大学物理第十一章 气体动理论习题详细答案

合集下载

气体动理论(附答案)

气体动理论(附答案)

⽓体动理论(附答案)⽓体动理论⼀、填空题1.(本题3分)某⽓体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ = 1.24×10-2 kg/m3,则该⽓体分⼦的⽅均根速率为____________。

(1 atm = 1.013×105 Pa)答案:495m/s2.(本题5分)某容器内分⼦密度为1026m-3,每个分⼦的质量为3×10-27kg,设其中1/6分⼦数以速率v=200m/s垂直向容器的⼀壁运动,⽽其余5/6分⼦或者离开此壁、或者平⾏此壁⽅向运动,且分⼦与容器壁的碰撞为完全弹性的。

则(1)每个分⼦作⽤于器壁的冲量ΔP=_____________;(2)每秒碰在器壁单位⾯积上的分⼦数n0=___________;(3)作⽤在器壁上的压强p=_____________;答案:1.2×10-24kgm/s×1028m-2s-14×103Pa3.(本题4分)储有氢⽓的容器以某速度v作定向运动,假设该容器突然停⽌,⽓体的全部定向运动动能都变为⽓体分⼦热运动的动能,此时容器中⽓体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中⽓体分⼦的平均动能增加了_____________J。

(普适⽓体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢⽓分⼦可视为刚性分⼦。

)答案::1212.4×10-234.(本题3分)体积和压强都相同的氦⽓和氢⽓(均视为刚性分⼦理想⽓体),在某⼀温度T下混合,所有氢分⼦所具有的热运动动能在系统总热运动动能中所占的百分⽐为________。

答案:62.5%5.(本题4分)根据能量按⾃由度均分原理,设⽓体分⼦为刚性分⼦,分⼦⾃由度为i,则当温度为T时,(1)⼀个分⼦的平均动能为_______。

大学物理热学习题附答案11

大学物理热学习题附答案11

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等 (D) ε和w 都不相等4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

大学物理(机械工业出版社)下册-课后练习标准答案

大学物理(机械工业出版社)下册-课后练习标准答案

第11章 热力学基础11-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。

(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。

利用理想气体物态方程即可求解本题。

位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。

由分析知湖底处压强为gh p gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ11-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。

从氧气质量的角度来分析。

利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n11-3 一抽气机转速ω=400rּmin -1,抽气机每分钟能抽出气体20升。

大学物理第十一章 气体动理论习题详细答案

大学物理第十一章 气体动理论习题详细答案

第十一章气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v的统计意义即可得出。

()f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dvvNf)(表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。

2、答案:A解:根据()f v的统计意义和pv的定义知,后面三个选项的说法都是对的,而只有A不正确,气体分子可能具有的最大速率不是pv,而可能是趋于无穷大,所以答案A正确。

3、答案:Armsv=据题意得222222221,16H O H HH O O OT T T MM M T M===,所以答案A正确。

4、由理想气体分子的压强公式23kp nε=可得压强之比为:Ap∶Bp∶Cp=n A kAε∶n B kBε∶n C kCε=1∶1∶15、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RTν=代入内能公式2iE RTν=可得2iE pV=,所以氧气和氦气的内能之比为5 : 6,故答案选C。

6、解:理想气体状态方程PV RTν=,内能2iU RTν=(0mMν=)。

由两式得2U iPV=,A、B两种容积两种气体的压强相同,A中,3i=;B中,5i=,所以答案A正确。

7、由理想气体物态方程'mpV RTM=可知正确答案选D。

8、由理想气体物态方程pV NkT=可得气体的分子总数可以表示为PVNkT=,故答案选C。

9、理想气体温度公式21322k m kTευ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。

温度越高,分子的平均平动动能越大,分子热运动越剧烈。

因此,温度反映的是气体分子无规则热运动的剧烈程度。

由于k ε是统计平均值,因而温度具有统计意义,是大量分子无规则热运动的集体表现,对个别分子或少数分子是没有意义的。

故答案选B 。

10、因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2i E RT ν=可知内能不相等;又由理想气体温度公式21322k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。

气体动理论习题解答

气体动理论习题解答

习题8—1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。

若此理想气体的压强为1。

35×1014 Pa.试估计太阳的温度。

(已知氢原子的质量m = 1.67×10—27 kg ,太阳半径R = 6。

96×108 m ,太阳质量M = 1。

99×1030 kg )解:mR MVm M mn 3π)3/4(===ρK 1015.1)3/4(73⨯===Mkm R nk p T π8—2 目前已可获得1。

013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子?解:3462310/cm 1045.2103001038.110013.1⨯=⨯⨯⨯⨯===---V kT p nV N 8—3 容积V =1 m 3的容器内混有N 1=1。

0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。

解:(1)J 1014.41054001038.123)(233232321⨯=⨯⨯⨯⨯⨯=+=-∑N N kT tε(2)Pa kT n p i323231076.21054001038.1⨯=⨯⨯⨯⨯==-∑8—4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。

设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。

问气体的温度及压强各升高多少?(将氧气分子视为刚性分子)解:1mol 氧气的质量kg 10323-⨯=M ,5=i由题意得T R Mv ∆=⋅ν25%80212K 102.62-⨯=∆⇒TT R V p RT pV ∆=⋅∆⇒=νν pa 52.0102.631.82=⨯⨯=∆=∆∴-VTR p 8—5 一个具有活塞的容器中盛有一定量的氧气,压强为1 atm 。

气体动理论习题、答案及解法(2010.12.15)

气体动理论习题、答案及解法(2010.12.15)

气体动理论习题、答案及解法一、 选择题1. 一定量氢气(视为刚性分子的理想气体),若温度每升高1K ,其内能增加20.8J ,则该氢气的质量为 【 B 】 (A )1.0⨯10kg 3- (B)2.0⨯10kg 3-(C)3.0⨯10kg 3- (D)4.0⨯10kg 3-参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ 5=i 刚性双原子的自由度为()kg 100.2131.851028.202233--⨯=⨯⨯⨯⨯⨯=∆⋅∆=T iR E M μ2. 有一瓶质量为m 的氢气(是作刚性双原子分子的理想气体),温度为T ,则氢分子的平均动能 【 B 】 (A )kT 23 (B )kT 25 (C ) RT 23 (D )RT 25参考答案:kT i2=ε 5=i 刚性双原子的自由度为 3. 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的 【 C 】 (A )21倍 (B )32倍 (C )35倍 (D )2倍参考答案:T R i M E ⎪⎭⎫⎝⎛=2μ RT M pV μ= 3522222==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛=e e e H H H H H H i i T R i M T R i M E E μμ4. A 、B 、C3个容器中皆装有理想气体,它们的分子数密度之比为A n :Bn :C n =4:2:1,而分子的平均平动动能之比为4:2:1::=C B A εεε,则它们的压强之比C B A p p p :::为 【 A 】(A )1:1:1 (B)1:2;2 (C )1:2;3 (D )1:2;4参考答案:εn p 32=1:1:132:32:32:::==C C B B A A C B A n n n p p p εεε 5. 2g 氢气与2g 氦气分别装在两个容器相等的封闭容器内,温度也相同(氢气分子视为刚性双原子分子),氢气与氦气内能之比eH H E E 2为(A )31 (B )35 (C )310 (D)316 【 C 】参考答案:T R i M E ⎪⎭⎫⎝⎛=2μ31010231045223322222=⨯⨯⨯⨯==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=--H H H H H H H H H H e e e e e i i T R i M T R i M E E μμμμ 6.1mol 的单原子分子理想气体,在1atm 的恒定压强下,从c 0︒加热到c 100︒,则气体的内能改变了 【 D 】(A )0.25J 103⨯ (B )J 105.03⨯ (C )J 100.13⨯ (D )J 1025.13⨯ 参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ ()()J 1025.127337331.82323⨯=-⨯⨯=∆⎪⎭⎫ ⎝⎛=∆T R i M E μ7. 在容积为3210m -的容器中,装有质量g 100的气体,若气体分子的方均根速率为1200-⋅s m ,则气体的压强为 【B 】 (A )Pa 1067.05⨯ (B )Pa 1033.15⨯ (C )Pa 1066.25⨯ (D )Pa 1099.35⨯参考答案:μRTv 32=RT MpV μ= ()Pa 1033.131522⨯=⎪⎭⎫ ⎝⎛⨯=v V M p8. 如图1所示的两条()v ~v f 曲线分别表示氢气和氧气在同一温度下的麦克斯)(1-韦速率分布曲线。

大学物理热学习题附答案11

大学物理热学习题附答案11

一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值(A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等(D) ε和w 都不相等4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案

大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。

(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。

(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。

[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。

气体动力学课后习题答案

气体动力学课后习题答案

气体动力学课后习题答案气体动力学课后习题答案气体动力学是研究气体在不同条件下的行为和性质的学科。

它涉及到许多基本概念和公式,需要通过大量的练习来加深理解和掌握。

下面是一些常见的气体动力学习题及其答案,希望对大家的学习有所帮助。

1. 一个气体体积为3L,温度为300K,压强为2 atm,求气体的物质的量。

答案:根据理想气体状态方程PV=nRT,其中P为压强,V为体积,n为物质的量,R为气体常数,T为温度。

将已知条件代入方程,得到n = PV/RT = (2 atm × 3L) / (0.0821 atm·L/mol·K × 300K) ≈ 0.296 mol。

2. 一定体积的气体在常温下压强为1 atm,将其加热至温度翻倍时,求新的压强。

答案:根据查理定律,当气体的温度和物质的量不变时,气体的压强与温度成正比。

即P1/T1 = P2/T2。

已知P1 = 1 atm,T1为常温,T2为常温翻倍后的温度。

代入已知条件,得到P2 = P1 × T2/T1 = 1 atm × 2/1 = 2 atm。

3. 一个气体在压强为2 atm、温度为300K的条件下体积为3L,将其压缩至体积减少一半,求新的温度。

答案:根据波义耳定律,当气体的压强和物质的量不变时,气体的体积与温度成反比。

即V1/T1 = V2/T2。

已知V1 = 3L,T1 = 300K,V2 = V1/2。

代入已知条件,得到T2 = T1 × V1/V2 = 300K × 3L/(3L/2) = 600K。

4. 一个容器中有1 mol的气体,在常温下体积为10L,将其压缩至体积减少一半,求新的物质的量。

答案:根据阿伏伽德罗定律,当气体的压强和温度不变时,气体的物质的量与体积成正比。

即n1/V1 = n2/V2。

已知n1 = 1 mol,V1 = 10L,V2 = V1/2。

大学物理习题册答案第11单元 气体动理论

大学物理习题册答案第11单元 气体动理论

第11单元 气体动理论一、选择题【C 】1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10【B 】2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT) (C) pV/(RT) (D) pV/(mT)【D 】3.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT v x 32= (B)m kT v x 3312= (C) m kT v x 32= (D)mkT v x =2 【解析】m kT v 32=,222231v v v v z y x ===,故mkT v x =2。

【变式】一定量的理想气体贮于某一容器内,温度为T ,气体分子的质量为m 。

根据理想气体分子模型和统计假设,分子速度在x 方向分量的平均值为( ) 0 D. π38 . C π831 B. π8 A.==⋅==x x x x mkT m kT m kT v v v v 解:在热平衡时,分子在x 正反两个方向上的运动是等概率的,故分子速度在x 方向分量的平均值为零。

所以答案选D 。

【D 】4.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则)(21221v Nf mv v v ⎰ d v 的物理意义是(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和 【D 】5.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为1n ,它产生的压强为1p ,B 种气体的分子数密度为12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p 1p (D)61p【A 】6.两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等 (B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等 (D) 平均速率不相等,方均根速率不相等.【解析】根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=。

《大学物理学》气体的动理论部分练习题(马解答)

《大学物理学》气体的动理论部分练习题(马解答)

《大学物理学》气体的动理论学习材料可能用到的数据:8.31/R J mol =; 231.3810/k J K -=⨯; 236.0210/A N mol =⨯。

一、选择题12-1.处于平衡状态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则它们( C )(A )温度,压强均不相同; (B )温度相同,但氦气的压强大于氮气的压强; (C )温度,压强都相同; (D )温度相同,但氦气的压强小于氮气的压强。

【分子的平均平动动能3/2kt kT ε=,仅与气体的温度有关,所以两瓶气体温度相同;又由公式P nkT =,n 为气体的分子数密度,知两瓶气体的压强也相同】2.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为:(根据理想气体分子模型和统计假设讨论)( D )(A )x υB )x υC )x υ=m kT 23;(D )x υ=0。

【大量分子在做无规则的热运动,某一的分子的速度有任一可能的大小和方向,但对于大量分子在某一方向的平均值应为0】3.若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B )(A )m PV /; (B ))/(kT PV ; (C ))/(RT PV ; (D ))/(mT PV 。

【由公式P nkT =判断,所以分子数密度为Pnk T=,而气体的分子数为N nV=】4.根据气体动理论,单原子理想气体的温度正比于( D ) (A )气体的体积; (B )气体分子的压强; (C )气体分子的平均动量;(D )气体分子的平均平动动能。

【见第1题提示】5.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( A )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。

大学物理 气体分子动理论习题

大学物理 气体分子动理论习题

hi
为氢气分子速率分布曲线。
w. z
气体的摩尔质量 M mol =
解:由克拉珀龙状态方程 pV =
RT 可得摩尔质量为 ρRT 11.3 × 10 −3 × 8.31 × ( 27 + 273) = p 1.0 × 10 − 2 ×1.013 × 105
ww
M = M mol =
= 27.8 × 10 −3 (kg ⋅ mol − 1 )
5.在一个容积不变的容器中,储有一定量的理想气体,温度为 T0 时,气体分子的平均速 率为 v 0 ,分子平均碰撞次数为 Z0 ,平均自由程为 λ0 。当气体温度升高为 4T0 时,气体分 [ ] (A) v = 4v0 , Z = 4 Z 0 , λ = 4λ0
8kT ∝ πm
(C) v = 2v 0 , Z = 2Z0 , λ = 4λ0
v
O
v
O
,所以 (D)不对。另由概率归 解:在同一温度下,氮气和氦气的 v p 不等(摩尔质量不等) 一化条件
∫ f (v )dv = 1,说明若 v
0

p
大,则 v > v p 的 f (v) 将减小,而(A) 、(C)中 v > v p 的 故选 B
f (v) 没有减小,所以(A)、(C)都不对。
O
na
v0
0
dN 解:由麦克斯韦速率分布函数 f (v ) = 的有 Ndv
f (v )dv = ∫
v2
v1

hi
∆N v1 → v2 dN ⋅ dv = Ndv N
由题意 A 、B 两部分面积相等有 说明
∫ f (v )dv = ∫ f (v )dv
v0
w. z

3气体动理论习题解答

3气体动理论习题解答

气体动理论习题与答案一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。

A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。

故本题答案为B 。

2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。

A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=故本题答案为D 。

3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B.25pV C. 3pV D.27pV解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。

因此答案选C 。

4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。

单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。

氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。

《大学物理AII》作业 No.10 平衡态的气体动理论(参考答案)

《大学物理AII》作业 No.10 平衡态的气体动理论(参考答案)
3、关于温度的意义,有下列几种说法是否正确?如果不正确请说明理由。 (1)气体的温度是分子平均平动动能的量度; (2)气体的温度是大量气体分子热运动的集体表现,具有统计意义; (3)温度的高低反映物质内部分子运动剧烈程度的不同; (4)从微观上看,气体的温度表示每个气体分子的冷热程度; 解:(1)、(2)、(3)说法正确。(4)说法错误,因为温度是个统计概念,是大量分 子热运动的集体表现。不能把一个具有统计意义的概念同单个分子的运动对应起来。
9、理想气体分子间的相互作用势能可以忽略不计,因此理想气体的内能就是 所有分子热 运动动能之和 ,其定量的表达式为 E = 况下,都可将其视为刚性的理想气体。 10、平衡态时分子速率的稳定分布,以及分子平均动能按自由度均分都是因为(分子间频 繁碰撞)的结果。一个分子在单位时间内与其它分子的平均碰撞频率 Z 子在连续两次碰撞间通过的路程的平均值 l 称 kT
或者p = p0e

8、完全确定一个物体的空间位置所需要的相互独立的坐标数称为该物体的自由度。对于刚 性气体分子而言,单原子分子有 3 个自由度,双原子分子有 5 个自由度,多原子分子有 6 个自由度。在温度为T 的平衡态下,分子的每一个可能的自由度都有相同的平均动能
1 kT ,称之为能均分定理。 2
速率 v
=
8kT 8RT 3kT 3RT 。 、方均根速率 v 2 = = = pm pM m M
mgh kT
7、重力场中,气体分子数密度按高度分布的规律为 n = n0e 此式可推出压强按高度分布的公式
,或者n = n0e
Mgh RT
-
Mgh RT ;根据
p = n0kTe
-
mgh kT
= p0e
可得摩尔质量 M =

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析

《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。

对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。

当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。

由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。

换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。

2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。

3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。

答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。

(2)微观量:描述个别分子运动状态的物理量。

(3)宏观量:表示大量分子集体特征的物理量。

4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。

其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。

可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。

大学物理 气体分子动理论 试题(附答案)

大学物理 气体分子动理论 试题(附答案)

om
解: v1 ~ v2 区间的分子数为
∆ N v1 ~ v2 = N ∫
v2
v1
f (v )dv
该区间内分子速率之和为 vdN = N


v2
v1 v2
vf (v )dv ,所以该区间分子的平均速率为
∫ vdN
∆N v1 → v2
=
N ∫ vf (v )dv
v1
v2
1பைடு நூலகம்
v1
(A)
(B)
O
f (v )
v
ww
w. z
率为 v 0 ,分子平均碰撞次数为 Z0 ,平均自由程为 λ0 。当气体温度升高为 4T0 时,气体分 子的平均速率为 v ,平均碰撞次数 z 和平均自由程 λ 分别为: [ B ] (A) v = 4 v 0 , Z = 4 Z 0 , λ = 4λ0 。 (B) v = 2v 0 , Z = 2Z0 , λ = λ0 。 (C) v = 2v 0 , Z = 2Z0 , λ = 4λ0 。 (D) v = 4v 0 , Z = 2Z0 , λ = λ0 。
解:因为
∆N v1 → v2
N
∫ f (v )dv
v1
v2
由题意
∫0 f (v )dv = ∫v f (v )dv ,
0
v0

说明
∆ N 0 → v0 = ∆ N v0 → ∞ =
ww
4. 设某种气体分子的速率分布函数为 f (v ) , 则速率在 v1 ~ v 2 区间内的分子的平均速率为 ] (A) (C)
µ = M mol =
MRT ρRT 11.3 × 10 −3 × 8.31 × 300 = = pV p 1.0 × 10 −2 ×1.013 × 105
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v的统计意义即可得出。

()f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dvvNf)(表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。

2、答案:A解:根据()f v的统计意义和pv的定义知,后面三个选项的说法都是对的,而只有A不正确,气体分子可能具有的最大速率不是pv,而可能是趋于无穷大,所以答案A正确。

3、答案:Armsv=据题意得222222221,16H O H HH O O OT T T MM M T M===,所以答案A正确。

4、由理想气体分子的压强公式23kp nε=可得压强之比为:Ap∶Bp∶Cp=n A kAε∶n B kBε∶n C kCε=1∶1∶15、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RTν=代入内能公式2iE RTν=可得2iE pV=,所以氧气和氦气的内能之比为5 : 6,故答案选C。

6、解:理想气体状态方程PV RTν=,内能2iU RTν=(0mMν=)。

由两式得2U iPV=,A、B两种容积两种气体的压强相同,A中,3i=;B中,5i=,所以答案A正确。

7、由理想气体物态方程'mpV RTM=可知正确答案选D。

8、由理想气体物态方程pV NkT=可得气体的分子总数可以表示为PVNkT=,故答案选C。

9、理想气体温度公式21322k m kTευ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。

温度越高,分子的平均平动动能越大,分子热运动越剧烈。

因此,温度反映的是气体分子无规则热运动的剧烈程度。

由于k ε是统计平均值,因而温度具有统计意义,是大量分子无规则热运动的集体表现,对个别分子或少数分子是没有意义的。

故答案选B 。

10、因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2i E RT ν=可知内能不相等;又由理想气体温度公式21322k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。

二、填空题1、根据速率分布函数()f v 的统计意义,()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,12()v v f v Ndv ⎰表示速率在1v 到2v 之间的分子数,21()v v f v Ndv N⎰表示速率在1v 到2v 之间的分子数占总分子数的比例,也即某一分子速率在1v 到2v 的概率。

2、12kT ;2ikT ;2i RT ν;kT 233、气体分子定向运动的动能全部转化为分子热运动的动能,所以22111()0222A AM MU mv v N N ∆=-∆=-⋅322323141020013.3102 6.0210--⨯=⨯⨯=⨯⨯J 232322213.310 6.42333 1.3810k U T k k ε--∆⨯⨯∆====⨯⨯K32503350108.3110 6.420.6710Pa 4101010m R T p MV ----∆⨯⨯⨯∆==⨯=⨯⨯⨯⨯ 4、因气体分子的方均根速率=和算术平均速率v =,由题意=,所以2138T T =π5、解:理想气体分子的能量 RT iE 2υ= 平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r 249330031.822=⨯⨯=r E J内能5=i 5.623230031.825=⨯⨯=i E J6、因为 nkT p =,则 1=HOn n 7、由气体动理论公式可得。

8、由速率分布函数()dNf v Ndv=可得()dN Nf d υυ=,dN 表示~v v dv +区间内的分子数,所以(1)速率大于0υ的分子数,即0~v ∞区间内的分子数为:()v v dN Nf v dv ∞∞=⎰⎰(2)速率大于0υ的分子的平均速率:0000()()()()v v v v v v vdN vNf v dv vf v dv v dNNf v dvf v dv∞∞∞∞∞∞===⎰⎰⎰⎰⎰⎰(3)某一分子的速率大于0υ的概率,即分子速率处于0~v ∞区间内的概率,应为0~v ∞区间内的分子数占总分子数的百分比,即:()()v v v dNNf v dv f v dv NN∞∞∞==⎰⎰⎰9、由物态方程nkT p =可得kT p n =, 又因气体密度N mnm Vρ⋅==,所以由上两式可得分子质量 pkTnm ρρ==,故此种气体的摩尔质量为A RTM N m pρ===2(g/mol) ,则可确定此种气体是氢气;气体分子热运动的最概然速率ρp M RT v p 22==10、在相同的温度和压强下,单位体积的氢气和氦气满足:RT p 2H ν=和RT p He ν=,2H H e νν=氢气的内能:RT E 2522H H ν=,氦气的内能:RT E 23He He ν=,所以35He H 2=E E三、判断题1、答:错误,平均平动动能相等是统计平均的结果.分子速率由于不停地发生碰撞而发生变化,分子具有各种可能的速率,因此,一些氢分子的速率比氧分子速率大,也有一些氢分子的速率比氧分子速率小.2、答:错误。

宏观量温度是一个统计概念,是大量分子无规则热运动的集体表现,是分子平均平动动能的量度,分子热运动是相对质心参照系的,平动动能是系统的内动能.温度与系统的整体运动无关.只有当系统的整体运动的动能转变成无规则热运动时,系统温度才会变化.3、答:正确。

分子的平均平动动能都为kT234、答:错误。

因为氢分子的平均动能5/2KT ,氦分子的平均动能3/2KT.5、答:错误。

因为氢分子的内能RT 25υ,氦分子的内能RT23υ6、错误。

因为由能量均分定理知:当理想气体系统处于平衡态时,理想气体分子的每一个自由度都具有相同的平均能量,其大小等于kT 21。

所以,自由度为i的分子的平均能量为kT i2=ε,但是能量均分定理是对大量分子统计平均的结果,对个别分子没有意义。

7、答:正确。

由理想气体物态方程'm pV RT M=8、答:错误。

因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2iE RT ν=可知内能不相等 9、答:错误。

=v =,=,所以2138T T =π10、答:正确。

由题知内能U kp =,k 为曲线斜率,而022m i iU RT pV M ==,因此,V 为常数,四、计算题1、解:1mol 理想气体的内能为2i U RT =,分解前水蒸气的内能为16322i U RT RT RT ===1mol 的水蒸气可以分解为1mol 的氢气和0.5mol 的氧气,因为温度没有改变,所以分解后,氢气和氧气所具有的内能分别为2522i U RT RT == 和 31552224i U R T R T R Tν==⨯= 所以分解前后内能的增量为231553()()3244U U U U RT RT RT RT ∆=+-=+-=2、解:设空气质量为m ,摩尔质量为M 。

空气被压缩前后均可视为理想气体,则有;111RT M m V p =, 222RT MmV p = 所以3、解:(1)由气体状态方程nkT p =得242351045.23001038.110013.11.0⨯=⨯⨯⨯⨯==-kT p n 3m - (2)氧分子的质量26230mol 1032.51002.6032.0-⨯=⨯==N M m kg (3)由气体状态方程RT M MpV mol=得 13.030031.810013.11.0032.05mol =⨯⨯⨯⨯==RT p M ρ 3m kg -⋅4、解:因压缩过程中气体质量不变,所以由112212p V p V T T =可得 62211241114.25103209296568.611017p V T V T K C pV V ⨯⨯⨯====︒⨯⨯⨯5、解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2(0)()2()()0(/)(00000v v v Nf v v v a v Nf v v v av v Nf ⎪⎩⎪⎨⎧≥≤≤≤≤=)2(0)2(/)0(/)(00000v v v v v Na v v Nv av v f )(v f 满足归一化条件,但这里纵坐标是)(v Nf 而不是)(v f 故曲线下的总面积为N(2)由归一化条件可得00202d d 3v v v avNN v N a v Na v v +==⎰⎰ (3) 可通过面积计算N v v a N 31)5.12(00=-=∆6、解:如图所示,Fp S=所有分子对器壁的冲量为: 2c o s F t N m v θ∆=⋅ 式中2310N =。

取1s t ∆= 则2cos F N mv θ=⋅42cos 45 1.8810PaoF N mv P S S ⋅===⨯7、解:为使气体分子不相碰,则必须使得分子的平均自由程不小于容器的直径,即满足2R λ≥由分子的平均自由程λ=,可得n =≤ 上式表明,为了使分子之间不相碰,容器中可容许的最大分子数密度为max n =因此在容积343V R π=的容器中,最多可容纳的分子数N 为223max 2240.4733R N n V R d d π=⋅===8、解:23222()4()e 2mv kT m f v v kT ππ-=,2182 m/s p v = 11()N Nf v v =∆,22()p N Nf v v =∆2222 ()22211222 22()()e e 0.78()()e p p mv M v v kT RTmv p p p pkT p N f v v f v v v N f v v f v v v ----∆=====∆9、解:(1)由速率分布函数的归一化条件0()1f v dv ∞=⎰,有2401ffv v A vd v d v π∞+=⎰⎰,得3413fAv π=,所以常数 334fA v π=; (2)电子气中一个自由电子的平均动能为222521233()4225105f fv v e k e e f e ff m m v f v dv v Av dv Am v m v εππε==⋅===⎰⎰10、解:由理想气体状态方程RT MmpV =得 RTpVM m =汞的重度 51033.1⨯=H g d 3m N -⋅ 氦气的压强 H g )60.076.0(d P ⨯-=氦气的体积 4100.2)60.088.0(-⨯⨯-=V 3m)27273()100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯-⨯=-R d m)27273(31.8)100.228.0()60.076.0(004.04Hg +⨯⨯⨯⨯⨯-⨯=-d61091.1-⨯=Kg五、思考题1、答:一个系统在不受外界影响的条件下,其宏观性质不随时间变化,则称该系统处于平衡态。

相关文档
最新文档