五年级数学:循环小数(参考教案二)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学新课程标准教材

数学教案( 2019 — 2020学年度第二学期 )

学校:

年级:

任课教师:

数学教案 / 小学数学 / 小学五年级数学教案

编订:XX文讯教育机构

循环小数(参考教案二)

教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于小学五年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

教学目标

(一)理解循环小数,初步认识有限小数和无限小数。

(二)通过观察、比较,培养学生的抽象、概括能力。

教学重点和难点

理解循环小数,并会用循环小数的近似值表示除法的商。

教学过程设计

(一)复习准备

1.求下面各数的近似值(保留两位小数):

54.246 7.685 5.354 14.2971

2.分组计算比赛:

一组:2.4÷3= 0.75÷2.5=

二组:10÷3= 58.6÷11=

讨论:为什么一组做得快,二组做得慢?(一组题能够除尽,二组题除不尽,使学生对有限小数和无限小数有了初步印象。)

(二)学习新课

1.师生共同研究二组题。

2.观察思考:这两题的商有什么特点?想一想,这是为什么?(第1小题因为余数重复出现1,所以商就重复出现3,总也除不尽;第2小题因为余数重复出现3和8,所以商就会重复出现27,总也除不尽。)

教师用黄色粉笔描出竖式中重复出现的余数1和3,8。

3.在比较中认识有限小数和无限小数。

思考讨论:一组题与二组题的商小数部分的数位有什么不同?(一组题除得尽,商的小数部分的位数是有限的,二组题除不尽,商的小数部分的位数是无限的。)

教师说明:当小数部分的位数是无限的,可以用省略号表示:

10÷3=3.33… 58.6÷11=5.32727…

总结:两个数相除,如果不能得到整数商,会有两种情况:

一种情况是:除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的。也就是说被除数能够被除数除尽。如一组题。

另一种情况是:除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的。如二组题。

教师讲解:小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

4.理解循环小数。

下面我们共同研究无限小数中的一种:循环小数。(板书:循环小数)像二组题中的商3.333…,5.32727…就是循环小数。

(1)出示思考题:

①二组两题中商的小数部分有什么特点?(一题的商中有一个数字3重复出现;二题的商中两个数字27重复出现。)

小结:小数部分的一个数字或几个数字重复出现。

②小数部分的数字重复出现的地方有什么区别?(一题是从小数部分第一位就开始重复出现;二题是从小数部分第二位才开始重复出现。)

小结:小数部分从某一位起,数字开始重复出现。

(2)引导学生概括循环小数的定义:请你说说什么样的小数叫循环小数?

讨论后看书理解:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断

地重复出现,这样的小数叫做循环小数。

(3)加深理解:循环小数后边的省略号表示什么?(小数部分的位数是无限的。)进一步说明:循环小数是无限小数。

(4)循环小数的简便写法:

练习:判断下面的数,哪些是循环小数,为什么?是循环小数的用循环点表示。

0.9375 1.5353…

5.1281414… 0.2142857142857…

5.314162… 8.4666…

3.1415926… 0.19292

5.用循环小数的近似值表示除法的商。

循环小数也可以根据需要取它的近似值。

(1)投影出示例9:一辆汽车的油箱里装130千克汽油,行驶一段路

学生试做后讲解:130÷6=21.666…≈21.67(千克。)

答:大约用去21.67kg。

强调:①保留两位小数,要在千分位上四舍五入;

②用四舍五入法得到的近似值要用“≈”表示。

(2)练习:P27“做一做”。

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值。

28÷18= 2.29÷11.1= 153÷7.2=

(三)巩固反馈

1.下面哪道题的商是有限小数?哪道题的商是无限小数?

10÷9 1.332÷4 23÷3.33

2.写出下面各循环小数的近似值(保留三位小数):

3.在○里填上“>”,“<”或“=”符号。

4.思考题:

用循环小数表示1÷7,2÷7,3÷7的商,比较小数部分有什么规律?并根据这一规律直接写出4÷7,5÷7,6÷7的商。

5.课后作业:P29:1,2,3。

课堂教学设计说明

因为循环小数属于无限小数,因此,先让学生通过计算认识有限小数与无限小数,然后在无限小数知识的范围内进一步学习循环小数,使学生明确知识的结构。

教学由计算比赛引入,使全体学生积极参与。既激发学生学习兴趣,又创设情境,吸引

学生产生疑问,从而促进学生积极思维,去探究其中的原因。

在循环小数的意义的教学中,通过两个有思考性的问题:①二组两题中商的小数部分有什么特点?②小数部分数字重复出现的地方有什么区别?使学生抓住循环小数的本质特征。通过讨论,顺利概括出循环小数的意义,培养学生抽象概括能力。

板书设计(略)

XX文讯教育机构

WenXun Educational Institution

相关文档
最新文档