数列通项公式求法(叠加,叠乘等)全面
(完整版)求数列的通项公式方法总结
题型四:求数列的通项公式一.公式法:当题中已知数列是等差数列或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。
二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法1、叠加法:一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。
即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥;【例1】已知数列{}n a 满足11211,2n n a a a n n +==++,求数列{}n a 的通项公式。
解:(1)由题知:121111(1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++……1111111()()()121122n n n n =-+-++-+---…… 312n=- 2、叠乘法:一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。
即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 【例2】在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。
解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n , 1a a n =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅Λ 所以n a n 1= 3、构造法:当数列前一项和后一项即n a 和a n-1的递推关系较为复杂时,我们往往对原数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或等差数列)。
数列通项公式的五种求法
例3 . 已 知数列( a ) 中 . a = ÷, 前n 项和s 与 a 的关系是s = n
・ . .
( 2 n 一 1 ) a , 试 求 通 项公 式a .
解析 : 首 先 由S = n ( 2 n 一 1 ) a 易 求 得 递 推 公式 :
点评 : 这种 方 法 类 似 于换 元 法 , 主 要 用 于 已 知 递 推 关 系 式
求 通项 公 式 .
1 O
项 公式 .
或 等 比数 列 的 通 项 公式 . 只 需 求 得 首 项 及 公差 公 比 即可 .
二、 叠 加 法
解: a l = s 1 - 0 , 当n ≥2 时, = s 一 s 1 = ( n ‘ - 1 ) - E ( n - 1 ) ‘ 一 1 ] = 2 n - 1 .
= — —
a
一
2
2 n一1
a 1 5
、
公 式 法 )等 式相 乘 得 :
a
n
例1 . 等差数列{ a } 是递减数列. 且a 2 ・ a 3 ・ a 4 = 4 8 , 8 2 + a 3 + a 4 = 1 2 .
则数列的通项公式是(
一
・ .
例2 . 若在数列{ a ) 中, a 。 = 3 , a + 。 一 + n , 求通项a n .
解 析 :由a n + l + n 得a + l — a = n _ . _ ~ ~ l = n-1 . a l—a 2 = n-2,
一 一 一
_ a 1 不 适 合 于 此 等 式 , . ‘ ~ = 1 ) 2 ) .
:
例5 : 已知数 { a } 的递推关 系为a + 。 = 2 a + l , 且a 。 : 1 求 通 项
数列史上最全求通项公式10种方法并配大量习题及答案
数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
高中数学高二数学 数列通项公式求法集锦
数列通项公式求法集锦一、累加法(叠加法、迭加法)1、d a a n n +=+1(d 为常数):等差数列为代表2、)(1n f a a n n +=+则)1(.....)2()1(......)1()2()1(121-++++==-+-+=-+=--n f f f a n f n f a n f a a n n n )(n f 为关于n 的函数,一般有以下形式:(1) 裂项消项法:)11()(2k n n k A kn n A n f +-=+= 、)11()(2nk n k A kn n A n f --=-= )())(()(n k n k A n k n n k n n k n A k n n A n f -+=-+++-+=++=例:1111)(2+-=+=n n n n n f ; 裂项方法:令11)(2+-=+=n B n A n n n f ,则n n A n B A n n Bn n A n B n A n n ++-=+-+=+-=+222)()1(11,对比n n +21与n n A n B A ++-2)(可以得到等式⎩⎨⎧==-10A B A ,则⎩⎨⎧-==11B A ,所以1111)(2+-=+=n n n n n f 。
(2)常用数列:b kn n f +=)((等差数列) n q k n f ⋅=)((等比数列)累加时为求等差或等比数列的前n 项和。
(3)特殊数列:2)(n n f = 3)(n n f =6)12)(1(......3212222++=++++n n n n 22223333).....321()2)1((4)1(......321n n n n n n ++++=+=+=++++ 二、累乘法(叠乘法、迭乘法)1、n n qa a =+1(q 为非零常数):等比数列为代表:11-⋅=n n q a a ;2、n n a n f a •=+)(1,则)1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n)(n f 为关于n 的函数,一般有如下形式(1)kn k n n f +++=1)(, )1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n =111.....231211+++•=+++••++•++k k n a k n k n k k k k a (2)1)(-•=n q k n f)1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n =1)(.....)()(121-•=⋅••⋅•⋅••-n S n n q k q k q k q k k a (S n-1 为q 的指数(等差数列)的前n-1项和)三、q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
数列通项公式的求法大全
数列通项公式的求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈.本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项.二、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
高中数学-数列求通项公式方法汇总及经典练习(含答案)
高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
高考数学题型全归纳:叠加、叠乘、迭代递推、代数转化(含问题详解)
叠加、 叠乘、迭代递推、代数转化数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜测出a n 的表达式,然后用数学归纳法证明;另一类是将递推关系,用代数法、迭代法、换元法,或是转化为根本数列〔等差或等比〕的方法求通项.第一类方法要求学生有一定的观察能力以与足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法.一、叠加相消.类型一:形如a 1+n =a n + f <n>, 其中f <n> 为关于n 的多项式或指数形式〔a n〕或可裂项成差的分式形式.——可移项后叠加相消.例1:数列{a n },a 1=0,n ∈N +,a 1+n =a n +〔2n -1〕,求通项公式a n . 解:∵a 1+n =a n +〔2n -1〕∴a 1+n =a n +〔2n -1〕 ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+<a 2-a 1>+<a 3-a 2>+…+<a n -a 1-n >=0+1+3+5+…+<2n -3> =21[1+<2n -3>]< n -1>=< n -1>2n ∈N + 练习1:⑴.数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n, 求通项公式a n .⑵.数列{a n }满足a 1=3,)1(21+=-+n n a a n n ,n ∈N +,求a n .二、叠乘相约.类型二:形如)(1n f a a n n =+.其中f <n> =p pc mn b mn )()(++ 〔p ≠0,m ≠0,b –c = km,k ∈Z 〕或 n n a a 1+=kn 〔k ≠0〕或nn a a 1+= km n< k ≠ 0, 0<m 且m ≠ 1>. 例2:数列{a n }, a 1=1,a n >0,< n +1> a 1+n 2-n a n 2+a 1+n a n =0,求a n . 解:∵< n +1> a 1+n 2-n a n 2+a 1+n a n =0 ∴ [<n +1> a 1+n -na n ]<a 1+n +a n >= 0∵ a n >0 ∴ a 1+n +a n >0 ∴ <n +1> a 1+n -na n =0 ∴11+=+n n a a n n ∴nn n n n nn a a a a a a a a a a n n n n n n n 11212312111232211=⨯⨯⨯--⨯--⨯-=⨯⨯⨯⨯⨯=-----练习2:⑴数列{a n }满足S n =2na n < n ∈N *>, S n 是{ a n }的前n 项和,a 2=1,求a n . ⑵.数列{a n }满足a 1+n = 3 na n < n ∈N *>,且a 1=1,求a n . 三、逐层迭代递推.类型三:形如a 1+n = f <a n >,其中f <a n >是关于a n 的函数.——需逐层迭代、细心寻找其中规律.例3:数列{a n },a 1=1, n ∈N +,a 1+n = 2a n +3 n,求通项公式a n . 解: ∵a 1+n = 2 a n +3 n∴ a n =2 a 1-n +3 n-1=2<2 a 2-n +3n-2>+3n-1= 22<2 a 3-n +3n-3>+2·3n-2+3n-1=……=2 n-2<2 a 1+3>+2 n-3·3 2+2n-4·3 3+2n-5·3 4+…+22·3 n-3+2·3 n-2+3n-1=2n-1+2n-2·3+2n-3·3 2+2n-4·3 3+…+22·3n-3+2·3n-2+3n-1练习3:⑴.假如数列{a n }中,a 1=3,且a 1+n =a 2n 〔n ∈N +〕,求通项a n .⑵.数列{a n }的前n 项和S n 满足S n =2a n +()n1-,n ∈N +,求通项a n . 四、运用代数方法变形,转化为根本数列求解.类型四:形如1+n n a a = 1++n n qa pa ,〔pq ≠ 0〕.且0≠n a 的数列,——可通过倒数变形为根本数列问题.当p = -q 时,如此有:pa a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,如此有:ppa q a n n 111+-=+.同类型五转化为等比数列. 例4:假如数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . 解: ∵221+=+n n n a a a又,011>=a ∴0>n a ,∴n n a a 12111+=+∴21111=-+n n a a ∵111=a∴数列{ a n }是首项为1,公差为21的等差数列. ∴na 1=1+()121-n ∴a n =12+n n ∈N +练习4:f <n> =x x +32,数列{ a n }满足 a 1=1,a n =23f <a 1-n >,求a n . 类型五:形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数. 当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x,即a 1+n + x = pa n + q + x⇒a 1+n + x = p<a n +p x q +>, 令x =p x q +∴x =1-p q时,有a 1+n + x = p<a n + x >, 从而转化为等比数列 {a n +1-p q} 求解. 例5:数列{a n }中,a 1=1,a n =21a 1-n + 1,n= 1、2、3、…,求通项a n . 解:∵ a n = 21a 1-n + 1 ⇒ a n -2 =21<a 1-n -2>又∵a 1-2 = -1≠0 ∴数列{ a n -2}首项为-1,公比为21的等比数列.∴ a n -2 = -11)21(-⨯n 即 a n = 2 -2n-1 n ∈N +练习5:⑴. a 1=1,a n = 2 a 1-n + 3 <n = 2、3、4…> ,求数列{a n }的通项.⑵. 数列{a n }满足a 1=21,a 1+n =12+n n a a ,求a n .类型六:形如a 1+n =pa n + f <n>,p ≠0且 p 为常数,f <n>为关于n 的函数. 当p =1时,如此 a 1+n =a n + f <n> 即类型一.当p ≠1时,f <n>为关于n 的多项式或指数形式〔a n〕或指数和多项式的混合形式. ⑴假如f <n>为关于n 的多项式〔f <n> = kn + b 或kn 2+ bn + c,k 、b 、c 为常数〕,——可用待定系数法转化为等比数列.例6:数列{ a n }满足a 1=1,a 1+n = 2a n +n 2,n ∈N +求a n . 解:令a 1+n + x[a<n+1>2+ b<n+1> + c] = 2<a n + an 2+ bn + c>即 a 1+n = 2 a n + <2a –ax>n 2+ <2b -2ax – bx>n +2c –ax –bx – cx 比拟系数得:⎪⎩⎪⎨⎧=---=--=-0202212cx bx ax c bx ax b ax a ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=-=x bx ax c x ax b x a 22221⇒ 令x = 1,得:⎪⎩⎪⎨⎧===321c b a ∴ a 1+n + <n+1>2+2<n+1> + 3 = 2<a n + n 2+2n + 3> ∵ a 1+1+2×1+3 = 7令b n = a n + n 2+2n + 3 如此 b 1+n = 2b n b 1= 7 ∴数列{ b n }为首项为7,公比为2德等比数列∴ b n = 7× 21-n 即 a n + n 2+2n + 3 = 7× 21-n ∴ a n = 7× 21-n -< n 2+2n + 3 > n∈N +⑵假如f <n>为关于n 的指数形式〔a n〕. ①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例7:〔同例3〕假如a 1=1,a n = 2 a 1-n + 31-n ,<n = 2、3、4…> ,求数列{a n }的通项a n .解: ∵ a n = 2 a 1-n + 31-n ∴ 令a n + x ×3n= 2<a 1-n +x ×31-n > 得 a n = 2 a 1-n -x ×31-n令-x ×3n= 3n⇒x = -1 ∴ a n -3n= 2<a 1-n -31-n > 又 ∵ a 1-3 = - 2∴数列{n n a 3-}是首项为-2,公比为2的等比数列. ∴n n a 3-=-2·21-n 即a n = 3n -2nn ∈N +例8:数列{ a n }中,a 1=5且a n =3a 1-n + 3n-1 <n = 2、3、4…> 试求通项a n .解: a n =3a 1-n + 3n -1 ⇒ a n +-=--)21(3211n a 3n⇒132132111+-=---n n n n a a ⇒{n n a 321-}是公差为1的等差数列.⇒nn a 321-=3211-a +<1-n > = 3215-+<1-n > = n +21 ⇒a n = <213)21+⨯+n n n ∈N +⑶假如f <n>为关于n 的多项式和指数形式〔a n 〕的混合式,如此先转换多项式形式在转换指数形式.例如上面的例8.练习6:⑴.数列{a n }中a 1= 1,a 1+n = 3 a n + n ,+∈N n ; 求{a n }的通项.⑵设a 0为常数,且a n = 31-n -2 a 1-n <n ∈N +且n ≥ 2 >.证明:对任意n ≥ 1,a n =51[3n + <-1>1-n 2n ] +<-1>n 2na 0. 类型七:形如a 2+n = p a 1+n + q a n < pq ≠ 0, p 、q 为常数且p 2+ 4q > 0 >,——可用待定系数法转化为等比数列.例9: 数列{a n }中a 1= 1, a 2= 2且n n n a a a 212+=++ ,+∈N n ; 求{a n }的通项. 解:令a 2+n +x a 1+n = <1+x> a 1+n + 2 a n ⇒ a 2+n +x a 1+n = <1+x>< a 1+n + x+12a n >令x =x+12⇒x 2+ x – 2 = 0 ⇒x = 1或 -2当x = 1时,a 2+n + a 1+n =2<a 1+n + a n > 从而a 2+ a 1= 1 + 2 = 3 ∴数列{ a 1+n + a n }是首项为3且公比为2的等比数列. ∴ a 1+n + a n = 312-⨯n …………①当x = - 2时, a 2+n - 2a 1+n = - <a 1+n -2a n > , 而 a 2- 2a 1= 0 ∴ a 1+n - 2a n = 0 …………② 由①、②得:a n = 21-n , +∈N n练习7:⑴: a 1= 2, a 2= 35, n n n a a a 323512-=++ ,<n = 1、2、3、……>,求数列{ a n }的通项.⑵数列:1、1、2、3、5、8、13、……,根据规律求出该数列的通项. 五、数列的简单应用.例10:设棋子在正四面体ABCD 的外表从一个顶点移向另外三个顶点时等可能的.现抛掷骰子,根据其点数决定棋子是否移动,假如投出的点数是奇数,如此棋子不动;假如投出的点数是偶数,棋子移动到另外一个顶点.假如棋子初始位置在顶点A,如此:⑴投了三次骰子,棋子恰巧在顶点B 的概率是多少? ⑵投了四次骰子,棋子都不在顶点B 的概率是多少? ⑶投了四次骰子,棋子才到达顶点B 的概率是多少? 分析:考虑最后一次投骰子分为两种情况①最后一次棋子动;②最后一次棋子不动. 解:∵ 事件投一次骰子棋子不动的概率为21;事件投一次骰子棋子动且到达顶点B 的概率为3121⨯ =61. ⑴.投了三次骰子,棋子恰巧在顶点B 分为两种情况①.最后一次棋子不动,即前一次棋子恰在顶点B ;②.最后一次棋子动,且棋子移动到B 点.设投了i 次骰子,棋子恰好在顶点B 的概率为p i ,如此棋子不在顶点B 的概率为<1- p i >.所以,投了i+1次骰子,棋子恰好在顶点B 的概率:p 1+i = p i ×21+ <1- p i >×61i = 1、2、3、4、…… ∴ p 1+i = 61 + 31×p i ∵ p 1= 3121⨯=61∴ p 2=92∴ p 3=5413⑵.投了四次骰子,棋子都不在顶点B,说明前几次棋子都不在B 点,应分为两种情况①最后一次棋子不动;②最后一次棋子动,且不到B 点.设投了i 次骰子,棋子都不在顶点B 的概率为i p ',如此投了i+1次骰子,棋子都不在顶点B 的概率为:1+'i p = i p '×21+ i p '×21×<1﹣31> i = 1、2、3、4、…… 即:1+'i p = 65i p ' 又∵1p '= 21+21×<1﹣31> = 65∴4p ' = <65>4 ⑶.投了四次骰子,棋子才到达顶点B ;说明前三次棋子都不在B 点,最后一次棋子动且 到达顶点B .设其概率为P 如此: P =3121⨯×3p ' = 61×<65>3= 1296125答:〔略〕.例11:用砖砌墙,第一层〔底层〕用去了全部砖块的一半多一块;第二层用去了剩下的一半多一块,…,依次类推,每层都用去了上层剩下的一半多一块.如果第九层恰好砖块用完,那么一共用了多少块砖?分析:此题围绕两个量即每层的砖块数ai 和剩下的砖块数bi,关键是找出ai和bi的关系式,通过方程<组>求解.解:设第i层所用的砖块数为ai ,剩下的砖块数为bi<i = 1、2、3、4、…… >如此b9=0,且设b为全部的砖块数,依题意,得a 1=21b+ 1,a2=21b1+ 1,…… ai=21b1-i+ 1 …………①又 b1-i = ai+ bi……………②联立①②得 b1-i -bi=21b1-i+ 1 即bi=21b1-i- 1∴ bi + 2 =21<b1-i+ 2> ∴ b9+2 = <21>9<b+ 2 > ∴ b+2 = 2×29∴ b= 1022练习8:⑴十级台阶,可以一步上一级,也可以一步上两级;问上完十级台阶有多少种不同走法?⑵. 三角形内有n个点,由这n个点和三角形的三个顶点,这n + 3个点可以组成多少个不重叠<任意两个三角形无重叠局部>的三角形?⑶.甲、乙、丙、丁四人传球,球从一人手中传向另外三个人是等可能的.假如开始时球在甲的手中.假如传了n次球,球在甲手中的概率为an ;球在乙手中的概率为bn.<n = 1、2、3、4、…… >.①问传了五次球,球恰巧传到甲手中的概率a5和乙手中的概率b5分别是多少?②假如传了n次球,试比拟球在甲手中的概率an 与球在乙手中的概率bn的大小.③传球次数无限多时,球在谁手中的概率大?参考答案练习1:⑴. an =21<3 n-1> ⑵. an=nn2+练习2:⑴. an= n -1 ⑵. an= 32)1(-n n练习3:⑴. an = 321-n <提示:可两边取对数> ⑵. a n=32[22-n+ <-1>1-n]练习4:an =23+n练习5:⑴ an= 21+n-3 ⑵ an=12211+--nn练习6:⑴可得a1+n +21<n+1>+41= 3<an+21n +41> 从而an=47×31-n-<21n +41> ⑵ <略>练习7:⑴an = 3 -132-nn, ⑵由得a2+n= a1+n+ an⇒ an=55[<251+>n-<251->n]练习8:⑴∵a2+n = a1+n+ an, a1= 1,a2= 2,∴a10= 89 ⑵∵a1+n= an+ 2 ,a1= 3 ∴an= 2n+1⑶①∵a1+n =31<1 - an> b1+n=31<1 - bn> a1= 0 b1=31∴a5=8120; b5=24361.②可解得an =41-41×1)31(--n bn=41+121×1)31(--n∴当n为奇数时, an <41<bn;当n为偶数时,an>41>bn③当n →∞时,an →41,bn→41故球在各人手中的概率一样大.。
2020年高考数学(理)之数列 专题11 数列的通项( 叠加法、累乘法求通项)(解析版)
数列11 数列的通项( 叠加法、累乘法求通项)一、具体目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础. 二、知识概述: 1.数列的通项公式:(1)如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式. (2)数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩.2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序【考点讲解】号的联系,从而归纳出构成数列的规律,写出通项公式.3.数列通项一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知S n ,求通项,破解方法:利用S n -S n -1= a n ,但要注意分类讨论,本例的求解中检验必不可少,值 得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。
4. 已知数列{}n a 的前n 项和n S ,求数列的通项公式,其求解过程分为三步: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用=n a 1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分. 5. 递推公式推导通项公式方法: (1)叠加法:1()n n a a f n +-=叠加法(或累加法):已知()⎩⎨⎧=-=+n f a a a a n n 11,求数列通项公式常用叠加法(或累加法)即112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ.(2)累乘法:已知()⎪⎩⎪⎨⎧==+n f a a a a nn 11求数列通项公式用累乘法. (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq ) 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. (4)待定系数法: nn n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1nn n a pa rq +=+,其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q++=⋅+,令n n n q a b =,得:q b q p b nn 11+=+,再按 第(3)种情况求解.(5)待定系数法:b an pa a n n ++=+1(100)p a ≠≠,, 1122332211a a a a a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----Λ解法:一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较, 解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列. (6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列. (7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数).解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q+=⎧⎨=-⎩,再按第(4)种情况求解.(8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解. 6. 以数列为背景的新定义问题是高考中的一个热点题型,考查频率较高,一般会结合归纳推理综合命题.常见的命题形式有新法则、新定义、新背景、新运算等.(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要 求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法. 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用叠加法求解例1.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .【解析】法一:由题意可知:112,1n n a a a n +==++ 所以有()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,K ,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++.法二:由题意11n n a a n +=++可得:11n n a a n +-=+, ()111n n a a n --=-+,()1221n n a a n ---=-+,()2331n n a a n ---=-+,K ,3221a a -=+,2111a a -=+,1211a ==+.将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++. 【答案】()112n n ++ 类型2 n n a n f a )(1=+ .解法:把原递推公式转化为)(1n f a a nn =+,利用叠乘法求解。
(完整版)数列通项公式及其求和公式
一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。
常见数列通项的求法
常见数列通项的求法
数列的通项公式是数列的核心,它描述了数列中每一项与项数之间的规律。
求数列的通项公式是数列问题中的重要内容。
以下是几种常见的求数列通项公式的方法:
1.观察法:通过对数列的前几项进行观察,找出规律,从而得到
通项公式。
2.累加法:对于形如an=an−1+f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累加得到an。
3.累乘法:对于形如an=an−1×f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累乘得到an。
4.构造法:通过构造新数列,将原数列的递推关系式转化为新数
列的递推关系式,从而求出通项公式。
5.数学归纳法:对于一些与n有关的数列,通过数学归纳法证明
其通项公式。
6.等差数列通项公式:an=a1+(n−1)d,其中d是公差。
7.等比数列通项公式:an=a1×qn−1,其中q是公比。
8.裂项相消法:对于分式形式的递推关系,通过裂项相消法求出
通项公式。
9.特征根法:对于一些特定形式的递推关系,通过特征根法求出
通项公式。
以上是常见的求数列通项公式的方法,具体使用哪种方法需要根据题目给出的条件和递推关系式来确定。
数列求通项公式的五种重要方法
求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=例1例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
2、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +===,,, n a例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
数列{an}的通项公式的求法(全)
(其中,k, b, c, m, s为常数)
(4)通项公式为an1 kan ban1可化为an1 san t (an san1 ) (其中,k, b, s, t为常数)
(2)通项公式为an1 kan c bn可化为an1 mbn1 k (an mbn ) (其中,k, b, c, m为常数)
(3)通项公式为an1 kan c bn +t可化为an1 mbn1 s k (an mbn s ) (其中,k, b, c, m, s为常数)
如:通项公式为an1 2an 3n 可化为an1 m 3n1 2(an m 3n ) 解得 m 1 即化为an1 3n1 2(an 3n )
(3)通项公式为an1 kan c bn +t可化为an1 mbn1 s k (an mbn s )
(4)通项公式为an1 kan ban1可化为an1 san t (an san1 ) (其中,k, b, s, t为常数)
八、倒数法>>
适用于an1 k1an 的形式,(其中,k1 ,k 2 ,b1 ,b2为常数). k2an b2
本节作业
1、数列{an }中, a1 2, an1 an 2n , 求{an }的通项公式.
an 2 n 3 an 3 n 1
.........................
n1 n 2 n 3 3 2 1 1 ... n1 n n1 5 4 3 2 1 n( n 1)
高中求数列通项公式九法
高中求数列通项公式九法各种数列问题在很多情形下,就是对数列通项公式的求解,特别是在综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
本文总结了九种求解数列通项的方法,供大家参考。
一、已知Sn求an例1、已知:数列{an}的各项均为正数,它的前n项和Sn满足Sn= ,且a2、a4、a9成等比数列,求数列{an}的通项公式。
解:当n=1时,a1=S1= ,得a1=1或2;当n≥2时,an=Sn-Sn-1=∴6an=an2-an-12+3an-3an-1,∴0=an2-an-12-3an-3an-1∴0=(an+an-1)(an-an-1-3)。
∵an>0,∴an-an-1-3=0;所以数列{an}为等差数列。
当a1=1、d=2时,an=1+3(n-1)=3n-2,满足a2·a9=a42;当a1=2、d=3时,an=2+3(n-1)=3n-1,不满足a2·a9=a42,舍去。
所以an=3n-2。
二、题型:an+1-an=f(n);方法:利用叠加法求an例2、已知:数列{an},a1=0,an+1=an+ ,求数列{an}的通项公式。
解:∵an+1=an+ ∴an+1-an=∴an=(an-an-1)+(an-1-an-2)+……+(a2-a1)+a1=++……+ + +0=1-故数列{an}的通项公式为an=1-。
三、题型:=f(n);方法:叠乘法求an例3、已知数列{an}满足:a1=1,an>0,(n+1)an+12-nan2+an+1an=0,求an。
解:∵(n+1)an+12-nan2+an+1an=0,∴[(n+1)an+1-nan](an+1+an)=0∵an>0,∴an+an+1>0,∴(n+1)an+1=nan,即∴an=a1· · ·……·=1× × × ×……××= 。
数列求通项公式的五种重要方法
求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
例12、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +=== ,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。
三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式6、解得数列{}n a 的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
由数列递推公式求通项公式的常用方法
21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。
初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。
一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。
二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。
习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。
设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。
能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。
学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。
比如,初中“网络课件构件设计”导学案设计。
①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。
②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。
元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。
元数据设计时可参照SCORM。
定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。
)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。
数列通项公式的多种妙解方式(十六大经典题型)(解析版)
数列通项公式的多种妙解方式经典题型一:观察法经典题型二:叠加法经典题型三:叠乘法经典题型四:待定系数法经典题型五:同除以指数经典题型六:取倒数法经典题型七:取对数法经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题经典题型九:周期数列经典题型十:前n 项积型经典题型十一:“和”型求通项经典题型十二:正负相间讨论、奇偶讨论型经典题型十三:因式分解型求通项经典题型十四:其他几类特殊数列求通项经典题型十五:双数列问题经典题型十六:通过递推关系求通项(2022·全国·高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【解析】(1)∵a 1=1,∴S 1=a 1=1,∴S 1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a n a n -1=n +1n -1,∴a n =a 1×a 2a 1×a 3a 2×⋯×a n -1a n -2×a n a n -1=1×31×42×⋯×n n -2×n +1n -1=n n +1 2,显然对于n =1也成立,∴a n 的通项公式a n =n n +1 2;(2)1a n =2n n +1 =21n -1n +1 , ∴1a 1+1a 2+⋯+1a n=21-12 +12-13 +⋯1n -1n +1 =21-1n+1<2(2022·全国·高考真题(理))记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n-1+n-12=2n-1a n-1+n-1②,①-②得,2S n+n2-2S n-1-n-12=2na n+n-2n-1a n-1-n-1,即2a n+2n-1= 2na n-2n-1a n-1+1,即2n-1a n-2n-1a n-1=2n-1,所以a n-a n-1=1,n≥2且n∈N*,所以a n是以1为公差的等差数列.(2)由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,所以S n=-12n+nn-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时S n min=-78.类型Ⅰ观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项.类型Ⅱ公式法:若已知数列的前项和与a n的关系,求数列a n的通项a n可用公式a n=S1,(n=1)S n-S n-1,(n≥2)构造两式作差求解.用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即a1和a n合为一个表达,(要先分n=1和n≥2两种情况分别进行运算,然后验证能否统一).类型Ⅲ累加法:形如a n+1=a n+f(n)型的递推数列(其中f(n)是关于n的函数)可构造:a n-a n-1=f(n-1)a n-1-a n-2=f(n-2)...a2-a1=f(1)将上述m2个式子两边分别相加,可得:a n=f(n-1)+f(n-2)+...f(2)+f(1)+a1,(n≥2)①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n的二次函数,累加后可分组求和;④若f(n)是关于n的分式函数,累加后可裂项求和.类型Ⅳ累乘法:形如a n +1=a n ⋅f (n )a n +1a n=f (n )型的递推数列(其中f (n )是关于n 的函数)可构造:a n a n -1=f (n -1)a n -1a n -2=f (n -2)...a 2a 1=f (1)将上述m 2个式子两边分别相乘,可得:a n =f (n -1)⋅f (n -2)⋅...⋅f (2)f (1)a 1,(n ≥2)有时若不能直接用,可变形成这种形式,然后用这种方法求解.类型Ⅴ构造数列法:(一)形如a n +1=pa n +q (其中p ,q 均为常数且p ≠0)型的递推式:(1)若p =1时,数列{a n }为等差数列;(2)若q =0时,数列{a n }为等比数列;(3)若p ≠1且q ≠0时,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种: 法一:设a n +1+λ=p (a n +λ),展开移项整理得a n +1=pa n +(p -1)λ,与题设a n +1=pa n +q 比较系数(待定系数法)得λ=q p -1,(p ≠0)⇒a n +1+q p -1=p a n +q p -1 ⇒a n +q p -1=p a n -1+qp -1 ,即a n +q p -1 构成以a 1+qp -1为首项,以p 为公比的等比数列.再利用等比数列的通项公式求出a n +qp -1 的通项整理可得a n .法二:由a n +1=pa n +q 得a n =pa n -1+q (n ≥2)两式相减并整理得a n +1-a na n -a n -1=p ,即a n +1-a n 构成以a 2-a 1为首项,以p 为公比的等比数列.求出a n +1-a n 的通项再转化为类型Ⅲ(累加法)便可求出a n .(二)形如a n +1=pa n +f (n )(p ≠1)型的递推式:(1)当f (n )为一次函数类型(即等差数列)时:法一:设a n +An +B =p a n -1+A (n -1)+B ,通过待定系数法确定A 、B 的值,转化成以a 1+A +B 为首项,以A m n =n !n -m !为公比的等比数列a n +An +B ,再利用等比数列的通项公式求出a n +An +B 的通项整理可得a n .法二:当f (n )的公差为d 时,由递推式得:a n +1=pa n +f (n ),a n =pa n -1+f (n -1)两式相减得:a n +1-a n =p (a n -a n -1)+d ,令b n =a n +1-a n 得:b n =pb n -1+d 转化为类型Ⅴ㈠求出 b n ,再用类型Ⅲ(累加法)便可求出a n .(2)当f (n )为指数函数类型(即等比数列)时:法一:设a n +λf (n )=p a n -1+λf (n -1) ,通过待定系数法确定λ的值,转化成以a 1+λf (1)为首项,以A m n =n !n -m !为公比的等比数列a n +λf (n ) ,再利用等比数列的通项公式求出a n +λf (n ) 的通项整理可得a n .法二:当f (n )的公比为q 时,由递推式得:a n +1=pa n +f (n )--①,a n =pa n -1+f (n -1),两边同时乘以q 得a n q =pqa n -1+qf (n -1)--②,由①②两式相减得a n +1-a n q =p (a n -qa n -1),即a n +1-qa na n -qa n -1=p ,在转化为类型Ⅴ㈠便可求出a n .法三:递推公式为a n +1=pa n +q n (其中p ,q 均为常数)或a n +1=pa n +rq n (其中p ,q , r 均为常数)时,要先在原递推公式两边同时除以q n +1,得:a n +1q n +1=p q ⋅a n q n +1q ,引入辅助数列b n (其中b n=a n q n),得:b n +1=p q b n +1q 再应用类型Ⅴ㈠的方法解决.(3)当f (n )为任意数列时,可用通法:在a n +1=pa n +f (n )两边同时除以p n +1可得到a n +1p n +1=a n p n +f (n )p n +1,令an p n =b n ,则b n +1=b n +f (n )pn +1,在转化为类型Ⅲ(累加法),求出b n 之后得a n =p n b n .类型Ⅵ对数变换法:形如a n +1=pa q (p >0,a n >0)型的递推式:在原递推式a n +1=pa q 两边取对数得lg a n +1=q lg a n +lg p ,令b n =lg a n 得:b n +1=qb n +lg p ,化归为a n +1=pa n +q 型,求出b n 之后得a n =10b n.(注意:底数不一定要取10,可根据题意选择).类型Ⅶ倒数变换法:形如a n -1-a n =pa n -1a n (p 为常数且p ≠0)的递推式:两边同除于a n -1a n ,转化为1a n =1a n -1+p 形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n ;还有形如a n +1=ma n pa n +q 的递推式,也可采用取倒数方法转化成1a n +1=m q 1a n +mp形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n .类型Ⅷ形如a n +2=pa n +1+qa n 型的递推式:用待定系数法,化为特殊数列{a n -a n -1}的形式求解.方法为:设a n +2-ka n +1=h (a n +1-ka n ),比较系数得h +k =p ,-hk =q ,可解得h 、k ,于是{a n +1-ka n }是公比为h 的等比数列,这样就化归为a n +1=pa n +q 型.总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式a n .(1)若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =S 1,n =1S n -S n -1,n ≥2,n ∈N ∗注意:根据S n 求a n 时,不要忽视对n =1的验证.(2)在数列{a n }中,若a n 最大,则a n ≥a n -1a n ≥a n +1 ,若a n 最小,则a n≤a n -1a n ≤a n +1 .经典题型一:观察法1.(2022·全国·高三专题练习)数列a n 的前4项为:12,15,18,111,则它的一个通项公式是( )A.12n -1B.12n +1C.13n -1D.13n +1【答案】C【解析】将12,15,18,111可以写成13×1-1,13×2-1,13×3-1,13×4-1,所以a n 的通项公式为13n -1;故选:C2.(2022·全国·高三专题练习(文))如图所示是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为( )A.2nB.2n -1C.2n +2D.2n +1【答案】B【解析】依题意,每一行第一个数依次排成一列为:1,3,5,7,9,⋯,它们成等差数列,通项为2n -1,所以第n 行的首尾两个数均为2n -1.故选:B3.(2022·全国·高三专题练习)“一朵雪花”是2022年北京冬奥会开幕式贯穿始终的一个设计理念,每片“雪花”均以中国结为基础造型构造而成,每一朵雪花都闪耀着奥运精神,理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1901年研究的一种分形曲线,如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分划向外作正三角形,再去掉底边,反复进行这一过程.若第一个正三角形(图①)的边长为1,则第5个图形的周长为___________.【答案】25627【解析】由题意知下一个图形的边长是上一个图形边长的13,边数是上一个图形的4倍,则周长之间的关系为b n =13⋅4⋅b n -1=43b n -1,所以{b n }是公比为q =43的等比数列,而首项b 1=3,所以b n =3⋅43n -1,当n =5时,“雪花”状多边形的周长为b 5=25627.故答案为:25627经典题型二:叠加法4.(2022·全国·高三专题练习)在数列{a n }中,已知a 1=1p ,a n +1=a n na n +1,p >0,n ∈N *.若p =1,求数列{a n }的通项公式.【解析】由题意,a n +1=a n na n +1 ,得:1a n +1-1a n=n ,运用累加法:1a 2-1a 1+1a 3-1a 2+⋯+1a n -1a n -1=1+2+⋯+n -1=n n -1 2,n ≥2∴1a n -1a 1=n n -1 2,即1a n =n n -1 2+p ,n ≥2 ,当p =1时,a n =2n 2-n +2,n ≥2 ,当n =1时,a n =1成立,所以a n =2n 2-n +25.(2022·全国·高三专题练习)已知数列a n 满足a n +1n +1-a n n =1n n +1n ∈N *,且a 1=1,求数列a n 的通项公式;【解析】因为a n +1n +1-a n n =1n n +1=1n -1n +1,所以a n n -a n -1n -1=1n -1-1n n ≥2 ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯a 22-a 11=1-12,所以累加可得a n n -a 1=1-1nn ≥2 .又a 1=1,所以a n n =2n -1n,所以a n =2n -1n ≥2 .经检验,a 1=1,也符合上式,所以a n =2n -1.6.(2022·全国·高三专题练习)已知数列a n 中,a 1=1中,a n +1=a n +n (n ∈N *)中,则a 4=________,a n =________.【答案】 7n 2-n +22【解析】依题意,n ∈N *,n ≥2,a n -a n -1=n -1,而a 1=1,则a n =a 1+(a 2-a 1)+(a 3-a 2)+⋯+(a n -a n -1)=1+1+2+⋯+(n -1)=1+1+n -12⋅n -1 =n 2-n +22,而a 1=1满足上式,所以a n =n 2-n +22,a 4=42-4+22=7.故答案为:7;n 2-n +22经典题型三:叠乘法7.(2022·全国·高三专题练习)在数列a n 中,a n +1=nn +2a n (n ∈N *),且a 1=4,则数列a n 的通项公式a n =________.【答案】8n n +1【解析】由a n +1=n n +2a n ,得a n +1a n =nn +2,则a 2a 1=13,a 3a 2=24,a 4a 3=35,⋮a n a n -1=n -1n +1n ≥2 ,累乘得a n a 1=13×24×35×⋯×n -3n -1×n -2n ×n -1n +1=2n n +1,所以a n =8n n +1.故答案为:8n n +1 .8.(2022·全国·高三专题练习)设a n 是首项为1的正项数列,且(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),求通项公式a n =___________【答案】2n (n +1)【解析】由(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),得[(n +2)a n +1-na n ](a n +1+a n )=0,∵a n >0,∴a n +1+a n >0,∴(n +2)a n +1-na n =0 ,∴a n +1a n =nn +2,∴a n =a 1⋅a 2a 1⋅a 3a 2⋅a 4a 3⋅⋅⋅⋅⋅a n a n -1=1×13×24×35×⋅⋅⋅×n -2n ×n -1n +1=2n (n +1)(n ≥2),又a 1=1满足上式,∴a n =2n (n +1).故答案为:2n (n +1).9.(2022·全国·高三专题练习)数列a n 满足:a 1=23,2n +2-1 a n +1=2n +1-2 a n n ∈N * ,则a n 的通项公式为_____________.【答案】a n =2n2n -1 2n +1-1【解析】由2n +2-1 a n +1=2n +1-2 a n 得,a n +1a n =2n +1-22n +2-1=2⋅2n -12n +2-1,则a n a n -1⋅a n -1a n -2⋅a n -2a n -3⋅⋅⋅a 2a 1=2⋅2n -1-12n +1-1⋅2⋅2n -2-12n -1⋅2⋅2n -3-12n -1-1⋅⋅⋅2⋅21-123-1=2n -1⋅32n +1-1 2n -1,即a n a 1=3⋅2n -12n -1 2n +1-1 ,又a 1=23,所以a n =2n 2n -1 2n +1-1.故答案为:a n =2n2n -1 2n +1-1.经典题型四:待定系数法10.(多选题)(2022·广东惠州·高三阶段练习)数列a n 的首项为1,且a n +1=2a n +1,S n 是数列a n 的前n 项和,则下列结论正确的是( )A.a 3=7 B.数列a n +1 是等比数列C.a n =2n -1 D.S n =2n +1-n -1【答案】AB【解析】∵a n +1=2a n +1,可得a n +1+1=2a n +1 ,又a 1+1=2∴数列a n +1 是以2为首项,2为公比的等比数列,故B 正确;则a n +1=2n ,∴a n =2n -1,故C 错误;则a 3=7,故A 正确;∴S n =21-2n1-2-n =2n +1-n -2,故D 错误.故选:AB .11.(2022·河南安阳·三模(文))已知数列a n 满足a n +1=2a n +12,且前8项和为506,则a 1=___________.【答案】32【解析】由题意得:∵a n +1=2a n +12∴a n +1+12=2a n +12 ,即a n +1+12a n +12=2∴数列a n +12 是以a 1+12为首项,2为公比的等比数列,记数列a n +12 的前n 项和为T n T 8=a 1+12 (1-28)1-2=a 1+12+a 2+12+a 3+12+⋯+a 8+12=(a 1+a 2+a 3+⋯a 8)+12×8=506+4=510解得:a 1=32故答案为:3212.(2022·河北衡水·高三阶段练习)已知数列a n 的前n 项和为S n ,且满足2S n +n =3a n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =a 2n ,求数列b n 的前10项和T 10.【解析】(1)当n =1时,2S 1+1=3a 1,即2a 1+1=3a 1,解得a 1=1;当n ≥2时,∵2S n +n =3a n ,∴2S n -1+n -1=3a n -1,两式作差得2a n +1=3a n -3a n -1,即a n =3a n -1+1,a n +12=3a n -1+12,∴a n +12a n -1+12=3,又a 1+12=32,∴数列a n +12 是以32为首项,3为公比的等比数列,∴a n +12=32×3n -1=3n 2,a n =3n 2-12=123n -1 .(2)∵b n =a 2n ,则T 10=b 1+b 2+b 3+⋯+b 10=a 2+a 4+⋯+a 20=1232-1 +34-1 +⋯+320-1=1232+34+⋯+320 -10=12321-910 1-9-10 =911-8916.13.(2022·全国·高三专题练习)设数列a n 满足a 1=2,a n -2a n -1=2-n n ∈N * .(1)求证:a n -n 为等比数列,并求a n 的通项公式;(2)若b n =a n -n ⋅n ,求数列b n 的前n 项和T n .【解析】(1)因为a 1=2,a n -2a n -1=2-n n ∈N * ,所以a n =2a n -1+2-n ,即a n -n =2a n -1-n -1又a 1-1=2-1=1,所以a n -n 是以1为首项,2为公比的等比数列,所以a n -n =1×2n -1,所以a n =2n -1+n (2)由(1)可得b n =a n -n ⋅n =n ×2n -1,所以T n =1×20+2×21+3×22+⋯+n ×2n -1①,所以2T n =1×21+2×22+3×23+⋯+n ×2n ②,①-②得-T n =1+1×21+1×22+1×23+⋯+1×2n -1-n ×2n即-T n =1-2n1-2-n ×2n ,所以T n =n -1 ×2n +1;14.(2022·全国·高三专题练习)在数列a n 中,a 1=5,且a n +1=2a n -1n ∈N * .(1)证明:a n -1 为等比数列,并求a n 的通项公式;(2)令b n =(-1)n ⋅a n ,求数列b n 的前n 项和S n .【解析】(1)因为a n +1=2a n -1,所以a n +1-1=2a n -1 ,又a 1-1=4,所以a n +1-1a n -1=2,所以a n -1 是以4为首项,2为公比的等比数列.故a n -1=4×2n -1,即a n =2n +1+1.(2)由(1)得b n =(-1)n⋅2n +1+1 ,则b n =2n +1+1,n =2k ,k ∈N *-2n +1+1 ,n =2k -1,k ∈N* ,①当n =2k ,k ∈N *时,S n =-22-1 +23+1 -24+1 +⋯+-2n -1 +2n +1+1 =-22+23-24+25+⋯-2n +2n +1=22+24+⋯+2n =432n -1 ;②当n =2k -1,k ∈N *时,S n =S n +1-b n +1=432n +1-1 -2n +2+1 =-2n +2+73,综上所述,S n =432n -1 ,n =2k ,k ∈N*-2n +2+73,n =2k -1,k ∈N *经典题型五:同除以指数15.(2022·广东·模拟预测)已知数列a n 中,a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,b n =a n -1n +1(1)求证:数列b n 是等比数列;(2)从条件①n +b n ,②n ⋅b n 中任选一个,补充到下面的问题中并给出解答.求数列______的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)因为a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,所以当n ≥2时,a n -1=2a n -1-1 +2n ,所以a n -12n =a n -1-12n -1+1,即a n -12n -a n -1-12n -1=1所以a n -12n 是以a 1-12=2为首项,1为公差的等差数列,所以a n -12n =2+n -1 ×1=n +1,所以a n =n +1 2n+1,b n =a n -1n +1=n +1 2n+1-1n +1=2n因为b 1=a 1-11+1=2,n ≥2时,b n b n -1=2n 2n -1=2所以数列b n 是以2为首项,2为公比的等比数列.(2)选①:因为b n =2n ,所以n +b n =n +2n ,则T n =(1+2)+2+22 +3+23 +⋅⋅⋅+n +2n=1+2+3+⋅⋅⋅+n +2+22+23+⋅⋅⋅+2n=12n n +1 +21-2n 1-2=n 22+n2+2n +1-2选②:因为b n =2n ,所以nb n =n ⋅2n,则T n =1×21+2×22+⋅⋅⋅+n ×2n (i )2T n =1×22+2×23+⋅⋅⋅+n ×2n +1(ii )(i )-(ii )得-T n =1×21+22+23+⋅⋅⋅+2n -n ×2n +1T n =n ×2n +1-21-2n 1-2=n ×2n +1-2n +1+2=n -1 2n +1+216.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=2a n +3n ,求数列a n 的通项公式.【解析】由a n +1=2a n +3n 两边同除以3n +1得a n +13n +1=23⋅a n 3n +13,令b n =a n 3n ,则b n +1=23b n +13,设b n +1+λ=23(b n +λ),解得λ=-1,b n +1-1=23(b n -1),而b 1-1=-23,∴数列{b n -1}是以-23为首项,23为公比的等比数列,b n -1=-23 n ,得a n =3n -2n17.(2022·全国·高三专题练习)在数列a n 中,a 1=1,S n +1=4a n +2,则a 2019的值为( )A.757×22020B.757×22019C.757×22018D.无法确定【答案】A【解析】∵a 1=1,S n +1=4a n +2,∴S 2=a 1+a 2=4a 1+2,解得a 2=5.∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减得,a n +2=4a n +1-4a n ,∴a n +2-2a n +1=2a n +1-2a n ,∴a n +1-2a n 是以a 2-2a 1=3为首项,2为公比的等比数列,∴a n +1-2a n =3×2n -1,两边同除以2n +1,则a n +12n +1-a n 2n=34,∴a n 2n 是以34为公差,a 121=12为首项的等差数列,∴a n 2n =12+n -1 ×34=3n -14,∴a n =3n -14×2n =3n -1 ×2n -2,∴a 2019=3×2019-1 ×22017=757×22020.故选:A .经典题型六:取倒数法18.(2022·全国·高三竞赛)数列a n 满足a 1=p ,a n +1=a 2n +2a n .则通项a n =______.【答案】p +1 2n -1-1【解析】∵a n =a 2n -1+2a n -1,∴a n +1=a n -1+1 2=a n -2+1 22=⋯=a 1+1 2n -1=p +1 2n -1.即a n =p +1 2n -1-1.故答案为p +1 2n -1-119.(2022·全国·高三专题练习)已知数列a n 满足a 1=12,且a n +1=a n 3a n +1,则数列a n =__________【答案】13n -1【解析】由a n +1=a n 3a n +1两边取倒数可得1a n +1=1a n +3,即1a n +1-1a n=3所以数列1a n 是等差数列,且首项为2,公差为3,所以1a n=3n -1,所以a n =13n -1;故答案为:13n -120.(2022·全国·高三专题练习)数列a n 满足a n +1=a n 1+2a nn ∈N ∗,a 1=1,则下列结论错误的是( )A.2a 10=1a 3+1a 17B.21an是等比数列C.2n -1 a n =1D.3a 5a 17=a 49【答案】D 【解析】由a n +1=a n 1+2a n ,且a 1=1,则a 2=a 12a 1+1>0,a 3=a 21+2a 2>0,⋯,以此类推可知,对任意的n ∈N ∗,a n >0,所以,1a n +1=1+2a n a n =1a n +2,所以1a n +1-1a n =2,且1a 1=1,所以,数列1a n 是等差数列,且该数列的首项为1,公差为2,所以,1a n =1+2n -1 =2n -1,则2n -1 a n =1,其中n ∈N ∗,C 对;21a n +121a n=21an +1-1a n=22=4,所以,数列21an是等比数列,B 对;由等差中项的性质可得2a 10=1a 3+1a 17,A 对;由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以,3a 5a 17≠a 49,D 错.故选:D .21.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=a n 4a n +1,(n ∈N *),则满足a n >137的n 的最大取值为( )A.7 B.8C.9D.10【答案】C【解析】因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1,数列1a n是以1为首项,4为公差的等差数列.所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大值为9;故选:C 经典题型七:取对数法22.(2022·湖南·长郡中学高三阶段练习)若在数列的每相邻两项之间插入此两项的积,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,2进行构造,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;依次构造,第n n ∈N * 次得到的数列的所有项的积记为a n ,令b n =log 2a n ,则b 3=___________,b n =___________.【答案】 143n +12【解析】设第n 次构造后得到的数列为1,x 1,x 2,⋯,x k ,2.则a n =2x 1x 2⋯x k ,则第n +1次构造后得到的数列为1,x 1,x 1,x 1x 2,x 2,⋯,x k -1x k ,x k ,2x k ,2.则a n +1=4x 1x 2⋯x k 3=4×a n 2 3=12a 3n ,∴b n +1=log 2a n +1=log 212a 3n=-1+3b n ,∴b n +1-12=3b n -12 ,又∵b 1=log 222=2,∴数列b n -12 是以32为首项,3为公比的等比数列,∴b n -12=32×3n -1=3n 2,b n =3n +12,b 3=14.故答案为:14;3n +1223.(2022·全国·高三专题练习(文))英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列x n 满足x n +1=x n -f x nf x n,则称数列x n 为牛顿数列.如果函数f x =2x 2-8,数列x n 为牛顿数列,设a n =ln x n +2x n -2,且a 1=1,x n >2.数列a n 的前n 项和为S n ,则S n =______.【答案】2n -1【解析】∵f x =2x 2-8,∴f x =4x ,又∵x n +1=x n -f x n f x n=x n -2x n 2-84x n =x n 2+42x n ,∴x n +1+2=x n +2 22x n ,x n +1-2=x n -222x n,∴x n +1-2x n +1-2=x n +2x n -2 2,又x n >2∴ln x n +1+2x n +1-2=ln x n +2x n -2 2=2ln x n +2x n -2 ,又a n =ln x n +2x n -2,且a 1=1,所以a n +1=2a n ,∴数列a n 是首项为1,公比为2的等比数列,∴a n 的前n 项和为S n ,则S n =1×1-2n1-2=2n -1.故答案为:2n -1.经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题24.(2022·江苏南通·高三开学考试)从条件①2S n =n +1 a n ,②a 2n +a n =2S n ,a n >0,③S n +S n -1=a n n ≥2 ,中任选一个,补充到下面问题中,并给出解答.已知数列a n 的前n 项和为S n ,a 1=1,___________.(1)求a n 的通项公式;(2)设b n =a n +1+12n +1,记数列b n 的前n 项和为T n ,是否存在正整数n 使得T n >83.【解析】(1)若选择①,因为2S n =n +1 a n ,n ∈N *,所以2S n -1=na n -1,n ≥2,两式相减得2a n =n +1 a n -na n -1,整理得n -1 a n =na n -1,n ≥2,即a n n =a n -1n -1,n ≥2,所以a n n 为常数列,而a n n =a 11=1,所以a n =n ;若选择②,因为a 2n +a n =2S n n ∈N *,所以a 2n -1+a n -1=2S n -1n ≥2 ,两式相减a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n n ≥2 ,得a n -a n -1 a n +a n -1 =a n +a n -1n ≥2 ,因为a n >0,∴a n +a n -1>0,∴a n -a n -1=1n ≥2 ,所以a n 是等差数列,所以a n =1+n -1 ×1=n ;若选择③,由S n +S n -1=a n n ≥2 变形得,S n +S n -1=S n -S n -1,所以S n +S n -1=S n +S n -1 S n -S n -1 ,由题意知S n >0,所以S n -S n -1=1,所以S n 为等差数列,又S 1=a 1=1,所以S n =n ,S n =n 2,∴a n =S n -S n -1=2n -1n ≥2 ,又n =1时,a 1=1也满足上式,所以a n =2n -1;(2)若选择①或②,b n =n +1+12n +1=n +22n +1,所以T n =3×12 2+4×12 3+5×12 4+⋯+n +2 ×12n +1,所以12T n =3×12 3+4×12 4+5×12 5+⋯+n +2 ×12n +2,两式相减得12T n =3×12 2+12 3+12 4+⋯+12 n +1-n +2 ×12n +2=34+181-12n -1 1-12-n +2 ×12 n +2=1-n +42n +2,则T n =2-n +42n +1,故要使得T n >83,即2-n +42n +1>83,整理得,n +42n +1<-23,当n ∈N *时,n +42n +1>0,所以不存在n ∈N *,使得T n >83.若选择③,依题意,b n =a n +1+12n +1=n +12n,所以T n =2×12+3×12 2+4×12 3+⋯+n +1 ×12n,故12T n =2×12 2+3×12 3+4×12 4+⋯+n +1 ×12 n +1,两式相减得:12T n =1+12 2+12 3+⋯+12 n -n +1 ×12 n +1=1+141-12n -1 1-12-n +1 ×12 n +1=32-n +32n +1,则T n =3-n +32n ,令T n =3-n +32n >83,则n +32n <13,即2n -3n -9>0,令c n =2n -3n -9,则c 1=-10<0,当n ≥2时,c n +1-c n =2n +1-3n +1 -9-2n -3n -9 =2n -3>0,又c 4<0,c 5>0,故c 2<c 3<c 4<0<c 5<c 6⋯,综上,使得T n >83成立的最小正整数n 的值为5.25.(2022·河南省上蔡第一高级中学高三阶段练习(文))记各项均为正数的等比数列a n 的前n 项和是S n ,已S n =a n +43a n +1-4n ∈N * .(1)求a n 的通项公式;(2)求数列na n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q .因为S n =a n +43a n +1-4n ∈N * ,所以当n =1时,a 1=a 1+43a 2-4,解得a 2=3;当n =2时,a 1+a 2=a 2+43a 3-4,则a 1=43a 3-4.因为a n 是等比数列,所以a 1a 3=a 22,即43a 3-4 a 3=9,整理得4a 23-12a 3-27=0,解得a 3=-32(舍去)或a 3=92.所以q =a 3a 2=32,a 1=a 2q=2,所以a n =2×32n -1.(2)由(1)得na n =2n ×32 n -1,所以T n =2×1+2×32+3×32 2+⋯+n -1 × 32 n -2+n ×32 n -1①则32T n =2×1×32+2×32 2+3×32 3+⋯+ n -1 ×32 n -1+n ×32 n ②①-②得-T n 2=2×1+32+32 2+323+⋯+ 32 n -1 -2n ×32 n=2×1-32 n1-32-2n ×32 n =-4+4-2n ×32 n ,所以T n =4n -8 ×32n+8.26.(2022·全国·高三专题练习)设数列{a n }的前n 项和为S n ,a n +1=-S n S n +1n ∈N * ,a 1=1. 求证:数列1S n是等差数列.【解析】∵-S n S n +1=a n +1=S n +1-S n ,S 1=1≠0,则S n ≠0,所以-1=S n +1-S nS n S n +1,有1S n +1-1S n=1,所以数列1S n 是以1为首项,1为公差的等差数列.经典题型九:周期数列27.(2022·上海中学高二期末)数列{x n }满足x n +1=x n -x n -1,n ≥2,n ∈N *,x 1=a ,x 2=b ,则x 2019=_________.【答案】b -a .【解析】由题干中递推公式,可得:x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=b -a -b =-a ,x 5=x 4-x 3=-a -(b -a )=-b ,x 6=x 5-x 4=-b -(-a )=a -b ,x 7=x 6-x 5=a -b -(-b )=a ,x 8=x 7-x 6=a -(a -b )=b ,x 9=x 8-x 7=b -a ,⋯∴数列{x n }是以6为最小正周期的周期数列.∵2019÷6=336⋯3,∴x 2019=x 3=b -a .故答案为b -a .28.(2022·全国·高三专题练习)数列{a n }满足a 1=2,a 2=11-a 1,若对于大于2的正整数n ,a n =11-a n -1,则a 102=__________.【答案】12【解析】由题意知:a 2=11-2=-1,a 3=11--1 =12,a 4=11-12=2,a 5=11-2=-1,故{a n }是周期为3的周期数列,则a 102=a 3×34=a 3=12.故答案为:12.29.(2022·河南·模拟预测(文))设数列a n 满足a n +1=1+a n 1-a n ,且a 1=12,则a 2022=( )A.-2 B.-13C.12D.3【答案】D【解析】由题意可得:a 2=1+a 11-a 1=1+121-12=3,a 3=1+a 21-a 2=1+31-3=-2,a 4=1+a 31-a 3=1+-2 1--2 =-13,a 5=1+a 41-a 4=1-131+13=12=a 1,据此可得数列a n 是周期为4的周期数列,则a 2022=a 505×4+2=a 2=3.故选:D30.(2022·全国·高三专题练习)设数列a n 的通项公式为a n =-1 n 2n -1 ⋅cos n π2+1n ∈N * ,其前n 项和为S n ,则S 120=( )A.-60 B.-120C.180D.240【答案】D【解析】当n =4k -3,k ∈N *时,cos n π2=0,a 4k -3=1;当n =4k -2,k ∈N *时,cosn π2=-1,a 4k -2=2×4k -2 -1 ×-1 +1=-8k +6;当n =4k -1,k ∈N *时,cos n π2=0,a 4k -1=1;当n =4k ,k ∈N *时,cos n π2=1,a 4k =2×4k -1+1=8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =1+-8k +6 +1+8k =8,∴S 120=1204×8=240.故选:D 经典题型十:前n 项积型31.(2022·全国·高三专题练习)设数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * .(1)求证数列1T n 是等差数列;(2)设b n =1-a n 1-a n +1 ,求数列b n 的前n 项和S n .【解析】(1)因为数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * ,∴当n =1时,T 1=a 1=2-2a 1,则a 1=23,1T 1=32.当n ≥2时,T n =2-2T n T n -1⇒1=2T n -2T n -1,∴1T n -1T n -1=12,所以1T n 是以1T 1=32为首项,12为公差的等差数列;(2)由(1)知数列1T n =n +22,则由T n =2-2a n 得a n =n +1n +2,所以b n =1n +2 n +3=1n +2-1n +3,所以S n =13-14 +14-15 +⋯+1n +2-1n +3 =13-1n +3=n 3n +9.32.(2022·全国·高三专题练习)记T n 为数列a n 的前n 项积,已知1T n +3a n=3,则T 10=( )A.163B.154C.133D.114【答案】C 【解析】n =1,T 1=43,T n =a 1a 2a 3⋯a n ,则a n =T n T n -1(n ≥2),代入1T n +3a n =3,化简得:T n -T n -1=13,则T n =n +33,T 10=133.故选:C .33.(2022·全国·高三专题练习)记S n 为数列a n 的前n 项和,b n 为数列S n 的前n 项积,已知2S n +b n =2,则a 9=___________.【答案】1110【解析】因为b n =S 1∙S 2∙⋯S n ,所以b 1=S 1=a 1,b n -1=S 1∙S 2∙⋯S n -1(n ≥2),S n =b nb n -1(n ≥2), 又因为2S n +b n =2,当n =1时,得 a 1=23,所以b 1=S 1=a 1=23, 当n ≥2时, 2×b nb n -1+b n =2,即2b n =2b n -1+1,所以2b n 是等差数列,首项为2b 1=3,公差d =1, 所以2b n=3+(n -1)×1=n +2,所以b n =2n +2,满足 b 1=23,故b n =2n +2,即S 1∙S 2∙⋯S n =2n +2,所以S 1∙S 2∙⋯S n -1=2n +1(n ≥2),两式相除得:S n =n +1n +2,所以S n -1=nn +1(n ≥2),所以a n =S n -S n -1=n +1n +2-n n +1=1(n +1)(n +2),所以a 9=111×10=1110.故答案为:1110.经典题型十一:“和”型求通项34.(2022·山西·太原市外国语学校高三开学考试)在数列a n 中,a 1=1,且n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n .(1)求a n 的通项公式;(2)若b n =1a n a n +1,且数列b n 的前项n 和为S n ,证明:S n <3.【解析】(1)因为n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n ,所以当n ≥3,a 1+12a 2+13a 3+⋯+1n -2a n -2=a n -1,两式相减,得1n -1a n -1=a n -a n -1,即nn -1a n -1=a n ,当n =2时,a 2=a 1=1,所以当n ≥3时,a n a n -1=nn -1,所以当n ≥3时,a n =a n a n -1×a n -1a n -2×⋯×a 3a 2×a 2=n n -1×n -1n -2×⋯×32×1=n2,当n =2时,上式成立;当n =1时,上式不成立,所以a n =1,n =1n2,n ≥2.(2)证明:由(1)知b n =1,n =14n (n +1),n ≥2当n ≥2时,b n =4n (n +1)=41n -1n +1 ,所以当n =1,S 1=1<3;当n ≥2时,S n =1+412-13 +413-14 +⋯+41n -1n +1=1+412-13+13-14+⋯+1n -1n +1 =1+412-1n +1 =3-4n +1<3.综上,S n <3.35.(2022·全国·高三专题练习)数列a n 满足a 1∈Z ,a n +1+a n =2n +3,且其前n 项和为S n .若S 13=a m ,则正整数m =( )A.99 B.103C.107D.198【答案】B【解析】由a n +1+a n =2n +3得a n +1-(n +1)-1=-a n -n -1 ,∴a n-n-1为等比数列,∴a n-n-1=(-1)n-1a1-2,∴a n=(-1)n-1a1-2+n+1,a m=(-1)m-1a1-2+m+1,∴S13=a1+a2+a3+⋯+a12+a13=a1+2×(2+4+⋯+12)+3×6=a1+102,①m为奇数时,a1-2+m+1=a1+102,m=103;②m为偶数时,-a1-2+m+1=a1+102,m=2a1+99,∵a1∈Z,m=2a1+99只能为奇数,∴m为偶数时,无解,综上所述,m=103.故选:B.36.(2022·黑龙江·哈师大附中高三阶段练习(理))已知数列a n的前n项和为S n,若S n+1+S n=2n2n∈N*,且a1≠0,a10=28,则a1的值为A.-8B.6C.-5D.4【答案】C【解析】对于S n+1+S n=2n2,当n=1时有S2+S1=2,即a2-2=-2a1∵S n+1+S n=2n2,∴S n+S n-1=2(n-1)2,(n≥2)两式相减得:a n+1+a n=4n-2a n+1-2n=-a n-2(n-1),(n≥2)由a1≠0可得a2-2=-2a1≠0,∴a n+1-2na n-2(n-1)=-1(n≥2)即a n-2(n-1)从第二项起是等比数列,所以a n-2(n-1)=a2-2(-1)n-2,即a n=a2-2(-1)n-2+2(n-1),则a10=a2-2+18=28,故a2=12,由a2-2=-2a1可得a1=-5,故选C.经典题型十二:正负相间讨论、奇偶讨论型37.(2022·河南·高二阶段练习(文))数列a n满足a1=1,a n+a n+1=3n n∈N*,则a2018=__________ _.【答案】3026【解析】∵a n+a n+1=3n,∴a n+1+a n+2=3n+1,得a n+2-a n=3,∵a1=1,a n+a n+1=3n n∈N*,∴a1+ a2=3⇒a2=2,所以a n的偶数项构成等差数列,首项为2,公差为3,∴a2018=a2+1008×3=2+3024= 3026.故答案为:302638.(2022·全国·高三专题练习)已知数列a n中,a1=1,a2=2,a n+2=-1n+1a n+2,则a18a19=( )A.3B.113C.213D.219【答案】D【解析】当n为奇数时,a n+2-a n=2,即数列a n中的奇数项依次构成首项为1,公差为2的等差数列,所以,a19=1+10-1×2=19,当n为偶数时,a n+2+a n=2,则a n+4+a n+2=2,两式相减得a n+4-a n=0,所以,a18=a4×4+2=a2=2,故a18a19=219,故选:D.39.(2022·广东·高三开学考试)已知数列a n满足a1=3,a2=2,a n+2=a n-1,n=2k-1 3a n,n=2k .(1)求数列a n的通项公式;(2)求数列a n的前2n项的和S2n.【解析】(1)当n为奇数时,a n+2-a n=-1,所以所有奇数项构成以a1=3为首项,公差为-1的等差数列,所以a n=3+(n-1)⋅-12=7-n2,当n为偶数时,a n+2=3a n,所以所有偶数项构成以a2=2为首项,公比为3的等比数列,所以a n=2×(3)n-2=2×3n-22,所以a n=7-n2,n=2k-1 2×3n-22,n=2k ;(2)S2n=a1+a2+⋯+a2n=a1+a3+a5+⋯+a2n-1+a2+a4+⋯+a2n=3n+(-1)⋅n(n-1)2+21-3n1-3=(7-n)n2+3n-1=-12n2+72n+3n-1.40.数列{a n}满足a n+2+(-1)n+1a n=3n-1,前16项和为540,则a2= .【解析】解:因为数列{a n}满足a n+2+(-1)n+1a n=3n-1,当n为奇数时,a n+2+a n=3n-1,所以a3+a1=2,a7+a5=14,a11+a9=26,a15+a13=38,则a1+a3+a5+a7+a9+a11+a13+a15=80,当n为偶数时,a n+2-a n=3n-1,所以a4-a2=5,a6-a4=11,a8-a6=17,a10-a8=23,a12-a10=29,a14-a12=35,a16-a14=41,故a4=5+a2,a6=16+a2,a8=33+a2,a10=56+a2,a12=85+a2,a14=120+a2,a16=161+a2,因为前16项和为540,所以a2+a4+a6+a8+a10+a12+a14+a16=540-80=460,所以8a2+476=460,解得a2=-2.故答案为:-2.41.(2022•夏津县校级开学)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为508,则a1= .【解析】解:由a n+2+(-1)n a n=3n-1,当n为奇数时,有a n+2-a n=3n-1,可得a n-a n-2=3(n-2)-1,⋯a3-a1=3⋅1-1,累加可得a n-a1=3[1+3+⋯+(n-2)]-n-12=(n-1)(3n-5)4;当n为偶数时,a n+2+a n=3n-1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+⋯+a16=92.∴a 1+a 3+⋯+a 15=416.∴8a 1+14(0+8+40+96+176+280+408+560)=416,∴8a 1=24,即a 1=3.故答案为:3.经典题型十三:因式分解型求通项42.(2022秋•安徽月考)已知正项数列{a n }满足:a 1=a ,a 2n +1-4a 2n +a n +1-2a n =0,n ∈N *.(Ⅰ)判断数列{a n }是否是等比数列,并说明理由;(Ⅱ)若a =2,设a n =b n -n .n ∈N *,求数列{b n }的前n 项和S n .【解析】解:(Ⅰ)∵a 2n +1-4a 2n +a n +1-2a n =0,∴(a n +1-2a n )(a n +1+2a n +1)=0,又∵数列{a n }为正项数列,∴a n +1=2a n ,∴①当a =0时,数列{a n }不是等比数列;②当a ≠0时,an +1a n=2,此时数列{a n }是首项为a ,公比为2的等比数列.(Ⅱ)由(Ⅰ)可知:a n =2n ,∴b n =2n +n ,∴S n =(21+22+⋯+2n)+(1+2+⋯+n )=2(1-2n )1-2+n (1+n )2=2n +1-2+n (n +1)2.43.(2022•怀化模拟)已知正项数列{a n }满足a 1=1,2a 2n -a n -1a n -6a 2n -1=0(n ≥2,n ∈N *)设b n =log 2a n .(1)求b 1,b 2b 3;(2)判断数列{b n }是否为等差数列,并说明理由;(3){b n }的通项公式,并求其前n 项和为S n .【解析】解:(1)a 1=1,2a 2n -a n -1a n -6a 2n -1=0,a n >0,可得(2a n +3a n -1)(a n -2a n -1)=0,则a n =2a n -1,数列{a n }为首项为1,公比为2的等比数列,可得a n =2n -1;b n =log 2a n =n -1,b 1=0,b 2b 3=1×2=2;(2)数列{b n }为等差数列,理由:b n +1-b n =n -(n -1)=1,则数列{b n }为首项为0,公差为1的等差数列;(3)b n =log 2a n =log 22n -1=n -1,前n 项和为S n =12n (0+n -1)=n 2-n2.44.(2022秋•仓山区校级月考)已知正项数列{a n }满足a 1=2且(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *)(Ⅰ)证明数列{a n }为等差数列;(Ⅱ)若记b n =4a n a n +1,求数列{b n }的前n 项和S n .【解析】(I )证明:由(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *),变形得:(a n +a n +1)[(n +1)a n -na n +1]=0,由于{a n }为正项数列,∴a n +1a n =n +1n,利用累乘法得:a n =2n (n ∈N *)从而得知:数列{a n }是以2为首项,以2为公差的等差数列.(Ⅱ)解:由(Ⅰ)知:b n=42n∙2(n+1)=1n(n+1)=1n-1n+1,从而S n=b1+b2+⋯+b n=1-1 2+12-13+13-15+⋯+1n-1-1n+1=1-1n+1=n n+1.经典题型十四:其他几类特殊数列求通项45.(2022·全国·高三专题练习)在数列{a n}中,已知各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0.(1)证明数列{a n+a n+1}为等比数列;(2)若a1=15,a2=125,求{a n}的通项公式.【解析】(1)各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0,得a n+1+a n+2=15(a n+1+a n),即a n+1+a n+2 a n+a n+1=15所以数列{a n+a n+1}是公比为15的等比数列;(2)因为a1=15,a2=125,所以a1+a2=625,由(1)知数列{a n+a n+1}是首项为625,公比为15的等比数列,所以a n+a n+1=625×15n-1,于是a n+1-15n+1=-an-15 n=(-1)n a1-15,又因为a1-15=0,所以a n-15 n=0,即a n=15 n.46.(2022·湖北·天门市教育科学研究院模拟预测)已知数列a n满足a1=1,a2=6,且a n+1=4a n-4a n-1, n≥2,n∈N*.(1)证明数列a n+1-2a n是等比数列,并求数列a n的通项公式;(2)求数列a n的前n项和S n.【解析】(1)因为a n+1=4a n-4a n-1,n≥2,n∈N*所以a n+1-2a n=2a n-4a n-1=2(a n-2a n-1)又因为a2-2a1=4所以a n+1-2a n是以4为首项,2为公比的等比数列.所以a n+1-2a n=4×2n-1=2n+1变形得a n+12n+1-a n2n=1所以a n2n是以a12=12为首项,1为公差的等差数列所以a n2n=12+n-1=n-12,所以a n=(2n-1)2n-1(2)因为T n=1×20+3×21+5×22+⋅⋅⋅+(2n-1)2n-1⋯①所以2T n=1×21+3×22+5×23+⋅⋅⋅+(2n-1)2n⋯②①-②得:-T n=1+22+23+⋅⋅⋅+2n-1-(2n-1)2n=1+22(1-2n-1)1-2-(2n-1)2n所以T n=(2n-1)2n-2n+1+3=(2n-3)2n+347.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))设数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,则下列说法正确的是( )A.a2021⋅a2022<1B.a2021⋅a2022>1C.a2022<-22022D.a2022>22022【答案】A【解析】因为数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,。
数列通项公式求法(叠加,叠乘等)全面
数列通项公式求法(叠加,叠乘等)全面数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解.(注意:求完后一定要考虑合并通项)例1.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.◆三、累加(乘)法对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
解析:由n a a n n +=+1得n a a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a 所以 n a =32)1(+-n n例5.在数列{}n a 中,11=a ,n n n a a 21=+(*N n ∈),求通项n a 。
解析:由已知n n n a a 21=+,112--=n n n a a ,2212---=n n n a a ,…,212=a a,又11=a , 所以n a =1-n n a a ⋅⋅--21n n a a …12a a 1a ⋅=⋅-12n ⋅-22n …12⋅⋅=2)1(2-n n ◆四、取倒(对)数法例6..设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以,11+⋅n n a a 得11131+=⋅+n n a a .∵113211,211)2113-+=+∴+=+n n n n a a a (∴.13221-⨯=-n n a 变式:1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-(1) 求数列{a n }的通项公式;(2) 证明:对于一切正整数n ,不等式a 1•a 2•……a n <2•n !2、若数列的递推公式为11113,2()n na n a a +==-∈,则求这个数列的通项公式。
数列通项公式及其求和公式
2n12,依此类推有b n 1 b n 2、b n 2 b n 3b 2 1b 1-、数列通项公式的求法(1) 已知数列的前n 项和S n ,求通项a n ; (2) 数学归纳法:先猜后证;(3) 叠加法(迭加法):a n (a n a ni ) (a n 1 a n 2) L (a ? ai) ai ;【叠加法主要应用于数列{a n }满足a n 1 a n f (n),其中f (n)是等差数列或等比数列的条件下,可 把这个式子变成a n 1 a nf(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出a n ,从而求出S n 】(4)构造法(待定系数法):形如a n ka n 1 b 、a * ka * 1 b n ( k, b 为常数)的递推数列;【用构造法求数列的通项或前 n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列 的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前 n 项和.】(5)涉及递推公式的问题,常借助于“迭代法”解决 .【根据递推公式求通项公式的常见类型】①c 1=a,a n +1 a n f(n)型,其中f(n)是 可以和 数列,a f(n 1)f(n 2 ……f(2) f(1) a类型 1: a n 1 a n f (n)类型 2: a n 1 pa n f(n)那么问题就可以转化为类型一进行求解了 例题: 已知 a 1 2 , a n 1 4a n 2n 1,求 a n叠乘法(迭乘法):a na n a n 1 an 2a 3 a 2 an 1 a n 2 an 3a : a 1用累加法求通项公式,即思路 (叠加法)a n a n 1 f(n 1),依次类推有:a n 1 a n 2f (n 2)、0.2 q 3 f(n 3)、…、a 2 a 1 f(1), 将各式叠加并整理得n 1a n a 1f(n)'即 a . i 1n 1a 1f(n)i 1例题 1 :已知a 1 1,a n a n 1 n ,求a n解:T a n a n 1a n an 1n ,依次类推有:12 3n 2、…a 2 a 1•••将各式叠加并整理得 a na 1nn ,a ni 2n(n 1) 2思路(转化法)a n pq 1 f (n1),递推式两边同时除以a n npb n ,解:T a n 1 4a n 2• an 4an1 2n ,则2i•- a n 4nb类型 3: a n 1 f (n)a nf (n 2) f(n 1) a当p 1时,数列{a n }是等差数列;当 p 0,q0时,数列{a n }是等比数列;当p 0且p 1,q 0时,可以将递推关系转化为 a n1pq Q ,则数列 a n —⑴ 是以p 1 p 1p 1a 1 —匚为首项,p 为公比的等比数列.p 1•••各式叠加得 b n bl,即 b n bia n f(n) ② 6=4 4+1a n f(n 1) f(n 2) 型 苴 …f(2)f(1Rf (n )是可 求积数 求通项思路(叠乘法):旦a nf (n 1),依次类推有: 邑f(n an 22)、3nan 3f(n3)、…、a2a 1f(1),将各式叠乘并整理得 a n f(1)f(2) f(3)…f(n2) f(n 1),a n f(1)f(2) f(3)…例题:已知 a 1 1, n 1,求 an .解:T a nn 1 1a na n ,依次类推有:a n 1 a n 2 a 3 a n 1a na na 2a2a 1•将各式叠乘并整理得a na n2 1 43 n(n2 1)③ a 1=a, a n+1pa n q 型(其中 p q 是常数) ,可以采用待定系数法、换元法求通项公式,p(a n冷,设6 a n 壮则b n 1 pb n .利用②的方法求出b n 进而求出a n3思路 (构造法):设a n 1 p a n,即p 1 q 得—,数列a n 是以a 1为p 1首项、 p 为公比的等比数列,则 a nqp 1qn 1 a 1p p 1即 qn 1q,即 a na 1pp 11 p例题: 已知数列 a n 满足a n 2a n 13且a 1 1,求数列 a n 的通项公式解:设a n 1 2 a n ,即 3• ai即化为③.•••数列a n 3是以3i3 4为首项、 2为公比的等比数列④ ai=a,a n+i3 4 2n 12n 1,即 a n 2pa n q n 型,其中p q 是常数且q 0,q 1 导丄设* b n ,则b n 1qb n类型5: 思路(构造法):Oi pan rqa n 1n 1qrq1 ,从而解得例题:已知 a 1a n a n-为首项,q2n ,求解:•••设即2nan 1班2n是以1 6为首项,⑤ a n+1pa n -型, qp为公比的等比数列q1 2n 2n 1,解得1a —为公比的等比数列,即n22n其中p 、q 是常数且a n o ,可以采用等式两边取倒数2n a n1 思路(转化法):对递推式两边取倒数得—an 1 pa n dc a n an 1c an三,令bn丄,这样,a n问题就可以进行求解了例题:已知a1 4 , a n 12 a n 2a n解:•••对递推式左右两边取倒数得a n 1 2a n2a n an 1 a n1•••令b n 则b n 1a n 1bn1.设b n 1 ,即是以彳为首项、1-为公比的等比数列,则2b n 2 点’即bn2n 27~2* 1 ~ ,2* 1ana a n b类型7: a n 1----------- (c 0、ad bc 0)c a n d思路(特征根法):递推式对应的特征方程为心即cx2 (d a)xcx d b 0 .当特征方程有两个相等实根X1x2时,数列一a n11为等差数列,我们可设a da n2c1a d 2c a n1a d2c(为待定系数,可利用印、a2求得);当特征方程有两个不等实根花、X2时,数列X1a n a nX2是以引a1鱼为首项的等比数列,我们可设色x2 a nX1X2a1%a1x2n 1(为待定系数,可利用已知其值的项间接求得);当特征方程的根为虚根时数列a n 通项的讨论方法与上同理,此处暂不作讨论.例题:已知a112 a n 4an13 ( nan 122),求a n解:•••当n 2时,递推式对应的特征方程为2x 3 0,解得x11、x2 3数列旦」是以- 1为首项的等比数列a“ 3 a X2 2a X21 n 4.⑵等比数列求和公式: & a 1 (1 q n )(q 1):r (q 1)另外,还有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:n(n 1);nk 2k 1n (n 1)(2 n 1);6n k 3[0(1)]2k 12例1、 已知数列 f n 的前n 项和为S n ,且S nn 2 2n.若 a 1 a n,求数的前n 项和T列a n分析:根据数列的项和前 通项公式后,确定数列的特点,根据公式解决 解:T 当 n 2 时,f n S n S n 1 2n 1.当 n 1 时,f1 3, a n 1 2a n 1 nn 项和的关系入手求出 n ,再根据a n 1f a n ( nN )求出数列a n 的S 1 3,适合上式,即 a n 11 2(a n 1)f n 2n 1 n N , a 1•••数列a n 1是首项为4、公比为2的等比数列.•- a n 1a 1 1 2n 1 2n 1, a n 2n 1 1 nN ; T n【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合 性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题 变式训练1:已知log 3 xlog 2 3•求 x x 2 x 3x n 的前n 项和.二、数列求和的几种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素 材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数 列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种 方法进行系统探讨•1、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式 求和,或者利用前n 个正整数和的计算公式等直接求和 •运用公式求解的注意事项: 首先要注意公式的 应用范围,确定公式适用于这个数列之后,再计算 •特别地,注意数列是等比数列时需要讨论q 1和 q1的情况•⑴等差数列求和公式:S nn(a 1 a n )n(n 1)d2 2•••设生J a n3n1,由 a i3,即a n a n3n 1,从而a n3n1 3n 11a n1 2 3n ,n 13n ^l'n 21x1 2例2、已知函数F x3x 2 2x丄.求F2 2009F —2009F 20082009分析:由所求的和式的特点, 用倒序相加法求和• 易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否【解析】••• F x3x 2 2x31 x 2 21 x 13.•••设 S F —200920092008.①S 20092008 2009F 20072009F — 20092S1 2009 2008 20092 2009 2007 2009F 200820092008 【能力提升】倒序相加法来源于课本, 求和方法.当求一个数列的有限项和时, 3012例3 :已知f (x)解:•••由 f(x)•••原式 f(1)f(2)变式训练1:求si n 216024,所以S是等差数列前项和公司推导时所运用的方法,它是一种重要的 若是“与首末两端等距离” 的两项和都相等,即可用此法 ,则 f (1)1 x 2sin 2 2f(2) f(3)f(3) fsin 2 32x1 x 21 1 x 211sin 2 88 sin 289的值*S变式训练2:设s n 1 2… n(n N ),求f(n)-的最大值.(n 32) S n 12、倒序相加法2 3a n a n 1与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法 .我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”S nda 2 S na na n 1a n 1 a nn 1n则a ? a 〔如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一个常数,可采用把正着写 a n 1 2S na 1 a na 1 a n a 22 3a n a n 1a k a k da kn1 n1 1 1 1 1 k 1 3k 3k 1k 1d a ka k 1da 1例5 、 数列a n满 足23n22 2 2T n3 3 3 3a 〔a 2 a 2a 3 &a 4 a n a n 1丄丄 1” , • 1• •1 a 2a 2a 3a na n 11, a 25 5 2a 1,a n 2 a n 1 — a n 3 3 31丄 1d a 1a n 1分析:根据给出的递推式求出数列a n ,再根据的特点拆项解决变式训练2 :如已知函数f(x)对任意x € R 都有f(x) f(1 x) 1SSn2f (0)f(-) n23f(—) f ㈠+… n n-f(n 2) f(n 1)n n f(1), (n N *),求S n1 1f(1) f(2)f(2008) f(2)f(3)3、裂项相消法裂项相消法是将数列的各项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的 前n 项和• 一般地,我们把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求1 ak a kf (x)x 2 1 x 2f (i 2008得其和•适用于类似a n a n 1(其中a n 是各项不为0的等差数列,c 为常数)的数列,以及部分无理数列和含阶乘的数列等•用裂项法求需要掌握些常见的裂项方法(2n 1)(2 n 1) 2 2n 1 2n 1k)例 4:a n 是公差为 d 的等差数列,的等比数列,故a n 1 a n【能力提升】用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌 握一些常见的裂项技巧.变式训练 1: 在数列 {a n }中,a n1 2—,又 b n,求数列b n 的前n 项n 1 n 1n 1a nan 1的和•变式训练 :2 :求和: s 111L11 21 2 3 1 2 3 L n变式训练 3: 求和:11 11.2 1. 3 、2 4 3..n 1,n •4、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式•即若在(差比数列){a n b n }中,{a n }成等差数列, 减整理后即可以求出前 n 项和•解:•••由已知条件,得a n 2 a n 12 a n 1 a n3a n 122a n 是以a 2 a i为首项,一为公比33aana n aa 3{b n }成等比数列,在和式的两边同乘以公比,再与原式错位相 例题:S n 12x 3x 2 4x 3 n ..... nxx- S n x 2x 2 3x 3 4x 4…… ①一② 1 x S n 1 2 x x ............当x 1 时,S n1x n nxnx 1x1 x1n 1 x n 1①nnx②n 1 x n nx 当x 1时,S n 1 2 3n n 1n2【能力提升】错位相减法适用于数列a nb n ,其中a n 是等差数列, b n 是等比数列•若等比数列b n中公比q 未知,则需要对公比 q 分q 1和q1两种情况进行分类讨论例6、已知数列a n 是首项为a-i-,公比为q 丄的等比数列,设b n 4 42 3log 1 a n n4N ,数列C n 满足C n a n b n .求数列C n 的前n 项和S n .比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决5、(分组)拆项求和法(裂项重组法)所谓裂项重组法就是针对一些特殊的数列,既不是等差数列,也不是等比数列的数列,我们可以 通过拆分、合并、分组,将所求和转化为等差、等比数列求和例7、已知数列a n 的通项公式为a n 2n 3n 1,求数列a n 的前n 项和. 2n 与一个等差数列 3n 1组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和 【解析】S n a 1 a 2a n 21 2 22 5构成等差数列或等比数列,那么我们就可以用此方法求和例8、数列a n 的前n 项和是S n n N ,若数列a .的各项按如下规则排列:分析:根据等比数列的性质可以知道数列 b n 为等差数列,这样数列 C n 就是一个等差数列与一个等解:•••由题意知,a n3log ! a n 2,故 b n 3n2n N41 …G 3n 2- nN 42311 1 二 S n 14 7 L 3n 4441 C 1 1 1 S n 1 - 4 -7 -L 4 444233111•••两式相减,得3S n 1 3 1- 4 4 4451 n1 1 n 443n 2, n一n 111 3n 53n 244nn 1n 111113n 23n 24424S n2 3n 22 3变式训练1、求Sn 1 2x 3x 4xn 1nx变式训练2、若数列{a n }的通项a n (2n 1) 3n ,求此数列的前n 项和S n .变式训练3、2 4求数列亍豕623,2n ,歹前n 项的和.分析:该数列的通项是由一个等比数列 2n 3n 1=2122=22n2 53n 1 . 21 2nn 2 3n 1=1 22-n 2.2【能力提升】在求和时, 定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别若存在自然数k k N ,使S k 10, S k 1 10,则a k分析:数列的构成规律是分母为 2的一项,分母为 3的两项,分母为 4的三项,•…,故这个数列的和 可以并项求解.11 123 3 1 2 31 2 3 4解:S 1 S 3 —,S 63, S103 -52 23 22 451 2 3 4 5 15十 1 2 3 45 621S 15 5,而3,这样S 2110,而627215 1 2 3 4 5 15 15 15 55 + 5S2010,故 a k,故填272 7 2 277【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法 变式训练3:求数列{n(n 1)(2n1)}的前n 项和.一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数 列有关或具备某种方法适用特点的形式, 从而选择合适的方法求和•高考数学试题中所涉及的数列求和 问题往往具有一定的技巧性,需要考生具有很强的分析问题、解决问题的能力才能解决,但是基本的 求和方法就是上面介绍的这些 •希望广大考生熟练掌握,灵活适用 • 三、数列的综合应用⑴求解等差、等比数列的综合问题的基本途径是:应用等差数列和等比数列的基本量(首项、公差、 或公比、通项、前n 项和)表示数列中的项,适时地应用它们的基本性质求解 .此外,应该熟悉等差数列与等比数列的递推公式•⑵数列与函数、数列与不等式的综合问题主要是:由函数的解析式得到的数列递推公式,转化为等差 数列或等比数列进行求解.⑶数列的应用问题:一般地,涉及递增率通常用到等比数列;涉及依次增加或减少要用到等差数列; 复利和分期付款问题,用等比数列解决1 12 1 23 1 2 34 1—J — J — J — J — J — J — J — J — J — J —23344455556变式训练1:求和:2536+4 7+ ........ +n(n+3)变式训练2:求数列1,1+2,1+2+2 2 2 n 1,•- ,1+2+2 + …+2的前n 项和。
数列史上最全求通项公式10种方法并配大量习题及答案
数列通项公式的求法10种求数列的通项公式的方法非常众多,而且这个问题基本上都是高考试卷中的第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
数列通项公式的几种求法
() 1 可猜测 n 一3 2 由( ) 也 , 下面用 数学归纳法
) . : 5 即数 列 { 5 是 以 1 + 5 6为 首 项 、 ,. , 1+ } 2 2 —
n一
{ ,
a 一 ( ~ 1 3 )・2 _。 ” .
公 为 的 比 列n 6()15 比 号 等 数 ,=X号n . - —
() l ,2 , 1 p T 1 ≥ 2 型 , 2 a —n a —6a+ : a + '一 ( a ) 它
可构造成形如 { 一 } n +” 的等 比数列 ( 但公 比不一 定为 户. ) 【 3 已 知 数 列 { 满 足 z 例 1 z} = , 一 z
5 猜测法 . 若一数列 可用递 推关 系求 出数列 的 a ,za , a ,。a 等, 则可用观察 数列项 与项 数 的关 系 , 测 出 a , 猜 再 用 数学 归纳 法 证 明 . 【 5 已 知 数 列 { 满 足 a 一 1 a 一 3 例 】 a} , 一 ・
a2- a1 2 - 2, - — -
。 . .
n 一n 1一 ( 3 2 + + … + ) ( 一 2+ 3 … + ) +
6 2
3
+1 .
3 构 造 法 . 若 一 个 数 列 是 连 续 两 项 或 三 项 的 递 推 数 列 , 可 则 构造成等差数列或等 比数列 , 求其通项 . 再 ( )1 , a一 +r p : , , 1a 一n 1 一p 1 ,( 4 1 P r为常 数) 2 型, 它可构造 成公 比为 P的等 比数列. 【 2 已 知 数 列 { 中 , 1 3 4 5 例 】 1 } 1 一 ,a 一 a一 + 2 2 (≥2 , 数列 { 的通项公式. )求 1} 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式的求法
数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
◆一、直接法
根据数列的特征,使用作差法等直接写出通项公式。
◆二、公式法
①利用等差数列或等比数列的定义求通项
②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨
⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2
1
11n S S n S a n n n 求解.
(注意:求完后一定要考虑合并通项)
例1.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n
n n .求数列{}n a 的通项公式.
②已知数列{}n a 的前n 项和n S 满足21n
S n n =+-,求数列{}n a 的通项公式.
◆三、累加(乘)法
对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
解析:由n a a n n +=+1得n a a n n =-+1,所以
11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,
将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a
所以 n a =32
)
1(+-n n 例5.
在数列{}n a 中,11=a ,n n n a a 21=+(*
N n ∈),求通项n a 。
解析:由已知
n n n a a 21=+,112--=n n n a a ,2212---=n n n a a ,…,21
2=a a
,又11=a ,
所以n a =1-n n a a ⋅⋅--21n n a a …
1
2a a 1a ⋅=⋅-12n ⋅-2
2n …12⋅⋅=2)
1(2-n n ◆四、取倒(对)数法
例6..设数列}{n a 满足,21=a ),N (3
1∈+=
+n a a a n n
n 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以
,11+⋅n n a a 得1
1
131+=⋅+n n a a .
∵1132
1
1,211)2113-+=+∴+=+n n n n a a a (
∴.1
322
1-⨯=
-n n a
变式:1.已知数列{a n }满足:a 1=
3
2
,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-
(1) 求数列{a n }的通项公式;
(2) 证明:对于一切正整数n ,不等式a 1•a 2•……a n <2•n !
2、若数列的递推公式为1111
3,2()n n
a n a a +==-∈,则求这个数列的通项公式。
3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项公式。
4、已知数列{a n }满足:1,1
3111
=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
5、若数列{a n }中,a 1=1,a 1+n =2
2+n n
a a n ∈N +,求通项a n .
◆五、待定系数法:
1、通过分解常数,可转化为特殊数列{a n +k}的形式求解。
一般地,形如
a 1+n =p a n +q
(p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k=q ,即k=
1
-p q
,从而得等比数列{a n +k}。
例9、数列{a n }满足a 1=1,a n =
2
1
a 1-n +1(n ≥2),求数列{a n }的通项公式。
解:由a n =21a 1-n +1(n ≥2)得a n -2=2
1
(a 1-n -2),而a 1-2=1-2=-1,
∴数列{ a n -2}是以21
为公比,-1为首项的等比数列
∴a n -2=-(21)1-n ∴a n =2-(2
1)1
-n
练习、1数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
2、已知数列{}n a 满足11=a ,且132n n a a +=+,求n a .
2、递推式为1
1+++=n n n q pa a (p 、q 为常数)时,可同除1
+n q
,得
111+⋅=++n n n n q a q p q a ,令n
n
n
q a b =从而化归为q pa a n n +=+1(p 、q 为常数)型.
、
例10.已知数列{}n a 满足11=a ,123-+=n n
n a a )2(≥n ,求n a .
解:将123-+=n n n a a 两边同除n
3,得
n n n n a a 32131-+=⇒
11
33213--+=n n n
n a a 设n n n a b 3
=,则1321-+=n n b b .令)(321t b t b n n -=--⇒t b b n n 31
321+=-
⇒3=t .条件可化成)3(3
231-=--n n b b ,数列{}3-n b 是以38
33311-=-=-a b 为首项,
32为公比的等比数列.1)32
(383-⨯-=-n n b .因n n n a b 3
=, )3)3
2
(38(331+⨯-==∴-n n n n n b a ⇒2123++-=n n n a .
◆六:换元法:类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有
规律性。
例16 已知数列{}n a 满足111
(14116n n a a a +=
+=,,求数列{}n a 的通项公式。
解:令n b =2
1(1)24
n n a b =-
故2111(1)24n n a b ++=
-,代入11
(1416
n n a a +=++得 22
1111(1)[14(1)]241624
n n n b b b +-=+-+ 即2214(3)n n b b +=+
因为0n b =≥,故10n b +=≥ 则123n n b b +=+,即11322
n n b b +=+, 可化为11
3(3)2
n n b b +-=
-,
所以{3}n b -是以13332b -===为首项,以
2
1
为公比的等比数列,因此
121132()()22n n n b ---==,则21()32n n b -=+21
()32n -=+,得
2111
()()3423
n n n a =
++。
评注:n b ,使得所给递推关系式转化113
22
n n b b +=
+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式。