大学物理 气体动理论习题
大学物理气体的动理论习题答案
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是
(A)(1)、(2)、(4);(B)(1)、(2)、(3);(C)(2)、(3)、(4);(D)(1)、(3)、(4)。
2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体
9.速率分布函数 f(v)的物理意义为:
[B ]
(A)具有速率 v 的分子占总分子数的百分比。
(B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。
(C)具有速率 v 的分子数。
(D)速率分布在 v 附近的单位速率间隔中的分子数。
1
10.设 v 代表气体分子运动的平均速率,vP 代表气体分子运动的最可几速率,( v2 )2 代表
℃升高到 177℃,体积减小一半。试求:
(1)气体压强的变化;
(2)气体分子的平均平动动能的变化;
(3)分子的方均根速率为原来的倍数。
解:
(1)由
p1V1 T1
p2V2 T2
,
代入T1
=300K,T2
=450K,V2
=
1 2
V1可得
p2 =3p1
即压强由p1变化到了3 p1。
(2)分子的平均平动动能
(D) 6 p1 。
5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ]
(A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为
大学物理吉林大学第5章气体动理论练习及答案
解 (1) pV m RT M mRT RT 28.0 103kg
M
pV p
(2) 2 3RT 493m / s
M
(3)
E平
n 3 kT 2
3 2
p
1.5 103 J
3 设某系统由N个粒子组成,粒子的速率分布如图所示。 求
5.三个容器A、B、C 中装有同种理想气体,其
分子数密度相同,而方均根速率之比为1:2:4, 则其压强之比pA : pB : pC为: A.1 ∶ 2 ∶ 4 B.4∶ 2 ∶ 1 C.1 ∶ 4 ∶ 16 D.1∶ 4 ∶ 8
2 T
p nkT
6.在一封闭容器内,理想气体分子的平均速率
提高为原来的2倍,则
第五章 气体动理论
一、选择题
k
3 2
kT
p nkT
1.两瓶不同种类的气体,其分子的平均平动动能相等,
但分子密度不同,则
A.温度相同,压强相同; B.温度不同,压强相同
C.温度相同,压强不同 ; D.温度不同,压强不同
2.在一密闭容器中,储有A、B、C三种理想气体,
处于平衡状态.A种气体的分子数密度为n1,它产生 的压强为p1,B种气体的分子数密度为2n1,C种气体 的分子数密度为3 n1,则混合气体的压强p为( )
3R
4R
5R
2R
10.设 代表气体分子运动的平均速率。 P代表
气体分子运动的最可几速率, 2代表气体分子运动
的方均根速率。处于平衡状态下的理想气体,三
种速率的关系为
A. 2 P
B. P 2
C.P 2
D. P 2
2022大学物理B-第7章气态动理论答案
第7章 气体动理论练习题一、选择题1、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,R 是摩尔气体常量,k 称为玻耳兹曼常量,则该理想气体的分子数为[ B ](A) pV/m. (B) pV/(kT).(C) pV/(RT). (D) pV/(mT).2、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,mol M 为摩尔质量,A N 为阿伏加得罗常量)[ A ] (A)pV M m 23. (B) pV M M mol 23. (C) npV 23. (D) pV N MM A 23mol . 3、根据经典的能量按自由度均分原理,每个自由度的平均能量为[ C ](A) kT /4. (B)kT /3.(C) kT /2. (D)kT.4、在20℃时,单原子理想气体的内能为[ D ](A)部分势能和部分动能. (B)全部势能. (C)全部转动动能.(D)全部平动动能. (E)全部振动动能.5、如果氢气和氦气的温度相同,摩尔数也相同,则[ B ](A)这两种气体的平均动能相同. (B)这两种气体的平均平动动能相同.(C)这两种气体的内能相等. (D)这两种气体的势能相等.6、在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为[D ](A) 3 p 1. (B) 4 p 1.(C) 5 p 1. (D) 6 p 1.7、在容积V =4×10-3 m 3的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为[B ](A) 2 J . (B) 3 J .(C) 5 J . (D) 9 J .8、若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了[B ](A) 0.500. (B) 400.(B) 900. (D) 2100.9、麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示[ D ](A) 0v 为最概然速率.(B) 0v 为平均速率.(C) 0v 为方均根速率.(D) 速率大于和小于0v 的分子数各占一半.0 v二、填空题 1、有一个电子管,其真空度(即电子管内气体压强)为1.0×10-5 mmHg ,则27 ℃ 时管内单位体积的分子数为_________________ .(玻尔兹曼常量k =1.38×10-23 J/K , 1 atm=1.013×105 Pa =76 cmHg )解:nkT p =故3001038.176010013.1100.12355⨯⨯⨯⨯⨯⨯==--kT p n =3.2×1017 /m 32、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
《大学物理》第8章气体动理论练习题及答案
《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
大学物理气体动理论习题
大学物理气体动理论习题第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
大学物理第十一章 气体动理论习题详细答案
第十一章气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v的统计意义即可得出。
()f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dvvNf)(表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。
2、答案:A解:根据()f v的统计意义和pv的定义知,后面三个选项的说法都是对的,而只有A不正确,气体分子可能具有的最大速率不是pv,而可能是趋于无穷大,所以答案A正确。
3、答案:Armsv=据题意得222222221,16H O H HH O O OT T T MM M T M===,所以答案A正确。
4、由理想气体分子的压强公式23kp nε=可得压强之比为:Ap∶Bp∶Cp=n A kAε∶n B kBε∶n C kCε=1∶1∶15、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RTν=代入内能公式2iE RTν=可得2iE pV=,所以氧气和氦气的内能之比为5 : 6,故答案选C。
6、解:理想气体状态方程PV RTν=,内能2iU RTν=(0mMν=)。
由两式得2U iPV=,A、B两种容积两种气体的压强相同,A中,3i=;B中,5i=,所以答案A正确。
7、由理想气体物态方程'mpV RTM=可知正确答案选D。
8、由理想气体物态方程pV NkT=可得气体的分子总数可以表示为PVNkT=,故答案选C。
9、理想气体温度公式21322k m kTευ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
温度越高,分子的平均平动动能越大,分子热运动越剧烈。
因此,温度反映的是气体分子无规则热运动的剧烈程度。
由于k ε是统计平均值,因而温度具有统计意义,是大量分子无规则热运动的集体表现,对个别分子或少数分子是没有意义的。
故答案选B 。
10、因摩尔数相同的氢气和氦气自由度数不同,所以由理想气体的内能公式2i E RT ν=可知内能不相等;又由理想气体温度公式21322k m kT ευ==可知分子的平均平动动能必然相同,故答案选C 。
(完整版)《大学物理》习题册题目及答案第6单元 气体动理论
第6单元 气体动理论 序号 学号 姓名 专业、班级一 选择题[ C ]1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10[ B ]2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT)(C) pV/(RT) (D) pV/(mT)[ D ]3.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(21221v Nf mv v v ⎰ d v 的物理意义是 (A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。
(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。
(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。
(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。
[ D ]4.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为 1n ,它产生的压强为 1p ,B 种气体的分子数密度为 12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p(C)51p (D)61p二 填空题1.在定压下加热一定量的理想气体,若使其温度升高1K 时,它的体积增加了0.005倍,则气体原来的温度是_________200k__________。
2.用总分子数N 、气体分子速率v 和速率分布函数f(v),表示下列各量:(1)速率大于0v 的分子数= ⎰∞0)(v dv v Nf ;(2)速率大于0v 的那些分子的平均速率=⎰⎰∞∞00)()(v v dv v f dv v vf ;(3)多次观察某一分子的速率,发现其速率大于0v 的概率=⎰∞0)(v dv v f 。
大学物理(气体动理论)习题答案
大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。
大学物理题库-第12章 气体动理论
气体动理论一、选择题1、某容器内装有混合气体,处于热平衡状态,则不同种类分子的下列哪个量相同[ ](A )分子数密度 (B ) 方均根速率 (C )平均平动动能 (D ) 分子质量2、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v . (B) mkT x 3312=v . (C) m kT x /32=v . (D) m kT x /2=v . [ ] 3、若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了(A)0.500. (B) 400. (C) 900. (D) 2100. [ ]4、在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比为1:2,则它们的内能比为:(A ) 1/2 (B ) 5/3 (C )5/6 (D ) 3/10 [ ] 5、一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过E ~V 图的原点),则此直线表示的过程为:(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程.[ ]6、水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7%. (B) 50%. (C) 25%. (D) 0. [ ]7. 已知分子总数为N ,它们的速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A)⎰21d )(v v v v v f . (B) ⎰21d )(v v v v v f /⎰21d )(v v v v f .(C)⎰21d )(v v v v v f N . (D)⎰21d )(v v v v v f /N . [ ]8、若f (v )为气体分子速率分布函数,N 为分子总数,m 为分子质量,则⎰21d )(212v v v v v Nf m 的物理意义是 (A) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之差.(B) 速率为2v 的各分子的总平动动能与速率为1v 的各分子的总平动动能之和. (C) 速率处在速率间隔1v ~2v 之内的分子的平均平动动能.(D) 速率处在速率间隔1v ~2v 之内的分子平动动能之和. [ ]9、金属导体中的电子,在金属内部作无规则运动,与容器中的气体分子很类似.设金属中共有N 个自由电子,其中电子的最大速率为 m v ,电子速率在v ~v + d v 之间的概率为⎩⎨⎧=0d d 2vv A N N式中A 为常数.则该电子气电子的平均速率为 (A)33m A v . (B) 44m A v . (C) m v . (D) 23m A v . [ ]0≤v ≤v m v > v m10、两个容器中分别装有2N 和2CO ,它们的温度相同,则在下列各量中,相同的是:[ ](A ) 分子平均动能 (B ) 分子平均速率(C ) 分子平均平动动能 (D ) 最概然(可几)速率 [ ]11、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ]12、在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ. (B) v =20v ,Z =20Z ,λ=0λ. (C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ ]13、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小,但λ不变. (B) Z 不变,但λ减小.(C) Z 和λ都减小. (D) Z 和λ都不变. [ ]二 填空题1.有一瓶质量为M 的氢气(可视为刚性双原子分子的理想气体,其摩尔质量为M ),温度为T , 则氢分子的平均平动动能为_________, 氢分子的平均动能为_______, 该瓶氢气的内能为_________,氢气分子间的相互作用势能为__________。
大学物理习题册答案第11单元 气体动理论
第11单元 气体动理论一、选择题【C 】1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10【B 】2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT) (C) pV/(RT) (D) pV/(mT)【D 】3.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT v x 32= (B)m kT v x 3312= (C) m kT v x 32= (D)mkT v x =2 【解析】m kT v 32=,222231v v v v z y x ===,故mkT v x =2。
【变式】一定量的理想气体贮于某一容器内,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向分量的平均值为( ) 0 D. π38 . C π831 B. π8 A.==⋅==x x x x mkT m kT m kT v v v v 解:在热平衡时,分子在x 正反两个方向上的运动是等概率的,故分子速度在x 方向分量的平均值为零。
所以答案选D 。
【D 】4.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则)(21221v Nf mv v v ⎰ d v 的物理意义是(A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和 【D 】5.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为1n ,它产生的压强为1p ,B 种气体的分子数密度为12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p 1p (D)61p【A 】6.两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等 (B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等 (D) 平均速率不相等,方均根速率不相等.【解析】根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=。
《大学物理学》气体的动理论部分练习题(马解答)
《大学物理学》气体的动理论学习材料可能用到的数据:8.31/R J mol =; 231.3810/k J K -=⨯; 236.0210/A N mol =⨯。
一、选择题12-1.处于平衡状态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则它们( C )(A )温度,压强均不相同; (B )温度相同,但氦气的压强大于氮气的压强; (C )温度,压强都相同; (D )温度相同,但氦气的压强小于氮气的压强。
【分子的平均平动动能3/2kt kT ε=,仅与气体的温度有关,所以两瓶气体温度相同;又由公式P nkT =,n 为气体的分子数密度,知两瓶气体的压强也相同】2.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为:(根据理想气体分子模型和统计假设讨论)( D )(A )x υB )x υC )x υ=m kT 23;(D )x υ=0。
【大量分子在做无规则的热运动,某一的分子的速度有任一可能的大小和方向,但对于大量分子在某一方向的平均值应为0】3.若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B )(A )m PV /; (B ))/(kT PV ; (C ))/(RT PV ; (D ))/(mT PV 。
【由公式P nkT =判断,所以分子数密度为Pnk T=,而气体的分子数为N nV=】4.根据气体动理论,单原子理想气体的温度正比于( D ) (A )气体的体积; (B )气体分子的压强; (C )气体分子的平均动量;(D )气体分子的平均平动动能。
【见第1题提示】5.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( A )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。
大学物理课后练习七—气体动理论1
大学物理课后练习七气体动理论1班级: 学号: 姓名:一、选择题:1、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A )一定都是平衡态;(B )不一定都是平衡态;(C )前者一定是平衡态,后者一定不是平衡态;(D )后者一定是平衡态,前者一定不是平衡态。
( )2、处于平衡状态的A ,B ,C 三种理想气体,储存在一密闭容器中,A 种气体分子数密度为1n ,其压强为1p ,B 种气体分子数密度为12n ,C 种气体分子数密度为13n ,则混合气体压强为(A )16p ; (B )15p ; (C )13p ; (D )12p 。
( )3、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N 0为阿伏伽德罗常数,M mol 为摩尔质量)。
(A )32m pV M ; (B )mol 32m pV M ; (C )32npV ; (D )mol 032M N pV M。
( ) 4、一瓶氦气He 和一瓶氮气2N 密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A )温度相同,压强相同;(B )温度、压强都不相同;(C )温度相同,但氦气的压强大于氮气的压强;(D )温度相同,但氦气的压强小于氮气的压强。
( )5、若在固定容器内,理想气体分子速率都提高为原来的二倍,则(A )温度和压强都升高为原来的二倍;(B )温度升高为原来的二倍,压强升高为原来的四倍;(C )温度升高为原来的四倍,压强升高为原来的二倍;(D )温度与压强都升高为原来的四倍。
( )6、标准状态下,若氧气和氦气的体积比2/1/21=V V ,则其内能E 1 / E 2为(A )1/2; (B )5/6; (C )3/2; (D )1/3。
( )7、水蒸汽分解为同温度T 的氢气和氧气,即222H O H 0.5O →+,内能增加了多少?(A )50%; (B )25%; (C )66.7%; (D )0。
大学物理 气体分子动理论习题
hi
为氢气分子速率分布曲线。
w. z
气体的摩尔质量 M mol =
解:由克拉珀龙状态方程 pV =
RT 可得摩尔质量为 ρRT 11.3 × 10 −3 × 8.31 × ( 27 + 273) = p 1.0 × 10 − 2 ×1.013 × 105
ww
M = M mol =
= 27.8 × 10 −3 (kg ⋅ mol − 1 )
5.在一个容积不变的容器中,储有一定量的理想气体,温度为 T0 时,气体分子的平均速 率为 v 0 ,分子平均碰撞次数为 Z0 ,平均自由程为 λ0 。当气体温度升高为 4T0 时,气体分 [ ] (A) v = 4v0 , Z = 4 Z 0 , λ = 4λ0
8kT ∝ πm
(C) v = 2v 0 , Z = 2Z0 , λ = 4λ0
v
O
v
O
,所以 (D)不对。另由概率归 解:在同一温度下,氮气和氦气的 v p 不等(摩尔质量不等) 一化条件
∫ f (v )dv = 1,说明若 v
0
∞
p
大,则 v > v p 的 f (v) 将减小,而(A) 、(C)中 v > v p 的 故选 B
f (v) 没有减小,所以(A)、(C)都不对。
O
na
v0
0
dN 解:由麦克斯韦速率分布函数 f (v ) = 的有 Ndv
f (v )dv = ∫
v2
v1
∞
hi
∆N v1 → v2 dN ⋅ dv = Ndv N
由题意 A 、B 两部分面积相等有 说明
∫ f (v )dv = ∫ f (v )dv
v0
w. z
大学物理测试卷(气体动理论)
大学物理测试卷(气体动理论)text6一、选择题(共24分)1.(3’)已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A )氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强;(B )氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度;(C )氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大;(D )氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大。
2.(3’)在一个容积不变的容器中,储有一定时的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0z ,平均自由程为0λ,当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞次数z 和平均自由程λ分别为:(A )v =40v ;z =40z ;λ=40λ(B )v =20v ;z =20z ;λ=0λ(C )v =20v ;z =20z ;λ=40λ(D )v =40v ;z =20z ;λ=0λ3.(3’)有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能ΑV E )/(和ΒV E )/(的关系(A )为ΑV E )/(<ΒV E )/((B )为ΑV E )/(>ΒV E )/((C )为ΑV E )/(=ΒV E )/((D )不能确定4.(3’)给定理想气体,从标准状态(p 0 , V 0 , T 0 )开始作绝热膨胀,体积增大到3倍,膨胀后温度T 、压强p 与标准状态时T 0 、p 0之关系为(γ为比热比)(A )T=0)31(T γ;p=01-)31(p γ (B )T=01-)31(T γ;p=0)31(p γ(C )T=0-)31(T γ;p=01-)31(p γ (D )T=01-)31(T γ;p=0-)31(p γ5.(3’)三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为2A v :2B v :2C v =1:2:4,则其压强之比p A : p B : p C 为(A )1:2:4 (B )4:2:1 (C )1:4:16 (D )1:4:86.(3’)若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了。
大学物理习题答案 气体动理论
第六章 气体动理论1、 水银气压计中混进了一个气泡,因此它的读数比实际气体小些,当精确的气压计的水银柱为0.768m 时,它的水银柱只有0.748m 高,此时管中水银面到管顶距离为0.08m,试问此气压计的水银柱为0.734m 高时,实际的气压是多少?(把空气当作理想气体,并设温度不变)。
解:设第一次测得的空气泡的压强和体积汞汞汞(d 02.0d )748.0768.0hd P 1=−=Δ= s 08.0V 1=(s 为截面积)第二次测得空气泡的压强和体积s 094.0s )08.0734.0748.0(V 2=+−=汞汞d 017.0s094.0s 08.0d 02.0V V P P 2112=×== 实际压强)Pa (10999.01033.1751.0d 017.0d 734.0'P 552×=××=+=汞汞2、可用下面方法测定气体的摩尔质量。
先在容积为V的容器内装入被测量的气体,测出其压强为P 1,温度为T,并称出容器连同气体的质量为m 1。
然后放掉一部分气体,这时压强降到P 2,再称出容器连同气体的质量为m 2,假定温度保持不变,试求该气体的摩尔质量。
解:设容器的质量为m开始时)1(T V P R M m m 11=− 放气后 )2(TV P R M m m 22=− 解得 2121P P m m V RT M −−⋅=3、某容器内分子数密度为1026m -3,每个分子的质量为3×10-27kg,设其中1/6分子数以速率v=200ms -1垂直地向容器的一壁运动,而其余5/6分子或者离开此壁,或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性。
问:(1)每个分子作用于器壁 的冲量为多少?(2)每秒碰在器壁单位面积上的分子数n 0为多少?(3)作用在器壁上的压强为多少?解:(1) (kg m/s )2427102.12001032v 2P I −−×=×××=μ=Δ= (2) s m 10316110200vn 61n 228260⋅×=××==个 (3) Pa 104102.11031P n P 324280×=×××=Δ⋅=−4、有一容积为10cm 3的电子管,当温度为300k的时候,用真空泵把管内空气抽成压强为5×10-6mmHg的高真空,问此时管内有多少个空气分子?此空气分子的平均平动动能的总和是多少?平均转动动能的总和是多少?平动动能的总和是多少?(1mmHg=133.3Pa 空气分子可认为是刚性双原子分子)解:由理想气体状态方程RT PV ν=知空气的摩尔数RTPV =ν 1)个122366A A 1061.13001038.1101032.133105kT PV N RT PV N N ×=××××××===ν=−−− 2)J 1000.13001038.1231061.1kT 23N 82312k −−×=×××××==ε平总 3)J 1067.63001038.11061.1NkT 92312k −−×=××××==ε转总4)J 1067.18k k k −×=ε+ε=ε转总平总总5、一能量为1012eV的宇宙射线粒子,射入一氖管中,氖管中含有氖气0.1mol。
大学物理气体动理论习题
例题5:关于温度的意义中: (1)气体的温度是分子平均平动动能的量度. (2)气体的温度是大量气体分子热运动的集体表现, 具有统计意义. (3)温度的高低反映物质内部分子运动剧烈程度的表 现. (4)从微观上看,气体的温度表示每个气体分子的冷热 程度. (A)1,2,4 (C)2,3,4 (B)1,2,3 (D)1,3,4 B
p1 p2 p1 p2
, f(up1)<f(up2), , f(up1)>f(up2) B , f(up1)<f(up2)
例题10:速率分布函数f(u),的意义:
(A) 具有速率u的分子占总分子数的百分比. (B) 速率分布在u附近的单位速率间隔中的分 子数占总分子数的百分比. B (C)具有速率u的分子数. (D)速率分布在u附近的单位速率间隔中的分 子数.
例题1 :一定量的理想气体贮于某一容器中,温度为 T,气体分子的质量为m,根据理想气体分子模型和统 计假设,分子速度在x方向的分量的平均值:
A, C, ux ux 8kT m 8kT 3m B, D, 1 ux 3 ux 0 8kT m
D
例2:在一密闭容器中储有A,B,C三种理想气体, 处于平衡态,A种气体的分子数密度为n1,它产生 的压强为p1.B种气体的分子数密度为2n1.C种气 体的分子数密度为3n1,则混合气体的压强p为: (A)3p1 (B)4p1 D (C)5p1 (D)6p1
C
u1
例题6:一瓶氦气和一瓶氮气密度相同,分子平均平 动动能相同,且处于平衡态,则: (A)温度压强都相同. (B)温度压强都不同. (C)温度相同, 氦气压强大于氮气. C (D)温度相同, 氦气压强小于氮气. 例7:已知一定量的某种理想气体,在温度为T1与 T2时的分子最概然速率分别为 up1 和up2 ,分子 速率分布函数的最大值分别为f(up1)和f(up2),若 T1>T2,则: (A) u >u , f(u )>f(u ), (B) up1 >up2 (C) up1 <up2 (D) up1 <up2
(完整版)大学物理习题集(气体动力论热力学基础)
气体的动理论 姓名学号一. 选择题1.关于温度的意义,有下列几种说法: [ ](1)气体的温度是分子平均平动动能的量度。
(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。
(3)温度的高低反映物质内部分子运动剧烈程度的不同。
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是(A )(1)、(2)、(4); (B )(1)、(2)、(3); (C )(2)、(3)、(4); (D )(1)、(3)、(4);2.若室内生起炉子后温度从15︒C 升高到27︒C ,而室内气压不变,则此时室内的分子数减少了[ ]。
(A )0.5% (B )4% (C )9% (D )21%3.一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 [ ] )2523)(( (A)21kT kT N N ++ )2523)(( 21(B)21kT kT N N ++ kT N kT N 2523 (C)21+ kT N kT N 2325 (D)21+ 4.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几?(不计振动自由度)(A )66.7% (B )50% (C )25% (D )0 [ ]5.在标准状态下,体积比为1:2的的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的内能之比为 [ ]2:1 (A) 3:5 (B) 6:5 (C) 3:10 (D) 6.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系(A )ε和w 都相等。
(B )ε相等,而w 不相等。
[ ](C )w 相等,而ε不相等。
(D )ε和w 都不相等。
7.1mol 刚性双原子分子理想气体,当温度为T 时,其内能为 [ ] RT 23 (A) kT 23 (B) RT 25 (C) kT 25 (D) 8.在一容积不变的封闭容器内,理想气体分子的平均速率若提高为原来的2倍,则[ ](A )温度和压强都提高为原来的2倍。
《大学物理》气体动理论练习题及答案解析
《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。
对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。
当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。
由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。
换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。
2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。
3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。
答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。
(2)微观量:描述个别分子运动状态的物理量。
(3)宏观量:表示大量分子集体特征的物理量。
4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。
其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。
可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。
大学物理 气体分子动理论 试题(附答案)
om
解: v1 ~ v2 区间的分子数为
∆ N v1 ~ v2 = N ∫
v2
v1
f (v )dv
该区间内分子速率之和为 vdN = N
∫
∫
v2
v1 v2
vf (v )dv ,所以该区间分子的平均速率为
∫ vdN
∆N v1 → v2
=
N ∫ vf (v )dv
v1
v2
1பைடு நூலகம்
v1
(A)
(B)
O
f (v )
v
ww
w. z
率为 v 0 ,分子平均碰撞次数为 Z0 ,平均自由程为 λ0 。当气体温度升高为 4T0 时,气体分 子的平均速率为 v ,平均碰撞次数 z 和平均自由程 λ 分别为: [ B ] (A) v = 4 v 0 , Z = 4 Z 0 , λ = 4λ0 。 (B) v = 2v 0 , Z = 2Z0 , λ = λ0 。 (C) v = 2v 0 , Z = 2Z0 , λ = 4λ0 。 (D) v = 4v 0 , Z = 2Z0 , λ = λ0 。
解:因为
∆N v1 → v2
N
∫ f (v )dv
v1
v2
由题意
∫0 f (v )dv = ∫v f (v )dv ,
0
v0
∞
说明
∆ N 0 → v0 = ∆ N v0 → ∞ =
ww
4. 设某种气体分子的速率分布函数为 f (v ) , 则速率在 v1 ~ v 2 区间内的分子的平均速率为 ] (A) (C)
µ = M mol =
MRT ρRT 11.3 × 10 −3 × 8.31 × 300 = = pV p 1.0 × 10 −2 ×1.013 × 105
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数 ()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
(2)麦克斯韦速率分布律 23/222()4()2mkT m f e kT υυπυπ-= 这一分布函数表明,在气体的种类及温度确定之后,各个速率区间内的分子数占总分子数的百分比是确定的。
麦克斯韦速率分布曲线的特点是:对于同一种气体,温度越高,速率分布曲线越平坦;而在相同温度下的不同气体,分子质量越大的,分布曲线宽度越窄,高度越大,整个曲线比质量小的显得陡。
第十一章 气体动理论习题一、选择题1、用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰; (C )201()2mv Nf v dv ∞⎰; (D )01()2mvf v dv ∞⎰。
2、下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大;(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
3、有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。
4、 A 、B 、C 三个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶n C =4:2:1,而分子的平均平动动能之比为kA ε∶kB ε∶kC ε=1:2:4,则它们的压强之比A p ∶B p ∶C p = [ ](A) 1 :2:1 (B) 1 :1:1 (C) 1 :2 :2 (D) 2 :1:25、在标准状态下,体积比为1:2的氧气和氦气(均视为理想气体)相混合,混合气体中氧气和氦气的内能之比为:[ ](A) 1 : 2 (B) 5 : 3 (C) 5 : 6 (D) 10 : 36、有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫⎪⎝⎭和BU V ⎛⎫ ⎪⎝⎭的关系为[ ](A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A B U U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。
7、一定量的理想气体可以:(A) 保持压强和温度不变同时减小体积;(B) 保持体积和温度不变同时增大压强;(C) 保持体积不变同时增大压强降低温度;(D) 保持温度不变同时增大体积降低压强。
8、设某理想气体体积为V ,压强为P ,温度为T ,每个分子的质量为m ,玻尔兹曼常数为k ,则该气体的分子总数可以表示为[ ] (A) PV km (B) PT mV (C) kT PV (D) kVPT 9、关于温度的意义,有下列几种说法:[ ](1)气体的温度是分子平均平动动能的量度;(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3)温度的高低反映物质内部分子运动剧烈程度的不同;(4)从微观上看,气体的温度表示每个气体分子的冷热程度;上述说法中正确的是:(A) (1) 、(2)、(4).(B) (1) 、(2)、(3).(C) (2) 、(3)、(4).(D) (1) 、(3)、(4).10、摩尔数相同的氢气和氦气,如果它们的温度相同,则两气体:[ ](A) 内能必相等;(B) 分子的平均动能必相同;(C) 分子的平均平动动能必相同;(D) 分子的平均转动动能必相同。
二、填空题1、用分子质量m,总分子数N,分子速率v和速率分布函数()f v表示下列各量:1)速率大于100m/s的分子数;2)分子平动动能的平均值;3)多次观察某一分子速率,发现其速率大于100m/s的概率;2、温度为T的热平衡态下,物质分子的每个自由度都具有的平均动能为;温度为T的热平衡态下,每个分子的平均总能量;温度为T的热平衡态下,νmol(0/m Mν=为摩尔数)分子的平均总能量;温度为T的热平衡态下,每个分子的平均平动动能。
3、质量为50.0g、温度为18.0o C的氦气装在容积为10.0升的封闭容器内,容器以200v=m/s的速率做匀速直线运动。
若容器突然停止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度将增加 K;压强将增加 Pa。
4、某种理想气体分子在温度T1时的方均根速率等于温度T2时的算术平均速率,则T2∶T1 = _________。
5、1mol氢气,在温度为27℃时,它的平动动能、转动动能和内能各是、、。
6、一瓶氧气和一瓶氢气等压、等温,氧气体积是氢气的2倍,则氧气和氢气分子数密度之比。
7、由质量为m,摩尔质量为M,自由度为i的分子组成的系统的内能为.υ8、用总分子数N、气体分子速率υ和速率分布函数()fυ表示下列各量:(1) 速率大于υ的那些分子的平均速率= _________ ;(3) 多的分子数=_________;(2) 速率大于υ的概率= _________ 。
次观察某一分子的速率,发现其速率大于9、一容器内储有某种气体,若已知气体的压强为 3×105 Pa,温度为27℃,密度为3⋅,则可确定此种气体是_________气;并可求出此气体分子热运动的最概然速0.24kg m-率为_________1⋅。
m s-10、两个相同体积容器中盛有相同温度、压强的氦气和氢气,则氦气和氢气的内能之比的值为(氢气视为刚性双原子分子)。
三、判断题1、在同一温度下,不同气体分子的平均平动动能相等。
就氢分子和氧分子比较,氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子大()。
2、如果盛有气体的容器相对某坐标系运动,容器内的分子速度相对这坐标系也增大了,温度也因此而升高()。
3、如果氢和氦的摩尔数和温度相同,分子的平均平动动能相等()则下列各量是否相等,为什么?4、如3所问,分子的平均动能相等()。
5、如3所问,分子的内能相等()。
6、若某理想气体系统内分子的自由度为i,当该系统处于平衡态时,每个分子的能量都等于KT()7、一定量的理想气体可以保持温度不变同时增大体积降低压强()8、摩尔数相同的氢气和氦气,如果它们的温度相同,则两气体内能必相等。
()9、某种理想气体分子在温度T1时的方均根速率等于温度T2时的算术平均速率,则T2∶T1 =8π/3。
()10、若在某个过程中,一定量的理想气体的热力学能(内能)U随压强p的变化关系为一直线(其延长线过U—p图的原点),则该过程为等容过程。
()四、计算题1、将1mol温度为T的水蒸气分解为同温度的氢气和氧气,试求氢气和氧气的热力学能(内能)之和比水蒸气的热力学能增加了多少?(所有气体分子均视为刚性分子)。
2、某柴油机的气缸内充满了空气,压缩前其中空气的温度为47℃,压强为8.61×104Pa。
当活塞急剧上升时,可把空气压缩到原体积的1/17,此时压强增大到4.25×106Pa,求此时空气的温度(分别以K和℃表示)。
3、容器中储有氧气,其压强为p=0.1 MPa( 即1atm ),温度为27℃,求(1)分子数密度n;(2)氧分子的质量m;(3)气体密度 ;4、某柴油机的气缸充满空气,压缩前空气的温度为47℃,压强为8.61×104Pa。
当活塞急剧上升时,可把空气压缩到原体积的1/17,此时压强增大到4.25×106Pa,求这时空气的温度。
5、设有N个粒子的系统,其速率分布如图所示.求(1)分布函数)f的表达式;(v(2)a 与0v 之间的关系;(3)速度在1.50v 到2.00v 之间的粒子数.题4图6、设想每秒有2310个氧分子(质量为32原子质量单位)以-1500m s ⋅的速度沿着与器壁法θθxv v vv线成45o 角的方向撞在面积为43210m -⨯的器壁上,求这群分子作用在器壁上的压强。
7、在半径为R 的球形容器里贮有分子有效直径为d 的气体,试求该容器中最多可以容纳多少个分子,才能使气体分子间不至于相碰?8、设氢气的温度为300℃。
求速度大小在3000m/s 到3010m/s 之间的分子数N 1与速度大小在p v 到10+p v m/s 之间的分子数N 2之比。
9、导体中自由电子的运动可以看成类似于气体分子的运动,所以常常称导体中的电子为电子气,设导体中共有N 个自由电子,电子气中电子的最大速率为f v (称做费米速率),电子的速率分布函数为:24,0()0,f f Av v v f v v v π⎧≤≤⎪=⎨>⎪⎩ 式中A 为常量,求:(1)用N 和f v 确定常数A ;(2)电子气中一个自由电子的平均动能。