴、y轴和原点对称
离心率
(e>1)
范围
,
渐近线
2、判断双曲线是x型还是y型只要看 前的符号是正还是 前的符号是正,若 前的符号为正则x型,若 前的符号为正则y型,同样的,哪个分母前的符号为正,则哪个分母就为
3、求双曲线方程一般用待定系数法,先判定双曲线是x型还是y型,若为x型则可设为 ,若为y型则可设为 ,若不知什么型且双曲线过两点,则设为稀里糊涂型:
(1)与椭圆 有公共焦点,且离心率
(2)与双曲线 有共同的渐近线,且过点
(3)与双曲线 有公共焦点,且过点
10、已知双曲线 ( )的右焦点为F,点A在双曲线的渐近线上,△OAF(O为原点)是边长为2的等边三角形,则双曲线的方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
A. x2 y2 1 8 10
B. x2 y2 1 45
C. x2 y2 1 54
D. x2 y2 1 43
6.(2016
全国
II)已知 F1 , F2 是双曲线 E
:x2 a2
y2 b2
1 的左、右焦点,点 M
在 E 上,MF1 与
x 轴垂直,sin MF2 F1
1 3
,
则 E 的离心率为
x2 a2
y2 b2
1(a
0,b
0)
的一条渐近线被圆
(x 2)2 y2 4 所截得的弦长为 2,则 C 的离心率为
A.2
B. 3
C. 2
D. 2 3 3
5 .( 2017
新课标Ⅲ)已知双曲线
C
:
x2 a2
y2 b2
1(a
0,b
0)
的一条渐近线方程为
y
5 x ,且与椭圆 2
x2 y2 1有公共焦点,则 C 的方程为 12 3
原点,以 OF 为直径的圆与圆 x2 y2 a2 交于 P,Q 两点.若 PQ OF ,则 C 的离心率为
A. 2
B. 3
C.2
D. 5
一、选择题
2010-2018 年
1.(2018 全国卷Ⅰ)已知双曲线 C : x2 y2 1, O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3
F1,F2,过
F1 的直线与
C
的
uuur uuur uuur uuur 两条渐近线分别交于 A,B 两点.若 F1A AB , F1B F2B 0 ,则 C 的离心率为____________.
4.(2019 年全国 II 理
11)设
F
为双曲线
C: x2 a2
y2 b2
1(a
0, b
0) 的右焦点, O 为坐标
x
a 与双曲线 C :
x2 a2
y2 b2
1(a
0, b
0) 的两条渐近线分别交于 D, E
两点,若 ODE 的面积为 8,则 C 的焦距的最小值为( )
A. 4
B. 8
C. 16
D. 32
3.(2020•全国 3 卷)设双曲线 C: x2 a2
y2 b2
1 (a>0,b>0)的左、右焦点分别为 F1,F2,离心率为
A. 2
B.
3 2
C. 3
D.2
7 .( 2015
新课标
1)已知
M (x0 , y0 )
是双曲线
C
:
x2 2
y2
1 上的一点,
F1, F2
是
C
的两个焦点,若
MF1 MF 2 0 ,则 y0 的取值范围是
二、填空题
1.(2017
新课标Ⅰ)已知双曲线
C
:
x a
2 2
y2 b2
1(a 0,b
36
45
C. x2 y2 1 D. x2 y2 1
63
54
11.(2010 新课标)中心在原点,焦点在 x 轴上的双曲线的一条渐近线经过点 (4, 2) ,则它的离心率为
A. 6
B. 5
6
C.
2
5
D.
2
2
A.
y
1 4
x
B. y 1 x 3
C. y 1 x 2
D. y x
10.(2010 新课标)已知双曲线 E 的中心为原点, P(3, 0) 是 E 的焦点,过 F 的直线 l 与 E 相交于 A , B 两点,
且 AB 的中点为 N (12, 15) ,则 E 的方程式为
A. x2 y2 1 B. x2 y2 1
5 .P
是 C 上一点,且 F1P⊥F2P.若△PF1F2 的面积为 4,则 a=( )
A. 1
B. 2
C. 4
D. 8
2019 年
1.(2019 全国 III 理 10)双曲线 C: x2 y2 =1 的右焦点为 F,点 P 在 C 的一条渐进线 42
上,O 为坐标原点,若 PO = PF ,则△PFO 的面积为
0) 的右顶点为 A ,以 A 为圆心, b 为半径做圆 A ,
圆 A 与双曲线 C 的一条渐近线交于 M 、 N 两点.若 MAN =60°,则 C 的离心率为________.
A. ( 3 , 3 ) 33
B. ( 3 , 3 ) 66
C. ( 2 2 , 2 2 ) 33
D. ( 2 3 , 2 3 ) 33
3.(2018
全国卷Ⅲ)设 F1 , F2 是双曲线 C
x2
:
a2
y2 b2
1(a
0,b
0)
的左、右焦点, O 是坐标原点.过 F2 作 C
的一条渐近线的垂线,垂足为 P .若 | PF1 | 6 | OP | ,则 C 的离心率为
A. 5
B.2
C. 3
D. 2
4.(2017 新课标Ⅱ)若双曲线 C :
近线的交点分别为 M 、 N .若 OMN 为直角三角形,则 | MN | =
A. 3 2
B.3
C. 2 3
D.4
2.(2018
全国卷Ⅱ)双曲线
x2 a2
y2 b2
1(a
0, b
0) 的离心率x
C. y 2 x 2
D. y 3 x 2
A. 3 2 4
B. 3 2 2
C. 2 2
D. 3 2
2.(2019 江苏
7)在平面直角坐标系 xOy 中,若双曲线 x2
y2 b2
1(b
0) 经过点(3,4),
则该双曲线的渐近线方程是 .
3.(2019
全国
I
理
16)已知双曲线
x2 C: a2
y2 b2
1(a
0, b
0) 的左、右焦点分别为
8.(2014 新课标 1)已知 F 是双曲线 C : x2 my2 3m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离
为
A. 3
B.3
C. 3m
D. 3m
9.(2013 新课标
1)已知双曲线
C
:
x a
2 2
y2 b2
1( a
0, b
0 )的离心率为
5 ,则 C 的渐近线方程为 2
专题双曲线
2020 年
1.(2020•全国
1
卷)已知
F
为双曲线 C :
x2 a2
y2 b2
1(a
0, b
0) 的右焦点,A
为
C
的右顶点,B
为
C
上的点,且
BF 垂直于 x 轴.若 AB 的斜率为 3,则 C 的离心率为______________.
2(. 2020•全国
2
卷)设 O 为坐标原点,直线