初三数学函数复习试题(含答案)
初三中考数学函数综合题含答案
初三中考数学函数综合题含答案一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >-B .3x ≥-且2x ≠C .2x ≠D .3x >-且2x ≠2.如图,函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组0ax y b kx y -+=⎧⎨-=⎩的解是( )A .42x y =-⎧⎨=-⎩B .42x y =⎧⎨=⎩C .24x y =-⎧⎨=-⎩D .24x y =⎧⎨=⎩3.若反比例函数1k y x-=,当0x >时,y 随x 的增大而减小,则k 的取值范围是() A .1k >B .1k <C .1k >-D .1k <-4.将抛物线()2321y x =-+先向右平移2个单位长度,再向下平移2个单位长度,平移后所得的抛物线解析式是() A .()2341y x =-- B .()2343y x =-+ C .233y x =+D .231y x =-5.抛物线213y x =的开口方向、对称轴分别是( )A .向上,x 轴B .向上,y 轴C .向下,x 轴D .向下,y 轴 6.二次函数y =x 2+6x +4的对称轴是( ) A .x =6B .x =﹣6C .x =﹣3D .x =47.下列y 关于x 的函数中,一次函数为( ) A .()2y a x b =-+B .()211y k x =++C .2y x=D .221y x =+8.一次函数y kx b =+的图象与直线23y x =+平行,且与y 轴的交点为(0,2),则一次函数的表达式为( ) A .23y x =+B .22y x =+C .23y x =-+D .22y x =-+9.已知抛物线y =ax 2+bx +c (a ≠0)的顶点为(2,4),有以下结论:①当a >0时,b 2-4ac >0;②当a >0时,ax 2+bx +c≥4;③若点(-2,m ),(3,n )在抛物线上,则m <n ;④若关于x 的一元二次方程ax 2+bx +c =0的一根为-1,则另一根为5.其中正确的是( ) A .①②B .①④C .②③D .②④10.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y kx=(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 3>y 1>y 211.已知y =kx +b ,当x =2时,y =-2;当x =3时,y =0.则( )A .k =2,b =-6B .k =-6,b =2C .k =-2,b =6D .k =-2,b =-612.抛物线y =﹣2(x ﹣3)2﹣4的顶点坐标是( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,﹣4)D .(3,4)13.将一次函数23y x =-的图象沿y 轴向上平移3个单位长度后,所得图象的函数表达式为( ) A .2y x = B .26y x =- C .53y x =- D .3y x =-- 14.二次函数22(3)1y x =-+-的顶点坐标是( )A .(31), B .(13)-, C .(3,1)-D .(3,1)--15.已知A (﹣11,3y ),B (﹣21,2y ),C (1,y 3)是一次函数y =b ﹣3x 的图象上三点,则y 1、y 2、y 3的大小关系为( ) A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 1<y 3二、填空题16.一次函数(27)2y k x =-+中,y 随x 的增大而减小,则k 的取值范围是___________. 17.将直线213y x =-+向上平移3个单位后所得直线解析式为_______.18.已知点(2,)A m 在一次函数53y x =+的图象上,则m 的值是__.19.已知一次函数(1)2y m x m =-+-的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是______.20.若函数y =(m ﹣2)x +|m |﹣2是正比例函数,则m =_____.三、解答题21.如图,抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,并且与y 轴交于点C .(1)求此抛物线的解析式; (2)直线BC 的解析式为 ;(3)若点M 是第一象限的抛物线上的点,且横坐标为t ,过点M 作x 轴的垂线交BC 于点N ,设MN 的长为h ,求h 与t 之间的函数关系式及h 的最大值;(4)在x 轴的负半轴上是否存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形?如果存在;如果不存在,说明理由.22.如图,抛物线y =ax 2+bx +3与x 轴交于A (﹣1,0)、B (3,0)两点,抛物线的对称轴l 与x 轴交于M 点.(1)求抛物线的函数解析式;(2)设点P 是直线l 上的一个动点,当PA +PC 的值最小时,求PA +PC 长;(3)已知点N (0,﹣1),在y 轴上是否存在点Q ,使以M 、N 、Q 为顶点的三角形与△BCM 相似?若存在;若不存在,请说明理由.23.已知二次函数222y x x m =-+-的图象与x 轴有交点,求非负整数m 的值. 24.已知抛物线y =12x 2﹣x ﹣32与x 轴交于点A ,点B (点A 在点B 左侧). (1)求点A ,点B 的坐标;(2)用配方法求该抛物线的顶点C 的坐标,判断△ABC 的形状,并说明理由;(3)在抛物线的对称轴上是否存在点P ,使以点O 、点C 、点P 为顶点的三角形构成等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 25.已知抛物线222y x mx m =--.(1)求证:对任意实数m ,抛物线与x 轴总有交点. (2)若该抛物线与x 轴交于1,0A ,求m 的值.【参考答案】一、单选题 1.B 2.A3.A 4.A 5.B 6.C 7.B 8.B 9.D 10.A 11.A 12.C 13.A 14.D 15.A 二、填空题16.72k < 17.243y x =-+18.1319.2m >20.-2三、解答题21.(1)234y x x =-++ (2)4y x =-+(3)h 与t 之间的函数关系式为:()2404h t t t =-+<<,h 的最大值为4(4)在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由见解析 【解析】 【分析】(1)把A (﹣1,0),B (4,0) 代入抛物线解析式,即可求解;(2)根据抛物线解析式求出点C 的坐标,再利用待定系数法,即可求解;(3)根据题意可得点()2,34M t t t -++,点(),4N t t -+,从而得到24MN t t =-+,再根据二次函数的性质,即可求解;(4)分三种情况:当PC =BC 时,当PB =BC 时,当PC =PB 时,即可求解. (1)解:∵抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,∴3016340a c a c -+=⎧⎨+⨯+=⎩, 解得:14a c =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++; (2)解:当0x =时,4y =, ∴点()0,4C ,设直线BC 的解析式为()0y kx b k =+≠, 把点B (4,0),()0,4C 代入得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩,∴直线BC 的解析式为4y x =-+; (3) 解:如图,∵点M 是第一象限的抛物线上的点,且横坐标为t ,∴点()2,34M t t t -++,∵MN ⊥x 轴, ∴点(),4N t t -+,∴()()223444MN t t t t t =-++--+=-+,∴()()2242404h t t t t =-+=--+<<, ∴当2t =时,h 的值最大,最大值为4; (4)解:在x 轴的负半轴上存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由如下: 当PC =BC 时, ∵OC ⊥BP , ∴OP =OB ,∵点B (4,0),点P 在x 轴的负半轴上, ∴点()4,0P -; 当PB =BC 时, ∵B (4,0),()0,4C , ∴OC =4,OB =4,∴BP BC ==∴4OP BP OB =-=, ∵点P 在x 轴的负半轴上,∴点()4P -;当PC =PB 时,点P 位于BC 的垂直平分线上, ∵OB =OC =4,∴点O 位于BC 的垂直平分线上, ∴此时点P 与点O 重合,不合题意,舍去;综上所述,在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形. 【点睛】本题主要考查了求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质,熟练掌握用待定系数法求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质是解题的关键. 22.(1)y =﹣x 2+2x +3(2)PA +PC 的长为(3)存在,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭,理由见解析【解析】 【分析】(1)当x =0时,y =3,可得C (0,3).再设设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0),利用待定系数法,即可求解;(2)连接PA 、PB 、PC ,根据轴对称性可得PA =PB .从而得到PA +PC =PC +PB .进而得到当点P 在线段BC 上时,PC +AP 有最小值.即可求解;(3)先求出抛物线的对称轴,可得点()1,0M ,再由点N (0,﹣1),B (3,0),C (0,3).可得2,45,45MN BC BM CBM MNO ===∠=︒∠=︒,可得∠CBM =∠MNO ,然后分三种情况讨论,即可求解. (1)解:把x =0代入得:y =3, ∴C (0,3).设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0), 将点C 的坐标代入上式得:3=﹣3a ,解得:a =﹣1.∴抛物线的解析式为y =-(x +1)(x -3)=﹣x 2+2x +3. (2)解:如图,连接PA 、PB 、PC ,∵点A 与点B 关于直线l 对称,点P 在直线l 上, ∴PA =PB . ∴PA +PC =PC +PB . ∵两点之间线段最短,∴当点P 在线段BC 上时,PC +AP 有最小值. ∵OC =3,OB =3, ∴BC =32∴PA +PC 的最小值=32 (3)解:存在,理由: 抛物线的对称轴为直线x =﹣2ba=1. ∵抛物线的对称轴l 与x 轴交于M 点. ∴点()1,0M ,∵点N (0,﹣1),B (3,0),C (0,3). ∴OM =ON =1,OB =OC =3,∴2,32,2,45,45MN BC BM CBM MNO ===∠=︒∠=︒, ∴∠CBM =∠MNO ,当点Q 在点N 下方时,∠MNQ =135°,不符合题意, ∴点Q 在点N 上方,设点Q 的坐标为(0,n ).则QN =n +1, ∵以M 、N 、Q 为顶点的三角形与△BCM 相似, ∴∠QMN =∠CMB 或∠MQN =∠CMB , 当1Q MN CMB ∠=∠时,1Q MNCMB ,如图(2),∴1Q N MNBC BM=, ∴12232n +=,解得:2n =, ∴点()10,2Q ;当2MQ N CMB ∠=∠时,2MQ NCMB ,如图(3),∴2Q N MN MB BC=, ∴12232n +=13n =-,∴点210,3Q ⎛⎫- ⎪⎝⎭,综上所述,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了二次函数的综合题,相似三角形的判定和性质,两点之间,线段最短,待定系数法求二次函数解析式等知识,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键. 23.0或1或2或3 【解析】【分析】根据二次函数y =x 2-2x +m -2的图象与x 轴有交点,根据Δ≥0列出m 的不等式,求出m 的取值范围即可. 【详解】解:∵二次函数y =x 2-2x +m -2的图象与x 轴有交点, ∴Δ=4-4(m -2)≥0, ∴m ≤3, ∵m 为非负整数, ∴m =0或1或2或3. 【点睛】本题主要考查了抛物线与x 轴交点的知识,解答本题的关键是根据二次函数y =x 2-2x +m -2的图象与x 轴有交点列出m 的不等式,此题难度不大. 24.(1)A (-1,0),B (3,0)(2)点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由见解析(3)点P 的坐标为(1,2),2),(1,2)或3(1,)4-【解析】 【分析】(1)把0y =代入到21322y x x =--得,213022x x --=,解得13x =,21x =-,又因为点A 在点B 的左侧,即可得; (2)21322y x x =--配方得21(1)22y x =--,即可得点C 的坐标为(1,-2),根据点A ,B ,C 的坐标得4AB =,AC ,BC =AC =BC ,又因为2224+=,所以222AC BC AB +=,即可得90ACB ∠=︒,从而得出ACB △是等腰直角三角形;(3)当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形,即可得点P 的坐标(1,2),当CO CP =时,CP =,即可得点P 的坐标为2)或(1,2),当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a ,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,解得34a =-,即可得点P 的坐标为3(1,)4-,综上,即可得. (1)解:把0y =代入到21322y x x =--得, 213022x x --= 2230x x --= (3)(1)0x x -+=解得13x =,21x =-, ∵点A 在点B 的左侧,∴A (-1,0),B (3,0). (2) 解:21322y x x =-- =21(3)2x x -- =21(1)22x x -+- =21(1)22x --∴点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由如下:∵A (-1,0),B (3,0),C (1,-2), ∴3(1)4AB =--=,22(11)(02)8AC =----=, 22(31)(02)8BC =---=,∴AC =BC , ∵222(8)(8)4+=, ∴222AC BC AB +=, ∴90ACB ∠=︒,∴ACB △是等腰直角三角形. (3)解:当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形, ∴点P 的坐标为(1,2);当CO CP =时,22(10)(20)5CP =-+-=, ∴点P 的坐标为(1,52)-或(1,52)--;当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a , 如图所示,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,22441a a a ++=+34a =- ∴点P 的坐标为3(1,)4-;综上,点P 的坐标为(1,2),2),(1,2)或3(1,)4-. 【点睛】本题考查了二次函数与三角形的综合,解题的关键是掌握二次函数的性质,等腰三角形的判定与性质.25.(1)见解析(2)122,1m m =-=【解析】【分析】(1)令0y =,得到关于x 的一元二次方程,根据一元二次方程根的判别式判断即可; (2)令1x =,0y =,解一元二次方程即可求得m 的值(1)令0y =,则有2220x mx m --=222890m m m ∆=+=≥即,对于任意实数方程2220x mx m --=总有两个实数根,∴对任意实数m ,抛物线与x 轴总有交点.(2)解:∵抛物线222y x mx m =--与x 轴交于1,0A ,∴202m m =--解得122,1m m =-=【点睛】本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键.。
初中函数测试题及答案
初中函数测试题及答案一、选择题(每题3分,共30分)1. 函数y=2x+3中,当x=1时,y的值为()A. 5B. 4C. 3D. 22. 下列哪个函数的图像是一条直线?()A. y=x^2B. y=2x+1C. y=x/(x-1)D. y=√x3. 函数y=-2x+1的斜率是多少?()A. 2B. -2C. 1D. -14. 函数y=3x-5与y轴的交点坐标是()A. (0, -5)B. (0, 3)C. (5, 0)D. (-5, 0)5. 如果函数y=kx+b的图像经过点(2, 6)和(3, 9),那么k的值是()A. 3B. 2C. 1D. 06. 函数y=4x+5的图像与x轴的交点坐标是()A. (-5/4, 0)B. (5/4, 0)C. (0, 5)D. (0, -5)7. 函数y=x^2-4x+3的顶点坐标是()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)8. 函数y=1/x的图像在哪个象限?()A. 第一象限和第三象限B. 第二象限和第四象限C. 第一象限和第二象限D. 第三象限和第四象限9. 函数y=|x|的图像关于哪个轴对称?()A. x轴B. y轴C. 原点D. 都不是10. 下列哪个函数是奇函数?()A. y=x^2B. y=x^3C. y=x+1D. y=x-1二、填空题(每题4分,共20分)11. 函数y=2x-1的图像与x轴的交点坐标是______。
12. 函数y=-3x+4的斜率是______。
13. 函数y=x^2-6x+8的顶点坐标是______。
14. 函数y=1/x的图像在第一象限的斜率是______。
15. 函数y=|x-2|的图像与y轴的交点坐标是______。
三、解答题(每题10分,共50分)16. 已知函数y=5x-2,求当x=-1时,y的值。
17. 已知函数y=-4x+7,求该函数与y轴的交点坐标。
18. 已知函数y=2x^2-3x+1,求该函数的顶点坐标。
中考函数复习题及答案
中考函数复习题及答案一、选择题1. 函数y = 2x + 3的斜率是()A. 2B. 3C. -2D. -32. 下列哪个是一次函数的图象?A. 直线B. 曲线C. 抛物线D. 双曲线3. 函数f(x) = x^2 - 4x + 4的顶点坐标是()A. (2, 0)B. (-2, 0)C. (0, 4)D. (2, 4)4. 函数y = 1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 函数y = |x|的图象是()A. 直线B. V形C. U形D. 抛物线答案:1. A 2. A 3. A 4. D 5. B二、填空题6. 函数y = 3x - 2的截距是______。
7. 如果一个函数的图象与x轴交于点(1,0),则该函数可以表示为y = ______。
8. 函数y = x^2 + 2x + 1可以化简为y = (x + ______)^2。
9. 函数y = 1/x的图象在x轴的正半轴上,y的值随着x的增大而______。
10. 函数y = kx + b,当k > 0时,图象从左向右上升;当k < 0时,图象从左向右______。
答案:6. -2 7. x - 1 8. 1 9. 减小 10. 下降三、解答题11. 已知函数f(x) = 2x - 5,求f(3)的值。
12. 已知二次函数y = ax^2 + bx + c的顶点坐标为(-1, -4),求a的值。
13. 函数y = 3x + 7与x轴的交点坐标是什么?14. 函数y = x^2 - 6x + 9的最大值是多少?15. 已知函数y = |x - 2| + 3,求x = 2时的函数值。
答案:11. f(3) = 2 * 3 - 5 = 6 - 5 = 112. 顶点坐标(-1, -4),根据顶点公式,-b/2a = -1,b = 2a,又因为顶点的y坐标是-4,所以有a(-1)^2 + b(-1) + c = -4,代入b =2a,解得a = -4。
初三函数测试题目及答案
初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。
答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。
答案:013. 函数y=1/x的图象在x=2处的斜率是________。
答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。
答案:115. 函数y=2x^2-4x+1的顶点坐标是________。
答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。
答案:顶点坐标为(1, 1)。
初中函数专题试题及答案
初中函数专题试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 - 2x \)答案:B2. 函数 \( y = 3x - 5 \) 的图象与x轴的交点坐标是:A. \( (0, -5) \)B. \( (5, 0) \)C. \( (-5, 0) \)D. \( (0, 5) \)答案:C3. 如果函数 \( y = 2x + 1 \) 在 \( x = 2 \) 时的值为5,那么\( x = 1 \) 时的值是:A. 3B. 4C. 2D. 1答案:A4. 函数 \( y = -\frac{1}{2}x + 3 \) 的斜率是:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{3}{2} \)D. \( -3 \)答案:B5. 函数 \( y = 4x^2 \) 的顶点坐标是:A. \( (0, 0) \)B. \( (0, 4) \)C. \( (2, 0) \)D. \( (0, -4) \)答案:A6. 函数 \( y = x^2 - 6x + 9 \) 可以写成完全平方的形式:A. \( (x - 3)^2 \)B. \( (x + 3)^2 \)C. \( (x - 3)^2 + 3 \)D. \( (x + 3)^2 - 3 \)答案:A7. 函数 \( y = 2x^2 - 8x + 7 \) 的最小值是:A. 1B. 3C. 7D. 无法确定答案:A8. 函数 \( y = \frac{1}{x} \) 的图象是:A. 一条直线B. 两条直线C. 一个双曲线D. 一个抛物线答案:C9. 函数 \( y = 3x^2 + 2x - 5 \) 的对称轴是:A. \( x = -\frac{2}{3} \)B. \( x = \frac{2}{3} \)C. \( x = -1 \)D. \( x = 1 \)答案:B10. 函数 \( y = 2x + 3 \) 和 \( y = -x + 1 \) 的交点坐标是:A. \( (-2, -1) \)B. \( (2, 5) \)C. \( (-1, 1) \)D. \( (1, 3) \)答案:C二、填空题(每题4分,共20分)11. 函数 \( y = 2x + 1 \) 在 \( x = -1 \) 时的值为 _______。
初中数学 函数专题练习及答案
初中数学函数专题练习及答案函数专题讲稿二次函数:1.抛物线 $y=- (x-1)^2+3$ 的顶点坐标为 $(1,3)$。
2.抛物线 $y=x^2-2x+1$ 的顶点坐标是 $(1,0)$。
3.抛物线$y=2x^2+6x+c$ 与$x$ 轴的一个交点为$(1,0)$,则这个抛物线的顶点坐标是 $(-1,-2)$。
4.二次函数 $y=(x-1)^2+2$ 的最小值是 $2$。
5.已知二次函数 $y=-x^2+2x+c$ 的对称轴和 $x$ 轴相交于点 $(1,0)$,则 $m$ 的值为 $1$。
6.抛物线 $y=x^2-2x+3$ 的对称轴是直线 $x=1$。
7.将抛物 $y=-(x-1)$ 向左平移 $1$ 个单位后,得到的抛物线的解析式是 $y=-x^2$。
8.把抛物线 $y=x^2+bx+c$ 向右平移 $3$ 个单位,再向下平移 $2$ 个单位,所得图像的解析式是 $y=x^2-3x+5$,则有$b=3$,$c=4$。
9.已知抛物线 $y=x^2+(m-1)x+(m-2)$ 与 $x$ 轴相交于 $A$,且线段 $AB=2$,则 $m$ 的值为 $2$。
10.一个满足条件的二次函数解析式是 $y=-x^2$。
11.若抛物线 $y=x^2+2x+a$ 的顶点在 $x$ 轴的下方,则$a$ 的取值范围是 $a<1$。
12.已知二次函数 $y=ax^2+bx+c$,且 $a0$,则一定有$b^2-4ac<0$。
利用图像:1.若直线 $y=m$($m$ 为常数)与函数 $y=4$ 的图像恒有三个不同的交点,则常数 $m$ 的取值范围是 $m>4$。
2.阴影部分的面积相等的是 $①②$。
3.若 $A(-\frac{13}{4},1)$,$B(-1,y_2)$,$C(\frac{5}{3},y_3)$ 为二次函数 $y=-x^2-4x+5$ 的图象上的三点,则 $y_1>y_2>y_3$。
初三数学函数部分练习题
初三数学函数部分练习题【题目一】1. 已知函数$f(x)=2x^2-3x+5$,求当$x=2$时的函数值。
2. 若函数$g(x)$的图像关于$y$轴对称,且$g(1)=-3$,求$g(-1)$的值。
3. 函数$h(x)=\frac{x+1}{\sqrt{x}}$,求$h(-4)$的值。
4. 若函数$p(x)$的图像通过点$(1,2)$,求$p(-1)$的值。
【解答一】1. 计算$f(2)$的值,将$x=2$代入函数$f(x)$的表达式:$$f(2)=2\times 2^2 -3\times 2 +5$$计算得$f(2)=9$,所以当$x=2$时,函数值为9。
2. 由题意可知,函数$g(x)$关于$y$轴对称,即满足$g(x)=g(-x)$,因此有:$$g(1)=g(-1)$$已知$g(1)=-3$,代入上式可得$g(-1)=-3$,所以$g(-1)$的值为-3。
3. 将$x=-4$代入函数$h(x)$的表达式计算,有:$$h(-4)=\frac{(-4)+1}{\sqrt{-4}}$$由于$\sqrt{-4}$不存在实数解,所以$h(-4)$的值为无解。
4. 已知函数$p(x)$通过点$(1,2)$,即满足$p(1)=2$,代入$p(x)$的表达式,可以确定一个方程:$$p(1)=2$$$$2=1^2-1+b$$解方程可得$b=2$,因此函数$p(x)$的表达式变为$p(x)=x^2-x+2$。
将$x=-1$代入可得:$$p(-1)=(-1)^2-(-1)+2$$计算得$p(-1)=4$,所以$p(-1)$的值为4。
【题目二】1. 已知函数$f(x)=\frac{2x-1}{x-1}$,求$f(0)$的值。
2. 若函数$g(x)=\frac{x-1}{3x+2}$,求$g(2)$的值。
3. 函数$h(x)=\frac{1}{x^2-1}$,求$h(-1)$的值。
4. 若函数$p(x)=\frac{ax-b}{x-c}$,并且$p(1)=3$,求$p(-1)$的值。
九年级函数专题试卷及答案
九年级函数专题试卷及答案专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2/xB. y = x^2C. y = 3x + 1D. y = 1/x^24. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是?A. k = 0B. k > 0C. k < 0D. k ≠ 05. 下列函数中,哪个是一次函数?A. y = x^2B. y = 2/xC. y = 3x + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。
()2. 反比例函数的图像是一条经过原点的直线。
()3. 一次函数的图像是一条直线。
()4. 二次函数的图像是一条抛物线。
()5. 函数y = kx + b是一次函数当且仅当b = 0。
()三、填空题(每题1分,共5分)1. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是______。
2. 如果函数y = kx + b的图像是一条经过原点的直线,那么b的值是______。
3. 反比例函数的一般形式是______。
4. 二次函数的一般形式是______。
5. 一次函数的图像是一条______。
四、简答题(每题2分,共10分)1. 请简述正比例函数的定义。
2. 请简述反比例函数的定义。
3. 请简述一次函数的定义。
4. 请简述二次函数的定义。
5. 请简述函数图像的斜率是什么。
五、应用题(每题2分,共10分)1. 如果函数y = 2x的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?2. 如果函数y = 3/x的图像是一条经过原点的直线,那么当x = 2时,y的值是多少?3. 如果函数y = kx + b的图像是一条经过原点的直线,那么当x = 1时,y的值是多少?4. 如果函数y = x^2的图像是一条抛物线,那么当x = 2时,y的值是多少?5. 如果函数y = 1/x^2的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?六、分析题(每题5分,共10分)1. 请分析一次函数和二次函数的图像有什么不同。
初三中考数学函数综合题含答案
初三中考数学函数综合题含答案一、单选题1.已知点A (1,y 1),B (2,y 2)在抛物线y =(x +1)2+2上,则下列结论正确的是( ). A .122y y >> B .212y y >> C .122y y >>D .212y y >>2.抛物线y =14(x ﹣6)2+3的顶点坐标是( )A .(6,﹣3)B .(6,3)C .(﹣6,3)D .(﹣6,﹣3) 3.抛物线y =2(x -1)2-3的顶点坐标是( ) A .()1,3-- B .()1,3- C .()1,3- D .()1,3 4.一次函数y =-2x +5的图像不经过的象限是( )A .一B .二C .三D .四 5.将函数y =2x 的图象向上平移4个单位后,下列各点在平移后的图象上的是( ) A .()1,5 B .()0,4 C .()1,3- D .()2,3- 6.在直角坐标系的x 轴的负半轴上,则点P 坐标为( )A .()4,0-B .()0,4C .()0,3-D .()1,0 7.直线7y x =--一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.下列各点中,在反比例函数2y x=-图象上的是-( )A .(21),B .233⎛⎫⎪⎝⎭, C .(21)--, D .(12)-,9.已知点()11,A x y ,()22,B x y 在直线()0y kx b k =+≠上,当12x x <时,12y y >,且0kb <,则直线()0y kx b k =+≠在平面直角坐标系中的图象大致是( )A .B .C .D .10.下列一次函数中,y 随x 的增大而减小的是( ) A .y =x ﹣3 B .y =1﹣x C .y =2x D .y =3x +2 11.下列二次函数中,对称轴是直线1x =的是( )A .21y x =+B .()221y x =+C .()21y x =-+D .()231y x =--12.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限13.如图,△ABC 中,点B ,C 是x 轴上的点,且A (3,2),以原点O 为位似中心,作△ABC 的位似图形△A ′B ′C ′,且△ABC 与A ′B ′C ′的相似比是1:2,则点A ′的坐标是( )A .(﹣6,﹣4)B .(﹣1.5,﹣1)C .(1.5,1)或(﹣1.5,﹣1)D .(6,4)或(﹣6,﹣4)14.已知点P (a ,a ﹣1)在平面直角坐标系的第四象限,则a 的取值范围在数轴上可表示为( ) A .B .C .D .15.要得到抛物线()2321y x =-++可以将抛物线232y x =-+( ) A .先向右平移2个单位,再向上平移1个单位 B .先向右平移2个单位,再向下平移1个单位C .先向左平移2个单位,再向上平移1个单位D .先向左平移2个单位,再向下平移1个单位二、填空题16.已知点(),P m n 在一次函数1y x =+的图象上,则n m -=______.17.已知某函数图像过点(-1,1),写出一个符合条件的函数表达式:______.18.将一次函数123=+y x 向上平移5个单位长度后得到直线AB ,则平移后直线AB 对应的函数表达式为______.19.将抛物线22(3)y x m =-+向右平移3个单位,再向上平移1个单位后恰好经过点(2,3),则m 值是 __.20.若抛物线y =x 2+bx +经过点A (0,5),B (4,5),则其对称轴是直线______三、解答题21.已知抛物线y =-(x -m )2+1与x 轴的交点为A ,B (B 在A 的右边),与y 轴的交点为C .(1)写出m =1时与抛物线有关的三个正确结论.(2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由. (3)请你提出两个对任意的m 值都能成立的正确命题.22.在平面直角坐标系xOy 中,点()11,A x y ,()22,B x y 在抛物线()2210y ax ax a =-+>上,其中12x x < (1)求抛物线的对称轴;(2)若122x x a +=-,比较1y 与2y 的大小关系,并说明理由.23.如图,在平面直角坐标系中,二次函数243y ax x =+-图象的顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D .点B 的坐标是()1,0.(1)求A ,C 两点的坐标,并根据图象直接写出当0y >时x 的取值范围;(2)将图象向上平移m 个单位后,二次函数图象与x 轴交于E ,F 两点,若6EF =,求m 的值.24.一抛物线以()1,9-为顶点,且经过x 轴上一点()4,0-,求该抛物线解析式及抛物线与y 轴交点坐标.25.已知抛物线y =(x ﹣1)2+k 与y 轴相交于点A (0,﹣3),点P 为抛物线上的一点. (1)求此抛物线的解析式;(2)若点P 的横坐标为2,则点P 到x 轴的距离为 .【参考答案】一、单选题 1.D 2.B 3.C 4.C 5.B 6.A 7.A 8.D 9.C 10.B 11.D 12.A 13.D 14.C 15.D 二、填空题 16.117.y =-x (答案不唯一) 18.y =13x +719.-3020.2x = 三、解答题21.(1)抛物线的对称轴为直线x =1,抛物线与x 轴的两个交点为(0,0),(2,0),抛物线开口向下 (2)存在,2(3)无论m 为何值,函数的始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点 【解析】 【分析】(1)当m =1时,y =-(x -1)2+1,根据()2y a x h k =-+的性质写出三个结论即可; (2)求得C (0,1-m 2),根据点B 在原点的右边,点C 在原点的下方,可得m >1,根据等腰三角形的性质可得1+m =m 2-1,解方程求解即可;(3)根据()2y a x h k =-+的性质,可知无论m 为何值,函数的始终有最大值1;无论m为何值,函数始终与x 轴有两个不同的交点. (1)解:当m =1时,y =-(x -1)2+1, ∴抛物线的对称轴为直线x =1, 令0y =,-(x -1)2+1=0, 解得120,2x x ==,抛物线与x 轴的两个交点为(0,0),(2,0), 抛物线开口向下; (2)存在,理由如下: 令x =0,则y =1-m 2, ∴C (0,1-m 2),令y =0,则x =1+m 或x =m -1, ∴B (1+m ,0),∵点B 在原点的右边,点C 在原点的下方, ∴1+m >0,1-m 2<0, ∴m >1,∵△BOC 为等腰三角形, ∴1+m =m 2-1,解得m =2或m =-1(舍), ∴m =2; (3)无论m 为何值,函数始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点. 【点睛】本题考查了()2y a x h k =-+的性质,等腰三角形的性质,解一元二次方程,二次函数与坐标轴交点问题,掌握()2y a x h k =-+的性质是解题的关键. 22.(1)直线1x = (2)12y y >,见解析 【解析】 【分析】(1)将解析式整理成顶点式,直接写出对称轴;(2)方法一:利用作差法,将12y y -表示出来,再进行判断正负,据此判断大小即可;方法二:判断12,y y 距离对称轴的大小,根据函数增减性判断. (1)解:∵()222111y ax ax a x a =-+=--+, ∴抛物线的对称轴为直线1x = (2)方法一:()()221211222121y y ax ax ax ax -=-+--+,()()22122122ax ax ax ax =-+-,()()12122a x x x x =-+-, ()212a x x =--,∵0a >,12x x <, ∴120y y ->, 即12y y >,方法二:∵0a >,122x x a +=-, ∴122x x +<, ∴1212x x +<, 又∵抛物线对称轴是直线1x =,开口向上,且12x x <, ∴1211x x ->-, ∴12y y >. 【点睛】本题主要考查二次函数中系数的运用,以及比较函数值的大小,熟练掌握二次函数的基础运算是解题的关键.23.(1)(2,1)A ,(3,0)C ,当0y >时,13x <<. (2)8m = 【解析】 【分析】(1)利用待定系数法求出a ,再求出点C 的坐标即可解决问题.(2)由题意得抛物线的解析式为243y x x m =-+-+,设二次函数图象与x 轴交于1(E x ,0),2(F x ,0)两点,则124x x +=,123x x m =-,由12|6|x x -=可得出答案.(1)解:把(1,0)B 代入243y ax x =+-,得043a =+-,解得1a =-,2243(2)1y x x x ∴=-+-=--+,)1(2,A ∴,对称轴为直线2x =,B ,C 关于2x =对称,(3,0)C ∴,∴当0y >时,13x <<.(2)解:抛物线向上平移m 个单位,可得抛物线的解析式为243y x x m =-+-+,设二次函数图象与x 轴交于1(E x ,0),2(F x ,0)两点,则124x x +=,123x x m =-,12||6x x ∴-=,212()36x x ∴-=,21212()436x x x x ∴+-=,164(3)36m ∴-⨯-=,8m ∴=.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质和二次函数图象上点的坐标特征,解决问题的关键是能够把二次函数的一般形式化为顶点式. 24.y =﹣x 2-2x +8;抛物线与y 轴交点为()0,8 【解析】 【分析】知道顶点和抛物线上一点,可以用抛物线的顶点式求答; 【详解】解:设抛物线解析式为()2y a x h k =-+,依题意1h =-,9k =,将()4,0-代入()219y a x =++中,得099a =+,解得1a =-,∴抛物线解析式为()219y x =-++,即y =﹣x 2-2x +8; 令0x =,则8y =,∴抛物线与y 轴交点为()0,8. 【点睛】本题考查待定系数法求二次函数的解析式;在知道顶点坐标的时候,利用顶点式求二次函数解析式十分方便. 25.(1)223y x x =-- (2)3 【解析】 【分析】(1)把点A (0,﹣3),代入抛物线解析式,即可求解;(2)根据抛物线()214y x =--的对称轴为直线1x =,可得点P 和点A (0,﹣3)关于直线1x =对称,从而得到点的纵坐标为-3,即可求解.(1)解:∵抛物线y =(x ﹣1)2+k 与y 轴相交于点A (0,﹣3), ∴()2301k -=-+, 解得:4k =-,∴此抛物线的解析式为()221423y x x x =--=--; (2)解:∵抛物线()214y x =--的对称轴为直线1x =, ∴点P 和点A (0,﹣3)关于直线1x =对称, ∴点的纵坐标为-3, ∴点P 到x 轴的距离为3. 【点睛】本题主要考查了求二次函数的解析式,利用抛物线的对称性求函数值,熟练掌握利用待定系数法求函数解析式的步骤是解题的关键.。
初三数学函数基础知识试题答案及解析
初三数学函数基础知识试题答案及解析1.函数y=中,自变量x的取值范围是【答案】x≠2.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.试题解析:要使分式有意义,即:x-2≠0,解得:x≠2.【考点】1.函数自变量的取值范围;2.分式有意义的条件.2.函数中自变量x的取值范围是()A.x>2B.x≥2C.x≤2D.x≠2【答案】C.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选C.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.函数y=的自变量x的取值范围为.【答案】x≥﹣1【解析】由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【考点】函数自变量的取值范围4.如图1,在平面直角坐标系中,将□ABCD放置在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为()A.4B.4C.8D.8【答案】C.【解析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=-x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8.故选C.【考点】动点问题的函数图象.5.如图,在平面直角坐标系中,以点A(2,3)为顶点任作一直角∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P、Q,连接PQ,过点A作AH⊥PQ于点H,设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D.【解析】应用特殊元素法和排他法求解:如图1,当点P与点O重合时,x=0,y=2.故可排除选项C;如图2,当点Q与点O重合时, y=3.故可排除选项A;如图3,当x=2时,∵AH⊥PQ,∴,即,故可排除选项B.故选D.【考点】1.动态问题的函数图象分析;2.勾股定理;3.相似三角形的判定和性质;户4.特殊元素法和排他法的应用.6.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠1【答案】B.【解析】根据题意知:x-1≥0解得:x≥1.故选B.【考点】1.自变量的取值范围;2.二次根式有意义的条件.7.函数中,自变量x的取值范围是_________【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.8.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y 与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【解析】D.应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.【考点】1.动点问题的函数图象分析;2.排他法的应用.9.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.B.C.当0<t≤10时,D.当时,△PBQ是等腰三角形【答案】D【解析】(1)结论A正确,理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,,∴EF=8。
初三数学函数练习题及答案
初三数学函数练习题及答案1. 已知函数 y = 2x + 3,求当 x 为 4 时的函数值。
解答:将 x = 4 代入函数中,得到 y = 2(4) + 3 = 11,所以当 x 为 4 时,函数值为 11。
2. 求函数 y = 3x - 1 的解析式。
解答:已知函数的解析式为 y = 3x - 1,其中 3 是函数的斜率,-1 是y 轴的截距。
所以函数的解析式为 y = 3x - 1。
3. 已知函数 y = 4x + 2,求当 y = 14 时的 x 的值。
解答:将 y = 14 代入函数中,得到 14 = 4x + 2,然后移项得到 4x = 14 - 2,即 4x = 12。
最后除以 4 得到 x = 3,所以当 y = 14 时,x 的值为3。
4. 求函数 y = 2x^2 - 3x + 1 的最大值或最小值,并说明是最大值还是最小值。
解答:首先,可以通过计算函数的导数来确定最大值或最小值。
对函数 y = 2x^2 - 3x + 1 求导得到 y' = 4x - 3。
令 y' = 0,解得 x = 3/4。
将x = 3/4 代入原函数,得到 y = 2(3/4)^2 - 3(3/4) + 1 = 7/8。
所以函数的最大值或最小值为 7/8,由于函数的二次项系数为正数,所以该值为最小值。
5. 求函数 y = x^3 - 2x^2 + 3x 的零点。
解答:函数的零点即为使 y = 0 的 x 值。
将 y = 0 代入函数中,得到x^3 - 2x^2 + 3x = 0。
通过因式分解,可得到 x(x - 1)(x - 3) = 0。
因此,函数的零点为 x = 0, x = 1, x = 3。
6. 求函数 y = log2(x) 的定义域和值域。
解答:对于函数 y = log2(x),由于对数函数的定义需满足 x > 0,所以该函数的定义域为 x > 0。
而对数函数的值域为实数集,所以函数 y= log2(x) 的值域为实数集。
中考数学总复习《函数》专项测试卷-附参考答案
中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。
2024年数学九年级上册函数基础练习题(含答案)
2024年数学九年级上册函数基础练习题(含答案)试题部分一、选择题:1. 下列函数中,哪一个不是正比例函数?A. y = 2xB. y = 3x + 1C. y = 5x 2D. y = 4x2. 已知函数y = (2x + 3)²,则该函数的对称轴是:A. x = 3/2B. x = 3/2C. y = 3D. x = 03. 下列函数中,哪一个函数在x轴右侧是递增的?A. y = x²B. y = x²C. y = 2xD. y = 2x4. 若函数y = kx + b的图象经过一、二、四象限,则k和b的取值范围是:A. k > 0, b > 0B. k < 0, b > 0C. k > 0, b < 0D. k < 0, b < 05. 已知一次函数y = 3x 1,当x = 2时,y的值为:A. 5B. 6C. 7D. 86. 下列哪个函数是反比例函数?A. y = x²B. y = 1/xC. y = 2x + 3D. y = 3x² 2x7. 已知函数y = (1/2)x + 3,当x = 4时,y的值为:A. 5B. 6C. 7D. 88. 一次函数y = kx + b的图象与y轴的交点为(0,3),则b 的值为:A. 3B. 3C. 0D. 19. 已知反比例函数y = 6/x,当x = 2时,y的值为:A. 3B. 4C. 5D. 610. 下列哪个函数的图象是一个经过原点的直线?A. y = x²B. y = 2xC. y = 1/xD. y = 3x² 2x二、判断题:1. 一次函数的图象是一条直线。
()2. 反比例函数的图象是一个经过原点的直线。
()3. 一次函数y = kx + b中,k为斜率,b为截距。
()4. 两个一次函数的图象一定相交。
()5. 一次函数y = 2x的图象经过一、二、三象限。
中考数学专题复习:函数基础知识练习题(含答案)
中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
初中函数综合试题及答案
初中函数综合试题及答案一、选择题(每题3分,共30分)1. 函数y=2x+3的图象是一条直线,其斜率k和截距b分别是()A. k=2, b=3B. k=3, b=2C. k=-2, b=3D. k=-3, b=22. 若函数y=x^2-4x+3的最小值是-1,则x的值是()A. 2B. 3C. 4D. 53. 函数y=-2x+1与y=-x-1的交点坐标是()A. (0,1)B. (1,-1)C. (-1,-3)D. (2,-3)4. 函数y=x+1/x的值域是()A. (-∞,-2]∪[2,+∞)B. (-∞,-1]∪[1,+∞)C. (-∞,0)∪(0,+∞)D. (-∞,-1)∪(1,+∞)5. 函数y=x^3-3x^2+2在区间(1,2)上是()A. 增函数B. 减函数C. 先增后减D. 先减后增6. 若函数y=x^2+2x-3与x轴有两个交点,则这两个交点的横坐标之和是()A. -2B. 2C. -4D. 47. 函数y=1/x的图象关于()A. 原点对称B. y轴对称C. x轴对称D. 直线y=x对称8. 函数y=x^2-6x+8的顶点坐标是()A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)9. 函数y=2x-1与直线y=3x+2平行的条件是()A. 斜率不相等B. 斜率相等C. 截距不相等D. 截距相等10. 函数y=x^2-4x+m的图象与x轴有两个交点,则m的取值范围是()B. m<4C. m≥4D. m≤4二、填空题(每题3分,共15分)1. 函数y=x^2-6x+8的对称轴是直线x=______。
2. 若函数y=x^2-4x+3的图象向上平移2个单位,则新的函数解析式为y=______。
3. 函数y=-2x+1与y=-x-1的交点坐标是(1,-1),因此函数y=-2x+1的图象经过点______。
4. 函数y=x+1/x在x=1处的导数为______。
初三数学函数试题及答案
初三数学函数试题及答案一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = 3x + 2B. y = x^2 + 1C. y = 1/xD. y = √x2. 若函数y = 2x - 3的图象经过点(2,1),则该函数的解析式为()A. y = 2x - 5B. y = 2x - 3C. y = 2x + 1D. y = 2x - 13. 函数y = 3x + 1与y = -2x + 5的交点坐标是()A. (-1, 4)B. (1, 2)C. (-1, 2)D. (1, 4)4. 函数y = 4x - 1的图象在y轴上的截距为()A. 1B. -1C. 4D. -45. 函数y = 5x + 2的图象在x轴上的截距为()A. 0.4B. -0.4C. 2/5D. -2/56. 若一次函数y = kx + b的图象经过原点,则()A. k ≠ 0,b = 0B. k = 0,b ≠ 0C. k = 0,b = 0D. k ≠ 0,b ≠ 07. 函数y = 3x + 2的图象在x轴上的截距为()A. 2/3B. -2/3C. 2D. -28. 函数y = 2x - 3与x轴的交点坐标为()A. (1.5, 0)B. (-1.5, 0)C. (3, 0)D. (-3, 0)9. 函数y = -x + 4的图象在y轴上的截距为()A. 4B. -4C. 0D. -010. 函数y = x^2 - 4x + 3的顶点坐标为()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)二、填空题(每题4分,共20分)1. 函数y = 2x + 3的图象在x轴上的截距为______。
2. 函数y = -3x + 4的图象在y轴上的截距为______。
3. 函数y = 4x - 2的图象与x轴的交点坐标为______。
4. 函数y = 5x - 6的图象与y轴的交点坐标为______。
初中数学九年级总复习《函数》专项试卷含详解答案
AP,当点 P 满足 DP+AP的值最小时, P 点坐标为
.
第 11 题图
第 12 题图
第 13 题图
第 14 题图
12. 如图,在平面直角坐标系中,正方形 ABOC和正方形 DOFE的顶点 B,F 在 x
轴上,顶点
C,D 在 y 轴上,且
S△ADF= 4,反比例函数
??=
??
(
x>
0)的图象经
??
《函数》总复习试卷含答案
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分)
1.在函数 ??= √??+1中,自变量 x 的取值范围是(
)
??-2
A. x>﹣ 1 B .x≥﹣ 1 C .x>﹣ 1 且 x≠2 D .x≥﹣ 1 且 x≠ 2
2.如图,若一次函数 y=kx+b 的图象与两坐标轴分别交于 A,B 两点,点 A 的坐
22. (本小题满分 10 分) 某实验学校为开展研究性学习, 准备购买一定数量的两人学习桌和三人学习 桌,如果购买 3 张两人学习桌和 1 张三人学习桌需 220 元;如果购买 2 张两 人学习桌和 3 张三人学习桌需 310 元.
(1)求两人学习桌和三人学习桌的单价; (2)学校欲投入资金不超过 6000 元,购买两种学习桌共 98 张,以至少满足
第 23-24 题每小题 12 分, 25 题 14 分,共 96 分)
17. (本小题满分 8 分)
对于给定的两个函数,任取自变量 x 的一个值,当 x<1 时,它们对应的函
数值互为相反数:当 x≥1 时,它们对应的函数值相等,我们称这样的两个
函 数 互 为 相 关 函 数 , 例 如 : 一 次 函 数 y=x-4 , 它 的 相 关 函 数 为 ??=
初中函数综合试题(卷)(附答案解析)
初中函数综合试题(卷)(附答案解析)一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >- B .3x ≥-且2x ≠ C .2x ≠ D .3x >-且2x ≠2.将抛物线y =x 2向右平移3个单位,再向上平移2个单位,得到的抛物线是( )A .y =(x +3)2﹣2B .y =(x +3)2+2C .y =(x ﹣3)2﹣2D .y =(x ﹣3)2+2 3.二次函数y =2x 2﹣1的图象的顶点坐标是( )A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1) 4.在直角坐标系的x 轴的负半轴上,则点P 坐标为( )A .()4,0-B .()0,4C .()0,3-D .()1,05.已知(﹣3,y 1),(﹣2,y 2),(1,y 3)是二次函数y =﹣2x 2﹣8x +m 图象上的点,则( ) A .y 2>y 1>y 3 B .y 2>y 3>y 1 C .y 1<y 2<y 3 D .y 3<y 2<y 1 6.点A (3,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限7.抛物线22y x =-的图象可能是( )A .B .C .D .8.下列的各点中,在反比例函数5y x=图象上的点是( ) A .()2,4B .()1,5C .1,22⎛⎫ ⎪⎝⎭D .11,23⎛⎫ ⎪⎝⎭9.下列各点中,在反比例函数2y x=-图象上的是-( )A .(21),B .233⎛⎫⎪⎝⎭, C .(21)--, D .(12)-,10.一次函数 y =-2x +2 经过点(a ,2)则 a 的值为( ) A .-1 B .0C .1D .211.下列二次函数中,对称轴是直线1x =的是( )A .21y x =+B .()221y x =+C .()21y x =-+D .()231y x =--12.在直角坐标系中,已知(1,0)A 、(1,2)B --、(2,2)C -三点坐标,若以A 、B 、C 、D 为顶点的四边形是平行四边形,那么D 的坐标不可以是( ) A .(2,0)- B .(0,4) C .(4,0) D .(0,4)- 13.点P 在第四象限,它到x 轴,y 轴的距离分别为2,5,则点P 的坐标为( )A .()2,5B .()2,5-C .()5,2-D .()5,2-14.点(3,2)在反比例函数y =kx(x >0)上,则下列不可能在该函数图像上的点是( ) A .(2,3)B .(﹣2,﹣3)C .(2,﹣3)D .(﹣3,﹣2)15.亮亮每天都要坚持体育锻炼,某天他跑步到离家较近的秀湖公园,看了一会喷泉表演然后慢慢走回家,如图能反映当天亮亮离家的距离y 随时间x 变化的大致图象是( )A .B .C .D .二、填空题16.已知y 关于x 的函数()224y m x m =++-是正比例函数,则m 的值是______.17.在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1),则关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解是______.18.若y 关于x 的函数y =﹣7x +2+m 是正比例函数,则m =_____. 19.抛物线()223y x =+-可以由抛物线2y x 先向左平移2个单位,再向下平移___________个单位得到的.20.抛物线231y ax x =+-的顶点在x 轴上,那么=a ______.三、解答题21.已知抛物线()220y ax bx b b a =++-≠.(1)若b =2a ,求抛物线的对称轴; (2)若a =1,且抛物线的对称轴在y 轴右侧. ①当抛物线顶点的纵坐标为1时,求b 的值;②点()13,y -,()21,y -,()33,y 在抛物线上,若132y y y >>,请直接写出b 的取值范围. 22.海鲜市场某销售商销售一种成本为6元/千克的海产品,市场调查反映,若按12元/千克销售,每天可售出200千克,如调整价格,销售价每降低1元,每天可多售出50千克.设每千克的售价为()12x x ≤元,每天的销售量为y 千克. (1)求y 与x 之间的关系式;(2)当售价定为多少元时,每天能获得最大利润?并求出最大利润. 23.已知二次函数2361y x x =-++. (1)用配方法化成()2y a x h k =-+的形式; (2)直接写出该二次函数图象的对称轴和顶点坐标.24.已知抛物线y =ax 2+bx ﹣1经过点A (1,2)、B (﹣3,2)两点. (1)求该抛物线的解析式.(2)当﹣2≤x ≤2时,请直接写出y 的取值范围.25.在平面直角坐标系xOy 中,已知二次函数图像的顶点为()1,2A -,且经过()3,0B -. (1)求二次函数的解析式;(2)将该二次函数图像向右平移几个单位,可使平移后所得图像经过坐标原点?并直接写出平移后所得图像与x 轴的另一个交点的坐标.【参考答案】一、单选题 1.B 2.D 3.D 4.A 5.A 6.D 7.A 8.B 9.D 10.B 11.D12.B 13.D 14.C 15.B 二、填空题 16.217.21x y =⎧⎨=-⎩18.﹣2 19.320.94- 三、解答题21.(1)抛物线的对称轴为直线x =-1 (2)①23b =-;②-2<b <0.【解析】 【分析】(1)根据抛物线对称轴公式求解即可;(2)①先根据抛物线对称轴在y 轴右侧求出0b <,再根据抛物线顶点坐标公式求解即可;②根据抛物线的增减性以及对称性求解即可. (1)解:抛物线的对称轴为直线2b x a=-, ∵b =2a , ∴x =-1,∴抛物线的对称轴为直线x =-1. (2)解:①当a =1时,抛物线解析式为22y x bx b b =++-, ∴抛物线的对称轴为直线2bx =-,∵抛物线的对称轴在y 轴右侧, ∴02b->, ∴0b <,∵该抛物线顶点的纵坐标为1, ∴()22414b b b --=,解得:123b =-,22b =,又∵b <0, ∴23b =-.②∵抛物线对称轴在y 轴右侧,且132y y y >>,抛物线对称轴为直线2bx =-,且抛物线开口向上∴13022b -+<-<, ∴20b -<<. 【点睛】本题主要考查了二次函数的性质,熟知二次函数的增减性,对称轴公式,顶点坐标公式是解题的关键. 22.(1)50800y x =-+(2)当售价定为11元,每天能获得最大利润,最大利润为1250元 【解析】 【分析】(1)根据题意即可直接列出关于x 、y 的等式,再整理即可;(2)设每天的利润为w 元,根据题意可列出关于w 、x 的等式,整理,再根据二次函数的性质即可解答. (1)根据题意得:()2001250y x =+-⨯ 整理,得:50800y x =-+∴y 与x 之间的关系为50800y x =-+; (2)设每天的利润为w 元,根据题意得:()()650800w x x =--+ ∴()250111250w x =--+ ∵500-<∴抛物线开口向下,∴当11x =时,有最大利润1250元.答:当售价定为11元,每天能获得最大利润,最大利润为1250元. 【点睛】本题考查一次函数和二次函数的实际应用.根据题意找出等量关系,列出等式是解题关键.23.(1)()2314y x =--+(2)对称轴为1x =,顶点坐标为()1,4 【解析】【分析】(1)利用完全平方公式进行配方即可; (2)依据配方后的解析式即可得到结论. (1)解:()22361314y x x x =-++=--+. (2) 解:()2314y x =--+∴对称轴为1x =,顶点坐标为()1,4【点睛】本题考查了二次函数顶点式2()y a x h k =-+的顶点坐标为(),h k ,掌握顶点式求顶点坐标是解题的关键. 24.(1)y =x 2+2x ﹣1 (2)﹣2≤y ≤7 【解析】 【分析】(1)把A 点和B 点坐标代入y =ax 2+bx ﹣1得到关于a 、b 的方程组,再解方程组可确定抛物线解析式;(2)利用配方法得到抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,﹣2),利用二次函数的性质,x =﹣1时,y 的值最小,而x =2时y =7,从而得到y 的取值范围. (1)将A (1,2)、B (﹣3,2)代入y =ax 2+bx ﹣1,得129312a b a b +-=⎧⎨--=⎩,解得12a b =⎧⎨=⎩, ∴抛物线的解析式为y =x 2+2x ﹣1; (2)∵y =x 2+2x ﹣1=(x +1)2﹣2,∴抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,﹣2), 当x =2时,y =(2+1)2﹣2=7,所以当﹣2≤x ≤2时,y 的取值范围为﹣2≤y ≤7. 【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式.也考查了二次函数的性质.25.(1)21322y x x =--+(2)()4,0 【解析】 【分析】(1)根据题意设出二次函数的顶点式,然后用待定系数法求解即可;(2)根据题意设出平移后的表达式为()21122y x m =-+-+,将原点()0,0代入即可求出平移后的表达式,当0y =时,即可求出与x 轴的另一个交点的坐标. (1)解:设二次函数的表达式为:()()2102y a x a =+≠+ 将()3,0B -代入得:420a +=解得:12a =-∴()21122y x =-++,即21322y x x =--+; (2)解:设将该二次函数图像向右平移()>0m m 个单位, ∴平移后的表达式为()21122y x m =-+-+, ∵平移后所得图像经过坐标原点,∴将原点()0,0代入得,()2100122m =-+-+,即()21122m -=, 解得:123,1m m ==-(舍去), ∴3m =,∴平移后的表达式为()21222y x =--+, 当0y =时,即()212202x --+=, 解得:120,4x x ==,∴平移后所得图像与x 轴的交点坐标为()0,0和()4,0, ∴平移后所得图像与x 轴的另一个交点的坐标为()4,0. 【点睛】本题考查二次函数图象的平移,待定系数法求二次函数表达式,二次函数与一元二次方程的联系等知识点,牢记相关的知识点是解此类题的关键.。
九年级数学中考复习:函数专题训练(含答案)
中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。
初三数学上册函数试卷答案
1. 下列函数中,函数值随自变量的增大而增大的是()A. y = -2x + 1B. y = 2x - 1C. y = x^2 - 1D. y = -x^2 + 1答案:C解析:函数y = x^2 - 1的图像是一个开口向上的抛物线,当x增大时,y的值也随之增大。
2. 已知函数y = 2x - 3,若x = 4,则y的值为()A. 1B. 5C. 7D. 9答案:C解析:将x = 4代入函数y = 2x - 3中,得到y = 24 - 3 = 8 - 3 = 5。
3. 下列函数中,表示反比例函数的是()A. y = 2x + 1B. y = x^2 - 1C. y = 1/xD. y = -x^2 + 1答案:C解析:反比例函数的定义是y = k/x,其中k为常数。
选项C中的函数y = 1/x符合这个定义。
4. 已知函数y = 3x^2 - 2x + 1,则该函数的顶点坐标为()A. (1, 2)B. (1, -2)C. (0, 1)D. (0, -1)答案:A解析:函数y = 3x^2 - 2x + 1是一个二次函数,其顶点坐标可以通过公式(-b/2a, f(-b/2a))计算得到。
将a = 3,b = -2代入公式,得到顶点坐标为(1, 2)。
5. 已知函数y = 2x - 3,若x的取值范围为[-2, 1],则y的取值范围为()A. [-7, -1]B. [-5, 1]C. [-5, -1]D. [-7, 1]答案:D解析:当x取最小值-2时,y = 2(-2) - 3 = -7;当x取最大值1时,y = 21 -3 = -1。
因此,y的取值范围为[-7, -1]。
二、填空题(每题3分,共30分)1. 函数y = -x^2 + 2x - 3的图像是一个_______的抛物线。
答案:开口向下的解析:由于二次项系数为-1,所以该抛物线开口向下。
2. 已知函数y = 2x - 3,若x = 0,则y的值为_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
...《函数》复习题 .●坐标1. P( 1-m, 3m+1 )到 x, y 轴的的距离相等,则P 点坐标为2. A ( 4, 3),B 点在坐标轴上,线段AB 的长为 5 ,则 B 点坐标为3.正方形的两边与x,y 轴的负方向重合,其中正方形一个顶点为 C ( a-2, 2a-3 ) ,则点 C 的坐标为.4.点 A (2x,x-y )与点 B( 4y,12Cos60°)关于原点对称,P( x,y)在双曲线k 1上,则 k 的值为yx5.点 A(3x-4,5-x )在第二象限,且 x 是方程3x4x 210x25 1的解 ,则 A 点的坐标为6.( 2006 年芜湖市)如图,在平面直角坐标系中, A 点坐标为(3,4),将 OA绕原点 O 逆时针旋转90 得到OA,则点A的坐标是()A. ( 4,3)B. (3,4)C. (3, 4)D. (4, 3)●函数概念和图象:1.已知等腰三角形周长是20,⑴底边长 y 与腰长 x 的函数关系是;⑵自变量 x 的取值范围是;⑶画出函数的图象(坐标轴方向,原点,关系式,自变量范围)2.已知 P( tanA ,2 )为函数图象y23上一点,则 Q ( 3 cos A,sin A)(答在、3x不在)在函数 y=x-1图象上; Q ( 3 cos A, sin A)关于 x 轴 y 轴、关于原点的对称点到直线y=x-1的距离分别是3.( 05 甘肃兰州)四边形ABCD为直角梯形, CD ∥AB , CB ⊥ AB,且 CD=BC=1 AB,若2直线 l⊥ AB ,直线 l 截这个所得的位于此直线左方的图形面积为y ,点 A 到直线 1的距离为x,则 y 与 x 的函数关系的大致图象为()4.( 05 北京)在平行四边形 ABCD 中,∠ DAB=60 °, AB=5 ,BC=3 ,点 P 从起点 D 出发,沿DC ,CB 向终点 B 匀速运动,设点 P 走过的路程为 x 点 P 经过的线段与线段 AD , AP 围成图形的面积为 y,y 随 x 的变化而变化,在下列图象中,能正确反映 y 与 x 的函数关系的是()...5.( 05 江苏徐州)有一根直尺的短边长 2 厘米,长边长 10 厘米,还有一块锐角为 45°的直角三角形纸板,它的斜边长12 厘米,如图①,将直尺的短边DE 放置与直角三角形纸板的斜边 AB 重合,且点 D 与点 A 重合,将直尺沿 AB 方向平移如图②,设平移的长度为x厘米( 0≤ x≤ 10) ,直尺和角三角形纸板的重叠部分(图中阴影部分)的面积为S,(1)当 x=0 时(如图①), S=;当 x=10 时, S=(2)当 0<x ≤ 4时 , ( 如图② ), 求 S 关于 x 的函数关系式 ;(3) 当 4<x<10 时, 求 S 关于 x 的函数关系式 ;并求出 S 的最大值 ( 同学可在图③④中画草图)6.( 05 河南课改) Rt△ PMN 中,∠ P=90 °, PM=PN , MN=8 厘米,矩形 ABCD 的长和宽分别为 8 厘米和 2 厘米, C 点和 M 点重合, BC 和 MN 在一条直线上,令 Rt△ PMN 不动,矩形ABCD 沿 MN 所在直线向右以每秒 1 厘米的速度移动,直到 C 点与 N 点重合为止,设移动 x 秒后,矩形 ABCD 与△ PMN 重叠部分的面积为 y 平方厘米,则 y 与 x 之间的函数关系是7.( 2006重庆)如图 1 所示,一张三角形纸片ABC ,∠ ACB=90 °,AC=8,BC=6.沿斜边AB 的中线CD把这张纸片剪成AC1D1和BC2 D2两个三角形(如图2所示) .将纸片AC1D1沿直线 D2 B (AB)方向平移(点A, D1, D2 , B 始终在同一直线上),当点 D1于点B 重合时,停止平移.在平移过程中,C1D1与 BC2交于点E, AC1与 C2 D2、 BC2分别交于点F、P.(1) 当AC1D1平移到如图 3 所示的位置时,猜想图中的D1E 与 D2 F 的数量关系,并证明你的猜想;(2) 设平移距离D2 D1为 x ,AC1D1与BC2 D2重叠部分面积为y ,请写出 y 与x的函数关系式,以及自变量的取值范围;. . .(3 )对于( 2 )中的结论是否存在这样的 x 的值,使重叠部分的面积等于原1ABC 面积的 .4若存在,求 x 的值;若不存在,请说明理由.8 .( 07 西城期末试题)在等腰梯形ABCD 中 AB ∥ DC ,已知 AB=12 , BC=42 ,∠DAB=45 °, 以 AB 所在直线为 x 轴, A 为坐标原点建立直角坐标系, 将等腰梯形 ABCD 绕A 点按逆时针方向旋转 90°,得到等腰梯形OEFG ( 0、 E 、F 、 G 分别是 A 、 B 、C 、 D 旋转后的对应点)( 1) 写出 C 、F 两点坐标( 2 ) 将等腰梯形 ABCD 沿 x 轴的负半轴平行移动,设移动后的 OA 的长度是 x 如图 2 ,等腰梯形 ABCD 与等腰梯形 OEFG 重合部分的面积为 y ,当点 D 移动到等腰梯形 OEFG的内部时,求 y 与 x 之间的函数关系式并写出自变量 x 的取值范围(3 ) 在直线 CD 上是否存在点 P ,使△ EFP 为等腰三角形,若存在,求 P 点坐标,若不存在,说明理由 .●几类函数: 一次函数1. 直线 yx 2 不过第象限2. (063 x 3 与 x 轴 , y 轴围的三角形面积为陕西)直线 y23 .直线 y=kx+b与直线 y5 4x 平行且与直线 y3( x6) 的交点在 y 轴上 ,则直线y=kx+b 与两轴围成的三角形的面积为4.直线 y1kx 2k 只可能是 ()25.( 06 昆明)直线 y 2x 3与直线 L 交于 P 点, P 点的横坐标为 -1 ,直线 L 与 y 轴交于 A(0 , -1 )点,则直线 L 的解析式为6.( 2006 浙江金华)如图 ,平面直角坐标系中 ,直线 AB 与 x 轴 , y 轴分 别交于 A (3,0), B (0, 3 )两点 , ,点 C 为线段 AB 上的一动点 , 过点 C 作...CD ⊥x轴于点 D.(1)求直线 AB 的解析式;4 3(2)若 S 梯形OBCD=,求点C的坐标 ;(3) 在第一象限内是否存3在点 P,使得以 P,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标 ;若不存在 ,请说明理由 .反比例函数1 .直线y 1 x 与双曲线y k1只有一个交点 P, n 则直x8线 y=kx+n不经过第象限2.( 05 四川)如图直线AB 与 x 轴 y 轴交于 B、A ,与双曲线的一个交点是 C ,CD ⊥ x 轴于 D, OD=2OB=4OA=4,则直线和双曲线的解析式为3.( 06 南京)某种灯的使用寿命为1000 小时,它可使用天数y 与平均每天使用小时数 x 之间的函数关系是4.( 06 北京)直线 y=-xk 绕原点 O 顺时针旋转 90 °得到直线 l,直线 1 与反比例函数yx的图象的一个交点为 A ( a,3 ),则反比例函数的解析式为5.( 06 天津)正比例函数y kx(k0) 的图象与反比例函数y m(m 0) 的图象都经过xA(4,2)(1)则这两个函数的解析式为(2)这两个函数的其他交点为66.点 P( m,n )在第一象限,且在双曲线y和直线上,则以 m,n为邻边的矩形面积x为;若点 P(m,n )在直线 y=-x+10上则以 m,n为邻边的矩形的周长为二次函数1.( 06大连)如图是二次函数y 1= ax 2+ bx + c和一次函数y2=mx + n的图象,观察图象写出 y2≥ y1时, x 的取值范围______________2.( 06 陕西)抛物线的函数表达式是()A .y x2x 2B.y x 2x 2C .y x2x 2D .y x2x 23.( 06 南通)已知二次函数y 2 x29x34 当自变量x取两个不同的值 x1 , x2时,函数值相等,则当自变量x 取x1x2时的函数值与()A .x 1时的函数值相等B.x0时的函数值相等...C .x 1时的函数值相等D.x9时的函数值相等444.( 06山东)已知关于 x 的二次函数y x 2mx m21与 y x2mx m22 ,这两个22二次函数的图象中的一条与x 轴交于A,B两个不同的点,(1)过 A, B 两点的函数是;(2)若 A( -1 , 0),则 B 点的坐标为(3)在( 2)的条件下,过 A ,B 两点的二次函数当x时, y 的值随x的增大而增大5.( 05江西)已知抛物线 y x m 21与x轴交点为A、 B(B在 A 的右边),与 y 轴的交点为 C.(1)写出 m=1 时与抛物线有关的三个结论;(2)当点 B 在原点的右边,点 C 在原点的下方时,是否存在△ BOC为等腰三角形?若存在,求出m 的值;若不存在,请说明理由;(3 )请你提出一个对任意的m 值都能成立的正确命题.6.( 2006 年长春市)如图二次函数y x 2bx c 的图象经过点M(1,-2)、N(-1,6).(1)求二次函数y x2bx c的关系式.(2)把 Rt△ABC放在坐标系内,其中∠CAB = 90 °,点A、B的坐标分别为( 1,0)、(4 ,0),BC = 5 .将△ABC沿x轴向右平移,当点 C 落在抛物线上时,求△ ABC 平移的距离.7.( 2006 湖南长沙)如图 1,已知直线y1x与抛物线y1x2 6 交于A,B两点.24(1)求A,B两点的坐标;(2)求线段AB的垂直平分线的解析式;(3)如图 2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P 在直线 AB 上方的抛物线上移动,动点P 将与 A,B 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时 P 点的坐标;如果不存在,请简要说明理由.8.( 2006 吉林长春)如图,在平面直角坐标系中,两个函数y x, y 1x 6 的图象交于2点 A .动点 P 从点 O 开始沿 OA 方向以每秒1个单位的速度运动,作PQ∥ x 轴交直线 BC 于点 Q ,以 PQ 为一边向下作正方形PQMN ,设它与△ OAB 重叠部分的面积为S.(1)求点A的坐标 .(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式 .(3 )在( 2 )的条件下,S 是否有最大值?若有,求出t 为何值时, S 有最大值,并求出最. . .大值;若没有,请说明理由 .( 4 )若点 P 经过点 A 后继续按原方向、 原速度运动, 当正方形 PQMN 与△ OAB 重叠部分面积最大时,运动时间 t 满足的条件是 ____________.9.⊙ M 交 x,y 轴于 A(-1,0),B(3,0),C(0,3)(1)求过 A,B,C 三点的抛物线的解析式;(2) 求过A,M 的直线的解析式; (3) 设 (1)(2) 中的抛物线与直线的另一个交点为P,求△ PAC 的面积 .10 .( 00 上海)已知二次函数 y 1 x 2 bx c 的图象经过 A ( -3,6 ),并与 x 轴交于点 B ( -1 ,20)和点 C ,顶点为 P ( 1)求这个二次函数的解析式; ( 2 )设 D 为线段 OC 上一点,且∠DPC= ∠ BAC ,求 D 点坐标11. ( 06 北京)已知抛物线 yx 2mx 2 m 2 (m 0) 与 x 轴交于 A 、 B 两点,点 A 在点 B 的左边, C 是抛物线上一个动点(点C 与点 A 、B 不重合),D 是 OC 的中点,连结BD 并延长,交 AC 于点 E ,(1 )用含 m 的代数式表示点 A 、B 的坐标;( 2 )求CE的值;( 3)当AEC 、 A 两点到 y 轴的距离相等,且S CED8时,求抛物线和直线 BE 的解析式 .5《函数》复习题答案 .● 坐标 1.(1,1); (2, -2)2. B(0,0); B(6,0) ;(8,0) 2.(-1,-1); ( ( 1,0)23.K= -74. (-7, 6) 6. A函数概念及图象1.( 1) y=-2x+20 ,( 2 )5<x<10, (3) 略2.在 ,2 ,3 2, 22 23. A 4. A 5., , S 2 x x9(4 x6);当 x时, S 最大 102222(0 x 4), S4422 2x(6 x 10)...y 1x 2 (0 x2), 26.y 2 x2(2x 6)y x218x52(6x 8) 7.C C1C2C2C1PF EA DB A D1 D2B A D图3D1 B图 12图2[解] (1)D1E D2F .因为 C1D1∥C2D2,所以C1AFD 2.又因为ACB 90 ,CD是斜边上的中线,所以, DC DA DB ,即C1D1C2 D2BD2AD1所以,C1A,所以AFD 2A所以, AD 2D2 F .同理: BD1 D1E .又因为 AD1BD2,所以 AD2BD1.所以 D1E D2 F(2 )因为在Rt ABC中,AC8, BC 6 ,所以由勾股定理,得AB 10.即 AD1BD2C1D1 C2 D25又因为 D2D1x ,所以 D1 E BD1D2 F AD 2 5 x .所以 C2F C1E xBC2 D2中, C2到 BD2的距离就是24在ABC 的 AB 边上的高,为.5设BED 1的 BD1边上的高为h,由探究,得h5xBC2 D2∽BED1,所以245.24(5x). S BED11125所以 h BD1h(5x) 2 25225又因为C1C2 90 ,所以FPC 290 .又因为C2 B ,sin B 4,cos B3. 55. . .所以 PC 23 x , PF4 x,SFC 2 P1 PC2 PF 6 x 2551 2 1225 6 而 ySBC 2 D 2SBED 1SFC 2PS ABC (5 x)2 x 2 18 x 2 24 x(02 25 25 所以 yx5)255(3) 存在 . 当 y1S ABC 时,即18 x 2 24 x 6425 5整理,得3x220x25 0. 解得, x 15, x 25 .531或 x5 时,重叠部分的面积等于原ABC 面积的即当 x438.略一次函数1. 2 2. 33.8124. D5.y 2x 16.[ 解] ( 1 )直线 AB 解析式为: y=33 .3 x+(2 )方法一:设点C坐标为(x , 3 x+ 3 ),那么 OD =x , CD =3 x+ 3 .33∴ S 梯形 OBCD =OBCD CD =3 x 2 3 .26由题意:3 x 2 3 =4 3 ,解得 x 12, x 2 4 (舍去)63∴ C(2,3 )3方法二:∵SAOB1OA OB 3 3 ,S梯形OBCD= 4 3 ,∴ S ACD3 .2 23 6由 OA= 3 OB ,得∠ BAO = 30°, AD=3CD .∴SACD= 1 CD ×AD =3CD 2=3 .可得 CD = 3 ....∴ AD= 1, OD =2.∴ C (2,3).3(3)当∠ OBP= Rt∠时,如图①若△ BOP ∽△ OBA ,则∠ BOP =∠ BAO=30 °, BP= 3 OB=3,∴ P1(3,3).3②若△ BPO ∽△ OBA ,则∠ BPO =∠ BAO=30 ° ,OP=3OB=1 .3∴ P2(1, 3 ).当∠ OPB = Rt∠时③过点 P 作 OP ⊥ BC 于点 P(如图 ),此时△ PBO ∽△ OBA ,∠ BOP =∠ BAO = 30 °过点 P作 PM⊥OA 于点 M.1OB =3,OP= 3 BP=3方法一:在 Rt △ PBO 中, BP=2.22∵在 Rt△ PM O 中,∠ OPM = 30°,1OP =333333∴ OM=;PM =3OM=4.∴ P3(,).2444方法二:设P( x ,33 ),得OM=x,PM=3x+ 3 x+33由∠ BOP =∠ BAO, 得∠ POM =∠ ABO .PM3 x3OA=3, tan 3 .∵tan ∠ POM==x ∠ ABOC==OM OB33 =3333∴x+ 3 x,解得x=.此时,P3(,).3444④若△ POB ∽△ OBA( 如图 ),则∠ OBP= ∠ BAO = 30 °,∠ POM = 30 °.∴PM =33OM =.3433P4的坐标).∴P4(,)(由对称性也可得到点44当∠ OPB = Rt∠时,点P 在x轴上 ,不符合要求 .综合得,符合条件的点有四个,分别是:. . .P 1 3 ), P 2 (1,3 3 3 3 3 ( 3 ,3),P 3( ,4), P 4( ,).3444反比例函数 1.四2. 3. 4.5. y12y4 xx4y1000xy 9xy1x,y8 A '( 4, 2)2x6.6,20二次函数1. 2x 12. D 3. B4. (1) yx 2 mxm 222(2). (3,0) (3).X<15.(1) 顶点 (1,1); 对称轴为 x=1; 顶点到 y 轴的距离为 1(2)m=-2-2 2(3) 最大值为 1(1)y x 2 4x 16.(2)157.[解]y1 x2 6 x 16x 24(1 )解:依题意得41 x解之得yy 13y 222A( 6, 3,)B (,4 2(2 )作 AB 的垂直平分线交x 轴, y 轴于 C , D 两点,交 AB 于 M (如图 1 )由( 1)可知: OA3 5OB 2 5yM A... AB 5 5OM 1AB OB5 22过 B 作 BE ⊥ x 轴, E 为垂足由△BEO ∽△ OCM ,得:OC OM, OC5,OB OE4同理:5,C 5,,D,5 422设 CD 的解析式为y kx b(k0)5k b k245 5bb2 2AB 的垂直平分线的解析式为:y2x5.2(3 )若存在点P使△APB的面积最大,则点P 在与直线 AB 平行且和抛物线只有一个交点的直线 y 1 x m 上,并设该直线与x 轴,y轴交于G,H两点(如图 2 ).2y 1x m 2y 1x2 6 41 x2 1 x m6042抛物线与直线只有一个交点,121 ( m46)0 ,24m 2523P 1,44在直线 GH:y 1x252中,42525y,,HG H,0042P25 GH54BGO x..........A图2...设 O 到 GH 的距离为 d ,1GH d 1 OGOH221255 d12525242245d 52AB∥GH,P 到 AB 的距离等于O 到 GH 的距离 d.S最大面积1AB d15 5 5 5125.2224y x,x4,8. [ 解] (1)由1 xy6,可得4.y2∴A (4,4).(2 )点P在y = x上,OP = t,则点 P坐标为(2t,2t). 22点 Q 的纵坐标为 2 t,并且点 Q 在y 1 x 6 上.22∴ 2 t 1 x6, x122t ,22即点 Q 坐标为(122t ,2t) .2PQ1232 t .2当 12 3 2 t 2t 时, t 3 2 .2 2 当0<t3 2时,S 2t(12 3 2 t) 3 t2 6 2t. 222当点 P 到达 A 点时,t 4 2 ,.............当3 2<t<4 2 时,S (12 3 2 t )229 t 2362144.2t(3 )有最大值,最大值应在0<t 3 2 中,S 3 t262t 3 (t242t 8) 123(t 2 2 )212,222当 t 2 2 时,S的最大值为12.(4)t 12 2 .9.(1)y( x 1)( x 3)(2)y 1x1 22 35(3)S △ PAC=81 x23(5 ,0)10. y x223 11.(1) A(-m,0)B(2m,0)(2).CE2 AE3(3)BE: y 4 x1633抛物线 : y x22x8欢迎您的光临,Word 文档下载后可修改编辑.双击可删除页眉页脚. 谢谢!让我们共同学习共同进步!学无止境.更上一层楼。