简谐运动中的振幅 周期 频率和相位
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin 0 取 π
2
x Acos(t π )
2
x
A
o
A
v
x
o
Tt
T 2
x0 A cos v0 Asin
A
x02
v02
2
tan v0 x0
对给定振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定.
13–2 简谐运动中的振幅 周期 频率和相位 第十三章 机械振动
讨论 已知 t 0, x 0, v 0求
0 Acos
π
2
v0 A sin 0
13–2 简谐运动中的振幅 周期 频率和相位 第十三章 机械振动
一 振幅
A xmax
二 周期、频率
x Acos(t )
x xt图
A
o
Tt
T
A
2
Acos[(t T ) ]
周期 T 2π
频率 1
T 2π
圆频率 2π 2π
T
弹簧振子周期
注意
T 2π m
k
周期和频率仅与振动系 统本身的物理性质有关
相差 2nπ (n为整数 )质点运动状态全同.(周期性)
3)初相位 (t 0) 描述质点初始时刻的运动状态.
( 取 [ π π] 或 [0 2π] )
13–2 简谐运动中的振幅 周期 频率和相位
四 常数 A 和 的确定
x Acos(t ) v A sin(t )
第十三章 机械振动
初始条件 t 0 x x0 v v0
13–2 简谐运动中的振幅 周期 频率和相位 第十三章 机械Leabharlann Baidu动
x 简谐运动中, x和 v
间不存在一一对应的关系. A
x Acos(t ) o
v A sin(t ) A
v v
T 2
xt 图
v T t
三 相位 t
1) t ( x, v) 存在一一对应的关系;
2)相位在 0 ~ 2π 内变化,质点无相同的运动状态;
2
x Acos(t π )
2
x
A
o
A
v
x
o
Tt
T 2
x0 A cos v0 Asin
A
x02
v02
2
tan v0 x0
对给定振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定.
13–2 简谐运动中的振幅 周期 频率和相位 第十三章 机械振动
讨论 已知 t 0, x 0, v 0求
0 Acos
π
2
v0 A sin 0
13–2 简谐运动中的振幅 周期 频率和相位 第十三章 机械振动
一 振幅
A xmax
二 周期、频率
x Acos(t )
x xt图
A
o
Tt
T
A
2
Acos[(t T ) ]
周期 T 2π
频率 1
T 2π
圆频率 2π 2π
T
弹簧振子周期
注意
T 2π m
k
周期和频率仅与振动系 统本身的物理性质有关
相差 2nπ (n为整数 )质点运动状态全同.(周期性)
3)初相位 (t 0) 描述质点初始时刻的运动状态.
( 取 [ π π] 或 [0 2π] )
13–2 简谐运动中的振幅 周期 频率和相位
四 常数 A 和 的确定
x Acos(t ) v A sin(t )
第十三章 机械振动
初始条件 t 0 x x0 v v0
13–2 简谐运动中的振幅 周期 频率和相位 第十三章 机械Leabharlann Baidu动
x 简谐运动中, x和 v
间不存在一一对应的关系. A
x Acos(t ) o
v A sin(t ) A
v v
T 2
xt 图
v T t
三 相位 t
1) t ( x, v) 存在一一对应的关系;
2)相位在 0 ~ 2π 内变化,质点无相同的运动状态;