成都市石室外语学校数学整式的乘法与因式分解单元测试卷(含答案解析)
成都石室锦城外国语学校数学整式的乘法与因式分解单元测试卷(含答案解析)
成都石室锦城外国语学校数学整式的乘法与因式分解单元测试卷(含答案解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.3.下列运算正确的是A .532b b b ÷=B .527()b b =C .248·b b b =D .2·22a a b a ab -=+()【答案】A【解析】 选项A , 532b b b ÷=,正确;选项B , ()25b =10b ,错误;选项C , 24·b b =6b ,错误;选项D , 2·22a a b a ab -=-,错误.故选A.4.下列分解因式正确的是( )A .22a 9(a 3)-=-B .()24a a a 4a -+=-+C .22a 6a 9(a 3)++=+D .()2a 2a 1a a 21-+=-+ 【答案】C【解析】【分析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A. ()2a 9a 3a 3-=-+)(,分解因式不正确;B. ()24a a a 4a -+=--,分解因式不正确; C. 22a 6a 9(a 3)++=+ ,分解因式正确;D. ()2a 2a 1a 1-+=-2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.5.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.6.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.7.下列各式中,从左到右的变形是因式分解的是( )A .2a 2﹣2a+1=2a (a ﹣1)+1B .(x+y )(x ﹣y )=x 2﹣y 2C .x 2﹣6x+5=(x ﹣5)(x ﹣1)D .x 2+y 2=(x ﹣y )2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A 、2a 2-2a+1=2a (a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B 、(x+y )(x-y )=x 2-y 2,这是整式的乘法,故此选项不符合题意;C 、x 2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D 、x 2+y 2=(x-y )2+2xy ,等号的右边不是整式的积的形式,故此选项不符合题意; 故选C .【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.【答案】0【解析】【分析】利用完全平方式的特点把原条件变形为222(1)(2)(3)0x y z -+++-=,再利用几个非负数之和为0,则每一个非负数都为0的结论可得答案.【详解】解:因为:222246140x y z x y z ++-+-+=所以222(21)(44)(69)0x x y y z z -+++++-+=所以222(1)(2)(3)0x y z -+++-= 所以102030x y z -=⎧⎪+=⎨⎪-=⎩ ,解得123x y z =⎧⎪=-⎨⎪=⎩所以()2002x y z --=[]221(2)3(33)0---=-= 故答案为0.【点睛】本题考查完全平方式的特点,非负数之和为0的性质,掌握该知识点是关键.12.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.13.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100. 故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.14.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.15.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.17.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.19.分解因式:x 2﹣1=____.【答案】(x+1)(x ﹣1).【解析】试题解析:x 2﹣1=(x+1)(x ﹣1).考点:因式分解﹣运用公式法.20.若=2m x ,=3n x ,则2m n x 的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.。
成都石室佳兴外国语学校数学整式的乘法与因式分解单元测试卷 (word版,含解析)
成都石室佳兴外国语学校数学整式的乘法与因式分解单元测试卷(word版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是()A.x+2y+1 B.x+2y﹣1 C.x﹣2y+1 D.x﹣2y﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x2﹣4xy﹣2y+x+4y2=(x2﹣4xy+4y2)+(x﹣2y)=(x﹣2y)2+(x﹣2y)=(x﹣2y)(x﹣2y+1).故选:C.【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y),将其当成整体提出,进而得到答案.3.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()A.6 B.7 C.8 D.9【答案】C【解析】【分析】设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.【详解】解:设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6b2,∵a2+4ab+4b2=(a+2b)2,(b>a)∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C.【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.4.若(x+y)2=9,(x-y)2=5,则xy的值为()A.-1 B.1 C.-4 D.4【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y)2=x2+2xy+y2=9①,(x﹣y)2= x2-2xy+y2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..5.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形是( ) A.等腰三角形 B.等边三角形C.直角三角形 D.不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.【详解】∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形. 故选B .【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.6.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.7.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16【答案】B【解析】【分析】 直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.9.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.10.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确;62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误; 故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.12.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.13.已知2320x y --=,则23(10)(10)x y ÷=_______.【答案】100【解析】【分析】根据题意可得2x-3y=2,然后根据幂的乘方和同底数幂相除,底数不变,指数相减即可求得答案.【详解】由已知可得2x-3y=2,所以()()231010x y ÷=102x ÷103y =102x-3y =102=100. 故答案为100.【点睛】此题主要考查了幂的乘方和同底数幂相除,解题关键是根据幂的乘方和同底数幂相除的性质的逆运算变形,然后整体代入即可求解.14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,12122{2x x ax x b +=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.15.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+16.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.17.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.18.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.19.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36;故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。
四川省成都市石室中学数学整式的乘法与因式分解(篇)(Word版 含解析)
四川省成都市石室中学数学整式的乘法与因式分解(篇)(Word 版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 把已知的式子化成12[(a-b )2+(a-c )2+(b-c )2]的形式,然后代入求解即可. 【详解】原式=12(2a 2+2b 2+2c 2-2ab-2ac-2bc ) =12[(a 2-2ab+b 2)+(a 2-2ac+c 2)+(b 2-2bc+c 2)] =12[(a-b )2+(a-c )2+(b-c )2] =12×(1+4+1) =3,故选D.【点睛】本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.2.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定【答案】C【解析】【分析】 利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.计算,得( ) A . B .C .D .【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m +2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C .【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.4.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .5.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;22(24)()a a a -+--=-,故选项D 符合题意.故选D .【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.6.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.7.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B【解析】【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.多项式x 2+2mx+64是完全平方式,则m = ________ .【答案】±8【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8. 故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.12.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=93333xy xy ⎛⎫⎛---+ ⎪ ⎪⎝⎭⎝⎭=9xy xy ⎛ ⎝⎭⎝⎭故答案为:11933xy xy ⎛+--- ⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.13.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.14.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.15.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.16.若a ,b 互为相反数,则a 2﹣b 2=_____.【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.17.因式分解:x 3﹣4x=_____.【答案】x (x+2)(x ﹣2)【解析】试题分析:首先提取公因式x ,进而利用平方差公式分解因式.即x 3﹣4x=x (x 2﹣4)=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.18.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).20.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.。
《整式的乘法与因式分解》单元测试(带答案)
[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
《整式的乘法与因式分解》单元检测题含答案
A. 9B. 27C. 54D. 81
[答案]B
[解析]
解:A2+2B2+2C2﹣2A B﹣2B C﹣6C+9=(A2﹣2A B+B2)+(B2﹣2B C+C2)+(C2﹣6C+9)=(A﹣B)2+(B﹣C)2+(C﹣3)2=0,∴(A﹣B)2=0,(B﹣C)2=0,(C﹣3)2=0,∴A=B,B=C,C=3,即A=B=C=3,∴A B C=27.故选B.
20.计算:﹣5A2(3A B2﹣6A3)
21.计算:(x﹣1)(x+3)﹣x(x﹣2)
22.化简:(2A+1)2﹣(2A+1)(﹣1+2A)
23.分解因式:25m2﹣n2
24.分解因式:6A2B﹣4A3B3﹣2A B
25 因式分解:x2﹣5x+4;
26.已知(A+B)2=7,(A-B)2=3.
(1)求A2+B2、A B的值;(2)求A4+B4的值.
B选项:(﹣A2)3=-A6,故是错误的;
C选项:A3和A4不能直接相加,故是错误的;
D选项:A2•(A3)4=A14,故是正解的;
故选D.
[点睛]主要考查了同底数幂乘法、积的乘方、幂的乘方和除法法则,正确记忆运算法则是解题关键.
4.在①-A5·(-A)2;②(-A6)÷(-A3);③(-A2)3·(A3)2;④[-(-A)2]5中计算结果为-A10的有( )
16.若多项式x2﹣(k+1)x+9 完全平方式,则k=______.
成都石室外语学校八年级数学上册第四单元《整式的乘法与因式分解》测试(包含答案解析)
一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c b d =ad -bc .上述记号就叫做2阶行列式,若11x x +- 11x x -+=12,则x=( ).A .2B .3C .4D .62.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .83.下列等式中从左到右边的变形是分解因式的是( )A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭4.代数式2346x x -+的值为3,则2463x x -+的值为( )A .7B .18C .5D .95.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个6.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 27.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子()A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+8.下列计算一定正确的是( )A .235a b ab +=B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+9.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 10.下列运算正确的是( ) A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1 11.已知51x =+,51y =-,则代数式222x xy y ++的值为( ). A .20 B .10 C .45 D .2512.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽 二、填空题13.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____. 14.若294x kx ++是一个完全平方式,则k 的值为_____. 15.若()2340x y -++=,则x y -=______.16.已知2m n +=,2mn =-,则(1)(1)m n --=________.17.已知23x y -=,则432x y --=________.18.如果()()223232x x y ---=-,那么代数式()3()4(2)x y x y x y ++----的值是___________.19.因式分解:24ay a -=_______.20.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.三、解答题21.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值;(3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.22.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.23.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-.24.观察下列两个等式:22111121213,55322⨯=+-⨯=+-,给出定义如下:我们称使等式23ab a b =+-成立的一对有理数a ,b 为“海山有理数对”,记为(),a b ,如:()112,1,5,2⎛⎫ ⎪⎝⎭,都是“海山有理数对”. (1)数对()()2,1,1,1--中是“海山有理数对”的是_____________;(2)若()3n ,是“海山有理数对”,则n =_____________;(3)若()m,2是“海山有理数对”,求()223221m m m ⎡⎤---⎣⎦的值. 25.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF ,CF ,AC .(1)用含a 、b 的代数式表示GC =______;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长; (3)若8a =,AFC △的面积为S ,求S 的值.26.已知29a =,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于本身的数,求a b c d +--的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值.【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12,解得:x=3,故选:B .【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键. 2.C解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 5.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.6.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.7.B解析:B【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.8.B解析:B【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意.故选B .【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.9.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.10.D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.11.A解析:A【分析】利用完全平方公式计算即可得到答案.【详解】∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.12.C解析:C【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解.【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),由已知可得:我爱昭通,故选:C .【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键.二、填空题13.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()xy=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.14.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键. 15.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可.【详解】∵()230x -=,且()230x -≥≥, ∴x-3=0,y+4=0,∴x=3,y=-4,∴x-y=3-(-4)=7,故答案为:7.【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.16.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n 与mn 的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3故答案为:-3【解析:-3【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n 与mn 的值代入计算即可求出值.【详解】解:∵m+n=2,mn=-2,∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3.故答案为:-3.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.17.3【分析】把看成一个整体原式可化为2()-3整体代入即可【详解】解:原式=2()-3=2×3-3=3故答案为:3【点睛】本题考查了求代数式的值把看成一个整体是解题的关键解析:3【分析】把2x y -看成一个整体,原式可化为2(2x y -)-3,整体代入即可.【详解】解:原式=2(2x y -)-3=2×3-3=3,故答案为:3.【点睛】本题考查了求代数式的值,把2x y -看成一个整体是解题的关键.18.8【分析】先解求出将代入代数式即可得解【详解】∵∴式子展开得:化简得:∴将代入代数式故答案为:8【点睛】此题考查整式的化简求值掌握整式的去括号法则和合并同类项法则是解题的关键解析:8【分析】先解()()223232x x y ---=-,求出0y =,将0y =代入代数式()3()4(2)x y x y x y ++---- 即可得解.【详解】∵()()223232x x y ---=-,∴式子展开得:223232x x y --+=-,化简得:0y =,∴将0y =代入代数式()3()4(2)x y x y x y ++---- 34(2)x x x =+--448x x =-+8=.故答案为:8.【点睛】此题考查整式的化简求值,掌握整式的去括号法则和合并同类项法则是解题的关键. 19.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.20.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.三、解答题21.(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题;(2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+-- ∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--=∵5x y -=,114xy =∴()2211544x y +-=⨯∴()236x y += ∴6x y +=±(3)∵()()201920212m m -+-=-∴()()2201920214m m -+-=⎡⎤⎣⎦ ∴()()()()22201922019202120214m m m m -+--+-= ∵()()222019202134m m -+-= ∴()()22019202143430m m --=-=-∴()()2019202115m m --=-.【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.23.2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷ ()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 24.(1)(-1,1);(2)3;(3)-1【分析】(1)根据公式列式计算即可判断;(2)根据公式列方程解答即可;(3)根据公式列方程求出221m m -=,再代入代数式计算即可.【详解】(1)∵221(2)13-⨯+≠--,211(1)13-⨯+≠--,∴数对()()2,1,1,1--中是“海山有理数对”的是(-1,1);故答案为:(-1,1);(2)由题意得:2333n n =+-,解得n=3,故答案为:3;(3)由题意得:2223m m =+-,∴221m m -=,∴原式=22(342)m m m --+=22342m m m -+-=23(2)2m m --+=312-⨯+=-1.【点睛】此题考查新定义,有理数的混合运算,整式的混合运算,求代数式的值正确理解题意中的计算公式正确列式是解题的关键.25.(1)a+b ;(2)10;(3)32【分析】(1)可由图形直观的得出结论;(2)利用完全平方公式通过展开推导,再将数值代入计算可得;(3)通过面积计算可得,△AFC 的面积为12a 2即为32. 【详解】解:(1)∵GC =GB+BC ,∴GC =a+b ,故答案为:a+b ;(2)∵(a+b )2=a 2+b 2+2ab =60+20×2=100,∴a+b =10,∴GC =10;(3)S △AFC =S △AFE +S ▱FGBE +S △ABC -S △FGC22111()()222b a b b a b b a =-++-+ 22221111122222ab b b a b ab =-++-- 212a = 2182=⨯ 32=故答案为:32.【点睛】本题主要考查了完全平方公式运用,解题的关键是完全平方公式展开与合并.运用几何直观理解、通过几何图形之间的数量关系对完全平方公式做出几何解释的知识点. 26.a+b-c-|d|的值为1或-5.【分析】先确定a ,b ,c ,d 的值,分类代入代数式计算即可.【详解】∵a 2=9 ∴a =±3,∵b 是最大的负整数 ,∴b=-1,∵c 是绝对值最小的数,∴c=0,∵d 的倒数是他本身,∴d=±1,|d|=1,①当a =3,b=-1,c=0,|d|=1,原式=3+(-1)-0-1=1,②当a =-3,b=-1,c=0,|d|=1,原式=-3+(-1)-0-1=-5,综上a +b-c-|d|的值为1或-5.【点睛】本题考查代数式求值问题,掌握代数式求值的方法,关键是根据条件确定a ,b ,c ,d 的值是解题关键.。
《整式的乘法与因式分解》单元测试卷(含答案)
《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。
《整式的乘法与因式分解》单元检测题(附答案)
[答案]B
[解析]
[分析]
把式子展开,找到所有x项的系数,令其为0,求解即可.
[详解]解:∵(x+1)(5x+A)=5x2+Ax+5x+A=5x2+(A+5)x+A,
又∵乘积中不含x一次项,
∴A+5=0,解得A=-5.
故选B.
[点睛]本题主要考查了多项式乘多项式,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.
考点:因式分解-运用公式法.
点评:本题考查了公式法分解因式,掌握平方差公式,完全平方公式 结构特征是解决本题的关键.
11.已知x2+mx+25是完全平方式,则m的值为( )
A.10B.±10C.20D.±20
[答案]B
[解析]
[分析]
根据完全平方式的特点求解:A2±2A B+B2.
[详解]∵x2+mx+25是完全平方式,
提出问题:
(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;
(2)请写出三个代数式(A+B)2,(A-B)2,A B之间的一个等量关系:___________________________;
问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x-y的值.
[答案]C
[解析]
试题分析:A、右边不是整式积的形式,不是因式分解,故本选项错误;
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、是符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误;
成都市实验外国语学校数学整式的乘法与因式分解单元试卷(word版含答案)
成都市实验外国语学校数学整式的乘法与因式分解单元试卷(word版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.2.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.3.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.4.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1B .﹣52C .±1D .±52 【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,故选C .点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.5.下列分解因式正确的是( )A .22a 9(a 3)-=-B .()24a a a 4a -+=-+C .22a 6a 9(a 3)++=+D .()2a 2a 1a a 21-+=-+ 【答案】C【解析】【分析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A. ()2a 9a 3a 3-=-+)(,分解因式不正确;B. ()24a a a 4a -+=--,分解因式不正确; C. 22a 6a 9(a 3)++=+ ,分解因式正确;D. ()2a 2a 1a 1-+=-2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.6.计算,得()A.B.C.D.【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m+2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.7.已知a,b,c是△ABC的三条边的长度,且满足a2-b2=c(a-b),则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【详解】已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.故选C.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.10.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=-【答案】C【解析】根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x=7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.12.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.14.-3x 2+2x -1=____________=-3x 2+_________.【答案】-(3x2-2x+1)(2x-1)【解析】根据提公因式的要求,先提取负号,可得-(3x2-2x+1),再把2x-1看做一个整体去括号即可得(2x-1).故答案为:-(3x2-2x+1),(2x-1).15.4x(m-n)+8y(n-m)2中各项的公因式是________.【答案】4(m-n)【解析】根据题意,先变形为4x(m-n)+8y(m-n)2,把m-n看做一个整体,即可找到公因式4(m-n).故答案为:4(m-n).点睛:此题主要考查了提公因式法因式分解,根据公因式的特点,利用整体法确定公因式即可,关键是要把n-m与m-n变形为统一的式子.16.若22(3)16x m x+-+是关于x的完全平方式,则m=__________.【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.17.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,12122{2x x ax x b+=-=解得,122{4a bx a b x +=-= ②的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.18.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.20.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.。
成都四川师范大学实验外国语学校八年级数学上册第四单元《整式的乘法与因式分解》测试(含答案解析)
一、选择题1.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 2.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12± B .9 C .9±D .12 3.已知3x y +=,1xy =,则23x xy y -+的值是( )A .7B .8C .9D .12 4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++5.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( ) m﹣3 4 3 1nA .1B .2C .5D .7 6.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+C .()2484x x x +-D .()241x x - 7.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个 B .2个 C .3个 D .4个8.下列分解因式正确的是( )A .xy ﹣2y 2=x (y ﹣2x )B .m 3n ﹣mn =mn (m 2﹣1)C .4x 2﹣24x +36=(2x ﹣6)2D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y ) 9.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12 10.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+ 11.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .54 12.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6 二、填空题13.如果210x x m -+是一个完全平方式,那么m 的值是__________.14.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd+-+的值为_______. 15.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 16.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.17.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 18.7+17﹣1)的结果等于_____.19.要使()()22524x x x mx -+--的展开式中不含2x 项,则m 的值是______. 20.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.三、解答题21.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a2+6a+8,解:原式=a2+6a+8+1-1=a2+6a+9-1=(a+3)2-12=[(a+3)+1][(a+3)-1]=(a+4)(a+2)②M=a2-2a-1,利用配方法求M的最小值.解:a2-2a-1=a2-2a+1=(a-1)2-2∵(a-b)2≥0,∴当a=1时,M有最小值-2.请根据上述材料解决下列问题:(1)用配方法...因式分解:x2+2x-3.(2)若M=2x2-8x,求M的最小值.22.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.(1)若每份套餐售价定为9元,则该店每天的利润为元;若每份套餐售价定为12元,则该店每天的利润为元;(2)设每份套餐售价定为x元,试求出该店每天的利润(用含x的代数式表示,只要求列式,不必化简);(3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.23.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.24.分解因式(1)22363ax axy ay -+(2)()()22162x x x ---25.因式分解:(1)2ax 2-4axy +2ay 2(2)x 2-2x -826.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-; 请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.2.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 3.A解析:A【分析】先把3x y +=代入原式,可得23x xy y -+=22x y +,结合完全平方公式,即可求解.【详解】∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22xy +, ∵1xy =,∴23x xy y -+=22xy +=22()23217x y xy +-=-⨯=,故选A .【点睛】 本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键. 4.C解析:C【分析】利用不同的方法表示出空白部分的面积:一种是利用公式2()a b -直接计算,另一种是割补法得222a ab b -+,根据面积相等即可建立等式,得出结论.【详解】解:空白部分的面积:2()a b -,还可以表示为:222a ab b -+,∴此等式是222()2a b a ab b -=-+.故选:C .【点睛】本题考查了完全平方公式的几何意义,注意图形的分割与拼合,会用不同的方法表示出空白部分的面积是解题的关键.5.D解析:D【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 6.D解析:D【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答.【详解】解:32484x x x -+=2421)x x x -+(=()241x x -,故选:D .【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键. 7.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的;∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.8.D解析:D【分析】根据因式分解的方法:提公因式法、平方差公式、完全平方公式计算判断.【详解】A 、xy ﹣2y 2=y (x ﹣2y ),故该项错误;B 、m 3n ﹣mn =mn (m 2﹣1)=mn (m+1)(m-1),故该项错误;C 、4x 2﹣24x +36=4(x ﹣3)2,故该项错误;D 、4x 2﹣9y 2=(2x ﹣3y )(2x +3y ),故该项正确;故选:D .【点睛】此题考查因式分解的解法,熟练掌握因式分解的方法是解题的关键.9.C解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.10.B解析:B【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y +分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.11.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y −12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键. 12.D解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++=()88(21)211-++=162,∵2的末位数字是2, 22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.二、填空题13.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25【分析】利用完全平方公式的结构特征,即可求出m 的值.【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数, ∴a+b=0,cd=1,x=±1,∴x 2021=±1, ∴2021a b x cd cd+-+ =1-1+0=0; 或2021a b x cd cd+-+ =-1-1+0=-2.故答案为:0或-2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 15.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算.【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.16.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 17.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键 18.6【分析】根据平方差公式计算【详解】(+1)(﹣1)=7-1=6故答案为:6【点睛】此题考查平方差计算公式:熟记公式是解题的关键解析:6【分析】根据平方差公式计算.【详解】﹣1)=7-1=6,故答案为:6.【点睛】此题考查平方差计算公式:22()()a b a b a b +-=-,熟记公式是解题的关键. 19.-6【分析】结合题意根据整式乘法的性质计算即可得到答案【详解】∵的展开式中不含项∴∴∴故答案为:-6【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质从而完成求解解析:-6【分析】结合题意,根据整式乘法的性质计算,即可得到答案.【详解】∵()()22524x x x mx -+--的展开式中不含2x 项∴()224520x x mx x ⨯-+⨯+⨯= ∴4100m -++=∴6m =-故答案为:-6.【点睛】本题考查了整式的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解. 20.【分析】先求出圆形钢板的面积再减去两个小半圆的面积即可【详解】解:圆形钢板的面积为:直径为a 的半圆面积为:直径为b 的半圆面积为:剩下钢板的面积为:=故答案为:【点睛】本题考查了圆的面积利用面积的差求解析:()2248a b ab π++【分析】 先求出圆形钢板的面积,再减去两个小半圆的面积即可.【详解】 解:圆形钢板的面积为:2()2a b π+, 直径为a 的半圆面积为:21()22a π⨯, 直径为b 的半圆面积为:21()22b π⨯, 剩下钢板的面积为:22211()()()22222a b a b πππ+-⨯-⨯, =()2248a b ab π++, 故答案为:()2248a b ab π++.【点睛】 本题考查了圆的面积,利用面积的差求出剩余钢板的面积,注意:圆的面积等于半径的平方乘以π.三、解答题21.(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.22.(1)1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-;当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)选择11元,能保证达到利润要求又让顾客省钱.【分析】(1)根据题意,列出算式,即可求解;(2)分两种情况:当10x ≤时,当10x >时,分别列出代数式,即可;(3)把x=10,11,14分别代入第(2)小题的代数式,即可得到答案.【详解】解:(1)由题意得:(9-5)×400-500=1100(元),(12-5)×[400-(12-10)×40]-500=1740(元),故答案是:1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-,当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)∵当x =10时,(105)4005001500-⨯-=(元), 当x =11时,[](115)400(1110)405001660---⨯-=(元),当x =14时,[](145)400(1410)405001660---⨯-=(元), ∴当x =11或14时,利润均为1660元.∵11<14,∴选择11元,能保证达到利润要求又让顾客省钱.【点睛】本题考查的是代数式的实际应用,解题的关键是根据题目中的数量关系列出代数式. 23.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.24.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.25.(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。
成都四川国际学校八年级数学上册第四单元《整式的乘法与因式分解》测试题(答案解析)
一、选择题1.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a cb d ,定义ac b d=ad -bc .上述记号就叫做2阶行列式,若11x x +-11x x -+=12,则x=( ).A .2B .3C .4D .6 2.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .63.化简()2003200455-+所得的值为( )A .5-B .0C .20025D .200345⨯4.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+ C .()2484x x x +- D .()241x x -5.下列分解因式正确的是( ) A .xy ﹣2y 2=x (y ﹣2x ) B .m 3n ﹣mn =mn (m 2﹣1) C .4x 2﹣24x +36=(2x ﹣6)2 D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y ) 6.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7 B .9 C .-63 D .12 7.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( )A .6-B .0C .12D .188.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( )A .43B .43-C .0.75D .-0.759.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n - C .383m n - D .6169m n - 10.下列计算正确的是( ) A .a 3+a 3=a 6B .a 3·a=a 4C .a 3÷a 2=a 3D .(2a 2)3 =6a 511.下列各式计算正确的是( ) A .5210a a a =B .()428=a aC .()236a ba b = D .358a a a +=12.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( ) A .1B .1-C .2D .2-二、填空题13.若()()253x x x bx c +-=++,则b+c=______.14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.15.已知2a -b +2=0,则1-4a +2b 的值为______. 16.若26x x m ++为完全平方式,则m =____. 17.若3x y -=,2xy =,则22xy +=__________.18.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x 011.52 mx +n-3 -1 01若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.19.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对22)放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)20.因式分解:316m m -=________.三、解答题21.计算:4a 2·(-b )-8ab ·(b -12a ). 22.下面是小华同学分解因式229()4()a x yb y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-①22()(94)x y a b =-+② 2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误. 任务二:请你写出正确的解答过程.23.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积. 24.利用我们学过的知识,可以导出下面这个形式优美的等式:2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦,该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁、美观. (1)请你检验说明这个等式的正确性;(2)若ABC 的三边长分别为a ,b ,c ,当222a b c ab bc ca ++=++时,试判断ABC 的形状;(3)若327a b -=,227a c -=,且22241abc ++=,求22ab bc ac ++的值. 25.计算:(1)化简:()()()222a a b a b a b +-+-(2)因式分解:244x y xy y ++26.分解因式: (1)325x x -; (2)(3)2(3)m a a -+-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值. 【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12, 解得:x=3, 故选:B . 【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.2.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解. 【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.3.D解析:D 【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案. 【详解】 解:()2003200455-+=(-5)2003+(-5)2004 =(-5)2003(1-5) =4×52003, 故选:D . 【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.4.D解析:D先提出公因式4x ,再利用完全平方公式因式分解即可解答. 【详解】解:32484x x x -+ =2421)x x x -+( =()241x x -, 故选:D . 【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键.5.D解析:D 【分析】根据因式分解的方法:提公因式法、平方差公式、完全平方公式计算判断. 【详解】A 、xy ﹣2y 2=y (x ﹣2y ),故该项错误;B 、m 3n ﹣mn =mn (m 2﹣1)=mn (m+1)(m-1),故该项错误;C 、4x 2﹣24x +36=4(x ﹣3)2,故该项错误;D 、4x 2﹣9y 2=(2x ﹣3y )(2x +3y ),故该项正确; 故选:D . 【点睛】此题考查因式分解的解法,熟练掌握因式分解的方法是解题的关键.6.C解析:C 【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可. 【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-; 故选C . 【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.7.A解析:A 【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可. 【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=, 则()62106256126a b a b --=-+=-=-. 故选:A . 【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.8.D解析:D 【分析】 先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭=20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯ =34-, 故选:D . 【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.9.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b-=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.10.B解析:B 【分析】直接利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则、积的乘方运算法则分别化简得出答案. 【详解】A 、3332a a a +=,故此选项错误;B 、34·a a a =,故此选项正确;C 、32a a a ÷=,故此选项错误;D 、236(2)8a a =,故此选项错误; 故选:B . 【点睛】本题主要考查了同底数幂的乘除运算以及幂的乘方运算、积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.11.B解析:B 【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断. 【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意; B 、(a 2)4=a 8,此选项计算正确,符合题意; C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意; D 、a 3与a 5不能合并,此选项计算错误,故不符合题意. 故选:B . 【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.B解析:B 【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得xy 即可求解. 【详解】解:由题意,得:521303100x y x y +-=⎧⎨--=⎩,解得:31x y =⎧⎨=-⎩,∴x y =(﹣1)3=﹣1, ∴x y 的立方根为﹣1, 故选:B . 【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题13.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13 【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可. 【详解】解:∵()()253x x x bx c +-=++∴22+215x x x bx c -=++ ∴b=2,c=-15 ∴b+c=2-15=-13 故答案为:-13. 【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.14.870【分析】将n =3代入数值运算程序计算判断结果与30大小小于或等于30再代入计算大于30输出即可得到输出结果【详解】解:当n =3时根据数值运算程序得:32−3=9−3=6<30当n =6时根据数值解析:870 【分析】将n =3代入数值运算程序计算,判断结果与30大小,小于或等于30再代入计算,大于30输出,即可得到输出结果. 【详解】解:当n =3时,根据数值运算程序得:32−3=9−3=6<30, 当n =6时,根据数值运算程序得:62−6=36−6=30,当n =30时,根据数值运算程序得:302−30=900−30=870>30, 则输出结果为870. 故答案为:870 【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.5【分析】由得整体代入代数式求值【详解】解:∵∴∴原式故答案是:5【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想解析:5 【分析】由220a b -+=得22a b -=-,整体代入代数式求值. 【详解】解:∵220a b -+=, ∴22a b -=-,∴原式()()122122145a b =-+=-⨯-=+=. 故答案是:5. 【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想.16.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的解析:9 【分析】完全平方式可以写为首末两个数的平方(2x ,则中间项为x 2倍,即可解得m 的值. 【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成(2x +,则中间项为x 2倍,故62x = ∴m =9, 故答案填:9. 【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.17.【分析】根据完全平方公式变形计算即可得解【详解】∵∴=9+4=13故答案为:13【点睛】此题考查完全平方公式变形计算熟记完全平方公式并正确理解所求与公式的关系是解题的关键 解析:13【分析】根据完全平方公式变形计算即可得解. 【详解】∵3x y -=,2xy =, ∴22x y +=2()2x y xy -+=9+4=13,故答案为:13. 【点睛】此题考查完全平方公式变形计算,熟记完全平方公式并正确理解所求与公式的关系是解题的关键.18.20或30【分析】把表格中的前两对值代入求出m 与n 的值即可求出x 的值然后把x 的值代入求解即可【详解】解:由表格得x =0时m 0+n =-3∴n=-3;x =1时m1+(-3)=-1∴m =2;∵mx +n解析:20或30 【分析】把表格中的前两对值代入求出m 与n 的值,即可求出x 的值,然后把x 的值代入求解即可. 【详解】解:由表格得x =0时,m ⋅0+n =-3, ∴n =-3;x =1时,m ⋅1+(-3)=-1, ∴m =2; ∵mx +n =17, ∴2x -3=17, ∴x =10,当点C 在线段AB 上时, ∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =20; 当点C 在点B 右侧时, ∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键. 19.-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对3-1-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.20.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.三、解答题21.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.22.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下: 229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.23.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.24.(1)见详解;(2)ABC 为等边三角形;(3)4249 【分析】(1)利用完全平方公式将等式的右边展开,合并同类项后即可得出等式的左边,从而得出该等式成立;(2)由a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0,利用偶次方的非负性即可得出a =b =c ,从而得出该三角形为等边三角形;(3)先求出17b c -=-,结合第(1)题的结论,即可求解. 【详解】(1)等式右边=()22222221222x xy y y z x yz xz z -++++-+- =()222122x y z y xy xz z ⨯++--- =222x y z xy yz xz ++---=等式左边.∴等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立. (2)∵a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0, ∴a−b =0,b−c =0,c−a =0,∴a =b =c ,∵a 、b 、c 分别是三角形的三条边,∴ABC 为等边三角形;(3)∵327a b -=,227a c -=, ∴17b c -=-, 又∵2222221(2)22(2)(2)()2a b c ab ac bc a b a c b c ⎡⎤++---=-+-+-⎣⎦, ∴2222221321(2)22()()()2777a b c ab ac bc ⎡⎤++---=⨯++-⎢⎥⎣⎦=749, ∵22241a b c ++=,∴22ab bc ac ++=1-749=4249. 【点睛】 本题考查了整式的运算、偶次方的非负性以及等边三角形的判定,利用完全平方的展开式证出等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立是解题的关键.25.(1)224ab b +;(2)2(2)y x +.【分析】(1)先利用单项式乘多项式和平方差公式计算,再合并同类项即可;(2)先提取公因式,再利用完全平方公式因式分解.【详解】解:(1)原式=()22224a ab a b+--=22224a ab a b +-+=224ab b +;(2)原式=2(44)y x x ++=2(2)y x +.【点睛】本题考查整式的混合运算,因式分解.(1)中掌握单项式乘多项式法则和平方差公式是解题关键;(2)中因式分解时一般有公因式先提取公因式,再看能否运用公式法因式分解. 26.(1)(5)(5)x x x +-;(2)(3)(2)a m --.【分析】(1)先提公因式x ,再利用平方差公式进行分解,即可得出结果;(2)先将多项式进行变形,再利用提公因式法进行分解,即可得出结果.【详解】解:(1)325x x -2(25)x x =-(5)(5)x x x =+-;(2)(3)2(3)m a a -+-(3)2(3)m a a =---(3)(2)a m =--.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能根据多项式的特点准确选择分解方法是解题的关键.。
《整式的乘法与因式分解》单元测试题带答案
A.﹣1B. 0C. 1D.无法确定
[答案]C
[解析]
[分析]
原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.
[详解]∵A B2=-1,
∴原式=-(A B2)3+(A B2)2+A B2=1+1-1=1,
故选C.
A.﹣1B. 0C. 1D.无法确定
9.已知 与一个多项式之积是 ,则这个多项式是( )
A. B. C. D.
10.已知 ,则 的值为()
A.2016B.2017C.2018D.2019
11.如图在边长为A的正方形中挖掉一个边长为B的小正方形(A>B).把余F的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )
(28x7y3+98x6y5-21x5y5)÷7x5y3=4x2+14xy2-3y2,
故选C.
[点睛]本题考查了单项式乘多项式,利用了整式的除法:用多项式的每一项除以单项式,把所得商相加.
10.已知 ,则 的值为()
A.2016B.2017C.2018D.2019
[答案]D
[解析]
[分析]
根据完全平方公式,即可解答.
[详解](m-n)2=38,
m2-2mn+n2=38①,
(m+n)2=4000,
m2+2mn+n2=4000②,
①+②得:2m2+2n2=4038
m2+n2=2019.
故选D.
[点睛]本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.
11.如图在边长为A的正方形中挖掉一个边长为B的小正方形(A>B).把余F的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )
成都市实验外国语学校八年级数学上册第四单元《整式的乘法与因式分解》测试题(有答案解析)
一、选择题1.若2x y +=,1xy =-,则()()1212x y --的值是( )A .7-B .3-C .1D .92.()()()2483212121+++···()32211++的个位数是( ) A .4B .5C .6D .83.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2- B .2C .1-D .14.形如ab cd的式子叫做二阶行列式,它的算法是:ab ad bc cd=-,则221a a a a -++的运算结果是( ) A .4a B .4a -C .4D .4-5.已知: 13m m +=, 则: 331m m+的值为( ) A .15B .18C .21D .96.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+ C .()2484x x x +- D .()241x x -7.已3,2x y a a ==,那么23x y a +=( ) A .10 B .15 C .72 D .与x ,y 有关 8.2a =1,b 是2的相反数,则a+b 的值是( ) A .1B .-3C .-1或-3D .1或-3 9.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=-10.下列各式计算正确的是( ) A .224a a a += B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+11.已知1x x+=1x x -的值为( )A B .2±C .D12.已知x ,y ﹣1,则xy 的值为( )A .8B .48C .D .6二、填空题13.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.14.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.15.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x xx x x -+++=-;……(1)()432(1)1x x x x x -++++=___; (2)根据规律可得:()1(1)1n x xx --+++=_____(其中n 为正整数); (3)计算:()5049482(31)333331-++++++;16.已知2m a =,5n a =,则2m n a -=___________.17.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____. 18.若2249x mxy y -+是一个完全平方式,则m =______ 19.若a - b = 1, ab = 2 ,则a + b =______. 20.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+22.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在m n +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >); (2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.23.因式分解: (1)322242a a b ab -+(2)4481x y -24.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于______; (2)请用两种不同的方法求图2中阴影部分的面积. ①________________; ②__________________.(3)观察图2你能写出2()m n +,2()m n -,mn 三个代数式之间的等量_____________.(4)运用你所得到的公式,计算若知8,7a b ab +==,求-a b 和22a b -的值.(5)用完全平方公式和非负数的性质求代数式222431832x x y y ++-+的最小值.25.在通常的日历牌上,可以看到一些数所满足的规律,表①是2020年12月份的日历牌.星期一 星期二 星期三 星期四 星期五 星期六 星期日1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728 293031(1)在表①中,我们选择用如表②那样22⨯的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.如:用正方形框圈出3,4,10,11四个数,然后将它们交叉相乘,再相减,即3114107⨯-⨯=-或4103117⨯-⨯=.请你用表②的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可). (2)在用表②的正方形框任意圈出的22⨯个数中,将它们先交叉相乘,再相减.若设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字,列出算式并算出结果(选择其中一个算式即可).(3)若选择用表③那样33⨯的正方形方框任意圈出33⨯个数,将正方形方框四角....位置上的4个数先交叉相乘,再相减,你发现了什么.选择一种情况说明理由. 26.阅读:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值. 解:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n∴343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩∴另一个因式为x ﹣7,m 的值为﹣21 问题:仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式及k 的值. (2)已知2x 2﹣13x +p 有一个因式x ﹣3,则P = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7; 故选:A . 【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.2.C解析:C 【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果. 【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264, ∵21=2,22=4,23=8,24=16,25=32,…, ∴个位上数字以2,4,8,6为循环节循环, ∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6. 故选:C . 【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.4.A解析:A 【分析】根据定义把二阶行列式表示成整式,然后再化简计算即可. 【详解】 解:由题意可得:()()()212221a a a a a a a a -=+--+++=()224a a a +-- =224a a a +-+ =a+4,【点睛】本题考查整式乘法的混合运算,通过观察题目给出的运算法则,把所求解的算式根据运算法则展开是解题关键.5.B解析:B 【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m ,∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B 【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键6.D解析:D 【分析】先提出公因式4x ,再利用完全平方公式因式分解即可解答. 【详解】解:32484x x x -+ =2421)x x x -+( =()241x x -, 故选:D . 【点睛】本题考查因式分解、完全平方公式,熟练掌握提公因式法和公式法分解因式的方法步骤是解答的关键.7.C解析:C 【分析】根据幂的乘方和积的乘方的运算法则求解即可. 【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72, 故选:C 【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键.8.C解析:C 【分析】根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可. 【详解】∵2a =1,b 是2的相反数, ∴1a =±,b=-2, 当a=1时,a+b=1-2=-1, 当a=-1时,a+b=-1-2=-3, 故选:C . 【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键.9.A解析:A 【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可. 【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意.故选:A . 【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.10.C解析:C 【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算. 【详解】解:A. 2222a a a +=,故选项A 计算错误; B. 235a a a ⋅=,故选项B 计算错误; C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误; 故选:C 【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题.11.C解析:C 【分析】将1x x +=两边平方得出22x 15x +=,再求得21-⎛⎫ ⎪⎝⎭x x 即可得答案.【详解】解:∵1x x+= ∴217⎛⎫+= ⎪⎝⎭x x ∴22127x x++= ∴22x 15x+= ∴22211-=x -2+=5-2=3x ⎛⎫ ⎪⎝⎭x x∴1=-±x x 故选:C 【点睛】本题主要考查了利用完全平方公式的变形求值,熟练掌握完全平方公式是解题的关键12.D解析:D 【分析】利用平方差公式计算即可. 【详解】当x +1,y 1时,xy +11))2﹣12 =7﹣1 =6, 故选:D. 【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键.二、填空题13.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4 【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值. 【详解】解:∵x 2-3x -1=0, ∴x 2-3x =1, ∴3223111x x x --+ =223132611x x x x -+-+ =()22233111x x x x x -+-+ 将x 2-3x =1代入 原式=221113x x x +-+ =23)13(x x -+ 将x 2-3x =1代入 原式=314+=, 故答案为:4. 【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.14.6【分析】由得把它整体代入求值【详解】解:∵∴即∴故答案是:6【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想求值解析:6 【分析】由(2)10f =得1643m n +=,把它整体代入()21643f m n -=++求值. 【详解】解:∵(2)10f =,∴164710m n ++=,即1643m n +=, ∴()216425336f m n -=+-+=+=. 故答案是:6. 【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想求值.15.(1);(2);(3)【分析】(1)第二个括号里最高次数4根据观察可知结论中次数为4+1=5;(2)第二个括号里最高次数n-1根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x 次数根据解析:(1)51x -;(2)1n x -;(3)5131-. 【分析】(1)第二个括号里最高次数4,根据观察可知结论中次数为4+1=5; (2) 第二个括号里最高次数n-1,根据观察可知结论中次数为n-1+1=n ; (3)用3代替等式中的x ,次数根据观察规律确定即可. 【详解】(1)根据观察,发现结论是个二项式,且常数项为-1,另一项底数是x ,指数比第二个括号里多项式的最高次数多1,∵()4321x x x x ++++的最高次数是4, ∴()432(1)1x x x x x -++++=51x -, 故应该填51x -;(2)∵()11n xx -+++的最高次数是n-1,∴()1(1)1n x xx --+++=1n x -,故应该填1n x -; (3)由(2)知:()1(1)11n n x x x x --+++=-,令3x =,51n =,得:()504948251(31)33333131-++++++=-,故应该填5131-. 【点睛】本题考查了整式变化中的规律探索,解答时,抓住变化中变化项,不变项,变化的位置,变化的规律是解题的关键.16.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可. 【详解】∵2m a =,5n a =,2m na-=(a m)2÷a n=22÷5=4÷5=45.故答案为:45.【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.17.3x-4【分析】利用面积公式计算即可得到答案【详解】设这条边上的高为a由题意得:∴ay=3xy-4y∴a=3x-4故答案为:3x-4【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单解析:3x-4【分析】利用面积公式计算即可得到答案.【详解】设这条边上的高为a,由题意得:12342y a xy y ⋅⋅=-,∴ay=3xy-4y,∴a=3x-4,故答案为:3x-4.【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单项式,再把结果相加.18.【分析】利用完全平方公式的结构特征判断即可确定出m的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵2249x mxy y-+是一个完全平方式,∴22312m=±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键.19.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 20.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.三、解答题21.(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+ 10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.23.(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果; (2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.24.(1)m-n ;(2)①(m-n )2;②(m+n )2-4mn ;(3)(m-n )2=(m+n )2-4mn ;(4)6a b -=±,22a b -=±48;(5)3【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答;(2)从整体与局部两个思路考虑解答;(3)根据大正方形的面积减去阴影部分小正方形的面积等于四个长方形的面积解答; (4)根据()()224a b a b ab -=+-,可得a-b 的值,再根据22a b -=()()a b a b +-求出22a b -的值;(5)利用完全平方公式将原式变形为()()2221333x y ++-+,再根据非负数的性质可求出最小值为3.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m-n ;(2)根据正方形的面积公式,阴影部分的面积为(m-n )2,还可以表示为(m+n )2-4mn ;(3)根据阴影部分的面积相等,(m-n )2=(m+n )2-4mn ;(4)∵8,7a b ab +==,∴()()224a b a b ab -=+-=2847-⨯=36, ∴6a b -=±,若6a b -=,则22a b -=()()a b a b +-=86⨯=48,若6a b -=-,则22a b -=()()a b a b +-=()86⨯-=-48;(5)222431832x x y y ++-+=22242318273x x y y +++-++=()()2221333x y ++-+∵()2210x +≥,()2330y -≥, ∴()()2221333x y ++-+≥3,即最小值为3. 【点睛】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.25.(1)91710167⨯-⨯=-或10169177⨯-⨯=,(2)+1n ,n+7,n+8,()()()+178n n n n +-+,7,或()()()8+17n n n n +-+,-7;(3)1×17-3×15=-28或3×15-1×17=28,发现:它们最后得结果是28或-28,n ,+2n ,n+14,n+16,()()()+21416n n n n +-+,28,()()()16+214n n n n +-+,-28,它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【分析】(1)先画出选出的各数,再计算即可;(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+1n+7n+8n ,,,列出算式()()()+178n n n n +-+或()()()8+17n n n n +-+,求出即可;(3)先圈出各个数,列出算式,设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,列出算式,求出即可.【详解】(1)圈出的数如图,9,10;16,17,91710161531607⨯-⨯=-=-或10169171601537⨯-⨯=-=,(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为,+1n+7n+8n ,,,()()()+178n n n n +-+,=22878n n n n ++--,=7,或()()()8+17n n n n +-+,=22887n n n n +---,=-7;(3)圈出的数为1,2,3;8,9,10;15,16,17四角数位1,3,15,171×17-3×15=17-45=-28或3×15-1×17=35-17=28,发现:它们最后得结果是28或-28,理由是:设设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,()()()+21416n n n n +-+,=22162816n n n n ++--,=28,()()()16+214n n n n +-+,=22161628n n n n +---,=-28.结论:它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【点睛】本题考查整式的混合运算的应用,掌握整式的混合运算法则,能理解题意,会按要求列式是解题关键,培养阅读能力和计算能力.26.(1)另一个因式为:4x +,20k =;(2)21.【分析】根据题意给出的方法即可求出答案.【详解】解:(1)设另外一个因式为:x n +,∴()()22325x x k x x n +-=-+, ∴2535n n k -=⎧⎨-=-⎩, ∴4n =,20k =;(2)设另一个因式为:2x n +,∴2x 2﹣13x +p =(2x +n )(x ﹣3)∴6133n n p -=-⎧⎨-=⎩∴解得:217p n =⎧⎨=-⎩ 故答案为:21.【点睛】本题考查因式分解的意义,解题的关键熟练运用因式分解法,本题属于基础题型.。
成都市石室外语学校八年级数学上册第十四章《整式的乘法与因式分解》(含答案解析)
一、选择题1.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .202.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .73.()()()2483212121+++···()32211++的个位数是( ) A .4B .5C .6D .84.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2 C .x 2-16y 2=(x +8y )(x -8y ) D .-16x 2+1=(1+4x )(1-4x )5.计算()201920180.52-⨯的值( )A .2B .2-C .12D .12-6.已知A 为多项式,且2221241A x y x y =--+++,则A 有( ) A .最大值23 B .最小值23 C .最大值23- D .最小值23- 7.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6-B .0C .12D .188.下列计算一定正确的是( ) A .235a b ab += B .()235610a ba b -=C .623a a a ÷=D .()222a b a b +=+9.数151025N =⨯是( ) A .10位数B .11位数C .12位数D .13位数10.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+11.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 2 12.下列计算正确的是( ) A .(a 2)3=a 5 B .(2a 2)2=2a 4 C .a 3•a 4=a 7 D .a 4÷a =a 4 13.下列各多项式中,能用平方差公式分解因式的是( ) A .21x -+ B .21x + C .21x -- D .221x x -+ 14.下列计算正确的是( ) A .a 3+a 3=a 6B .a 3·a=a 4C .a 3÷a 2=a 3D .(2a 2)3 =6a 515.下列各式中,正确的是( ) A .2222x y yx x y -+= B .22445a a a += C .()2424m m --=-+D .33a b ab +=二、填空题16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.17.已知2a -b +2=0,则1-4a +2b 的值为______. 18.2007200820092()(1.5)(1)3⨯÷-=_____.19.10的整数部分是a .小数部分是b ,则2a b -=______. 20.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x xx x x -+++=-;……(1)()432(1)1x x x x x -++++=___; (2)根据规律可得:()1(1)1n x xx --+++=_____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++;21.若3x y -=,2xy =,则22x y +=__________.22.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.23.已知x-3y=-1,那么代数式3-2x+6y 的值是________24.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____.25.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示) 26.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________三、解答题27.如图1,将一个长为4a ,宽为2b 的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a ,b 的式子表示) (2)若2a+b=7,且ab=6,求图2中的空白正方形的面积;(3)观察图2,用等式表示出(2a-b )2,ab 和(2a+b )2的数量关系.28.(1)先化简,再求值:()()()22m n m n m n m ⎡⎤-++-÷⎣⎦,其中1m =,3n =-.(2)已知:1x y -=,2xy =,求32232x y x y xy -+的值.29.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________.方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值. 30.因式分解:(1)2ax 2-4axy +2ay 2 (2)x 2-2x -8。
成都师大附中外国语学校学校八年级数学上册第四单元《整式的乘法与因式分解》测试题(有答案解析)
一、选择题1.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab2.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( ) A .301050B .103020C .305010D .5010303.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -4.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n) B .a 3-a=a(a+1)(a-1) C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)25.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )m ﹣3 431 nA .1B .2C .5D .76.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2 C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )7.已3,2x y a a ==,那么23x y a +=( ) A .10B .15C .72D .与x ,y 有关8.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 29.下列各式运算正确的是( ) A .235a a a +=B .1025a a a ÷=C .()32626b b = D .2421a aa -⋅=10.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34B .54-C .12-D .5411.若()()()248(21)2121211A =+++++,则A 的末位数字是( ) A .4 B .2 C .5 D .6 12.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9二、填空题13.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 14.因式分解269x y xy y -+-=______.15.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 16.已知2m a =,5n a =,则2m n a -=___________.17.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____. 18.已知228a ab +=-,2214b ab +=,则2262a ab b ++=________. 19.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 20.若6x y +=,3xy =-,则2222x y xy +=_____.三、解答题21.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.22.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+23.分解因式:(1)222ax axy ay ++;(2)4161y -24.观察下列关于自然数的等式: (1)217295⨯+⨯= ① (2)2282106⨯+⨯= ② (3)2392117⨯+⨯= ③ ……根据上述规律解决下列问题: (1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 25.计算: (1)x 2·x (2)(x 3)5 (3)(-2x 3)226.在通常的日历牌上,可以看到一些数所满足的规律,表①是2020年12月份的日历牌.星期一 星期二 星期三 星期四 星期五 星期六 星期日1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728 293031(1)在表①中,我们选择用如表②那样22⨯的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.如:用正方形框圈出3,4,10,11四个数,然后将它们交叉相乘,再相减,即3114107⨯-⨯=-或4103117⨯-⨯=.请你用表②的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可). (2)在用表②的正方形框任意圈出的22⨯个数中,将它们先交叉相乘,再相减.若设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字,列出算式并算出结果(选择其中一个算式即可).(3)若选择用表③那样33⨯的正方形方框任意圈出33⨯个数,将正方形方框四角....位置上的4个数先交叉相乘,再相减,你发现了什么.选择一种情况说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可. 【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y ay x b+=⎧⎨-=⎩ , 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab ba ab b ab ++-+=-==ab . 故选C .本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.2.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x3−xy2=x(x2−y2)=x(x+y)(x−y),当x=30,y=20时,x=30,x+y=50,x−y=10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B.【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.3.C解析:C【分析】分别计算每个选项然后进行判断即可.【详解】A、()326=,选项错误;x xB、1028÷,选项错误;x x x=C、235x x x,选项正确;D、6x x-不能得到5x,选项错误.故选:C【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.4.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A、等号左右两边不相等,故错误;B、a3-a=a(a+1)(a-1),故正确;C、右边不是整式的积,故错误;D、等号左右两边不相等,故错误.故选:B.因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.5.D解析:D 【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可. 【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等, 则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1), 整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2, ∴m +n =5+2=7, 故选:D . 【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键.6.D解析:D 【分析】把各式分解得到结果,即可作出判断. 【详解】解: A 、()224412-1-+=m m m ,原选项错误,不符合题意; B 、a 2+b 2不能分解,不符合题意;C 、x 2-16y 2=(x +4y )(x -4y ),原选项错误,不符合题意;D 、-16x 2+1=(1+4x )(1-4x ) ,原选项正确,符合题意; 故选:D . 【点睛】此题考查了运用公式法分解因式,熟练掌握因式分解的方法是解本题的关键.7.C解析:C 【分析】根据幂的乘方和积的乘方的运算法则求解即可. 【详解】a 2x+3y =(a x )2(a y )3=32⨯23=9⨯8=72, 故选:C 【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答此题的关键.8.D解析:D 【分析】根据S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG 代入数值求出图形面积,再根据计算各整式判断即可. 【详解】S 楼房的面积=S 矩形ABCD +S 矩形DEFC +S 矩形CFHG =AD •AB +DC •DE +CF •FH .∵AB =DC =AD =x ,DE =CF =3,FH =2, ∴S 楼房的面积=x 2+3x +6.∵(x+3)(x+2)﹣2x= x 2+3x +6,x (x +3)+6= x 2+3x +6,x (x +2)+x 2=2 x 2+2x , 故选:D ..【点睛】此题考查列整式求图形面积,整式的混合运算,掌握整式的运算法则是解题的关键.9.D解析:D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解. 【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误; B 、1028a a a ÷=,故本选项错误; C 、()32628b b =,故本选项错误;D 、24221a aa a --⋅==,正确. 故选:D . 【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.10.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案. 【详解】 ∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2, ∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B . 【点睛】此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键.11.D解析:D 【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案. 【详解】()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++ =()()()2248(21)2121211-++++ =()()448(21)21211-+++ =()88(21)211-++=162,∵2的末位数字是2,22的末位数字是4, 32的末位数字是8, 42的末位数字是6, 52的末位数字是2,,∴每4次为一个循环, ∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6, 故选:D . 【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.12.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可. 【详解】解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=132********1010⨯⨯⨯⨯⨯⨯ =111210⨯=1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.14.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2 【分析】提公因式-y ,再利用完全平方公式进行因式分解即可; 【详解】 解:-x 2y+6xy-9y =-y (x 2-6x+9) =-y (x-3)2, 故答案为:-y (x-3)2; 【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.15.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算. 【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.16.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 17.3x -4【分析】利用面积公式计算即可得到答案【详解】设这条边上的高为a 由题意得:∴ay=3xy-4y ∴a=3x-4故答案为:3x-4【点睛】此题考查多项式除以单项式法则:用多项式中的每一项分别除以单解析:3x -4【分析】利用面积公式计算即可得到答案.【详解】设这条边上的高为a , 由题意得:12342y a xy y ⋅⋅=-, ∴ay=3xy-4y ,∴a=3x-4,故答案为:3x-4.【点睛】 此题考查多项式除以单项式法则:用多项式中的每一项分别除以单项式,再把结果相加. 18.20【分析】将变形为然后利用整体思想代入求解【详解】解:∵∴原式=故答案为:20【点睛】本题考查代数式求值掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键解析:20【分析】将2262a ab b ++变形为2222(2)a ab b ab +++,然后利用整体思想代入求解.【详解】解:2222226222+422(+2)a ab b a ab b ab a ab b ab ++=++=++∵228a ab +=-,2214b ab +=∴原式=821420-+⨯=故答案为:20.【点睛】本题考查代数式求值,掌握整式加减的法则正确对原式进行变形利用整体思想求解是关键.19.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键20.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.三、解答题21.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE , =22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--,=64﹣12﹣644, =64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.22.(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+ 10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.23.(1)2()a x y +;(2)2(41)(21)(21)y y y ++-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可得出结果;(2)先利用平方差公式分解可得22(41)(41)y y +-,再次利用平方差公式对2(41)y -进行分解,即可完成.【详解】解:(1)原式22(2)a x xy y =++2()a x y =+,(2)原式22(41)(41)y y =+-2(41)(21)(21)y y y =++-.【点睛】本题考查了因式分解,掌握因式分解的基本方法,并能根据多项式的特点准确选择分解方法是解题的关键.24.(1)4×10+2×12=82;(2)n (n+6)+2(n+8)=(n+4)2,验证见解析·【分析】(1)由①②③三个等式得出规律,即可得出结果;(2)由规律得出答案,再验证即可.【详解】解:(1)根据题意得:第四个等式为:4×10+2×12=82;(2)猜想的第n 个等式为:n (n+6)+2(n+8)=(n+4)2,验证:左边=n (n+6)+2(n+8)=n 2+6n+2n+16=n 2+8n+42=(n+4)2=右边,∴n (n+6)+2(n+8)=(n+4)2.【点睛】本题主要考查了数字的变化规律、完全平方公式、归纳推理等知识;根据题意得出规律是解决问题的关键.25.(1)3x ,(2)15x ,(3)64x .【分析】(1)按照同底数幂相乘法则计算即可;(2)按照幂的乘方法则计算即可;(3)先按照积的乘方运算,再计算幂的乘方即可.【详解】解:(1)2213x x x x +⋅==,(2)353515()x x x ⨯==,(3)322326(2)(2)()4x x x -=-⨯=.【点睛】本题考查了同底数幂相乘、幂的乘方、积的乘方运算,熟练掌握这些幂的运算法则是解题关键.26.(1)91710167⨯-⨯=-或10169177⨯-⨯=,(2)+1n ,n+7,n+8,()()()+178n n n n +-+,7,或()()()8+17n n n n +-+,-7;(3)1×17-3×15=-28或3×15-1×17=28,发现:它们最后得结果是28或-28,n ,+2n ,n+14,n+16,()()()+21416n n n n +-+,28,()()()16+214n n n n +-+,-28,它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【分析】(1)先画出选出的各数,再计算即可;(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+1n+7n+8n ,,,列出算式()()()+178n n n n +-+或()()()8+17n n n n +-+,求出即可;(3)先圈出各个数,列出算式,设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,列出算式,求出即可.【详解】(1)圈出的数如图,9,10;16,17,91710161531607⨯-⨯=-=-或10169171601537⨯-⨯=-=,(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为,+1n+7n+8n ,,,()()()+178n n n n +-+,=22878n n n n ++--,=7,或()()()8+17n n n n +-+,=22887n n n n +---,=-7;(3)圈出的数为1,2,3;8,9,10;15,16,17四角数位1,3,15,171×17-3×15=17-45=-28或3×15-1×17=35-17=28,发现:它们最后得结果是28或-28,理由是:设设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,()()()+21416n n n n +-+,=22162816n n n n ++--,=28,()()()16+214n n n n +-+,=22161628n n n n +---,=-28.结论:它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【点睛】本题考查整式的混合运算的应用,掌握整式的混合运算法则,能理解题意,会按要求列式是解题关键,培养阅读能力和计算能力.。
成都石室天府中学八年级数学上册第四单元《整式的乘法与因式分解》测试卷(包含答案解析)
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( ) A .301050 B .103020 C .305010 D .501030 2.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .123.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭4.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4B .4C .﹣6D .65.已知A 为多项式,且2221241A x y x y =--+++,则A 有( ) A .最大值23B .最小值23C .最大值23-D .最小值23-6.将11n n x x +--因式分解,结果正确的是( ) A .()121n x x--B .()11nx x --C .()1nxx x --D .()()111n xx x -+-7.化简()2003200455-+所得的值为( )A .5-B .0C .20025D .200345⨯8.下列运算正确是( ) A .b 5÷b 3=b 2 B .(b 5)3=b 8 C .b 3b 4=b 12 D .a (a ﹣2b )=a 2+2ab9.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>10.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y =D .623x x x ÷=11.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3212.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x二、填空题13.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.14.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.16.如图是一块长方形ABCD 的场地,长AB a 米,宽AD b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处的路宽是2米,其余部分种植草坪,则草坪面积为________2m .17.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____ 18.若a - b = 1, ab = 2 ,则a + b =______.19.若210x x --=,则3225x x -+的值为________.20.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图: (a +b )0=1 (a +b )1=a +b (a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a +b )5=__________,并说出第7排的第三个数是___.三、解答题21.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8, 解:原式=a 2+6a +8+1-1=a 2+6a +9-1 =(a +3)2-12=[(a +3)+1][(a +3)-1]=(a +4)(a +2) ②M =a 2-2a -1,利用配方法求M 的最小值. 解:a 2-2a -1=a 2-2a +1=(a -1)2-2∵(a -b )2≥0,∴当a =1时,M 有最小值-2. 请根据上述材料解决下列问题: (1)用配方法...因式分解:x 2+2x -3. (2)若M=2x 2-8x ,求M 的最小值. 22.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是_______(写成两数平方差的形式); (2)图2是将图1中的阴影部分裁剪开,重新拼成的一个长方形,观察它的长和宽,其面积是______(写成多项式乘法的形式).(3)比较左、右两图的阴影部分面积,可以得到乘法公式_______.(用等式表示) (4)运用你所得到的公式,计算下列各题: ①10.39.7⨯②(2)(2)m n p m n p +--+ 23.已知2,3x y a a ==,求23x y a +的值 24.因式分解:(1)2ax 2-4axy +2ay 2 (2)x 2-2x -825.已知将32()(34)x mx n x x ++-+化简的结果不含3x 和2x 项. (1)求m 、n 的值;(2)当m 、n 取第(1)小题的值时,求22242m mn n -+的值. 26.化简:(1)()34322223x y x y z x y -÷; (2)2(4)3(1)(3)x x x x -+-+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码. 【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ), 当x =30,y =20时,x =30,x +y =50,x−y =10, 组成密码的数字应包括30,50,10, 所以组成的密码不可能是103020. 故选:B . 【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.2.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.3.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.4.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解. 【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.5.A解析:A 【分析】利用分组分解法,变为完全平方式解答即可. 【详解】2221241A x y x y =--+++=2221218441184x x y y -+--+-+++ =()()222694423x x y y --+--++=()()2223223x y ----+ ∵()2230x --≤,()220y --≤,∴()()2223223x y ----+≤23,∴多项式的最大值是23, 故选A . 【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.6.D解析:D 【分析】先提公因式x n-1,再用平方差公式进行分解即可. 【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1), 故选:D 【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.7.D解析:D 【分析】首先把52004化为(-5)2004,然后再提公因式(-5)2003,继而可得答案. 【详解】 解:()2003200455-+=(-5)2003+(-5)2004 =(-5)2003(1-5) =4×52003, 故选:D . 【点睛】此题主要考查了提公因式分解因式,关键是正确确定公因式.8.A解析:A 【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可. 【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误;故选:A . 【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.9.B解析:B 【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可. 【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>, 故选B . 【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.10.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.11.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D . 【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.12.D解析:D 【分析】根据整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式分别计算进行判断. 【详解】A 、2222x x x +=,故该项错误;B 、222()2x y x xy y -=-+,故该项错误;C 、2363()x y x y =,故该项错误;D 、235x x x ,故该项正确;故选:D . 【点睛】此题考查整式的计算,正确掌握整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式是解题的关键.二、填空题13.30【分析】直接利用正方形的性质结合三角形面积求法利用平方差公式即可得出答案【详解】解:设大正方形的边长为a 小正方形的边长为b 故阴影部分的面积是:AE•BC+AE•BD =AE (BC+BD )=(AB ﹣解析:30 【分析】直接利用正方形的性质结合三角形面积求法,利用平方差公式即可得出答案. 【详解】解:设大正方形的边长为a ,小正方形的边长为b , 故阴影部分的面积是:12AE •BC +12AE •BD =12AE (BC +BD ) =12(AB ﹣BE )(BC +BD ) =12(a ﹣b )(a +b )=12(a2﹣b2)=12×60=30.故答案为:30.【点睛】本题主要考查平方差公式与几何图形和三角形的面积公式,用代数式表示阴影部分的面积,是解题的关键.14.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.15.﹣25【分析】将3x+3y﹣4xy变形为3(x+y)﹣4xy再整体代入求值即可【详解】解:∵x+y=﹣3xy=4∴3x+3y﹣4xy=3(x+y)﹣4xy=3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25【分析】将3x+3y﹣4xy变形为3(x+y)﹣4xy,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25, 故答案为:﹣25. 【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键.16.【分析】可以将草坪拼成一块完整的长方形分别表示出它的长和宽即可求出面积【详解】解:可以将草坪拼成一块完整的长方形这个长方形的长是:米宽是:米∴草坪的面积是:(平方米)故答案是:【点睛】本题考查多项式 解析:22ab a b --+【分析】可以将草坪拼成一块完整的长方形,分别表示出它的长和宽即可求出面积. 【详解】解:可以将草坪拼成一块完整的长方形,这个长方形的长是:112a a --=-米,宽是:1b -米, ∴草坪的面积是:()()2122a b ab a b --=--+(平方米). 故答案是:22ab a b --+. 【点睛】本题考查多项式的乘法和图形的平移,解题的关键是通过平移的方法将不规则的图形拼成规则图形进行求解.17.120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120 【分析】令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值. 【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①, 当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②, ①+②,得 2a 4+2a 2+2a=242, ∴a 2+a 4=120. 故答案为:120. 【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.18.【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键 解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键. 19.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键. 20.a5+5a4b+10a3b2+10a2b3+5ab4+b515【分析】多项式乘方运算安全平方公式安全立方公式发现规律数字规律归纳即可【详解】解:(a+b )5=a5+5a4b+10a3b2+10a2b解析:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 15【分析】多项式乘方运算,安全平方公式,安全立方公式,发现规律,数字规律归纳即可,【详解】解:(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;第7排的第三个数是15,故答案为:a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;15,【点睛】本题考查完全平方公式、完全立方公式,规律型:数字的变化类,掌握多项式乘法法则,和完全平方公式,观察式子的特征是解题关键,三、解答题21.(1)()(33)x x +-;(2)-8【分析】(1)应用配方法以及平方差公式,把x 2+2x -3因式分解即可.(2)应用配方法,把2x 2-8x 化成22(2)8x --,再根据偶次方的非负性质,求出M 的最小值是多少即可.【详解】解:(1)原式=22344x x +-+-=2214x x ++-=22(1)2x +-=()(33)x x +-(2)228x x -=22(4)x x -=2(2444x x -+-)=22(2)8x --因为2(2)x -0≥,所以当x =2时,M 有最小值为-8【点睛】此题主要考查了利用平方差公式和完全平方式进行因式分解,以及偶次方的非负性质的应用,要熟练掌握.22.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;(4)①99.91;②22242m n np p -+-【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【详解】解:(1)利用大正方形面积减去小正方形面积即可求出:22a b -,故填:22a b -;(2)它的宽是a ﹣b ,长是a+b ,面积是()()a b a b +-,故填:()()a b a b +-;(3)根据题意得出:22()()a b a b a b +-=-,故填:22()()a b a b a b +-=-;(4)①解:原式(100.3)(100.3)=+⨯-22100.3=-1000.09=-99.91=;②解:原式[2()][2()]m n p m n p =+-⋅--22(2)()m n p =--22242m n np p =-+-.【点睛】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观. 23.108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=.【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.24.(1)22()a x y -;(2)(2)(4)x x +-.【分析】(1)先提取公因式,再用完全平方公式因式分解;(2)先给原式变形用完全平方公式给前三项因式分解后,再利用平方差公式因式分解.【详解】解:(1)原式=22)2(2a x xy y -+=22()a x y -;(2)原式=2219x x -+-=22(1)3x --=(13)(13)x x -+--=(2)(4)x x +-.【点睛】本题考查综合运用提公因式法和公式法因式分解.一般因式分解时,有公因式先提取公因式,再看能否运用公式因式分解,有时还需变形后,分组因式分解.25.(1)m=-4,n=-12;(2)128【分析】(1)利用多项式乘以多项式法则计算得到结果,根据展开式中不含x 2和x 3项即可得到m 与n 的值;(2)根据题意,将(1)中所求m 、n 的值代入计算即可.【详解】解:(1)32()(34)x mx n x x ++-+54323(4)(3)(43)4x x m x n m x m n x n =-+++-+-+;∵化简的结果不含3x 和2x 项,∴40m +=,30n m -=,∴4m =-,12n =-;(2)22222422()2(412)264128m mn n m n -+=-=⨯-+=⨯=;【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.26.(1)223xy xz -;(2)2529x x --【分析】(1)按照多项式除以单项式的法则计算即可;(2)先按整式乘法法则去括号,再合并同类项即可.【详解】解:(1)原式3422322223x y x y x y z x y =÷-÷223xy xz =-.(2)原式()2228323x x x x =-++- 2228369x x x x =-++-2529x x =--.【点睛】本题考查了整式的混合运算,准确掌握并运用法则是解题关键.。
成都石室锦城外国语学校八年级数学上册第四单元《整式的乘法与因式分解》检测题(含答案解析)
一、选择题1.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .202.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭3.如下列试题,嘉淇的得分是( ) 姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+- A .40分B .60分C .80分D .100分4.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 5.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2- D .以上答案都不对6.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2- B .2 C .1- D .1 7.2a =1,b 是2的相反数,则a+b 的值是( ) A .1B .-3C .-1或-3D .1或-38.下列计算中能用平方差公式的是( ). A .()()a b a b -+- B .1133x y y x ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+9.若53x =,52y =,则235-=x y ( ) A .34B .1C .23D .9810.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+11.下列计算正确的是( ) A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 412.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b = D .2421a aa -⋅=二、填空题13.若2,3x y a a ==,则22x y a +=_______________________. 14.计算:248(21)(21)(21)(21)1+++++=___________.15.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 16.已知2m a =,5n a =,则2m n a -=___________. 17.若()230x -+=,则x y -=______.18.若2a 与()23b +互为相反数,则2-=b a ______. 19.因式分解:316m m -=________.20.若210x x --=,则3225x x -+的值为________.三、解答题21.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式244x xy x y -+-和2222a b c bc --+.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了. 解答过程如下:()()()()()()22(1)444444x xy x yx xy x y x x y x y x y x -+-=-+-=-+-=-+()()()()22222222(2)22a b c bc a b c bc a b c a b c a b c --+=-+-=--=+--+这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法. 利用上述思想方法,把下列各式分解因式: (1)32236m m m --+(2)2229x xy y --+22.(1)23235ab a b ab (2)23233x xxx23.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是________;(2)根据(1)中的结论,若95,4x y x y ⋅+==,则x y -=________; (3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)m -(2020)m -的值.24.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少? 25.因式分解: (1)4x 2y ﹣4xy +y ; (2)9a 2﹣4(a +b )2.26.已知将32()(34)x mx n x x ++-+化简的结果不含3x 和2x 项. (1)求m 、n 的值;(2)当m 、n 取第(1)小题的值时,求22242m mn n -+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值. 【详解】解:∵4a 2+ma+25是完全平方式, ∴4a 2+ma+25=(2a±5)2=4a 2±20a+25, ∴m=±20. 故选:B . 【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.3.A解析:A 【分析】根据提公因式法及公式法分解即可. 【详解】①242(12)xy xyz xy z -=-,故该项正确; ②2363(12)x x x x --=-+,故该项错误; ③2221(1)a +a a +=+,故该项错误; ④224(2)(2)m n m n m n -=+-,故该项错误; ⑤22222()()x y x y x y -+=-+-,故该项正确; 正确的有:①与⑤共2道题,得40分, 故选:A . 【点睛】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键.4.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.5.A解析:A 【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案. 【详解】 解:根据题意, ∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020, ∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==, ∴222||2||0x y x y -+-=; 故选:A . 【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.6.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=.故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.7.C解析:C 【分析】根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可. 【详解】∵2a =1,b 是2的相反数, ∴1a =±,b=-2, 当a=1时,a+b=1-2=-1, 当a=-1时,a+b=-1-2=-3, 故选:C . 【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键.8.B解析:B 【分析】根据平方差公式()()22a b a b a b -+=-一项一项代入判断即可.【详解】A 选项:两项都是互为相反数,故不能用平方差公式;B 选项:两项有一项完全相同,另一项为相反数,故可用平方差公式;C 选项:两项完全相同,故不能用平方差公式;D 选项:有一项2-与1不同,故不能用平方差公式. 故选:B . 【点睛】此题考查平方差的基本特征:()()22a b a b a b -+=-中a 与b 两项符号不同,难度一般.9.D解析:D 【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算. 【详解】 解:()()23232323955555328x yx y x y -=÷=÷=÷=. 故选:D . 【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算.10.C解析:C 【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算. 【详解】解:A. 2222a a a +=,故选项A 计算错误; B. 235a a a ⋅=,故选项B 计算错误; C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误; 故选:C 【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题.11.C解析:C 【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得. 【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误; 故选:C . 【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键.12.D解析:D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解. 【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误; B 、1028a a a ÷=,故本选项错误; C 、()32628b b =,故本选项错误;D 、24221a aa a --⋅==,正确.故选:D . 【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.二、填空题13.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36 【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可. 【详解】解:∵2,3x ya a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36, 故答案为36. 【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键.14.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216 【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解. 【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++ =448(21)(21)(21)1-+++ =88(21)(21)1-++ =16(21)1-+ =216. 故答案是:216. 【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.15.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算. 【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭,∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222x y ⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.16.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可. 【详解】∵2m a =,5n a =,2m na-=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.17.7【分析】根据偶次方的非负性及算术平方根的非负性求出x=3y=-4代入x-y 中计算即可【详解】∵且∴x-3=0y+4=0∴x=3y=-4∴x-y=3-(-4)=7故答案为:7【点睛】此题考查已知字母解析:7 【分析】根据偶次方的非负性及算术平方根的非负性求出x=3,y=-4,代入x-y 中计算即可. 【详解】∵()230x -=,且()230x -≥≥,∴x-3=0,y+4=0, ∴x=3,y=-4, ∴x-y=3-(-4)=7, 故答案为:7. 【点睛】此题考查已知字母的值求代数式的值,掌握偶次方的非负性及算术平方根的非负性求出x=3,y=-4是解题的关键.18.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答解析:-8 【分析】根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可. 【详解】由题意得:2a +2(3)b +=0∵2a ≥0,2(3)b +≥0, ∴a-2=0,b+3=0, ∴a=2,b=-3, ∴2b-a=-6-2=8, 故答案为:-8. 【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.19.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4) 【分析】原式提取公因式,再利用平方差公式分解即可. 【详解】 解:316m m - =m (m 2-16) =m (m+4)(m-4), 故答案为:m (m+4)(m-4) 【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.20.【分析】首先将已知条件变形为再把要求的式子变形然后整体代入即可求解【详解】解:∵即∴故答案为:4【点睛】此题主要考查了代数式求值把所给代数式进行恰当变形是解答此题的关键解析:【分析】首先将已知条件210x x --=变形为21x x -=,21x x -=,再把要求的式子变形,然后整体代入即可求解.【详解】解:∵210x x --=,即21x x -=,21x x -=,∴()323222514x x x x x -+=---+ ()()2214x x x x =---+4x x =-+4=.故答案为:4.【点睛】此题主要考查了代数式求值,把所给代数式进行恰当变形是解答此题的关键.三、解答题21.(1)2(2)(3)m m --;(2)()()33x y x y -+--【分析】(1)将1、2项,3、4项分别结合分别分解因式,再进行组间的公因式提取便可达目的;(2)原式分成222x xy y -+和-9两组,前一组利用完全平方公式分解,然后再利用平方差公式继续分解即可.【详解】解:(1)32236m m m --+2(2)3(2)m m m =---2(2)(3)m m =--;(2)2229x xy y --+2229x xy y =-+-()223x y =-- ()()33x y x y =-+--.【点睛】本题考查了分组分解法,关键要明确分组的目的,是分组分解后仍能继续分解,还是分组后利用各组本身的特点进行解题.22.(1)10615a b ;(2)23221x x -- 【分析】 (1)先算乘方,再确定符号,把系数,相同字母分别相乘除即可;(2)先利用多项式乘以多项式和平方差公式计算,然后去括号合并同类项.【详解】解:(1)23235ab a b ab 24935a b a b ab1175a b ab10615a b =; (2)23233x xx x 23233x xx x 2222369x x x x2222129x x x23221x x .【点睛】本题主要考查了整式的混合运算,熟悉相关计法是解题的关键.23.(1)(a +b )2-(a -b )2=4ab ;(2)±4;(3)-3【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,将x +y =5,x •y 94=代入计算即可得出答案;(3)将等式(2019-m )+(m -2020)=-1两边平方,再根据已知条件及完全平方公式变形可得答案.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a +b )2-(b -a )2=(a +b )2-(a -b )2,∵图1的面积和图2中白色部分的面积相等,∴(a +b )2-(a -b )2=4ab ,故答案为:(a +b )2-(a -b )2=4ab ;(2)根据(1)中的结论,可知(x +y )2-(x -y )2=4xy ,∵x +y =5,x •y =94, ∴52-(x -y )2=4×94,∴(x -y )2=16∴x -y =±4,故答案为:±4;(3)∵(2019-m )+(m -2020)=-1,∴[(2019-m )+(m -2020)]2=1,∴(2019-m )2+2(2019-m )(m -2020)+(m -2020)2=1,∵(2019-m )2+(m -2020)2=7,∴2(2019-m )(m -2020)=1-7=-6;∴(2019-m )(m -2020)=-3.【点睛】本题考查了完全平方公式的几何背景,熟练运用完全平方公式并数形结合是解题的关键. 24.-17【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可.【详解】解:x =-2时, 35ax bx +-=7,即-8a -2b -5=7,所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17,所以该多项式的值是-17.【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 25.(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b )【分析】(1)先提公因式,再利用完全平方公式;(2)先利用平方差公式分解,再化简即可.【详解】解:(1)4x 2y ﹣4xy +y=y (4x 2﹣4x +1)=y (2x ﹣1)2;(2)9a 2﹣4(a +b )2=[3a +2(a +b )][3a ﹣2(a +b )]=(5a +2b )(a ﹣2b ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.26.(1)m=-4,n=-12;(2)128【分析】(1)利用多项式乘以多项式法则计算得到结果,根据展开式中不含x 2和x 3项即可得到m 与n 的值;(2)根据题意,将(1)中所求m 、n 的值代入计算即可.【详解】解:(1)32()(34)x mx n x x ++-+54323(4)(3)(43)4x x m x n m x m n x n =-+++-+-+;∵化简的结果不含3x 和2x 项,∴40m +=,30n m -=,∴4m =-,12n =-;(2)22222422()2(412)264128m mn n m n -+=-=⨯-+=⨯=;【点睛】此题主要考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.。
成都石室锦城外国语学校八年级数学上册第十四章《整式的乘法与因式分解》经典测试题(提高培优)
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( ) A .301050B .103020C .305010D .5010302.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( ) A .41a +B .43a +C .63a +D .2+1a3.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 4.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( )A .18B .12C .9D .75.()()()2483212121+++···()32211++的个位数是( ) A .4B .5C .6D .86.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭7.若3a b +=-,10ab =-,则-a b 的值是( ) A .0或7 B .0或13-C .7-或7D .13-或138.形如ab cd的式子叫做二阶行列式,它的算法是:ab ad bc cd=-,则221a a a a -++的运算结果是( ) A .4aB .4a -C .4D .4-9.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2 C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )10.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+11.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+12.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3213.下列各式运算正确的是( ) A .235a a a +=B .1025a a a ÷=C .()32626b b = D .2421a a a-⋅=14.若y 2+4y +4+1x y +-=0,则xy 的值为( ) A .﹣6B .﹣2C .2D .615.a ,b ,c 在数轴上的位置如下图所示,则下列代数式中值为正的是( )A .()()1a c b --B .()11c a b c ⎛⎫--⎪⎝⎭C .()1a a c b ⎛⎫+- ⎪⎝⎭D .()1ac bc -二、填空题16.若()()253x x x bx c +-=++,则b+c=______.17.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.18.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.19.若x 、y 为有理数,且22(2)0x y ++-=,则2021()x y的值为____.20.已知2320x y -+=,则()2235x y -+的值为______.21.已知x-3y=-1,那么代数式3-2x+6y 的值是________22.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.23.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示) 24.分解因式:2221218ax axy ay -+=_________.25.若210a a +-=,则43222016a a a a +--+的值为______. 26.因式分解:(x +3)2-9=________.三、解答题27.计算: (1)()2323298---(2)()()2215105x y xyxy -÷-(3)()()()2321x x x -+--28.利用我们学过的知识,可以导出下面这个形式优美的等式:2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦,该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁、美观. (1)请你检验说明这个等式的正确性;(2)若ABC 的三边长分别为a ,b ,c ,当222a b c ab bc ca ++=++时,试判断ABC 的形状;(3)若327a b -=,227a c -=,且22241abc ++=,求22ab bc ac ++的值. 29.观察下列关于自然数的等式:(1)217295⨯+⨯= ① (2)2282106⨯+⨯= ② (3)2392117⨯+⨯= ③ ……根据上述规律解决下列问题: (1)完成第四个等式__________.(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.30.已知5x y -=,6xy =,求下列各式的值. (1)22xy +;(2)x y +。
成都石室双楠实验学校八年级数学上册第十四章《整式的乘法与因式分解》测试(含答案解析)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 2.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .123.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-5 4.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7 5.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 6.下列运算正确..的是( ) A .246x x x ⋅= B .246()x x = C .3362x x x += D .33(2)6x x -=- 7.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ 8.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5 9.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .b c a >> C .c a b >>D .a c b >> 10.下列运算正确的是( ) A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷= 11.下列计算正确的是( ) A .(ab 3)2=a 2b 6 B .a 2·a 3=a 6C .(a +b )(a -b )=a 2-2b 2D .5a -2a =3 12.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4 13.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽 14.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-7 15.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- 二、填空题 16.若()()253x x x bx c +-=++,则b+c=______.17.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.18.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.19.若2a x =,3b x =,则32a b x -=___________.20.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____21.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________. 22.若2x y a +=,2x y b -=,则22x y -的值为____________.23.若a - b = 1, ab = 2 ,则a + b =______.24.已知,a b 满足1,2a b ab -==,则a b +=____________25.因式分解:33327xy x y -=______.26.已知a +b =5,且ab =3,则a 3+b 3=_____.三、解答题27.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.28.分解因式:()()144m m ++()32228x xy -29.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:-投入)30.因式分解:(1)4x2y﹣4xy+y;(2)9a2﹣4(a+b)2.。
成都石室中学八年级数学上册第十四章《整式的乘法与因式分解》经典练习卷(含答案)
一、选择题1.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .20 2.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .12 3.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 4.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - 5.计算()201920180.52-⨯的值( ) A .2B .2-C .12D .12- 6.化简()2003200455-+所得的值为( ) A .5- B .0 C .20025 D .200345⨯ 7.把多项式32484x x x -+分解因式,结果正确的是( )A .()()413x x x +-B .()2421x x x -+C .()2484x x x +-D .()241x x - 8.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2 9.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12 10.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 211.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- 12.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ). A .6或20 B .20 或-20C .6或-6D .-6或20 13.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .54 14.下列各式计算正确的是( ) A .5210a a a = B .()428=a a C .()236a b a b = D .358a a a +=15.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9二、填空题16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.17.2007200820092()(1.5)(1)3⨯÷-=_____.18.已知25m =,2245m n +=,则2n =_______.19.已知x-3y=-1,那么代数式3-2x+6y 的值是________20.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x0 1 1.5 2 mx +n -3 -1 01 若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.21.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____22.若a - b = 1, ab = 2 ,则a + b =______.23.分解因式:2221218ax axy ay -+=_________. 24.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.25.已知22m mn -=,25mn n -=,则22325m mn n +-=________.26.分解因式:2a 2﹣8=______.三、解答题27.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.28.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.29.分解因式:()()144m m ++()32228x xy -30.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积:方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a 2+b 2+c 2-ab-bc-ac=12[(a-b )2+(b-c )2+(c-a )2]正确; (2)20182+20192+20202-2018×2019-2019×2020-2018×2020 =12×[(2018-2019)2+(2019-2020)2+(2020-2018)2] =12×(1+1+4) =12×6 =3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.2.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x , y 的式子表示) ;(3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+; (3)大 小【解析】【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.3.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45;(3)20.【解析】【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD 的面积求解.【详解】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2﹣12(a+b)•b﹣12a2=12a2+12b2﹣12ab=12(a+b)2﹣32ab=12×102﹣32×20=50﹣30 =20.本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.4.先阅读下列材料,然后解后面的问题. 材料:一个三位自然数abc (百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F (abc )=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12. (1)对于“欢喜数abc ”,若满足b 能被9整除,求证:“欢喜数abc ”能被99整除; (2)已知有两个十位数字相同的“欢喜数”m ,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.【答案】(1)详见解析;(2)99或297.【解析】【分析】(1)首先由题意可得a +c =b ,将欢喜数展开,因为要证明“欢喜数abc ”能被99整除,所以将展开式中100a 拆成99a +a ,这样展开式中出现了a +c ,将a +c 用b 替代,整理出最终结果即可;(2)首先设出两个欢喜数m 、n ,表示出F (m )、F (n )代入F (m )﹣F (n )=3中,将式子变形分析得出最终结果即可.【详解】(1)证明:∵abc 为欢喜数,∴a +c =b . ∵abc =100a +10b +c =99a +10b +a +c =99a +11b ,b 能被9整除,∴11b 能被99整除,99a 能被99整除,∴“欢喜数abc ”能被99整除;(2)设m =11a bc ,n =22a bc (且a 1>a 2),∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数,∴a 1﹣a 2=1或a 1﹣a 2=3.∵m ﹣n =100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2),∴m ﹣n =99或m ﹣n =297.∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或297.【点睛】做此类阅读理解类题目首先要充分理解题目,会运用因式分解将式子变形.5.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++.22222221(21)(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.试用上述方法分解因式222a ab ac bc b ++++=(2)利用分解因式说明:22(5)(1)n n +--能被12整除.【答案】(1)()()a b a b c +++;(2)证明见解析.【解析】【分析】(1)a 2+2ab+ac+bc+b 2可以进行分组变成(a 2+2ab+b 2)+(ac+bc ),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.(2)先利用平方差公式将22(5)(1)n n +--进行因式分解,之后即可得出答案.【详解】(1)原式=()()222a ab bac bc ++++=()()2a b c a b +++=()()a b a b c +++(2)22(5)(1)n n +--=[][](5)+(1)(5)(1)n n n n +-+--=()624n +=()122n +∴ 22(5)(1)n n +--能被12整除.【点睛】本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.6.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A 可以用来解释2222()a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B 可以解释的代数恒等式是 ;(2)现有足够多的正方形和矩形卡片(如图C ),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223a ab b ++,并利用你所画的图形面积对2223a ab b ++进行因式分解.【答案】(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++ 【解析】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+ (2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++7.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值; (3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x -- ()()222+-44040-201822m n m n mn +-=== ∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.8.阅读以下文字并解决问题:对于形如222x ax a ++这样的二次三项式,我们可以直接用公式法把它分解成()2x a +的形式,但对于二次三项式2627x x +-,就不能直接用公式法分解了。