实数的有关概念练习题
专题01 实数的概念及运算(共50题)(学生版)
专题01实数的概念及运算(50题)一、单选题1(2023·四川德阳·统考中考真题)下列各数中,是无理数的是()A.-2023B.2023C.0D.120232(2023·山东·统考中考真题)实数π,0,-13,1.5中无理数是()A.πB.0C.-13D.1.53(2023·贵州·统考中考真题)5的绝对值是()A.±5B.5C.-5D.54(2023·湖北荆州·统考中考真题)在实数-1,3,12,3.14中,无理数是()A.-1 B.3 C.12D.3.145(2023·江苏无锡·统考中考真题)实数9的算术平方根是()A.3B.±3C.19D.-96(2023·湖北恩施·统考中考真题)下列实数:-1,0,2,-12,其中最小的是()A.-1B.0C.2D.-127(2023·江苏徐州·统考中考真题)2023的值介于()A.25与30之间B.30与35之间C.35与40之间D.40与45之间8(2023·湖南·统考中考真题)下列各数中,是无理数的是()A.17B.πC.-1D.09(2023·湖南·统考中考真题)2023的倒数是()A.-2023B.2023C.12023 D.-1202310(2023·浙江杭州·统考中考真题)(-2)2+22=()A.0B.2C.4D.811(2023·湖南常德·统考中考真题)下面算法正确的是()A.-5 +9=-9-5B.7--10 =7-10C.-5 +0=-5D.-8 +-4 =8+412(2023·山西·统考中考真题)计算-1 ×-3 的结果为( ).A.3B.13C.-3D.-413(2023·山东临沂·统考中考真题)计算(-7)-(-5)的结果是()A.-12B.12C.-2D.214(2023·湖北鄂州·统考中考真题)10的相反数是()A.-10B.10C.-110D.11015(2023·宁夏·统考中考真题) -23的绝对值是()A.-32B.32C.23D.-2316(2023·山东东营·统考中考真题)-2的相反数是()A.2B.-2C.12D.-1217(2023·湖南常德·统考中考真题)实数3的相反数是()A.3B.13C.-13D.-318(2023·湖南张家界·统考中考真题)12023的相反数是()A.12023B.-12023C.2023D.-202319(2023·辽宁·统考中考真题)2的绝对值是()A.-12B.12C.-2D.220(2023·江苏苏州·统考中考真题)有理数23的相反数是()A.-23B.32C.-32D.±2321(2023·湖北·统考中考真题)-32的绝对值是()A.-23B.-32C.23D.3222(2023·湖北恩施·统考中考真题)如图,数轴上点A 所表示的数的相反数是()A.9B.-19C.19D.-923(2023·内蒙古通辽·统考中考真题)2023的相反数是()A.12023B.-2023C.2023D.-1202324(2023·四川雅安·统考中考真题)在0,12,-3,2四个数中,负数是()A.0 B.12C.-3D.225(2023·吉林长春·统考中考真题)实数a、b、c、d伍数轴上对应点位置如图所示,这四个数中绝对值最小的是()A.aB.bC.cD.d26(2023·四川巴中·统考中考真题)下列各数为无理数的是()A.0.618B.227C.5D.3-2727(2023·内蒙古赤峰·统考中考真题)如图,数轴上表示实数7的点可能是()A.点PB.点QC.点RD.点S28(2023·山东临沂·统考中考真题)在实数a,b,c中,若a+b=0,b-c>c-a>0,则下列结论:①|a| >|b|,②a>0,③b<0,④c<0,正确的个数有()A.1个B.2个C.3个D.4个29(2023·山东·统考中考真题)面积为9的正方形,其边长等于()A.9的平方根B.9的算术平方根C.9的立方根D.5的算术平方根30(2023·湖南永州·统考中考真题)下列各式计算结果正确的是()A.3x+2x=5x2B.9=±3C.2x2=2x2 D.2-1=1 231(2023·宁夏·统考中考真题)估计23的值应在()A.3.5和4之间B.4和4.5之间C.4.5和5之间D.5和5.5之间32(2023·湖北宜昌·统考中考真题)下列运算正确的个数是( ).①|2023|=2023;②2023°=1;③2023-1=12023;④20232=2023.A.4B.3C.2D.133(2023·内蒙古赤峰·统考中考真题)化简--20的结果是()A.-120B.20 C.120D.-2034(2023·黑龙江绥化·统考中考真题)计算-5+20的结果是()A.-3B.7C.-4D.635(2023·江苏徐州·统考中考真题)如图,数轴上点A,B,C,D分别对应实数a,b,c,d,下列各式的值最小的是()A.aB.bC.cD.d36(2023·山东·统考中考真题)△ABC的三边长a,b,c满足(a-b)2+2a-b-3+|c-32|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形37(2023·山东·统考中考真题)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b-a)<0B.b(c-a)<0C.a(b-c)>0D.a(c+b)>038(2023·浙江杭州·统考中考真题)已知数轴上的点A,B分别表示数a,b,其中-1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是()A.B.C.D.二、填空题39(2023·湖北武汉·统考中考真题)写出一个小于4的正无理数是.40(2023·山东滨州·统考中考真题)一块面积为5m2的正方形桌布,其边长为.41(2023·湖北黄冈·统考中考真题)计算;-12+130=.42(2023·四川巴中·统考中考真题)在0,-1 32,-π,-2四个数中,最小的实数是.43(2023·内蒙古·统考中考真题)若a,b为两个连续整数,且a<3<b,则a+b=.44(2023·湖南·统考中考真题)数轴上到原点的距离小于5的点所表示的整数有.(写出一个即可)45(2023·山东滨州·统考中考真题)计算2--3的结果为.46(2023·湖南永州·统考中考真题)-0.5,3,-2三个数中最小的数为.47(2023·湖北荆州·统考中考真题)若a-1+(b-3)2=0,则a+b=.48(2023·湖南·统考中考真题)已知实数a,b满足a-22+b+1=0,则a b=.49(2023·四川内江·统考中考真题)若a、b互为相反数,c为8的立方根,则2a+2b-c=.50(2023·山东烟台·统考中考真题)如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8;③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是.。
实数的有关概念(含答案)
⎧⎨⎩第1章 数与式第1课 实数的有关概念目的:复习实数有关概念,相反数、绝对值、倒数、数轴、非负数性质、•科学记数法、近似数与有效数字. 中考基础知识1.实数的分类2.相反数:只有_______不同的两个数,叫做互为相反数,a 的相反数为______,a-b 的相反数是_______,x+y 的相反数是________,0的相反数为_______,若a ,b 互为相反数,则a+b=________.3.绝对值:几何意义:数a 的绝对值是数a 在数轴上表示的点到_______的距离. 正数的绝对值等于它________. 代数意义 零的绝对值等于________.负数的绝对值等于它的________.│a │=(0)(0)a a a a ≥⎧⎨-<⎩ 4.数轴:3-3-1021________与数轴上的点是一一对应的,•数轴上的点表示的数左边的总比右边的_________,数轴是沟通几何与代数的桥梁.5.倒数:a (a ≠0)的倒数为________,0_______•倒数,•若a ,•b•互为倒数,•则ab=_____,若a ,b 互为负倒数,则ab=________.6.非负数:│a│≥0,a2≥0≥0.若│a+1│+(c+3)2=0,则a=_______,b=_______,c=________.7.科学记数法:把一个数记作a×10n形式(其中a是具有一位整数的小数,n为自然数).8.近似数与有效数字:一个经过________而得到的近似数,最后一个数在哪一位,就说这个近似数是精确到哪一位的近似数,对于一个近似数,•从左边第一个______数字开始,到最末一位数字止,都是这个近似数的有效数字.备考例题指导例1.填空题(1的倒数为_______,绝对值为________,相反数为_______.(2)若│x-1│=1-x,则x的取值范围是_______,若3x+1有倒数,则x的取值范围是_________.(3)在实数18,π,3,0+1,0.303003……中,无理数有________个.(4)绝对值不大于3的非负整数有________.(5=0,则3x-2y=________.(6)用科学记数法表示-168000=_______,0.0002004=_________.(7)0.0304精确到千分位等于_______,有_______个有效数字,它们是_______.(8)2060000保留两个有效数字得到的近似数为________.答案:(1).-2,,(2)x≤1,x≠-13.(3)5.(4)0,1,2,3.(5)7.(6)-1.68×105,2.004×10-4.(7)0.030;2;3,0 (8)2.1×106.例2.已知1<x<4,化简│x-4│解:∵1<x<4,∴x-4<0,1-x<0.原式=│x-4│-│1-x│=4-x+1-x=5-2x.例3.化简│x-2│+│x+3│.解:令x-2=0得x=2,令x+3=0得x=-3.(1)当x<-3时,原式=2-x-x-3=-2x-1;(2)当-3≤x<2时,原式=2-x+x+3=5;(3)当x≥2时,原式=x-2x+x+3=2x+1.分类讨论思想,零点分段法,一般等号取在大于符号中.备考巩固练习1.(2005,北京)一个数的相反数是3,则这个数是________.2.气温比a℃低3℃记作________.3-a)2与│b-1│互为相反数,则2a b-的值为_______.4.若a2│c-2003│=0,则a b+c=________.5.计算|47-25|+|35-79|-|29-37|=______________.(注意方法)6.计算│1-a│+│2a+1│+│a│,其中a<-2.7.如果表示a、b两个实数的点在数轴上的位置如图,那么化简│a+b│果是多少?b a8.按要求取下列各数的近似数:(1)6.286(精确到0.1);(2)1764000(保留三个有效数字);(3)278160(•精确到万位).9.近似数7.60×105精确到_______位,有______个有效数字,近似数7.6×105精确到_______位,有________个有效数字.10.已知a、b、c为实数,且a2+b2+c2=ab+bc+ac,求证a=b=c.答案:1.-3 2.(a-3)℃ 3+1 4.20045.原式=47-25+79-35+29-37=17-1+1=17(先去绝对值符号)6.∵a<-2,∴1-a>0,2a+1<0,a<0∴原式=1-a-2a-1-a=-4a7.-2a8.(1)6.286≈6.3 (2)1764000≈1.76×106(3)278160≈28万9.∵7.60×105=760000 ∴近似数7.60×105精确到千位,有三个有效数字7,6,•0;7.6×105精确到万位,有两个有效数字7,610.用配方法和非负数性质,将一个方程转化为三个方程,a2+b2+c2-ab-bc+ac=0 2a2+2b2+2c2-2ab-2bc-2ac=0 (a-b)2+(b-c)2+(a-c)2=0∴a-b=0,b-c=0,a-c=0 ∴a=b=c沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
实数的有关概念练习题(最新整理)
实数的有关概念练习题(1)一、细心选一选 1.下列各式中正确的是() A. B. C. D. 2. 的平方根是( ) A.4 B. C. 2 D. 3. 下列说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。
其中正确的说法有() A.3个 B. 2个 C. 1个 D. 0个 4.和数轴上的点一一对应的是() A.整数 B.有理数 C. 无理数 D. 实数 5.对于来说() A.有平方根 B.只有算术平方根 C. 没有平方根 D. 不能确定 6.在(两个“1”之间依次多1个“0”)中,无理数的个数有() A.3个 B. 4个 C. 5个 D. 6个 7.面积为11的正方形边长为x,则x的范围是() A. B. C. D. 8.下列各组数中,互为相反数的是() A.-2与 B.∣-∣与 C. 与 D. 与 9.-8的立方根与4的平方根之和是() A.0 B. 4 C. 0或-4 D. 0或4 10.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是() A. B. C. D. 二、耐心填一填 11.的相反数是________,绝对值等于的数是________,∣∣=_______。
12.的算术平方根是_______,=______。
13.__ __的平方根等于它本身,__ __的立方根等于它本身,__ __的算术平方根等于它本身。
14.已知∣x∣的算术平方根是8,那么x的立方根是_____。
15.填入两个和为6的无理数,使等式成立:___+___=6。
16.大于,小于的整数有______个。
17.若∣2a-5∣与互为相反数,则a=______,b=_____。
18.若∣a∣=6,=3,且ab0,则a-b=______。
19.数轴上点A,点B分别表示实数则A、B两点间的距离为______。
20.一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。
初一数学下册知识点《实数的定义》经典例题与解析
实数的定义一、选择题(本大题共80 小题,共 240.0 分)1.实数 a, b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A. -2a+bB. 2a-bC. -bD. b【答案】 A【解析】解:由图可知:a< 0, a-b< 0,则|a|+=-a-( a-b)=-2 a+b.故选: A.直接利用数轴上 a,b 的位置,进而得出 a< 0, a-b< 0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2. 实数 a,b, c,d 在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】 D【解析】解:由数轴可得:a< b< c< d,故选: D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.关于的叙述正确的是()A. 在数轴上不存在表示的点C.=±2【答案】 D B.D.=+与最接近的整数是 3【解析】解: A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D 、与最接近的整数是3,故选项正确.故选: D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4.下列各数中是有理数的是()A. πB. 0C.D.【答案】 B【解析】解: A、π是无限不循环小数,属于无理数,故本选项错误;B、 0 是有理数,故本选项正确;C、是无理数,故本选项错误;D 、无理数,故本选项错误;故选: B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5. 已知实数a,b 在数轴上的位置如图所示,下列结论中正确的是()A.a >bB.|a|<|b|C.ab>D.>-a b【答案】 D【解析】解:由数轴可得,-2< a< -1< 0<b< 1,∴a< b,故选项A 错误,|a|> |b|,故选项 B 错误,ab< 0,故选项 C 错误,-a> b,故选项 D 正确,故选: D.根据数轴可以判断 a、 b 的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6.关于的叙述不正确的是()A.=2B. 面积是8的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】 C【解析】解: A、=2,所以此选项叙述正确;B、面积是8 的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D 、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选: C.=2 ,是无理数,可以在数轴上表示,还可以表示面积是8 的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7.下列实数中,属于有理数的是()A. B. C. π D.【答案】 D【解析】解: A、-是无理数,故 A 错误;B、是无理数,故 B 错误;C、π是无理数,故C 错误;D 、是有理数,故 D 正确;故选: D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8. 如图,已知数轴上的点A、 B、 C、 D 分别表示数 -2、 1、2、 3,则表示数3-的点P 应落在线段()A.AO上B.OB上C.BC上D.CD上【答案】 B【解析】解:∵2<<3,∴0< 3-<1,故表示数3-的点P应落在线段OB 上.故选: B.根据估计无理数的方法得出0< 3-<1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9. -的相反数是()A. B. - C. - D. -2【答案】 A【解析】解: -的相反数是.故选: A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10.实数a,b在数轴上的位置如图所示,则化简-+b 的结果是()A. 1B. b+1C. 2aD. 1-2a【答案】 A【解析】解:由数轴可得:a-1< 0, a-b< 0,则原式 =1-a+a-b+b=1 .故选 A.利用数轴得出a-1< 0, a-b< 0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11.下列说法错误的是()A. B.正整数和正分数统称正有理数两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D. 3.1415926是小数,也是分数【答案】 B【解析】解: A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数, 0 负整数统称为整数,正确;D 、3.1415926 是小数,也是分数,正确,故选 B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键.12.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在 1 和 3 之间的无理数有且只有这4个;④ 是分数,它是有理数.⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295 ≤a< 7.305.其中正确的个数是()A. 1B.2C. 3D. 4【答案】 B【解析】解:①任何无理数都是无限小数,故说法正确;②实数与数轴上的点一一对应,故说法错误;③在 1 和 3 之间的无理数有无数个,故说法错误;④ 不是分数,它不是有理数,故说法错误.⑤近似数 7.30 所表示的准确数 a 的范围是: 7.295 ≤a< 7.305,故说法正确.故选 B.①根据无理数就是无限不循环小数即可判定;②根据有理数与数轴上的点的对应关系即可的;③根据无理数的定义及开平方运算的法则即可判定;④根据无理数、有理数的定义即可判定;⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成的形式,其中A、 B 都是整数.因而像不是分数,而是无理数.13.下列说法中正确的是()A. 实数-a2是负数B.C. |-a|一定是正数D. 实数-a的绝对值是a【答案】 B【解析】【分析】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意 0 既不是正数,也不是负数.分别根据平方运算的特点,平方根的性质和绝对值的性质进行逐一分析即可.【解答】解: A、实数 -a2是负数, a=0 时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、 |-a|不一定是正数,a=0 时不成立,故选项错误;D 、实数 -a 的绝对值不一定是a, a 为负数时不成立,故选项错误.故选 B.14. 在,, 0,,, 227,,相邻两个6之间 1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7【答案】 C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】在- 3,,0,-3.5,﹣10%,227,π,0.61611611 6⋯(相邻两个 6 之间 1 的个数逐次加 1)中,有理数为:-3,,0,-3.5,10%,227,共有6个.故选 C.15.下列说法正确的是()A.无限小数都是无理数B.9 的立方根是 3C.平方根等于本身的数是 0D.数轴上的每一个点都对应一个有理数【答案】 C【解析】解: A、无限不循环小数都是无理数,故 A 错误;B、 9 的立方根是,故B错误;C、平方根等于本身的数是0,故 C 正确;D 、数轴上的每一个点都对应一个实数,故 D 错误;故选: C.根据实数的分类、平方根和立方根的定义进行选择即可.本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16.关于的叙述,错误的是()A.是有理数B. 面积为12的正方形边长是C.=2D. 在数轴上可以找到表示的点【答案】 A【解析】解: A、是无理数,原来的说法错误,符合题意;B、面积为12 的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D 、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选: A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17.下列语句中正确的是()A.正整数和负整数统称为整数B.有理数和无理数统称为实数C. D.开方开不尽的数和π统称为无理数正数、 0、负数统称为有理数【答案】 B【解析】解: A、正整数和负整数,还有零统称为整数,故 A 错误;B、有理数和无理数统称为实数,故 B 正确;C、开方开不尽的数和π都是无理数,故 C 错误;D 、整数、分数统称为有理数,故 D 错误;故选 B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18. 下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2个B. 3个C.4个D.5个【答案】 B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2 是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共 3 个.故选 B.19. 在实数范围内,下列判断正确的是()A. 若|m|=|n|,则m=nB. 若a2>b2,则a>bC. 若=()2,则 a=bD. 若= ,则 a=b【答案】 D【解析】解: A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如 a=-3, b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选: D.解答此题的关键是熟知以下概念:( 1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0.( 2)如果一个数的平方等于a,那么这个数叫作 a 的平方根.20. 对于-3. 7,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】 D【解析】解: -3. 7 是无限循环小数,是负数,是分数,是有理数,不是无理数故选: D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21. 在数-2,,,,+3,中,属于整数的个数为()π 0 2.6A. 4B. 3C. 2D. 1【答案】 B【解析】解:在数 -2,π, 0, 2.6, +3,中,整数有 -2, 0, +3,属于整数的个数, 3.故选: B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和 0.22. 下列数轴上的点 A 都表示实数a,其中,一定满足|a|>2 的是()A. ①③B. ②③C. ①④D. ②④【答案】 B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a|> 2 的, A 在 -2 的左边,或A 在 2 的右边,故选: B.23. 下列说法正确的是()①0 是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】 D【解析】解:① 0 是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选: D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24. 如图,半径为1的圆从表示 3 的点开始沿着数轴向左滚动一周,圆上的点 A 与表示3的点重合,滚动一周后到达点B,点 B 表示的数是()A. ﹣B. ﹣C. ﹣﹣D. ﹣2π 3 2π 3 2π3+2π【答案】 B【解析】解:由题意得:AB=2πr =2π,点 A 到原点的距离为3,则点 B 到原点的距离为2π-3,∵点 B 在原点的左侧,∴点 B 所表示的数为 -(2π-3) =3- 2π,故选: B.线段 AB=2πr =2π,点 A 到原点的距离为3,则点 B 到原点的距离为2π-3,点 B 在原点的左侧,因此点 B 所表示的数为 -( 2π-3) =3- 2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25. 下列说法,正确的有()个①m 是一个实数, m2的算术平方根是 m;② m 是一个实数,则 -m 没有平方根;③带根号的数是无理数;④无理数是无限小数.A.0B.1C.2D.3【答案】 B【解析】解:①如果 m 是一个实数, m2的算术平方根是 |m|,当 m 是非负数时, m2的算术平方根是 m;所以此说法不正确;②如果 m 是一个正数,则-m 没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有 1 个:④,故选 B.①根据算术平方根的定义进行判断;②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数 a 在数轴上的位置如图,则化简 |1-a|+ 的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】 C【解析】解:由数轴可得:-1< a< 0,则|1-a|+ =1-a-a=1-2a.故选: C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27. 下列说法错误的是()A.的平方根是±2C.是有理数【答案】 D B.D.是无理数是分数【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数 .A.根据算术平方根、平方根的定义即可判定; B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定 .【解答】解:,,故A正确;是无理数,故 B 正确;是有理数,故 C 正确;不是分数,它是无理数,故 D 选项错误 .故选 D.28. 有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A.1个B.2个C.3个D.4个【答案】 D【解析】解:( 1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有 4 个.故选: D.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29. 如图,数轴上点P 表示的数可能是()A. B. C. D.【答案】 B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选: B.根据被开方数越大算术平方根越大,可得答案.本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<<<<<是解题关键.30. 如图,数轴上,AB=AC,A,B两点对应的实数分别是和-1,则点C所对应的实数是()A. 1+B. 2+C.2 -1D. 2+1【答案】 D【解析】解: AC=AB= +1,C 点坐标 A 点坐标加 AC 的长,即 C 点坐标为+ +1=2 +1,故选: D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出AC 的长是解题关键.31. 下列各数中,属于有理数的是()A.B.C.πD.3.1313313331 ⋯⋯(两个“ 1”之间依次多一个 3)【答案】 A【解析】解: A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D 、3.1313313331 ⋯⋯(两个“1”之间依次多一个3)是无理数,故此选项错误;故选: A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32. 下列各组数中互为相反数的是()A. -3与B.C.5与D.-( -2)与 -|-2| -2 与【答案】 B【解析】解: A、-3 与不符合相反数的定义,故选项错误;B、 -( -2) =2, -|-2|=-2 只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D 、 -2=-2 ,=-2 相等,不符合相反数的定义,故选项错误.故选: B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0 的相反数是其本身.33. 下列说法正确的是()A.1 的平方根是它本身B.是分数C.负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数【答案】 D【解析】解: A、1 的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D 、如果实数x、 y 满足条件 y=,那么x和y都是非负实数,正确;故选: D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34. 下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④ 16.8万精确到十分位;⑤( -4)2的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】 D【解析】解: - < - ,故①错误;当 m=0 时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8 万精确到千位,故④错误;(-4)2的算术平方根是 4.故⑤正确;即正确的有③⑤,故选: D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A.立方根等于它本身的实数只有0 和 1B.平方根等于它本身的实数是0C.1 的算术平方根是D.绝对值等于它本身的实数是正数【答案】 B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案 .【解答】解: A.立方根等于它本身的数是0,-1, 1,故 A 错误;B.平方根等于它本身的实数是0,故 B 正确;C.1 的算术平方根是1,故 C 错误;D .绝对值等于它本身的实数是正数,0,故 C 错误;故选 B.a b36. 已知实数,在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+b<0C. |a|<|b|D. a-b>0【答案】 C【解析】解:根据点a、 b 在数轴上的位置可知-1< a< 0, 1<b< 2,则-a> -b, a+b>0, |a|< |b|, a-b< 0.故选: C.根据点 a、b 在数轴上的位置可判断出a、 b 的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为 6 的正方形的边长为 a.下列关于 a 的四种说法:① a 是有理数;② a 是无理数;③ a 可以用数轴上的一个点来表示;④2< a<3.其中说法正确的有()A.1个B.2个C.3个D.4个【答案】 C【解析】解:∵面积为 3 的正方形的边长为a,∴a=,故① a 是有理数,错误;② a 是无理数,正确;③a 可以用数轴上的一个点来表示,正确;④ 2< a<3,正确,则说法正确的是:②③④共 3 个.故选: C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数 a, b, c 在数轴上的位置如图所示,则化简|b|+|c-a|-|a+b|的结果为()A. 2a+2 b-cB. -cC. c-2aD. a-b-c【答案】 B【解析】解:从数轴上a、 b、 c 的位置关系可知:c< a< 0, b> 0 且 |b|> |a|,故 a+b> 0, c-a< 0,即有 |b|+|c-a|-|a+b|=b-( c-a) -( a+b) =b-c+a-a-b=-c.故选: B.首先从数轴上 a、 b、 c 的位置关系可知: c< a< 0, b> 0 且 |b|> |a|,接着可得 a+b> 0,c-a< 0,然后即可化简 |b|+|c-a|-|a+b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39. 我们知道有一些整数的算术平方根是有理数,如,,,⋯已知n=1,2,3,⋯,99,100,易知中共有10个有理数,那么中的有理数的个数是()A.20B.14C.13D.7【答案】 D【解析】解:∵是有理数,∴2n 是完全平方数,∵n=1, 2, 3,⋯, 99, 100,∴2n=2, 4,6,⋯, 198, 200,∴在 2, 4,6,⋯, 198, 200 的这组数据中,完全平方数有2, 8, 18, 36, 64, 100,144, 196,∴中的有理数的个数是 7,故选: D.在2, 4,6,⋯, 198, 200 的这组数据中,找出完全平方数即可.本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键.40. 将四个数-,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A.-B.C.D.【答案】 D【解析】解:,,,,因为盖住的数大于2小于 3,故选: D.盖住的数大于 2 小于 3,估计,,的值可确定答案.本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键.41. 正方形ABCD在数轴上的位置如图所示,点D、A 对应的数分别为0 和 1,若正方形ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转 1 次后,点 B 所对应的数为 2;按此规律继续翻转下去,则数轴上数2019 所对应的点是()A.点AB.点BC.点CD.点D【答案】 C【解析】解:当正方形在转动第一周的过程中, 1 所对应的点是A, 2 所对应的点是B,3 所对应的点是C, 4 所对应的点是 D ,∴四次一循环,∵2019 ÷4=504⋯ 3,∴2019 所对应的点是C.故选: C.由题意可知转一周后, A、B、 C、 D 分别对应的点为 1、 2、 3、 4,可知其四次一循环,由次可确定出 2019 所对应的点.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规律是解题的关键.42. 下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】 A【解析】解:的倒数是.A、原式 = ,故本选项正确.B、原式 = ,故本选项错误.C、原式 =- ,故本选项错误.D 、原式 = ,故本选项错误.故选: A.的倒数是,根据实数的性质、绝对值的计算方法解答.考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记计算法则即可解题.43. 实数a.b在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB.C. a-b<a+bD.【答案】 D a+6 < 0|a|+|b|< |a+b|【解析】解:选项 A 正确:找出表示数 a 的点关于原点的对称点- a,与 b 相比较可得出-a> b.选项 B 正确: a+b<0;选项 C 正确: a-b<a+b;选项 D 正确的是 |a|+|b|> |a+b|,故这个选项不成立.故选: D.根据一对相反数在数轴上的位置特点,先找出与点 a 相对应的 -a,然后与 b 相比较,即可排除选项求解.本题考查了实数与数轴的关系.用字母表示数,具有抽象性.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.因为是选择题,也可以采用特值法,如:取a=-2 , b=1 ,代入四个选项,逐一检验,就可以得出正确答案.这样做具体且直观.44. 关于下列说法中不正确的是()A.是无理数B.的平方是 2C.2 的平方根是D.面积为 2 的正方形的边长可表示为【答案】 C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是 2,正确,故本选项不符合题意;C、 2 的平方根是,错误,故本选项符合题意;D 、面积为 2 的正方形的边长为,正确,故本选项不符合题意;故选: C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45. 下列结论正确的是()A.无限不循环小数叫做无理数B.有理数包括正数和负数C.0 是最小的整数D.两个有理数的和一定大于每一个加数【答案】 A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0 和负有理数,不正确,故本选项不符合题意;C、0 不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D 、一个数同 0 相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选: A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46. ①倒数等于本身的数为1;②若a b互为相反数,那么a b1、、的商必定等于﹣;③对于任意实数x,|x|+x 一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为 0和 1;⑧平方等于自身的数为0 和 1;其中正确的个数是()A. 0个B. 1个C.2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键 .直接利用倒数以及绝对值和相反数的性质分别分析得出答案。
中考数学专题-实数的有关概念与计算-(解析版)
实数的有关概念与计算姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·安徽中考真题)9-的绝对值是()A.9B.9-C.19D.19-【答案】A【分析】利用绝对值的定义直接得出结果即可【详解】解:9-的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.3.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是( ) A .4-B .4-C .0D . 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A .【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.4.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 5.(2021·四川凉山彝族自治州·中考真题)下列数轴表示正确的是( )A .B .C .D . 【答案】D【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A 、不符合数轴右边的数总比左边的数大的特点,故表示错误;B 、不符合数轴右边的数总比左边的数大的特点,故表示错误;C 、没有原点,故表示错误;D 、符合数轴的定定义,故表示正确;故选D .【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.6.(2021·四川泸州市·中考真题)2021的相反数是( )A .2021-B .2021C .12021- D .12021【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:2021的相反数是:-2021.故选:A .【点睛】此题主要考查了相反数,正确掌握相关定义是解题关键.7.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ).A .5元B .5-元C .3-元D .7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解. 8.(2021·浙江中考真题)实数2-的绝对值是( )A .2-B .2C .12 D .12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B .【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.9.(2021·江苏连云港市·中考真题)3-相反数是( )A .13B .3-C .13-D .3【答案】D【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:3-的相反数是3.故选:D .【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.10.(2021·甘肃武威市·中考真题)中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( ) A .8510⨯B .9510⨯C .10510⨯D .85010⨯【答案】B【分析】结合科学计数法的表示方法即可求解.【详解】解:50亿即5000000000,故用科学计数法表示为9510⨯,故答案是:B .【点睛】本题考察科学计数法的表示方法,难度不大,属于基础题。
第1讲 实数及其有关概念
数和式班级___________姓名__________学号__________ 一、选择题1. 如果一个正数的平方根为2a +1和3a -11,则a =( )A .±1B .1C .2D .9 2. (-13)-1-4cos 30°+|-12|的计算结果为( ) A .-4 B .4 C .-3 D .-23. 小红要购买珠子串成一条手链,黑色珠子每个a 元,白色珠子每个b 元,要串成如图所示的手链,小红购买珠子应该花费( ) A .(3a +4b )元 B .(4a +3b )元 C .4(a +b )元 D .3(a +b )元4.(2016·雅安)已知a 2+3a =1,则代数式2a 2+6a -1的值为( ) A .0 B .1 C .2 D .35. (2015·天水)定义运算:a ⊗b =a (1-b ).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0或b =1,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④ 6. (2016·北京)如果a +b =2,那么代数式(a -b 2a )·a a -b的值是( )A .2B .-2 C.12 D. -127.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,,()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--, B .()53, C .()53-, D .()53-,8.计算的值是( ) .(A ) 1 (B ) 5 (C ) (D ) 59.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-22001二、填空题1. 若实数m ,n 满足|m -2|+(n -2014)2=0,则m -1·n 2=___________.2. 计算:(π-2015)0+(-12)-3-2cos 60°=__________.3. 已知x 2+x -5=0,则代数式(x -1)2-x (x -3)+(x +2)(x -2)的值为_____________.4. (2016·滨州)观察下列式子:1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2016个式子为________________________.5. (2016·雅安)P 为正整数,现规定P !=P (P -1)(P -2)×…×2×1,若m !=24,则正整数m =______________.6. 刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数: a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =______.7. (2015·黔西南)已知x =5-12,则x 2+x +1=______________. 8.,0141258422=+-++a b b a 则=-b a 3271________ 三、解答题1. (2016·哈尔滨)先化简,再求代数式(2a +1-2a -3a 2-1)÷1a +1的值,其中a =2sin 60°+tan 45°.2. 利民商店出售一种原价为a 的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?3. 已知a ,b 为有理数,m ,n 分别表示5-7的整数部分和小数部分,且amn +bn 2=1,求2a +b 的值.4. 求1+2+22+23+24+…+22016的值.5. (2016·重庆A)我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p ,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数. 求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F(t)的最大值.6. 如图所示,在矩形ABCD 中,AB =12,AC =20,两条对角线相交于点O . 以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1;再以A 1B 1、A 1C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形OBB 1C 、第2个平行四边 形A 1B 1C 1C 和第6个平行四边形的面积.O1 ABD2A 2B 2A 1B 1O 16.(2015·重庆A)如果一个自然数各数位上的数字从最高位到个位依次排出的一串数字与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.21.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?解:(1)a(1+10%)(1-10%)=0.99a;(2)a(1-10%)(1+10%)=0.99a;(3)a (1+20%)(1-20%)=0.96a ,∴调价结果不都一样,只有(1)(2)相同,最后都没有恢复原价15.已知a ,b 为有理数,m ,n 分别表示5-7的整数部分和小数部分,且amn +bn 2=1,求2a +b 的值. (导学号 02052050)解:∵4<7<9,即2<7<3,∴2<5-7<3,∴m =2,n =(5-7)-2=3-7,将m ,n 代入amn +bn 2=1,得a ×2×(3-7)+b ×(3-7)2=1,(6-27)a +(16-67)b -1=0,(6a +16b -1)+(-2a -6b )7=0,∵a ,b 为有理数,∴⎩⎪⎨⎪⎧6a +16b -1=0-2a -6b =0,解得⎩⎪⎨⎪⎧a =32b =-12,∴2a +b =2×32+(-12)=3-12=5216.(2016·重庆A )我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1; (2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F (t )的最大值.(导学号 02052019)(1)证明:设m =n 2=n ×n ,其中m 和n 均为正整数, ∴F (m )=nn =1;(2)解:由题意得:10y +x -(10x +y )=18, 即:y =x +2,∴t 可能的值为13,24,35,46,57,68,79,当t =13时,F (t )=113,当t =24时,F (t )=23,当t =35时,F (t )=57,当t =46时,F (t )=223,当t =57时,F (t )=319,当t =68时,F (t )=417,当t =79时,F (t )=179, ∴F (t )的最大值为5716.(2015·重庆A )如果一个自然数各数位上的数字从最高位到个位依次排出的一串数字与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式. (导学号 02052010)解:(1)四位“和谐数”:1221,1331,1111,6666(答案不唯一);任意一个四位“和谐数”都能被11整除,理由如下:设任意四位数“和谐数”形式为:abba (a ,b 为自然数),则a ×103+b ×102+b ×10+a =1001a +110b ,∵1001a +110b 11=91a +10b ,∴四位数“和谐数”abba 能被11整数;∴任意四位数“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:xyx ,则x ×102+y ×10+x =101x +10y ,101x +10y11=9x+y +2x -y 11,∵1≤x ≤4,101x +10y 能被11整除,∴2x -y =0,∴y =2x (1≤x ≤4)(32016-2)×32016+1=(32016-1)2。
初一数学下册知识点《实数的定义》经典例题及解析
实数的定义一、选择题(本大题共80小题,共240.0分)1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. -2a+bB. 2a-bC. -bD. b【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】D【解析】解:由数轴可得:a<b<c<d,故选:D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.关于的叙述正确的是()A. 在数轴上不存在表示的点B. =+C. =±2D. 与最接近的整数是3【答案】D【解析】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4.下列各数中是有理数的是()A. πB. 0C.D.【答案】B【解析】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. -a>b【答案】D【解析】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,-a>b,故选项D正确,故选:D.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6.关于的叙述不正确的是()A. =2B. 面积是8的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】C【解析】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选:C.=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7.下列实数中,属于有理数的是()A. B. C. π D.【答案】D【解析】解:A、-是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;故选:D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:∵2<<3,∴0<3-<1,故表示数3-的点P应落在线段OB上.故选:B.根据估计无理数的方法得出0<3-<1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9.-的相反数是()A. B. - C. - D. -2【答案】A【解析】解:-的相反数是.故选:A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10.实数a,b在数轴上的位置如图所示,则化简-+b的结果是()A. 1B. b+1C. 2aD. 1-2a【答案】A【解析】解:由数轴可得:a-1<0,a-b<0,则原式=1-a+a-b+b=1.故选A.利用数轴得出a-1<0,a-b<0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11.下列说法错误的是()A. 正整数和正分数统称正有理数B. 两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D. 3.1415926是小数,也是分数【答案】B【解析】解:A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数,0负整数统称为整数,正确;D、3.1415926是小数,也是分数,正确,故选B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键.12.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】解:①任何无理数都是无限小数,故说法正确;②实数与数轴上的点一一对应,故说法错误;③在1和3之间的无理数有无数个,故说法错误;④不是分数,它不是有理数,故说法错误.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,故说法正确.故选B.①根据无理数就是无限不循环小数即可判定;②根据有理数与数轴上的点的对应关系即可的;③根据无理数的定义及开平方运算的法则即可判定;④根据无理数、有理数的定义即可判定;⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成的形式,其中A、B都是整数.因而像不是分数,而是无理数.13.下列说法中正确的是()A. 实数-a2是负数B.C. |-a|一定是正数D. 实数-a的绝对值是a【答案】B【解析】【分析】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.分别根据平方运算的特点,平方根的性质和绝对值的性质进行逐一分析即可.【解答】解:A、实数-a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|-a|不一定是正数,a=0时不成立,故选项错误;D、实数-a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.14.在,,0,,,227,,相邻两个6之间1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】在-3,,0,-3.5,﹣10%,227,π,0.61611611 6…(相邻两个6之间1的个数逐次加1)中,有理数为:-3,,0,-3.5,10%,227,共有6个.故选C.15.下列说法正确的是()A. 无限小数都是无理数B. 9的立方根是3C. 平方根等于本身的数是0D. 数轴上的每一个点都对应一个有理数【答案】C【解析】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选:C.根据实数的分类、平方根和立方根的定义进行选择即可.本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16.关于的叙述,错误的是()A. 是有理数B. 面积为12的正方形边长是C. =2D. 在数轴上可以找到表示的点【答案】A【解析】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17.下列语句中正确的是()A. 正整数和负整数统称为整数B. 有理数和无理数统称为实数C. 开方开不尽的数和π统称为无理数D. 正数、0、负数统称为有理数【答案】B【解析】解:A、正整数和负整数,还有零统称为整数,故A错误;B、有理数和无理数统称为实数,故B正确;C、开方开不尽的数和π都是无理数,故C错误;D、整数、分数统称为有理数,故D错误;故选B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18.下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共3个.故选B.19.在实数范围内,下列判断正确的是()A. 若|m|=|n|,则m=nB. 若a2>b2,则a>bC. 若=()2,则a=bD. 若=,则a=b【答案】D【解析】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作a的平方根.20.对于-3.7,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】D【解析】解:-3.7是无限循环小数,是负数,是分数,是有理数,不是无理数故选:D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21.在数-2,π,0,2.6,+3,中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】解:在数-2,π,0,2.6,+3,中,整数有-2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.22.下列数轴上的点A都表示实数a,其中,一定满足|a|>2的是()A. ①③B. ②③C. ①④D. ②④【答案】B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a|>2的,A在-2的左边,或A在2的右边,故选:B.23.下列说法正确的是()①0是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】D【解析】解:①0是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选:D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()A. ﹣2πB. 3﹣2πC. ﹣3﹣2πD. ﹣3+2π【答案】B【解析】解:由题意得:AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,∵点B在原点的左侧,∴点B所表示的数为-(2π-3)=3-2π,故选:B.线段AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,点B在原点的左侧,因此点B所表示的数为-(2π-3)=3-2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25.下列说法,正确的有()个①m是一个实数,m2的算术平方根是m;②m是一个实数,则-m没有平方根;③带根号的数是无理数;④无理数是无限小数.A. 0B. 1C. 2D. 3【答案】B【解析】解:①如果m是一个实数,m2的算术平方根是|m|,当m是非负数时,m2的算术平方根是m;所以此说法不正确;②如果m是一个正数,则-m没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有1个:④,故选B.①根据算术平方根的定义进行判断;②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】C【解析】解:由数轴可得:-1<a<0,则|1-a|+=1-a-a=1-2a.故选:C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27.下列说法错误的是()A. 的平方根是±2B. 是无理数C. 是有理数D. 是分数【答案】D【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数.A.根据算术平方根、平方根的定义即可判定;B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定.【解答】解:,,故A正确;是无理数,故B正确;是有理数,故C正确;不是分数,它是无理数,故D选项错误.故选D.28.有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:(1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有4个.故选:D.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29.如图,数轴上点P表示的数可能是()A. B. C. D.【答案】B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<<<<<是解题关键.30.如图,数轴上,AB=AC,A,B两点对应的实数分别是和-1,则点C所对应的实数是()A. 1+B. 2+C. 2-1D. 2+1【答案】D【解析】解:AC=AB=+1,C点坐标A点坐标加AC的长,即C点坐标为++1=2+1,故选:D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出AC的长是解题关键.31.下列各数中,属于有理数的是()A.B.C. πD. 3.1313313331……(两个“1”之间依次多一个3)【答案】A【解析】解:A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D、3.1313313331……(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32.下列各组数中互为相反数的是()A. -3与B. -(-2)与-|-2|C. 5与D. -2与【答案】B【解析】解:A、-3与不符合相反数的定义,故选项错误;B、-(-2)=2,-|-2|=-2只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D、-2=-2,=-2相等,不符合相反数的定义,故选项错误.故选:B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0的相反数是其本身.33.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34.下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④16.8万精确到十分位;⑤(-4)2的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】D【解析】解:-<-,故①错误;当m=0时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8万精确到千位,故④错误;(-4)2的算术平方根是4.故⑤正确;即正确的有③⑤,故选:D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A. 立方根等于它本身的实数只有0和1B. 平方根等于它本身的实数是0C. 1的算术平方根是D. 绝对值等于它本身的实数是正数【答案】B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案.【解答】解:A.立方根等于它本身的数是0,-1,1,故A错误;B.平方根等于它本身的实数是0,故B正确;C.1的算术平方根是1,故C错误;D.绝对值等于它本身的实数是正数,0,故C错误;故选B.36.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+b<0C. |a|<|b|D. a-b>0【答案】C【解析】解:根据点a、b在数轴上的位置可知-1<a<0,1<b<2,则-a>-b,a+b>0,|a|<|b|,a-b<0.故选:C.根据点a、b在数轴上的位置可判断出a、b的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为6的正方形的边长为a.下列关于a的四种说法:①a是有理数;②a是无理数;③a可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵面积为3的正方形的边长为a,∴a=,故①a是有理数,错误;②a是无理数,正确;③a可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数a,b,c在数轴上的位置如图所示,则化简|b|+|c-a|-|a+b|的结果为()A. 2a+2b-cB. -cC. c-2aD. a-b-c【答案】B【解析】解:从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,故a+b>0,c-a<0,即有|b|+|c-a|-|a+b|=b-(c-a)-(a+b)=b-c+a-a-b=-c.故选:B.首先从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,接着可得a+b>0,c-a<0,然后即可化简|b|+|c-a|-|a+b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39.我们知道有一些整数的算术平方根是有理数,如,,,…已知n=1,2,3,…,99,100,易知中共有10个有理数,那么中的有理数的个数是()A. 20B. 14C. 13D. 7【答案】D【解析】解:∵是有理数,∴2n是完全平方数,∵n=1,2,3,…,99,100,∴2n=2,4,6,…,198,200,∴在2,4,6,…,198,200的这组数据中,完全平方数有2,8,18,36,64,100,144,196,∴中的有理数的个数是7,故选:D.在2,4,6,…,198,200的这组数据中,找出完全平方数即可.本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键.40.将四个数-,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A. -B.C.D.【答案】D【解析】解:,,,,因为盖住的数大于2小于3,故选:D.盖住的数大于2小于3,估计,,的值可确定答案.本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键.41.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;按此规律继续翻转下去,则数轴上数2019所对应的点是()A. 点AB. 点BC. 点CD. 点D【答案】C【解析】解:当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,∴四次一循环,∵2019÷4=504…3,∴2019所对应的点是C.故选:C.由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2019所对应的点.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规律是解题的关键.42.下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】A【解析】解:的倒数是.A、原式=,故本选项正确.B、原式=,故本选项错误.C、原式=-,故本选项错误.D、原式=,故本选项错误.故选:A.的倒数是,根据实数的性质、绝对值的计算方法解答.考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记计算法则即可解题.43.实数a.b在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB. a+6<0C. a-b<a+bD. |a|+|b|<|a+b|【答案】D【解析】解:选项A正确:找出表示数a的点关于原点的对称点-a,与b相比较可得出-a>b.选项B正确:a+b<0;选项C正确:a-b<a+b;选项D正确的是|a|+|b|>|a+b|,故这个选项不成立.故选:D.根据一对相反数在数轴上的位置特点,先找出与点a相对应的-a,然后与b相比较,即可排除选项求解.本题考查了实数与数轴的关系.用字母表示数,具有抽象性.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.因为是选择题,也可以采用特值法,如:取a=-2,b=1,代入四个选项,逐一检验,就可以得出正确答案.这样做具体且直观.44.关于下列说法中不正确的是()A. 是无理数B. 的平方是2C. 2的平方根是D. 面积为2的正方形的边长可表示为【答案】C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是2,正确,故本选项不符合题意;C、2的平方根是,错误,故本选项符合题意;D、面积为2的正方形的边长为,正确,故本选项不符合题意;故选:C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46.①倒数等于本身的数为1;②若a、b互为相反数,那么a、b的商必定等于﹣1;③对于任意实数x,|x|+x一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0和1;⑧平方等于自身的数为0和1;其中正确的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。
中考《数学》实数的有关概念与计算专题练习题(共53题)
实数的有关概念与计算专题练习题(53题)一、单选题12.(2023年安徽省滁州市南片五校中考二模数学试卷)12-的倒数是( )A .12-B .2-C .12D .213.(2023·浙江宁波·统考中考真题)在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π14.(2023·江西·统考中考真题)下列各数中,正整数是( ) A .3B .2.1C .0D .2-15.(2023·新疆·统考中考真题)﹣5的绝对值是( ) A .5B .﹣5C .15-D .1516.(2023·甘肃武威·统考中考真题)9的算术平方根是( ) A .3±B .9±C .3D .3-17.(2023·浙江温州·统考中考真题)如图,比数轴上点A 表示的数大3的数是( )A .1-B .0C .1D .218.(2023·四川自贡·统考中考真题)如图,数轴上点A 表示的数是2023,OA=OB ,则点B 表示的数是( )A .2023B .2023-C .12023D .12023-19.(2023·浙江绍兴·统考中考真题)计算23-的结果是( ) A .1-B .3-C .1D .320.(2023·江苏扬州·统考中考真题)已知523a b c ===,,,则a 、b 、c 的大小关系是( ) A .b a c >>B .a c b >>C .a b c >>D .b c a >>21.(2023·江苏扬州·统考中考真题)3-的绝对值是( ) A .3B .3-C .13D .3±22.(2023·重庆·统考中考真题)4的相反数是( )A .14B .14-C .4D .4-23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )二、填空题39.(2023·江苏连云港·统考中考真题)计算:2(5)=__________.三、解答题40.(2023·浙江金华·统考中考真题)计算:0(2023)42sin305-+-︒+-.41.(2023·四川自贡·统考中考真题)计算:02|3|(71)2--+-.42.(2023·四川泸州·统考中考真题)计算:()0123212sin 303-⎛⎫+-+︒-- ⎪⎝⎭.43.(2023·浙江·统考中考真题)计算:011(2023)22--+-+.44.(2023·四川广安·统考中考真题)计算:02024212cos60532⎛⎫-+--+- ⎪⎝⎭︒45.(2023·江苏连云港·统考中考真题)计算()11422π-⎛⎫-+-- ⎪⎝⎭.。
初中-数学-中考-实数的有关概念和性质(一)
实数的有关概念和性质(一)一、选择题 1、在-2,0,12,2四个数中,最小的是( )A. -2B. 0C. 12D. 22、-3的绝对值为( )A. -3B. 3C. -13D.133、在0,1,12-,-1四个数中,最小的数是( ).A. 0B. 1C. 12-D. -14、的绝对值是( )A.B. 8C. 8±D. 18-5、-2018的相反数是( )A. -2018B. 2018C. 12018-D.120186、2018的倒数是( )A. 2018B.20181C. 20181-D. -20187、下列四个数中,是正整数的是( )A. -1B. 0C.12D. 18、利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )8-8-A. B.C. D.9、-8的相反数是( )A. -8B.18C. 8D. 18-10、21-的倒数是( )A. 2-B. 21-C. 2D.21 11、实数d c b a ,,,在数轴上的位置如图所示,下列关系式不正确的是( )A. ||||b a >B. ac ac =||C. d b <D. 0>+d c12、2018的相反数是( ).A. 2018B. -2018C.12018D. -12018. 13、-3的倒数为( )A. 3B.. C. -. D. -3.14、下列实数中,最小的数是( )A.B. 0C. 1D.15、-4的相反数是( )A. 4B. -4C. -14D.1416的值( ) A. 在2和3之间 B. 在3和4之间C. 在4和5之间D. 在5和6之间17、()2--等于( )A. -2B. 2C.21 D. -21131318、如图,点A 所表示的数的绝对值是( )A. 3B. 3-C.13D. 13-19、-2的绝对值是( )A. 2B. -12C.12D. -220、的倒数是( ) A. 3B. -3C.D. 21、计算11--22的结果是( ) A. 0B. 1C. -1D.1422最接近的整数是( )A. 5B. 6C. 7D. 823、3的相反数是( )A.13B. 3C. -3D. ±1324、计算(-3)2的结果等于( )A. 5B. -5C. 9D. -925、|-3|=( )A. 3B. -3C.13D. 13-26、在-3,-1,0,1这四个数中,最小的数是( ).A. -3B. -1C. 0D. 1272,0,1-,其中负数是( )A.B. 2C. 0D. -1二、填空题28、将从1开始的连续自然数按如下规律排列:13-1313-则2018在第______行.29、-2的相反数的值等于______.30、某地某天的最高气温是6°C,最低气温是-4°C,则某天当地的温差为______°C.31、任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7,为例进行说明:设0.7x.由0.7=0.7777...可知,10x=7.7777....所以10x-x=7,解方程得:x=79,于是,得70.7=9.将0.36写成分数的形式是.答案第1页,共4页参考答案1、【答案】A【分析】本题考查了有理数比较大小.【解答】有理数比较大小,负数小于0,0小于正数,因为-2<0<21<2,选A 2、【答案】B【分析】本题考查了绝对值、相反数.【解答】解:因为负数的绝对值等于它的相反数,所以-3的绝对值为3.选择B. 3、【答案】D【分析】本题考查了有理数的大小比较. 【解答】∵-1<12-<0<1,∴最小的数是-1,选D.4、【答案】B【分析】本题考查了绝对值.【解答】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.根据负数的绝对值等于它的相反数可得答案. ∵-8<0,∴|-8|=8.选:B . 5、【答案】B【分析】本题考查了相反数.【解答】:-2018的相反数为2018.即求一个实数的相反数就在它前面添一个“-”号. 选B. 6、【答案】B【分析】本题考查了倒数. 【解答】2018的倒数是20181. 选B. 7、【答案】D【分析】本题考查了实数的概念整数正整数.. 【解答】易知-1是负整数,12是分数,1是正整数,而整数包括正整数、0和负整数,选D . 8、【答案】B【分析】本题考查了有理数的乘方.【解答】A :32101202120210⨯+⨯+⨯+⨯=;B :3210021212026⨯+⨯+⨯+⨯=;C :321012020212=8⨯+⨯+⨯+⨯;D :3210021212127⨯+⨯+⨯+⨯=, 只有选项B 表示6班, 选:B 9、【答案】C【分析】本题考查了相反数. 【解答】解:-8的相反数是8,选C. 10、【答案】A【分析】本题考查了倒数.【解答】根据倒数的概念,乘积是1的两个数,因为21-×(2-)=1,所以21-的倒数是2-.选A. 11、【答案】B【分析】本题考查了数轴;绝对值;不等式;有理数的加法;有理数的乘法. 【解答】由数轴可知实数a 在实数b 的左边离原点较远,所以|a |>|b |故A 正确; a 是负数,c 是正数,所以ac 负数,ac ac =-,故B 错误; b 是负数,d 是正数,所以b <d ,故C 正确; c 是正数,d 是正数,所以c +d >0,故D 正确;选B. 12、【答案】B【分析】本题考查了相反数.【解答】∵a 的相反数是-a ,∴2018的相反数是-2018.选B. 13、【答案】C【分析】本题考查了倒数的定义.【解答】乘积为1的两个数互为倒数.由-3×(-)=1,可知-3的倒数为-.选C. 14、【答案】A【分析】本题考查了实数的比较;立方根.【解答】解:∵0<1A. 15、【答案】A【分析】本题考查了相反数.1313答案第3页,共4页【解答】根据相反数的定义可知,-4的相反数是4,选A. 16、【答案】C【分析】本题考查了无理数的估算.【解答】因为9<10<16,所以34,4<5,因此C 选项正确 17、【答案】B【分析】本题考查了相反数. 【解答】-(-2)=2.选B. 18、【答案】A【分析】本题考查了数轴;绝对值.【解答】由数轴看出点A 所表示的数是-3,3-=3.选A. 19、【答案】A【分析】本题考查了绝对值..【解答】根据“负数的绝对值是它的相反数”得,-2的绝对值是-(-2)=2,选A. 20、【答案】B【分析】本题考查了有理数的倒数..【解答】求一个有理数的倒数,如果是分数,只需把这个数的分子和分母颠倒即可,所以的倒数是-3. 21、【答案】A【分析】本题考查了绝对值;有理数的加减. 【解答】先计算-12的绝对值,再计算结果,11--22=12-12=022、【答案】B【分析】本题考查了二次根式的估值.6和9之间,且非常接近6的平方36,从而答案选B. 23、【答案】C【分析】本题考查了相反数的概念.【解答】任何数的相反数都是在其本身前面加上“-”,故3的相反数为-3. 24、【答案】C【分析】本题考查了有理数的乘方,根据乘方的意义,直接运算即可. 【解答】解:原式=(-3)×(-3)=9.13-选C. 25、【答案】A【分析】本题考查了负数的绝对值等于它的相反数. 【解答】负数的绝对值等于它的相反数,|-3|=3,选择A. 26、【答案】A【分析】本题考查了有理数大小比较.【解答】在数轴上,右边的数大于左边的数,选A . 27、【答案】D【分析】本题考查了实数的分类.【解答】本题考查了实数的分类,实数分为正实数和负实数和0,负实数是比0小的数,或者理解为正数前加上负号便成了负数.因为在四个数中,只有-1有负号.选D 28、【答案】45【分析】本题考查了规律探索型问题.由已知的图中数据,分析每一行结束时所有的个数与所在行数的关系,发现前1行共有1个数,前2行共有1+3=4=22个数,前3行共有1+3+5=9=32个数,…;据此可判断出2018所在的行数.【解答】由排列的图形可知,前1行共有1个数,前2行共有1+3=4=22个数,前3行共有1+3+5=9=32个数,…,那么第n 行共有1+3+5+7+…+(2n -1)=n 2个数.∵442<2018<452,∴2018在第45行. 29、【答案】2【分析】本题考查了相反数的求法. 【解答】-2的相反数的值等于2. 30、【答案】10【分析】本题考查了有理数的减法.【解答】解:∵温差=最高温度-最低温度,∴温差=6-(-4)=10.故答案为:10. 31、【答案】114【分析】本题考查了有理数分数阅读理解.【解答】设0.36=x ,由0.36=0.363636……,可知100x =36.3636……,所以100x -x =36,解方程得x =1149936 .。
专题01 实数的有关概念和计算
实数一、选择题1.(安庆市)实数0,15,π,-1中,无理数是( ) A .0B . 15C . πD . -12.(安庆市)2013年12月2日凌晨1:30,“嫦娥三号”探测器在四川省西昌卫星发射中心发射升空,它携“玉兔号”月球车首次实现月球软着落和月面巡视勘察,并开展月球形貌与地质构造调查等科学探测,地球到月球的平均距离是384400千米,把384400这个数用科学记数法表示为( ) A .3844×103B . 38.44×103C . 3.844×104D . 3.844×1053.(安庆市)数轴上点A 表示的实数可能是( )A B .C .. 4.(厦门市海沧区)﹣3的相反数是( ) A . 3B . ﹣3C .13D . ﹣135. (厦门市海沧区)设a 在两个相邻整数之间,则这两个整数是( ) A . 2和3 B . 4和5 C . 7和8 D . 8和96.(厦门市同安区)下列各数中正数是( )A . 2B .-12C .0D .7.(厦门市翔安区)计算:-2+3=( )A . 1B . -1C . 5D . -5 8.(广东省).13-的绝对值是( ) A . 3 B .-3 C .13D . 13-9.(广东省)下列计算正确的是( )A =B .2=C = D 3=-10.(广东省)五个数中:-227,-1,0,12) A . 0个 B . 1个C . 2个D . 3个11.(丰台区)中国是一个干旱缺水严重的国家,淡水资源总量约为28000亿立方米,约占全球水资源的6%.将28000用科学记数法表示为( ) A . 28×103B . 2.8×104C . 2.8×105D . 0.28×10612.(丰台区)12-的相反数是( ) A . 2 B . -2 C . 12D . 12-13.(河南省)2014的相反数是( )A .12014B .12014-C .﹣2014D .2014 14.(滨州市吴棣县埕口中学)−12的倒数是( )A .12B .−12C .2D .-213. (滨州市吴棣县埕口中学)给出下列六个实数17,0.13 ,-π,2 3.14,其中无理数的个数是( )A .4个B .3个C .2个D .1个 14. (德州市宁津县)下列运算正确的是( )A 5=-B .21()164--= C .x 6÷x 3=x 2 D .(x 3)2=x 515.(德州市宁津县)环境监测中PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为( ) A .2.5×105B .2.5×106C .2.5×10-5D .2.5×10-616.(南平市三中) 气温由﹣1℃上升2℃后是( ) A . ﹣1℃ B .1℃C . 2℃D .3℃17.(南平市三中)截至2013年3月底,某市人口总数已达到4 230 000人。
实数练习题及答案
实数练习题及答案实数是数学中非常重要的概念,它们包括有理数和无理数。
掌握实数的概念和运算是解决许多数学问题的基础。
下面是一些实数的练习题,以及相应的答案,供学习者练习和参考。
练习题1:判断下列数中哪些是有理数,哪些是无理数。
- √2- π- 1/3- 0.5- √3- √8答案1:- √2(无理数)- π(无理数)- 1/3(有理数)- 0.5(有理数,即1/2)- √3(无理数)- √8(无理数,因为8可以分解为2^3,而√8 = 2√2)练习题2:计算下列表达式的值。
- √4 + √9- √16 - √25- (√2)^2- √(1/4)答案2:- √4 + √9 = 2 + 3 = 5- √16 - √25 = 4 - 5 = -1- (√2)^2 = 2- √(1/4) = 1/2练习题3:解下列方程。
- √x = 4- x^2 = 16- √(x - 3) = 2答案3:- √x = 4,两边平方得 x = 16- x^2 = 16,解得x = ±4- √(x - 3) = 2,两边平方得 x - 3 = 4,解得 x = 7练习题4:将下列无理数化为最简二次根式。
- √48- √75答案4:- √48 = √(16 * 3) = 4√3- √75 = √(25 * 3) = 5√3练习题5:求下列表达式的值。
- √(√3 + 1)^2- √(√2 - 1)^2答案5:- √(√3 + 1)^2 = √3 + 1- √(√2 - 1)^2 = √2 - 1练习题6:判断下列表达式是否正确。
- √(-4) 是否有实数解?- √(-9) 是否有实数解?答案6:- √(-4) 没有实数解,因为负数没有实数平方根。
- √(-9) 同样没有实数解。
通过这些练习,可以帮助学习者更好地理解实数的概念和运算规则。
希望这些练习题和答案对学习者有所帮助。
在数学学习中,不断的练习和思考是提高解题能力的关键。
中考数学复习之实数,与实数有关的概念与练习题
一.实数知识过关1.实数有关的概念1. 有理数:__________________2. 无理数:无限不循环小数叫做无理数.3. 实数:有理数和_______统称为实数.4. 实数的分类:(1) 按定义分: (2)按性质分:5. 数轴:(1)规定了______、_______、_______的直线叫做数轴;(2)______和实数是一一对应的关系.6. 相反数、绝对值、倒数考点分类考点1 相反数、倒数和绝对值 例1:2023-的相反数是( )A.1B.-1C.2023D.20231已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的绝对值最大的点是( )A. NB.MC.PD.Q考点2 无理数的识别例2 在实数389722,,,π-中,是无理数的是( ) A. 722- B.9 C.π D.38考点3 科学记数法例3 (1) 一天时间为86400秒,用科学记数法表示这一数字是( )A. 210864⨯B. 3104.86⨯C. 41064.8⨯D.510864.0⨯(2) 目前世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A. 8104⨯B. 8104-⨯C.8104.0⨯D.8104⨯-考点4 非负数的性质例4 已知x,y 为实数,且0|2|31=-+-y x 则x -y 的值为( ) A.3 B.-3 C.1 D.-1考点5 绝对值的化简例5 已知有理数a,b 在数轴上如图所示,且||||b a =,则可化简为( )A.a -bB.a+bC.2aD.2b真题演练1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作( ) A .﹣60元B .﹣40元C .+40元D .+60元2.下列各数不是有理数的是( ) A .1.21B .﹣2C .2πD .123.下列各数:−74,1.010010001,833,0,﹣π,﹣2.626626662…,0.1⋅2⋅,其中有理数的个数是( ) A .2B .3C .4D .54.在−13,227,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m 个,非负整数有n 个,分数有k 个,则m ﹣n +k 的值为( ) A .3B .4C .6D .55.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a >﹣bD .|b |>|a |6.已知数a ,b ,c 在数轴上的位置如图所示,化简|a +b |﹣|a ﹣b |+|a ﹣c |的结果为( )A .﹣a ﹣2b ﹣cB .﹣a ﹣b ﹣cC .﹣a ﹣cD .﹣a ﹣2b +c7.﹣2022的相反数是( ) A .﹣2022B .2022C .﹣2021D .20218.−43的相反数是( ) A .34B .43C .−34D .−439.新的一年到来了,中考也临近了,你是否准备好了?请选出2023的相反数是( ) A .12023 B .−12023C .2023D .﹣202310.下列各数中,属于分数的是()A.﹣0.2B.π2C.234D.|a|a11.已知:(a﹣2)2+|b+3|+|c+4|=0,请求出:5a﹣b+3c的值是()A.0B.﹣1C.1D.无法确定12.数据2060000000用科学记数法表示为()A.206×107B.2.06×10C.2.06×109D.20.6×108 13.2022年11月27日,宁波舟山港累计完成集装箱吞吐量超过3108万标准箱,提前34天达到去年全年总水平.将3108万用科学记数法表示应为()A.3.108×106B.3.108×107C.31.08×106D.0.3108×108 14.新型冠状病毒是承载在飞沬上传播的,而飞沬的直径是5um(提示:1m=1000000um),只要能够过滤小于5um的颗粒的空气净化器都有用,我们常用的医用口罩等都是有用的,飞沬直径用科学记数法可表示为()A.5×106m B.5×10﹣6m C.50×10﹣6m D.0.5×10﹣5m 15.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣4C.0.7×10﹣9D.0.7×10﹣8课后练习1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.在一部中国古代数学著作中,涉及用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数,这部著作是()A.《几何原本》B.《九章算术》C.《孙子算经》D.《四元玉鉴》2.有理数a、b、c、d在数轴上的对应点如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d3.下列各数中最小的负整数是()A.﹣2021B.﹣2022C.﹣2023D.﹣14.2022年11月13日,第十四届中国国际航空航天博览会在珠海圆满落幕,本届航展参展规模远超预期、参展展品全领域覆盖、商贸交流活动成效显著.航展6天,共签订总值超过398亿美元的合作协议书,39800000000用科学记数法表示为()A.3.98×1011B.0.398×1010C.3.98×1010D.0.398×1011 5.已知|3a+1|+(b﹣3)2=0,则(ab)2022的值是()A.1B.﹣1C.0D.36.若(a+1)2+|b﹣2|=0,则(b+a)2021的值是()A.1B.﹣2021C.﹣1D.2021填空题(共21小题)7.2022年全国粮食达到13731亿斤,数据13731用四舍五入法精确到1000,并用科学记数法表示是.8.某头非洲大象的体重大约3880千克,则将3880千克精确到100千克用科学记数法表示记为千克.9.观察下面式子:21=2,22=4,23=8,24=16,25=32,26=64…,那么22023的结果的个位上的数字是.10.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是.11.数轴上,点B在点A的右边,已知点A表示的数是﹣1,且AB=2023,那么点B表示的数是.12.若a的相反数等于它本身,b是最小的正整数,c是最大的负整数,则代数式a﹣b+c =.13.若a.b互为相反数,c的倒数是−35,则a+b﹣6c的值是.冲击A+如图1所示,△ABC是以AB为底的等腰三角形,AC=BC=6,延长CB至P,使得BP=BC,连接AP,AP=4.(1)求证:直线AP为圆O的切线;(2)如图2所示,将△ABC沿着AC翻折至△ACQ处,QC边与圆交于点D,连接AD,求△ACD的面积.。
历年中考中实数的有关概念和性质真题答案及解析
一、选择题1.(2019湖南怀化,1,4分)下列实数中,哪个数是负数( )D.-1 【答案】D.【解析】解:由于-1<0,所以-1为负数.故选D. 【知识点】实数2.(2019湖南岳阳,1,3分)-2019的绝对值是( ) A .2019 B .-2019 C .12019 D .12019-【答案】A【解析】根据一个负数的绝对值等于它的相反数,得:|-2019|=2019,故选A . 【知识点】有理数,绝对值3.(2019江苏无锡,1,3分)5的相反数是( ) A. -5 B . 5 C .15D .15【答案】A【解析】本题考查了相反数的定义,5相反数为-5 ,故选A. 【知识点】相反数4.(2019山东滨州,1,3分)下列各数中,负数是( ) A .-(-2) B .2--C .(-2)2D .(-2)0【答案】B【解析】∵-(-2)=2,2--=-2,(-2)2=4,(-2)0=1,∴负数是2--.故选B .【知识点】相反数;绝对值;有理数的乘方;零次幂5.(2019山东济宁,1,3分)下列四个实数中,最小的是( ) A .-2 B .-5 C .1 D .4 【答案】B【解析】:根据有理数的大小比较法则可知:-5<-2<1<4. 【知识点】实数的大小比较.6.(2019山东聊城,1,3分) )A. C. 【答案】D(),故选D. 【知识点】相反数7. (2019山东泰安,1,4分) 在实数|-3.14|,-3,π中,最小的数是( )A.-3B.-3C.|-3.14|D.π【答案】B【解析】四个数中,有2个正数:|-3.14|=3.14,π,两个负数:-3,-3,而|-3|=3,|-3|=3≈1.732,∵3>1.732,∴-3<-3,故选B. 【知识点】绝对值,实数比较大小8.(2019山东潍坊,1,3分) 2019的倒数的相反数是( ) A .-2019 B .12019- C .12019D .2019【答案】B【解析】2019的倒数为12019,而12019的相反数为12019-,故选B . 【知识点】有理数,相反数,倒数9.(2019山东潍坊,5,3分)利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是( ) A .2.5 B .2.6 C .2.8 D .2.9 【答案】B【解析】由计算器按键可知本题是计算7的近似值,分别计算四个数的平方可得:2.52=6.25,2.62=6.76,2.82=7.84,2.92=8.41,根据计算结果可知最接近于7的数为6.76,所以7≈2.6,故选B .【知识点】计算器的使用,估算10. (2019山东枣庄,11,3分)点O,A,B,C 在数轴上的位置如图所示,O 为原点,AC =1,OA =OB,若点C 所表示的数为a,则点B 所表示的数为( )A.-(a+1)B.-(a -1)C.a+1D.a -1【答案】B【解析】∵点C 所表示的数为a,AC =1,点A 在点C 的左边,∴点A 所表示的数为(a -1),∵OA=OB,∴点A 和点B 所表示的数互为相反数,故点B 所表示的数为-(a -1),故选B 【知识点】数轴表示数,相反数11.(2019山东淄博,6,4分)与下面科学计数器的按键顺序: 对应的任务是( )4y x 21+6ab /c5×6·A.460.6125⨯+ B.450.6126⨯+ C.120.6564⨯÷+ D.1250.646⨯+ 【答案】B【解析】由计算器中输入顺序,对应的任务是450.6126⨯+,故选B.【知识点】用科学计算器计算12.(2019山东淄博,1,4分)比-2小1的实数是( ) A.-3 B.3C.-1D.1【答案】A.【解析】由题意可列出:-2-1=-(2+1)=-3. 即比-2小1的数为-3. 故选A .【知识点】实数的运算,有理数的减法13.(2019四川达州,1,3分) -2019的绝对值是( ) A .2019 B. -2019 C. 20191 D.20191-【答案】A【解析】负数的绝对值是它的相反数,所以-2019的绝对值是-(-2019)=2019 【知识点】绝对值14.(2019四川乐山,1,3分)3-的绝对值是( ) A .3 B .-3C .13D .31-【答案】A【解析】本题考查了有理数的绝对值求法,()333-=--=,故选A. 【知识点】有理数的绝对值15.(2019四川乐山,4,3分)a -一定是( )A .正数B .负数C .0D .以上选项都不正确 【答案】D【解析】本题考查了有理数相反数的求法,a -的符号由字母a 的符号确定:当a 为正数,则a -一定是负数;当a 为0,则a -一定是0;当a 为负数,则a -一定是正数. 【知识点】有理数的相反数16.(2019四川凉山,1,4分)1.-2的相反数是( ) A.2 B.-2 C.21D.21- 【答案】A【解析】-2的相反数是2,故选A. 【知识点】相反数17.(2019四川眉山,1,3分)下列四个数中,是负数的是( )A .|-3|B .-(-3)C .(-3)2D .【答案】D【解析】解:A 、|-3|=3,是正数,故A 不合题意;B 、-(-3)=3,是正数,故B 不合题意;C 、(-3)2=9,是正-是负数,故D符合题意,故选D.数,故C不合题意;D、3【知识点】绝对值;相反数,有理数的乘方,18.(2019四川攀枝花,1,3分)(-1)2等于()A.-1 B.1 C.-2 D.2【答案】B.【解析】负数的隅次方是正数,所以(-1)2=1,故选B.【知识点】乘方的性质19.(2019四川攀枝花,2,3分)在0,-1,2,-3这四个数中,绝对值最小的数是()A.0 B.-1 C.2 D.-3【答案】A.【解析】绝对值最小的数是0,故选A.【知识点】绝对值20.(2019四川省自贡市,1,4分)- 2019的倒数是()A.-2019B.C.D.2019【答案】B.【解析】解:∵a的倒数是,∴-2009的倒数是.故选B.【知识点】倒数.21. (2019四川自贡,7,4分)实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A.|m|<1B.1-m>1C.mn>0D.m+1>0【答案】B.【解析】解:由数轴可知,m<-1<0,n>1>0.∴|m|>1,mn<0,m+1<0,-m>0,∴1-m>1.∴选项A,C,D错误,正确的是选项B.故选B.【知识点】数轴,有理数的加法法则,有理数的乘法法则,绝对值3-⨯的结果等于 ( )22. (2019天津,1,3分)计算()9(A) -27 (B)-6 (C) 27 (D)6【答案】A【解析】一正一负相乘,先确定积的符号为负,再把绝对值相乘,绝对值为27.所以答案为 A【知识点】有理数的乘法运算.23. (2019天津,6,3分)估计33的值在( )(A) 2和3之间 (B) 3和4之间 (C) 4和5之间 (D) 5和6之间 【答案】D 【解析】6335363325<<∴<<所以选D【知识点】算术平方根的估算.24.(2019浙江湖州,1,3分)数2的倒数是( )A .-2B .2C .-12D .12 【答案】D .【解析】利用“乘积为1的两个数互为倒数”的概念进行判断,∵2×12=1,∴2的倒数是12,故选D . 【知识点】实数的概念;倒数25.(2019浙江省金华市,1,3分)实数4的相反数是( )A.14-B.-4C.14D.4【答案】B .【解析】由a 的相反数是-a ,得实数4的相反数是-4,故选B . 【知识点】相反数26.(2019浙江金华,4,3分)某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( ) A. 星期一 B.星期二 C.星期三 D.星期四【答案】C .【解析】温差=最高气温-最低气温.故选C . 【知识点】温差27. (2019浙江宁波,1,4分) -2的绝对值为( ) A.-12B.2C.12D.-2【答案】B【解析】负数的绝对值是它的相反数,|-2|=2,故选B. 【知识点】绝对值28.(2019浙江衢州,1,3分)在12,0,1,一9四个数中,负数是( )A.12B.0C.1D.-9【答案】D【解析】本题考查负数的概念,不含多重符号的数,含有负号的数是负数,在这四个数中,只有-9带有负号,所以负数是-9,故选D 。
实数的概念练习题
实数的概念练习题一、选择题1. 实数是指所有的数,包括()。
A. 自然数B. 整数C. 有理数D. 虚数2. 关于实数的说法正确的是()。
A. 所有实数都可以用有限小数或无限循环小数表示B. π是有理数C. √2是有理数D. 无理数是实数的一个子集3. 若一个实数的小数部分是无限循环小数,则该实数是()。
A. 有理数B. 整数C. 复数D. 无理数4. 下列数中,不是实数的是()。
A. -3.5B. 0C. 2iD. √75. 若实数a满足a²=9,则a的值可能是()。
A. 3B. -3C. 0D. 9二、填空题1. 实数-14是()的成员。
2. √3是()的成员。
3. 数轴上点A对应的实数是()。
4. 由0和1组成的无限小数0.1111...是一个()。
5. 自然数是实数的()。
三、计算题1. 计算下列无理数的近似值,并保留到小数点后两位:(a) √5(b) π(c) e (自然对数的底数)2. 计算以下两个实数的和,并将结果化为最简形式:(a) 3.8 + (-2.9)(b) -7 + √23. 判断下列命题是否成立:(a) 有理数是实数的一个子集。
(b) 两个无理数的和一定是无理数。
四、证明题证明: 如果两个实数互为倒数,那么它们的乘积等于1。
解答:设实数a和b互为倒数,即a = 1/b。
则ab = (1/b) * b = 1。
因此,如果两个实数互为倒数,那么它们的乘积等于1。
五、应用题某车辆从A地出发,经过1小时到达B地,再经过1.5小时到达C 地。
设该车辆的平均速度为60km/h。
1. 计算A地到B地的距离。
2. 计算B地到C地的距离。
解答:1. 根据速度公式:速度 = 距离 / 时间,可得距离AB = 60km/h * 1h = 60km。
2. 同理可得距离BC = 60km/h * 1.5h = 90km。
六、综合运用题某商品原价100元,现在打八折出售。
小明购买了该商品,并使用了一张抵扣券,抵扣券的面值为20元。
实数经典例题及习题
经典例题类型一.有关概念的识别1.下面几个数:0.23 ,1.010010001…,,3π,,,其中,无理数的个数有( )A 、1B 、2C 、3D 、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是( )A 、的平方根是±3 B 、1的立方根是±1 C 、=±1 D 、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念, ∵=9,9的平方根是±3,∴A 正确.∵1的立方根是1,=1,是5的平方根,∴B 、C 、D 都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A 、1B 、1.4C 、D 、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A 表示数为,故选C .【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴(1).一个正数x 的两个平方根分别是a+1和a-3,则a= ,x= . (2)已知2m-3和m-12是数p 的平方根,试求p 的值。
已知28-++=b a a M 是()8+a 的算术平方根,423+--=b a b N 是()3-b 的立方根N M +的平方根。
练习1、把下列各数分别填入相应的集合里:2,3.0,10,1010010001.0,125,722,0,1223π---∙-有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 2.64的平方根是 ,立方根是 . 3.51-的相反数是 ,绝对值是 .4.若==x x 则6 .5.若b a ,互为相反数,d c ,互为倒数,则=++333cd b a .6.若式子2)4(a --是一个实数,则满足这个条件的a 有( ). A 、0个B 、1个C 、4个D 、无数个7.如果102=x ,则x 是一个 数,x 的整数部分是 . 8、已知甲数是719的平方根,乙数是124的平方根,求甲、乙两个数的积。
实数的概念与练习
6.非负数像│a│、a2、 (a≥0)形式的数都表示非负数.
7.科学记数法把一个数写成a×10n的形式(其中1≤│a│<10,n为整数),这种记数法叫做科学记数法.
(1)当原数大于或等于1时,n等于原数的整数位数减1.
(2)当原数小于1时,n是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含小数点前的零).
第1课时《实数的有关概念》
◆知识讲解
1.实数的分类
实数
实数还可分为
2.数轴(1)数轴的三要素:原点、正方向和单位长度.
(2)数轴上的点与实数一一对应.
3.相反数实数a的相反数是-a,零的相反数是零.
(1)a、b互为相反数 a+b=0.
(2)在数轴上表示相交数的两点关于原点对称.
4.倒数乘积是1的两个数互为倒数,零没有倒数.a、b互为倒数 ab=1.
A.5.256×106B.1.168×105C.5.256×105D.1.168×104
3.近似数0.03020的有效数字的个数和精确度分别是()A.四个,精确到万分位B.三个,精确到十万分位C.四个,精确到十万分位D.三个,精确到万分位
4.(2006,哈尔滨)下列命题正确的是()
A.4的平方根是2 B.a的相反数是-a C.任何数都有倒数D.若│x│=2,则x=2
例2(1)已知a、b互为相反数,c、d互为倒数,e是非零实数,求 (a+b)+ cd-2e0的值;
(2)实数a,b,c在数轴上的对应点如图所示,化简a+│a+b│- -│b-c│.
例3(2007,枣庄)2007年4月,全国铁路进行了第六次大提速,提速后的线路速度达200km/h,共改造约6000km的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).
2024年中考数学总复习专题01实数命题1实数的有关概念
中考·数学
答案:C 解析:由数轴可知,点 C 离原点最近,所以 在|a|,|b|,|c|,|d|中,值最小的是|c|.故选 C.
第6页
返回目录
C
中考命题1 实数的有关概念
中考·数学
答案:C 解析:x≤2 在数轴上表示为:
第7页
返回目录
中考命题1 实数的有关概念
中考·数学
B 6.[2023 聊城,1,3 分](-2__023)0 的值为( )
又∵|x-4|=2,∴x1=6,x2=2,
第18页
返回目录
中考命题1 实数的有关概念
中考·数学
∵a 为方程|x-4|=2 的解且 a,b,c 为△ABC 的三边 长, ∴a=2, ∴△ABC 是等腰三角形.
第19页
返回目录
第11页
返回目录
中考命题1 实数的有关概念
B 将 140 000 000 用科学记数法表示应为( )
A.14×107
B.1.4×108
C.0.14×109
D.1.4×109
中考·数学
答案:B 解析:140 000 000=1.4×108.故选 B.
第12页
返回目录
中考命题1 实数的有关概念
中考·数学
答案:-5 解析:∵“正”和“负”相对,∴进货 10 件 记作+10,那么出货 5 件应记作-5.故答案为-5.
第15页
返回目录
பைடு நூலகம்
中考命题1 实数的有关概念
中考·数学
11.[2021 江西,2,3 分]国务院第七次全国人口普查领 导小组办公室 5 月 11 日公布人口普查结果,其中江西人 口数约为 45 100 000 人,将 45 100 000 用科学记数法表 示为__4._5_1_×___1.07
6.3.1 实数的相关概念及分类 人教版数学七年级下册分层作业(含答案)
人教版初中数学七年级下册6.3.1 实数的相关概念及分类同步练习夯实基础篇一、单选题:1.在实数,,3.14,0,,,,0.1616616661……(两个1之间依次多一个6)中,无理数的个数是( )A.5B.4C.3D.2【答案】C【分析】根据无理数的定义解答即可.【详解】,3.14,0,,是有理数;,,0.1616616661……(两个1之间依次多一个6)是无理数.故选C.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有:①π类,如2π,等;②开方开不尽的数,如,等;③具有特殊结构的数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1).2.下列说法正确的是( )A.无理数是无限不循环小数B.一个数的平方根等于它本身的数是0,1C.绝对值等于本身的数是0D.倒数等于本身的数是0,1,【答案】A【分析】根据无理数定义判定A;根据平方根的定义判定B;根据绝对值意义判定C;根据倒数的意义判定D.【详解】解:A、无理数是无限不循环小数,故此选项符合题意;B、一个数的平方根等于它本身的数是0,故此选项不符合题意;C、绝对值等于本身的数是0和正数,故此选项不符合题意;D、倒数等于本身的数是1,,故此选项不符合题意;故选:A.【点睛】本题主要考查无理数,平方根,绝对值,倒数,熟练掌握无限不循环小数是无理数;一个正数的平方根有两个,零的平方根是零;一个正数的绝对值等于本身,零的绝对值是零,一个负数的绝对值等于它的相反数;乘积等于1的两个数互为倒数是解决本题的关键.3.下列四个实数中,为负实数的是( )A.B.C.D.【答案】A【分析】根据负实数的定义逐项判断即可得答案.【详解】A.,故A符合题意B.,故B不符合题意C.,故C不符合题意D.,故D不符合题意故选:A.【点睛】本题考查了负实数的定义,相反数的定义,乘方的定义,二次根号的化简,绝对值性质.4.下列说法:①任意一个数都有两个平方根;②是3的平方根;③的立方根是;④是一个分数;⑤负数没有立方根.其中正确的有()A.0个B.1个C.2个D.3个【答案】B【分析】根据立方根,平方根和分数的定义进行逐一判断即可.【详解】解:①任意一个正数都有两个平方根,原说法错误;②是3的一个平方根,原说法正确;③的立方根是,原说法错误;④不是一个分数,原说法错误;⑤负数有立方根,原说法错误;∴正确的只有1个,故选B.【点睛】本题主要考查了立方根,平方根和实数的分类,熟知相关知识是解题的关键.5.下列说法正确的有()①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④两个无理数的和还是无理数;⑤数轴上的点与实数一一对应.A.个B.个C.个D.个【答案】A【分析】利用有理数,无理数,数轴的相关概念对每个选项进行逐一判断即可得出结论.【详解】解:无限的不循环小数是无理数,的结论不正确;无理数是无限的不循环小数,都是无限小数,的结论正确;带根号且开不尽放方的数都是无理数,的结论不正确;,两个无理数的和不一定是无理数,的结论不正确;数轴上的点与实数一一对应,的结论正确;综上,正确的结论有:,故选:A.【点睛】本题主要考查了实数的概念,实数的运算,数轴的相关性质,利用有理数,无理数,数轴的相关概念对每个选项进行逐一判断是解题的关键.6.下列说法中错误的是()A.是整数B.是有理数C.是分数D.的立方根是无理数【答案】C【分析】根据实数分类,无理数的概念,进行辨别即可.【详解】解:A、是整数,故本选项正确,不符合题意;B、是有理数,故本选项正确,不符合题意;C、是无理数,故本选项错误,符合题意;D、,则的立方根是是无理数,故本选项正确,不符合题意;故选:C【点睛】此题考查了实数的分类能力,关键是能准确理解实数分类知识,无限不循环小数是无理数.7.下列各数互为相反的是()A.5和B.-5和C.和D.和【答案】D【分析】根据相反数的性质,算术平方根,立方根和实数的性质逐一判断即可.【详解】解:A、5和不是相反数,不符合题意;B、-5和不是相反数,不符合题意;C、和不是相反数,不符合题意;D、和互为相反数,符合题意;故选D【点睛】本题主要考查了相反数的定义,实数的性质,算术平方根和立方根,熟知相关知识是解题的关键.二、填空题:8.下列各数:①,②0.1,③④⑤⑥(相邻两个1 之间依次增加1 个0)是无理数的是________(填序号).【答案】⑤⑥##⑥⑤【分析】根据无理数的定义解答即可.【详解】解:由题意可知:无理数有:⑤⑥.故答案为:⑤⑥【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义:无限不循环的小数.9.下列有理数:,,,,其中负数有_______个.【答案】2【分析】运用偶次方、去括号、绝对值以及幂的知识进行化简,即可确定负数的个数.【详解】解:∵=9,=0.2,=-4,=-1∴负数有两个,即答案为2.【点睛】本题考查了偶次方、去括号、绝对值以及幂的知识,灵活运用所学知识是解答本题的关键. 10.将下列各数填入相应的括号里:,,0,,,,,,,.负数集合___________;分数集合___________;正整数集合___________;无理数集合___________.【答案】,,;,,,,;;【分析】实数分为有理数和无理数,分数分为正分数和负分数,负数分为负分数和负整数,对各数依次判断分类即可.【详解】解:负数集合,,;分数集合,,,,;正整数集合;无理数集合;故答案为:,,;,,,,;;.【点睛】本题考查了实数的概念与分类、有理数的分类、无理数的概念,掌握实数的概念与分类是解题关键.11.判断正误,在后面的括号里对的填写“正确”,错的填写“错误”,并说明理由.(1)无理数都是开方开不尽的数.( )(2)无理数都是无限小数.( )(3)无限小数都是无理数.( )(4)无理数包括正无理数、零、负无理数.( )(5)不带根号的数都是有理数.( )(6)带根号的数都是无理数.( )(7)有理数都是有限小数.( )(8)实数包括有限小数和无限小数.( )【答案】错误正确错误错误错误错误错误正确【分析】根据有理数,无理数,实数的概念逐项判断即可【详解】(1)( 错误)无理数不只是开方开不尽的数,还有,1.020 020 002…这类的数也是无理数;故答案为:错误.(2)( 正确)无理数是无限不循环小数,是属于无限小数范围内的数;故答案为:正确.(3)( 错误)无限小数包括无限循环小数和无限不循环小数两类数,其中无限不循环小数才是无理数;故答案为:错误.(4)( 错误)0是有理数;故答案为:错误.(5)( 错误)如,虽然不带根号,但它是无限不循环小数,所以是无理数;故答案为:错误.(6)( 错误)如,虽然带根号,但=9,这是有理数;故答案为:错误.(7)( 错误)有理数还包括无限循环小数;故答案为:错误.(8)( 正确)有理数可以用有限小数和无限循环小数表示,无理数是无限不循环小数,所以实数可以用有限小数和无限小数表示;故答案为:正确.【点睛】本题考查了有理数,无理数,实数的概念,理解概念是解题的关键.12.的相反数是______________.【答案】##【分析】根据只有符号不同的两个数是互为相反数,即可得到正确的答案.【详解】解:无理数的相反数是,故答案为:.【点睛】此题考查了求一个实数的相反数的能力,关键是能准确理解、运用相反数的概念.13.比较大小.(用、、号连接)______;______.【答案】【分析】第一组根据约等于即可得出答案;第二组对进行变形即可得到答案.【详解】解:第一组:∵,,∵,∴;第二组:∵,∴,∴,∴.故答案为:①,②.【点睛】本题考查的是实数的大小比较,熟知实数比较大小的法则和各种方法是解题的关键.14.给出下列说法:①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的点表示的数互为相反数;④实数在数轴上有唯一的点与之对应;⑤分数可能是有理数,也可能是无理数.其中正确的有______.(填序号)【答案】①④##④①【分析】根据绝对值的意义;无理数的定义:即为无线不循环小数;相反数的几何意义;实数和数轴的关系,有理数的定义:整数和分数统称为有理数;进行判断即可.【详解】解:①0是绝对值最小的有理数,正确;②无限不循环小数是无理数,原来的说法错误;③只有符号不同的两个数叫做互为相反数,原来的说法错误;④实数在数轴上有唯一的点与之对应,正确;⑤分数是有理数,原来的说法错误.故其中正确的有①④.故答案为:①④.【点睛】本题考查了对值的意义、无理数的定义、相反数的几何意义、实数和数轴的关系、有理数的定义,熟练掌握相关定义与性质是解本题的关键.三、解答题:15.将下列各数的序号填在相应的集合里.①,②,③,④,⑤,⑥,⑦,⑧.整数集合:;分数集合:;负数集合:;有理数集合:;无理数集合:.【答案】故答案为:,,,,【分析】根据实数的分类解答即可.【详解】解:整数集合:;分数集合:;负数集合:;有理数集合:;无理数集合:.故答案为:,,,,.【点睛】此题考查实数,关键是根据实数的分类解答.16.求下列各数的绝对值:,,,,.【答案】,,,,【分析】根据正数及零的绝对值是本身,负数的绝对值是相反数,可得答案.【详解】解:,,,..【点睛】本题考查了实数的绝对值,理解绝对值的意义是解题的关键.17.把,,,表示在数轴上(无理数近似表示在数轴上),并比较它们的大小,用“<”号连接.【答案】数轴见解析,.【分析】利用绝对值和无理数的近似值化简再用数轴上的点表示各数,利用数轴上的数右边的总比左边的大用“<”号将个连接即可.【详解】解:∵,∴将各数在数轴上表示出来如下:将各数用“<”号连接如下:.【点睛】本题主要考查了数轴,绝对值,实数大小的比较,利用数轴上的数右边的总比左边的大解答是解题的关键.18.求下列各式中的实数:(1);(2);(3);(4).【答案】(1);(2)0;(3);(4).【分析】分别根据绝对值的性质解答.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴;(4)∵,∴.【点睛】本题考查了实数的性质,主要利用了绝对值的性质,熟记性质是解题的关键.19.如图,一只蚂蚁从点沿数轴向右爬了个单位长度到达点,点表示,设点所表示的数为.(1)实数的值是______;(2)求的值;(3)在数轴上还有、两点分别表示实数和,且有与互为相反数,求的平方根.【答案】(1);(2)0(3)【分析】(1)根据两点间的距离公式可得答案;(2)根据点B在数轴上的位置可知,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出、的值,再代入,进而求其平方根.(1)解:∵蚂蚁从点沿数轴向右爬了个单位长度到达点,点表示∴点表示∴.故答案为:;(2)解:由数轴可知:,,,原式;(3)解:与互为相反数,,,,,,,,,∵8的平方根为,∴的平方根为.【点睛】本题考查了实数与数轴、实数的性质、相反数的定义、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.能力提升篇一、单选题:1.如图,数轴上有A,B,C,D四点,则所表示的数与最接近的是()A.点A B.点B C.点C D.点D【答案】D【分析】根据二次根式的性质和无理数的估算方法求出的范围即可得到答案.【详解】解:由题意可得,∵,∴,∴,∴D点离得近一些,故选D.【点睛】本题考查实数在数轴上的位置及无理数的估算,解题的关键是根据根式的性质求出其取值范围.2.若0<x<1,则下列关系式成立的是()A.B.C.D.【答案】B【分析】可以采用取特殊值法,逐一求解,然后进行比较即可.【详解】解:∵∴令∴,,∵∴.故选B.【点睛】本题主要考查了实数的大小比较、负整数指数幂、整数指数幂等知识点,灵活利用相关运算法则以及掌握特殊值法是解答本题的关键.3.已知表示取三个数中最小的那个数.例如:当时,,当时,则的值为()A.B.C.D.【答案】C【分析】本题分别计算的x值,找到满足条件的x值即可.【详解】解:当时,,,不合题意;当时,,当时,,不合题意;当时,,,符合题意;当时,,,不合题意,故选:C.【点睛】本题主要考查了实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.二、填空题:4.已知的整数,小数部分,则_________,_________.【答案】 2【分析】根据可知,得到,从而得到和的值,即可得到答案.【详解】,,,,,,故答案为2;.【点睛】本题考查了估算无理数大小,利用有理数逼近无理数,求无理数近似值是解题关键.5.如图,数轴上点到点的距离与点到点的距离相等,若点表示,点表示,则点表示的数是________.【答案】##【分析】先求出、之间的距离,然后根据到点的距离与点到点的距离相等用减、之间的距离可求得答案.【详解】解:∵点表示,点表示,∴,∵到点的距离与点到点的距离相等,∴点表示的数为:,故答案为:.【点睛】本题考查了数与数轴之间的对应关系,解决本题的关键是明确两点之间的距离公式(大减小),体现了数形结合的思想.6.观察下列各式:,,,…,根据你发现的规律,若式子(a、b为正整数)符合以上规律,则=_______.【答案】4【分析】从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,据此求出a、b的值即可求得答案.【详解】∵,,,…,∴用含n的式子来表示为:,∵,∴a=8-1=7,b=a+2=9,∴==4,故答案为4.【点睛】本题考查了本题考查了规律型——数字的变化类,找到变化的规律是解题的关键.三、解答题:7.观察下列等式,并回答问题:①;②;③;④;……(1)请写出第⑤个等式:______,化简:______;(2)写出你猜想的第n个等式:______;(用含n的式子表示)(3)比较与1的大小.【答案】(1);(2)(3)【分析】(1)根据已知等式的规律可以得到第⑤个等式,由于,可以根据规律得到结果;(2)由前4个等式可以猜想第n个等式为;(3)利用作差法比较大小.(1)解:根据前4个式子可得第⑤个等式为:,,故答案为:;.(2)解:由前4个等式可以猜想第n个等式为,故答案为:.(3)解:∵,∴.【点睛】本题属于探究规律类试题,主要考查绝对值的性质、实数大小比较,熟练掌握相关知识并灵活运用是解题的关键.。
实数经典例题及习题
第二章 实数综合练习题一、实数的概念及分类1、实数的分类正有理数有理数 零 整数、有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
实数概念及习题
专题一 实数(一) 实数的有关概念1. 概念:(1)有理数: 和 统称为有理数。
(2)相反数:只有 不同的两个数互为相反数。
若a 、b 互为相反数,则 。
(3)数轴:规定了 、 和 的直线叫做数轴。
(4)倒数:乘积 的两个数互为倒数。
若a (a≠0)的倒数为1a.则 。
(5)绝对值:代数定义:a (a >0 )∣a ∣= 0 (a =0 )-a (a <0)几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
(6)无理数: 小数叫做无理数。
(7)实数: 和 统称为实数。
(8)实数和 的点一一对应。
2.实数的分类:说明:“分类”的原则:1)相称(不重、不漏)2)有标准实数无理数(无限不循环小数)正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数 正无理数 负无理数实数负数整数 分数 无理数有理数 正数整数分数无理数有理数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a×10n的形式(其中1≤a<10,n 是整数)(2)近似数是指根据精确度取其接近准确数的值。
取近似数的原则是“四舍五入”。
(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。
(二) 实数的运算:1. 有理数加、减、乘、除、幂及其混合运算的运算法则 (1)有理数加法法则:①同号两数相加,取__ __的符号,并把__ __②绝对值不相等的异号两数相加,取___ __的符号,并用 ___ ___。
互为相反数的两个数相加得_ _。
③一个数同0相加,__ __。
(2)有理数减法法则:减去一个数,等于加上__ _。
(3)有理数乘法法则:①两数相乘,同号_ _,异号__ __,并把__ 。
任何数同0相乘,都得__ __。
②几个不等于0的数相乘,积的符号由__ __决定。
当__ ___,积为负,当___ __,积为正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数的有关概念练习题(1)
一、细心选一选
1.下列各式中正确的是()
A. B.
C.
D.
2. 的平方根是( )
A.4 B. C. 2 D.
3. 下列说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。
其中正确的说法有()
A.3个 B. 2个 C. 1个 D. 0个
4.和数轴上的点一一对应的是()
A.整数 B.有理数 C. 无理数 D. 实数
5.对于来说()
A.有平方根B.只有算术平方根 C. 没有平方根 D. 不能确定
6.在(两个“1”之间依次多1个“0”)中,无理数的个数有()
A.3个 B. 4个 C. 5个 D. 6个
7.面积为11的正方形边长为x,则x的范围是()
A. B.
C.
D.
8.下列各组数中,互为相反数的是()
A.-2与 B.∣-∣与
C. 与
D. 与
9.-8的立方根与4的平方根之和是()
A.0 B. 4 C. 0或-4 D. 0或4
10.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是()
A. B.
C.
D.
二、耐心填一填
11.的相反数是________,绝对值等于
的数是________,∣
∣=_______。
12.的算术平方根是_______,
=______。
13.__ __的平方根等于它本身,__ __的立方根等于它本身,
__ __的算术平方根等于它本身。
14.已知∣x∣的算术平方根是8,那么x的立方根是_____。
15.填入两个和为6的无理数,使等式成立:___+___=6。
16.大于,小于
的整数有______个。
17.若∣2a-5∣与互为相反数,则a=______,b=_____。
18.若∣a∣=6,=3,且ab0,则a-b=______。
19.数轴上点A,点B分别表示实数则A、B两点间的距离为______。
20.一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。
三、认真解一解
21.计算
⑴⑵
⑶
⑷∣∣+∣
∣⑸
×
+×22.在数轴上表示下列各数和它们的相反数,并把这些数和它们的相反数按从小到大的顺序
排列,用“”号连接:
实数的有关概念练习题(2)
一、选择题:
1.的算术平方根是()A.B.C.
D.
2.的平方根是()
A.-6 B.36C.±6 D.±
3.下列计算或判断:①±3都是27的立方根;②
;③的立
方根是2;④,其中正确的个数有()A.1个B.2个C.3个D.4个
4.在下列各式中,正确的是()
A.;
B.;
C.;
D.
5.下列说法正确的是()
A.有理数只是有限小数B.无理数是无限小数
C.无限小数是无理数D.是分数6.下列说法错误的是()
A.
B.
C.2的平方根是D.
7.若,且
,则的值为()
A.
B.
C.
D.8.下列结论中正确的是()A.数轴上任一点都表示唯一的有理数; B.数轴上任一点都表示唯一的无理数;
C. 两个无理数之和一定是无理数;
D. 数轴上任意两点之间还有无数个点
9.-27 的立方根与的平方根之和是()A.0 B.6C.0或-6D.-12或6
10.下列计算结果正确的是()
A.
B.
C.
D.
二.填空题:
11.下列各数:①、②……、③、④π、⑤
、⑥、
⑦……(相邻两个3之间0的个数逐次增加2)、⑧0中,其中是有理数的有_______ ___;无理数的有_______ ___.(填序号)
12.的平方根是__________;的立方根是__________.
13.算术平方根等于它本身的数是__________;立方根等于它本身的数是__________.
14. 的相反数是__________;绝对值等于
的数是__________.
15.一个正方体的体积变为原来的27倍,则它的棱长变为原来的__________倍.
三、解答题:
16.计算或化简:
(1) (2)
17.已知,且x是正数,求代数式
的值。
18.观察右图,每个小正方形的边长均为1,⑴图中阴影部分的面积是多少边长是多少⑵估计边长的值在哪两个整数之间。
⑶把边长在数轴上表示出来。