中考数学函数专题训练.doc
中考数学复习考点知识专题训练6---一次函数与一元一次方程(提高篇)
中考数学复习考点知识专题训练06 一次函数与一元一次方程(提优篇)1.用函数图象求解下列方程.①2x﹣3=x﹣2;②x+3=2x+1.2.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.3.定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.(1)根据题意填空:min{√9,3.14,π}=;(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.4.在同一直角坐标系中,一次函数y=kx+b的图象与正比例函数y=﹣2x的图象平行,且经过直线y =mx+1(m为常数且m≠0)与y轴的交点.(1)请直接写出一次函数y=kx+b的表达式;(2)画出一次函数y=kx+b的图象;(3)根据图象填空:①y的值随着x的值的增大而;②方程kx+b=0的解为;③当x时,y>0.5.已知一次函数y=kx+1与y=−12x+b的图象相交于点(2,5),求关于x的方程kx+b=0的解.6.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为多少?7.已知一次函数y=kx﹣6的图象如图(1)求k的值;(2)在图中的坐标系中画出一次函数y=﹣3x+3的图象(要求:先列表,再描点,最后连线);(3)根据图象写出关于x的方程kx﹣6=﹣3x+3的解.8.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.9.小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x﹣b|+c的图象和性质.(1)在给出的平面直角坐标系中画出函数y=|x﹣2|和y=|x﹣2|+1的图象;(2)猜想函数y=﹣|x+1|和y=﹣|x+1|﹣3的图象关系;(3)尝试归纳函数y=a|x﹣b|+c的图象和性质;(4)当﹣2≤x≤5时,求y=﹣2|x﹣3|+4的函数值范围.。
2023年九年级中考数学专题训练:二次函数综合(含简单答案)
2023年九年级中考数学专题训练:二次函数综合一、单选题1.已知抛物线()2330y x x c x =++-≤≤与直线2y x =-有且只有一个交点,若c 为整数,则c 的值有( ) A .1个B .2个C .3个D .4个2.方程231x x +=的根可视为函数3y x的图象与函数1y x=的图象交点的横坐标,那么用此方法可推断出方程321x x +=-的实数根x 所在的范围是( ) A .112x -<<-B .1123x -<<-C .1134x -<<-D .104x -<<3.如图,已知二次函数()()5144y x x =-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,Р为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则APPK的最小值为( )A .94B .2C .74D .544.如图.抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集为( )A .x >﹣1B .x <3C .x <﹣3或x >1D .﹣1<x <35.如图,抛物线y =12-x 2+7x ﹣452与x 轴交于点A ,B ,把抛物线在x 轴及共上方的部分记作C 1将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12-x +m 与C 1,C 2共3个不同的交点,则m 的取值范是( )A .52928m << B .12928m << C .54528m << D .14528m <<6.在平面直角坐标系中,对图形F 给出如下定义:若图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,如图中的矩形ABCD 的坐标角度是90°.现将二次函数()213y ax a =≤≤的图象在直线1y =下方的部分沿直线1y =向上:翻折,则所得图形的坐标角度α的取值范围是( )A .3060α︒≤≤︒B .120150α︒≤≤︒C .90120α︒≤≤︒D .6090α︒≤≤︒7.二次函数y =2x 2﹣2x +m (0<m < 12),如果当x =a 时,y <0,那么当x =a ﹣1时,函数值y 的取值范围为( ) A .y <0B .0<y <mC .m <y <m +4D .y >m8.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP . ①点E 在①M 的内部;①CD 的长为32①若P 与C 重合,则①DPE =15°;①在P 的运动过程中,若AP =PE =①N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A .①①①B .①①①C .①①①D .①①①二、填空题9.如图,已知抛物线24y x x c =-+的顶点为D ,与y 轴交于点C ,过点C 作x 轴的平行线AC 交抛物线于点A ,过点A 作y 轴的平行线AB 交射线OD 于点B ,若OA OB =,则c 的值为_____________.10.已知抛物线()2123y x m x m =-+++以及平面直角坐标系中的点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,则m 的取值范围是________.11.在平面直角坐标系中,抛物线215y x bx c =-+(0b >,b 、c 为常数)的顶点为A ,与y 轴交于点B ,点B 关于抛物线对称轴的对称点为C .若ABC 是等腰直角三角形,则BC 的长为________.12.如图,2=23y x x --与x 轴交于A ,B 两点(A 在左边)与y 轴交于C 点,P 是线段AC 上的一点,连结BP 交y 轴于点Q ,连结OP ,当OAP △和PQC △的面积之和与OBQ △的面积相等时,点P 的坐标为______.13.如图,在平面直角坐标系中,抛物线214y x mx =-+与x 轴正半轴交于点A ,点B是y 轴负半轴上一点,点A 关于点B 的对称点C 恰好落在抛物线上,过点C 作//CD x 轴,交抛物线于点D ,连结OC 、AD .若点C 的横坐标为4-,则四边形OCDA 的面积为___________.14.若243P m m m ++(,)是一个动点(m 为实数),点Q 是直线4y x =-上的另一个动点,则PQ 长度的最小值为_____.15.已知抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点(6,)D y 在抛物线上,E 是该抛物线对称轴上一动点,当BE 十DE 的值最小时,ACE △的面积为是____16.已知:如图,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),我们规定:当AMB 为直角三角形时,就称AMB 为该抛物线的“优美三角形”.若抛物线26y ax bx =++的“优美三角形”的斜边长为4,求a 的值______.三、解答题17.抛物线23y ax bx =++顶点为点(1,4)D ,与x 轴交于点A 、B ,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点.(1)求a 和b 的值;(2)是否存在点P ,使得以P 、D 、B 为顶点的三角形中有两个内角的和等于45°?若存在,求出点P 的坐标;若不存在,说明理由.18.如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)已知点M 是抛物线对称轴上一点,当MB MC +的值最小时,点M 的坐标是___________;(3)若点P 在抛物线对称轴上,是否存在点P ,使以点B ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出P 点的坐标;若不存在,请说明理由.19.如图,已知抛物线233384y x x =--与x 轴的交点为点A 、D (点A 在点D 的右侧),与y 轴的交点为点C .(1)直接写出A 、D 、C 三点的坐标;(2)在抛物线的对称轴上找一点M ,使得MD MC +的值最小,并求出点M 的坐标; (3)设点C 关于抛物线对称轴的对称点为点B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由.20.如图,已知抛物线223y ax ax =++中,当=1x -时,4y =.(1)求此抛物线的解析式;(2)点E 是抛物线上且位于直线AB 上方的一个动点,不与点A ,B 重合,求ABE 的面积最大时,点E 的坐标.(3)若1t x ≤≤时,y 的取值范围是04y ≤≤,请直接写出t 的取值范围.参考答案:1.D 2.B 3.A 4.C 5.A 6.D 7.C 8.D 9.8310.2m <-或m>2或1m = 11.6 12.2,13⎛⎫-- ⎪⎝⎭13.641415.616.12±17.(1)1a =-,2b = (2)存在,(1,2)或(1,6)-18.(1)248433y x x =--+(2)8(1,)3M -(3)存在,P 点的坐标为(1,0)-或(-或(1,-或13(1,)8-19.(1)()4,0A ,()2,0D -,()0,3C -(2)连接AC 交对称轴于点M ,点M 即为所求,91,4M ⎛⎫- ⎪⎝⎭(3)()2,0-或()6,6.20.(1)223y x x =--+(2)315()24-,(3)31t -≤≤-。
九年级中考数学考点提升训练:二次函数图像与系数的关系(三)(Word版,带答案)
九年级中考数学考点提升训练——函数专题:二次函数图像与系数的关系(三)1.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;④﹣1≤a≤﹣,其中结论正确个数为()A.1 个B.2 个C.3 个D.4 个2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2﹣4ac>0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3:③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大,其中结论正确的个数是()A.4个B.3个C.2个D.1个3.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④<0;⑤若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2.其中正确的结论有()A.5个B.4个C.3个D.2个4.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,下列说法中:①abc<0;②2a+b=0;③当﹣1<x<3时,y >0;④a﹣b+c<0;⑤2c﹣3b>0.其中正确结论的个数是()A.2 B.3 C.4 D.55.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且经过点(﹣3,0).下列结论:①abc<0;②若(﹣4,y1)和(3,y2)是抛物线上两点,则y1>y2;③a+b+c<0;④对于任意实数m,均有am2+bm+c≥﹣4a.其中正确的结论的个数是()A.1个B.2个C.3个D.4个6.如图,抛物线y=ax2+bx+c(a≠0)的抛物线的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,以下结论:①abc<b2;②方程ax2+bx+c =0的两根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x≤3;⑤当x<0时,y随x的增大而增大.其中正确个数是()A.4 B.3 C.2 D.17.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①abc<0;②4a﹣2b+c=0;③当x>1时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有一个实数根.其中正确的结论有()A.1个B.2个C.3个D.4个8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②2a﹣b=0;③9a+3b+c>0;④c<﹣3a;⑤a+b≥m(am+b),其中正确的有()A.2个B.3个C.4个D.5个9.如图所示是二次函数y=ax2+bx+c(a≠0)图象的一部分,那么下列说法中不正确的是()A.ac<0B.抛物线的对称轴为直线x=1C.a﹣b+c=0D.点(﹣2,y1)和(2,y2)在抛物线上,则y1>y210.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c<0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其1中正确结论的个数是()A.1 B.2 C.3 D.411.抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1 B.2 C.3 D.413.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c14.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c =2有两个不相等的实数根;④4a﹣2b+c=0;⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,其中正确的个数有()A.1个B.2个C.3个D.4个15.已知二次函数y=2x2﹣bx+1,当x<1时,y随x的增大而减小,则实数b的取值范围为()A.b≤4 B.b≥2 C.b≤2 D.b≥416.二次函数y=ax2+bx+c的图象如图所示,其对称轴为x=1,有下列结论①abc<0;②b<a+c;③4a+2b+c<0;④a+b≥m(am+b),其中正确的结论有()A.①②B.②③C.①④D.②④17.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是()A.①②④⑤B.①②④C.①④⑤D.③④⑤18.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个19.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A 作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④20.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点,有下列结论:其中正确的结论是()①abc>0;②a﹣2b+4c>0;③2a+b=0;④3b+2c>0.A.①③B.①④C.①②D.②④参考答案1.解:由图象可知,当x=1时,y>0,∴a+b+c>0,所以①正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以②正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n有一个交点,∴关于x的方程ax2+bx+c=n有两个相等的实数根,所以③正确;∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴a﹣b+c=0,∵b=﹣2a,∴a+2a+c=0,∴c=﹣3a,∵2≤c≤3,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以④正确;故选:D.2.解:①由图象可知:抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故①正确;②(﹣1,0)关于直线x=1的对称点为(3,0),∴ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;③对称轴为x=1,故﹣=1,∴b=﹣2a,∵x=﹣1时,y=0,∴a﹣b+c=0,即3a+c=0,故③错误;④当y>0时,由图象可知:﹣1<x<3,故④错误;⑤当x<1时,y随着x的增大而增大,故⑤正确;故选:B.3.解:由抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣可得,9a﹣3b+c=0,﹣=﹣,即a=b,与x轴的另一个交点为(2,0),4a+2b+c =0,抛物线开口向下,a<0,b<0,抛物线与y轴交于正半轴,因此c>0,所以,abc>0,因此①正确;由9a﹣3b+c=0,而a=b,所以6a+c=0,又a<0,因此3a+c>0,所以②正确;抛物线的对称轴为x=﹣,a<0,因此当x<﹣时,y随x的增大而增大,所以③不正确;由于抛物线的顶点在第二象限,所以>0,因此<0,故④正确;抛物线与x轴的交点为(﹣3,0)(2,0),因此当y=﹣3时,相应的x的值应在(﹣3,0)的左侧和(2,0)的右侧,因此m<﹣3,n>2,所以⑤正确;综上所述,正确的结论有:①②④⑤,故选:B.4.解:∵抛物线开口向下,则a<0.对称轴在y轴右侧,a、b异号,则b>0.抛物线与y轴交于正半轴,则c>0,∴abc<0,故①正确;∵抛物线的对称轴是直线x=1,则﹣=1,b=﹣2a,∴2a+b=0,故②正确;由图象可知,抛物线与x轴的左交点位于0 和﹣1 之间,在两个交点之间时,y>0,在x=﹣1 时,y<0,故③错误;当x=﹣1 时,有y=a﹣b+c<0,故④正确;由2a+b=0,得a=﹣,代入a﹣b+c<0得﹣+c<0,两边乘以2 得2c﹣3b <0,故⑤错误.综上,正确的选项有:①②④.所以正确结论的个数是3个.故选:B.5.解:∵二次函数的图象开口向上,∴a>0,∵二次函数的图象交y轴的负半轴于一点,∴c<0,∵对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,故①正确;∵(﹣4,y1)关于直线x=﹣1的对称点的坐标是(2,y1),又∵当x>﹣1时,y随x的增大而增大,2<3,∴y1<y2,故②错误;∵抛物线的对称轴为x=﹣1,且过点(﹣3,0),∴抛物线与x轴另一交点为(1,0).∴当x=1时,y=a+b+c=0,故③错误;∵当x=1时,y=a+b+c=0,b=2a,∴c=﹣3a,∵抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,y有最小值,∴am2+bm+c≥a﹣b+c(m为任意实数),∴am2+bm+c≥﹣4a,故④正确,故结论正确有2个.故选:B.6.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴﹣>0,∴b>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,∴abc<b2,故①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,即3a+c=0,故③错误;由②得,方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,∴抛物线与x轴的交点坐标为(﹣1,0),(3,0),又抛物线开口向下,对称轴为直线x=1,∴当y>0时,x的取值范围是﹣1<x<3,故④错误;当x<时,y随x的增大而增大,故⑤正确;因此正确的结论有3个.故选:B.7.解:抛物线开口向上,则a>0,对称轴x=﹣=1,则b=﹣2a<0.与y轴交于负半轴,则c<0,故abc>0,所以①错误;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④错误;综上所述,正确的结论有:②③,故选:B.8.解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②∵x=﹣=1,∴b=﹣2a,∴2a+b=0,故②不正确;③由对称知,当x=3时,函数值小于0,即y=9a+3b+c<0,故③不正确;④∵b=﹣2a,a﹣b+c<0,∴a+2a+c<0,∴3a<﹣c,即c<﹣3a,故④正确;⑤当x=1时,y=a+b+c值最大.∴a+b+c≥am2+bm+c,故a+b≥am2+bm,即a+b≥m(am+b),故⑤正确.故④⑤正确.故选:A.9.解:A、∵抛物线开口向上,交y轴的负半轴,∴a>0,c<0,∴ac<0,故A正确;B、∵抛物线经过点(﹣1,0)和点(2,0),∴抛物线的对称轴为直线x==,故B不正确;C、当x=1时,y=a﹣b+c=0,故C正确;D、点(﹣2,y)和(2,y2)在抛物线上,1∵y1>0,y2=0,∴y1>y2,故D正确;故选:B.10.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.11.解:∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∵抛物线开口向下,∴当x=2时,y>0,∴4a+2b+c>0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若n>m>0,∴1+n>1+m,∴x=1+m时的函数值大于x=1﹣n时的函数值,故③错误;∵b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.12.解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,即﹣=1,所以b=﹣2a,所以b+2a=0,所以②正确;③因为b=﹣2a,由4a+b2<4ac,得4a+4a2<4ac,∵a<0,∴c<1+a,根据抛物线与y轴的交点,c>1,所以③错误;④当x=﹣1时,y<0,即a﹣b+c<0,因为b=﹣2a,所以3a+c<0,所以④正确.所以正确的是②④2个.故选:B.13.解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误;∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.14.解:由图象可得,a<0,b>0,c>0,∴abc<0,故①错误,﹣=1,则b=﹣2a,故2a+b=0,故②正确;抛物线与直线y=2有两个交点,故方程ax2+bx+c=2有两个不相等的实数根,故③正确;∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,∴该抛物线与x轴的另一个交点为(﹣2,0),∴当x=﹣2时,y=4a﹣2b+c=0,故④正确;∵当x=1时,该函数取得最大值,此时y=a+b+c,∴点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,故⑤正确;故选:D.15.解:∵y=2x2﹣bx+1,∴对称轴为x=,∵当x<1时,y随x的增大而减小,∴≥1,∴b≥4,故选:D.16.解:①根据图象可知:a<0,c>0,对称轴在y轴左侧,∴b>0,∴abc<0.∴①正确;②根据图象可知:当x=﹣1时,y<0,即a﹣b+c<0,即b>a+c.∴②错误;③观察图象可知:当x=2时,y>0,即4a+2b+c>0.∴③错误.④∵当x=1时,顶点的纵坐标最大,∴a+b+c≥am2+bm+c,∴a+b≥m(am+b),∴④正确.所以①④,2个.故选:C.17.解:①∵抛物线开口向下,∴a<0,∵抛物线对称轴为x=﹣=,∴b=﹣a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵对称轴为x=,且经过点(2,0),∴抛物线与x轴的另一个交点为(﹣1,0),∴=﹣1×2=﹣2,∴c=﹣2a,∴﹣2b+c=2a﹣2a=0所以②正确;③∵抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;④∵点(﹣,y1)离对称轴要比点(,y2)离对称轴远,∴y1<y2,所以④正确;⑤∵抛物线的对称轴x=,∴当x=时,y有最大值,∴a+b+c>am2+bm+c(其中m≠).∵a=﹣b,∴b>m(am+b)(其中m≠),所以⑤正确.所以其中说法正确的是①②④⑤.故选:A.18.解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,∵c<0,∴abc>0,故①正确;②∵对称轴x=﹣=1,∴2a+b=0;故②正确;③∵2a+b=0,∴a=﹣b,∵当x=﹣1时,y=a﹣b+c>0,∴﹣b﹣b+c>0,∴3b﹣2c<0,故③正确;④根据图象知,当x=1时,y有最小值;当m为实数时,有am2+bm+c≥a+b+c,所以am2+bm≥a+b(m为实数).故④正确.本题正确的结论有:①②③④,4个;故选:D.19.解:∵y2=(x﹣3)2+1,∴y2的最小值为1,所以①正确;把A(1,3)代入y1=a(x+2)2﹣3得a(1+2)2﹣3=3,∴3a=2,所以②错误;当x=0时,y1=(x+2)2﹣3=﹣,y2=(x﹣3)2+1=,∴y2﹣y1=+=,所以③错误;抛物线y1=a(x+2)2﹣3的对称轴为直线x=﹣2,抛物线y2=(x﹣3)2+1的对称轴为直线x=3,∴AB=2×3=6,AC=2×2=4,∴2AB=3AC,所以④正确.故选:D.20.解:由抛物线的对称性,可知抛物线与x轴的另一个交点为(﹣,0),①由图象可得,开口向下,则a<0,对称轴x=﹣=﹣1,∴b=2a<0,抛物线与y轴的交点c>0,∴abc>0;②∵抛物线与x轴的交点为,(﹣,0),∴=﹣,∴c=﹣a,∴a﹣2b+4c=a﹣4a﹣5a=﹣8a>0;③2a+b=2a+2a=4a<0;④3b+2c=6a﹣a=a<0;∴①②正确;故选:C.。
2023年中考数学专题练——3一次函数
2023年中考数学专题练——3一次函数一.选择题(共5小题)1.(2022•邳州市一模)动物园内的一段路线如图1所示,园内有免费的班车,从入口处出发,沿该线路开往熊猫馆,途中停靠海洋馆(上下车时间忽略不计),第一班车上午9:00发车,以后每隔10分钟有一班车从入口处发车,且每班车速度均相同.小明周末到动物园游玩,上午8:35到达入口处,因还没到班车发车时间,于是从入口处出发沿该线路步行30分钟后到达海洋馆.离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论正确的是()A.第一班车从入口处到达熊猫馆所需的时间为15分钟B.第一班车离入口处的路程r(米)与时间x(分)的关系式为y=200x﹣4000(25≤x ≤45)C.第一班车到达海洋馆时小明已经在海洋馆停留了10分钟D.小明在海洋馆游玩35分钟后,想坐班车到熊猫馆,则小明最早能够坐上第四班车2.(2021•徐州二模)函数y=√3x﹣3的图象与x轴、y轴分别交于A、B两点,点C在x 轴上.若△ABC为等腰三角形,则满足条件的点C共有()A.4个B.3个C.2个D.1个3.(2021•徐州一模)下列一次函数中,y随x的增大而减小的是()A.y=x﹣3B.y=1﹣x C.y=2x D.y=3x+2 4.(2021•徐州模拟)已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y =kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.5.(2022•贾汪区二模)如图,在平面直角坐标系中,点A、B的坐标分别为(4,0),(﹣2,3),点C(0,m)在y轴上,连接AB、BC.若∠CBA=2∠BAO,则m的值为()A.4B.92C.5D.112二.填空题(共14小题)6.(2022•睢宁县模拟)若A(2,6)与B(﹣3,a)都是正比例函数y=kx图象上的点,则a的值是.7.(2021•徐州模拟)如图,在平面直角坐标系中,动点A,B分别在x轴和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为.8.(2021•徐州模拟)在平面直角坐标系中,O为坐标原点,若直线y=x+3分别与x轴,直线y=﹣2x交于点A,B,则△AOB的面积为.9.(2022•鼓楼区校级一模)如图,与图中直线y=﹣x+1关于x轴对称的直线的函数表达式是.10.(2021•邳州市模拟)若正比例函数y=kx的图象经过点A(1,2),则k=.11.(2021•邳州市模拟)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1,的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A2021B2021C2021D2021的面积是.12.(2021•丰县校级模拟)如图,在平面直角坐标系中,直线l:y=√33x−√3与x轴交于点B1,以OB1为一边在OB1上方作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l 于点B2,以A1B2为一边在A1B2上方作等边△A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为一边在A2B3上方作等边△A3A2B3,…,则A2020的横坐标是.13.(2021•徐州模拟)如图,直线y=52x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.14.(2022•贾汪区二模)已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)15.(2021•徐州模拟)如图,过点A0(0,1)作y轴的垂线交直线L:y=√33x于点A,过点A1,作直线L的垂线,交y轴于点A2,过点A2作y轴的垂线交直线L于点A,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A5A6,…其面积分别记为S1,S2,S3,…,则S100为.16.(2021•鼓楼区校级一模)矩形ABCD中,E为AD边上的一点,动点P沿着B﹣E﹣D 运动,到D停止,动点Q沿着B﹣C运动到C停止,它们的速度都是1cm/s,设它们的运动时间为xs,△BPQ的面积记为ycm2,y与x的关系如图所示,则矩形ABCD的面积为cm2.17.(2022•丰县二模)如图,平面直角坐标系中,有A、B、C、D四点,若直线l经过点(4,﹣3)且与y轴垂直,则直线l会经过上述四点中的点.(填“A”或“B”或“C”或“D”)18.(2021•徐州模拟)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2021的坐标是.19.(2021•徐州模拟)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60的扇形组成一条连续的曲线(如图),点P 从原点O 出发,沿这条曲线向右上下起伏运动,点P 在直线上的速度为1个单位长度/秒,在弧线上的速度为π3个单位长度/秒,则2021秒时,点P 的坐标是 .三.解答题(共5小题)20.(2022•睢宁县模拟)某地突发新冠肺炎疫情,医用防护面罩紧缺.某小型医用防护面罩加工厂迅速组织甲组员工加工,甲组在加工过程中因机器故障暂停一会,然后以原来的工作效率继续加工.由于时间紧任务重,负责人立即召集乙组员工也加入工作,直到完成加工任务.设甲组加工时间t (分钟),甲组加工医用防护面罩的数量为y 甲(个),乙组加工用防护面罩的数量为y 乙(个),其函数图象如图所示.(1)求y 乙与t 之间的函数关系式,并写出t 的取值范围;(2)求a 的值,并说明a 的实际意义;(3)甲组加工多长时间时,两组加工医用防护面罩的总数为480个?21.(2021•徐州模拟)某商店计划投入8万元购进A,B两种型号的电动自行车共30辆,其中每辆B型电动自行车的进价比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A,B两种型号电动自行车的进价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部售完可获利润y元,写出y与m之间的函数关系式,并写出m的取值范围;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?22.(2021•徐州模拟)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y (km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王的速度是km/h,小李的速度是km/h;(2)求线段BC所表示的y与x之间的函数表达式,并写出自变量x的取值范围.(3)求当两人相距18千米时,小王行驶多少小时?23.(2021•鼓楼区校级一模)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与行驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.24.(2021•徐州模拟)2020年初,新冠肺炎疫情暴发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号甲乙价格(元/只)项目成本124售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.2023年江苏省徐州市中考数学专题练——3一次函数参考答案与试题解析一.选择题(共5小题)1.(2022•邳州市一模)动物园内的一段路线如图1所示,园内有免费的班车,从入口处出发,沿该线路开往熊猫馆,途中停靠海洋馆(上下车时间忽略不计),第一班车上午9:00发车,以后每隔10分钟有一班车从入口处发车,且每班车速度均相同.小明周末到动物园游玩,上午8:35到达入口处,因还没到班车发车时间,于是从入口处出发沿该线路步行30分钟后到达海洋馆.离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论正确的是( )A .第一班车从入口处到达熊猫馆所需的时间为15分钟B .第一班车离入口处的路程r (米)与时间x (分)的关系式为y =200x ﹣4000(25≤x ≤45)C .第一班车到达海洋馆时小明已经在海洋馆停留了10分钟D .小明在海洋馆游玩35分钟后,想坐班车到熊猫馆,则小明最早能够坐上第四班车【解答】解:A 、第一班车从入口处到达熊猫馆所需的时间为45﹣25=20分钟,故A 错误,不符合题意;B 、设第一班车离入口处的路程r (米)与时间x (分)的关系式为y =kx +b ,将(25,0),(45,4000)代入得:{25k +b =045k +b =4000,解得{k =200b =−5000, ∴y =200x ﹣5000;故B 错误,不符合题意;C 、当y =2400时,x =37,而小明到达海洋馆时间为x =30,∴第一班车到达海洋馆时小明已经在海洋馆停留了7分钟,故C错误,不符合题意;D、小明上午8:35到达入口处,步行30分钟后到达海洋馆是9:05,在海洋馆游玩35分钟后是9:40,而第三班车9:20从入口处发车,经过37﹣25=12(分钟),即9:32到达海洋馆,小明不能赶上,第四班车9:30从入口处发车,9:42到达海洋馆,小明刚好能赶上,故D正确,符合题意;故选:D.2.(2021•徐州二模)函数y=√3x﹣3的图象与x轴、y轴分别交于A、B两点,点C在x 轴上.若△ABC为等腰三角形,则满足条件的点C共有()A.4个B.3个C.2个D.1个【解答】解:∵当x=0时,y=﹣3,∴B(0,﹣3).∴OB=3.∵当y=0时,x=√3,∴A(√3,0).∴OA=√3.在Rt△OAB中,∵AB=√OA2+OB2=2√3,∴∠OAB=60°.∵点C在x轴上,△ABC为等腰三角形,∴x轴上在点A的两侧各存在一点,使△ABC为等腰三角形,如下图:故选:C.3.(2021•徐州一模)下列一次函数中,y随x的增大而减小的是()A.y=x﹣3B.y=1﹣x C.y=2x D.y=3x+2【解答】解:在y=kx+b中,当k<0时,y随x的增大而减小,在y=x﹣3、y=2x和y=3x+2中,k的值分别为1、2、3,∴函数y=x﹣3、y=2x和y=3x+2中,y随x的增大而增大,在y=1﹣x中,k=﹣1<0,∴y随x的增大而减小,故选:B.4.(2021•徐州模拟)已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y =kx(k≠0)的图象平移,使它过点(1,﹣1),则平移后的函数图象大致是()A.B.C.D.【解答】解:把点(2,3)代入y=kx(k≠0)得2k=3,解得k=3 2,∴正比例函数解析式为y=32 x,设正比例函数平移后函数解析式为y=32x+b,把点(1,﹣1)代入y=32x+b得32+b=−1,∴b=−5 2,∴平移后函数解析式为y=32x−52,故函数图象大致为:.故选:D .5.(2022•贾汪区二模)如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0),(﹣2,3),点C (0,m )在y 轴上,连接AB 、BC .若∠CBA =2∠BAO ,则m 的值为()A .4B .92C .5D .112【解答】解:过点B 作BD ⊥y 轴于点D ,设AB 与y 轴交于点E ,如图,则点D (0.3),设过点A ,B 的直线解析式为:y =kx +b ,{3=−2k +b0=4k +b ,解得{k =−12b =2, ∴直线AB 的解析式为y =−12x +2,令x =0,则y =2,∴E (0,2),∴OE =2,∴DE=3﹣2=1,∵BD⊥OD,AO⊥OD,∴BD∥AO,∠BDE=∠BDC=90°,∴∠DBE=∠BAO.∵∠CBA=2∠BAO,∴∠CBD=∠EBD.∵BD=BD,∠BDE=∠BDC=90°,∴△BDC≌△BDE(ASA),∴CD=DE=1,∴OD=CD+DE+OE=4,∴C(0,4).即m=4.故选:A.二.填空题(共14小题)6.(2022•睢宁县模拟)若A(2,6)与B(﹣3,a)都是正比例函数y=kx图象上的点,则a的值是﹣9.【解答】解:∵正比例函数y=kx的图象经过点A(2,6),∴6=2k,解得k=3,∴y=3x,将B(﹣3,a)代入y=3x得:a=3×(﹣3)=﹣9,故答案为:﹣9.7.(2021•徐州模拟)如图,在平面直角坐标系中,动点A,B分别在x轴和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为2√2+2.【解答】解:如图,以AB为斜边向上作等腰直角△ABD,连接OD,CD.∵点B 在直线y =x 上,∴∠BOA =45°,∵∠ADB =90°,AD =BD ,AB =4,∴AD =DB =2√2,∠ABD =45°,∵∠BOA =12∠BDA ,∴点O 在以D 为圆心,DA 为半径的⊙D 上,∴DO =DA =DB =2√2,∵CB ⊥AB ,∴∠CBD =45°,∵BD =2√2,BC =12AB =2,∴∠DCB =90°,∴CD =CB =2,∵OC ≤OD +CD ,∴OC ≤2√2+2,∴OC 的最大值为2√2+2.故答案为:2√2+2.8.(2021•徐州模拟)在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =﹣2x 交于点A ,B ,则△AOB 的面积为 3 .【解答】解:在y =x +3中,令y =0,得x =﹣3,解{y =x +3y =−2x得,{x =−1y =2, ∴A (﹣3,0),B (﹣1,2),∴△AOB的面积=12×3×2=3,故答案为3.9.(2022•鼓楼区校级一模)如图,与图中直线y=﹣x+1关于x轴对称的直线的函数表达式是y=x﹣1.【解答】解:∵关于x轴对称的点横坐标不变纵坐标互为相反数,∴直线y=﹣x+1关于x轴对称的直线的函数表达式是﹣y=﹣x+1,即y=x﹣1.故答案为y=x﹣1.10.(2021•邳州市模拟)若正比例函数y=kx的图象经过点A(1,2),则k=2.【解答】解:∵正比例函数y=kx的图象经过点A(1,2),∴2=k×1,解得:k=2,故答案为:2.11.(2021•邳州市模拟)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1,的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A2021B2021C2021D2021的面积是(92)2020.【解答】解:∵直线l 为正比例函数y =x 的图象,∴∠D 1OA 1=45°,∴D 1A 1=OA 1=1,∴正方形A 1B 1C 1D 1的面积=1=(92)1﹣1, 由勾股定理得,OD 1=√2,D 1A 2=√22,∴A 2B 2=A 2O =3√22, ∴正方形A 2B 2C 2D 2的面积=(92)2﹣1, 同理,A 3D 3=OA 3=92,∴正方形A 3B 3C 3D 3的面积=814=(92)3﹣1, …由规律可知,正方形A n B n ∁n D n 的面积=(92)n ﹣1, ∴正方形A 2021B 2021C 2021D 2021的面积=(92)2020, 故答案为:(92)2020. 12.(2021•丰县校级模拟)如图,在平面直角坐标系中,直线l :y =√33x −√3与x 轴交于点B 1,以OB 1为一边在OB 1上方作等边△A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为一边在A 1B 2上方作等边△A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为一边在A 2B 3上方作等边△A 3A 2B 3,…,则A 2020的横坐标是 32(22020﹣1) .【解答】解:∵直线l :y =√33x −√3与x 轴交于点B 1,∴B 1(3,0),OB 1=3,如图所示,过A 1作A 1A ⊥OB 1于A ,则OA =12OB 1=32,A 1A =√3OA =3√32, ∴A 1的坐标为(32,3√32), ∵A 1B 2平行于x 轴,∴B 2的纵坐标为3√32, 将y =3√32代入y =√33x −√3,求得x =152, ∴B 2(152,3√32),∴A 1B 2=6,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=3,A 2B =√3A 1B =3√3,∴A 2的横坐标为OA +A 1B =32+3=92,纵坐标为A 1A +A 2B =3√32+3√3=9√32, ∴A 2的坐标为(92,9√32), 将y =9√32代入y =√33x −√3,求得x =332, ∴B 3(332,9√32), ∴A 2B 3=332−92=12,∴A 3的横坐标为12×12+92=212, …, 由此可得,A n 的横坐标为3(2n −1)2, ∴A 2020的横坐标是32(22020﹣1).故答案为32(22020﹣1).13.(2021•徐州模拟)如图,直线y =52x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点B 逆时针旋转90°后得到△A 1O 1B ,则点A 1的坐标是 (4,125) .【解答】解:在y =52x +4中,令x =0得,y =4,令y =0,得0=52x +4,解得x =−85,∴A (−85,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO =∠A 1BO 1,∠BO 1A 1=∠AOB =90°,OA =O 1A 1=85,OB =O 1B =4, ∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB ﹣OA 的长,即为4−85=125; 横坐标为O 1B =OB =4,故点A 1的坐标是(4,125), 故答案为:(4,125).14.(2022•贾汪区二模)已知正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、四象限,那么y 的值随着x 的值增大而 减小 .(填“增大”或“减小”)【解答】解:函数y =kx (k ≠0)的图象经过第二、四象限,那么y 的值随x 的值增大而减小,故答案为:减小.15.(2021•徐州模拟)如图,过点A 0(0,1)作y 轴的垂线交直线L :y =√33x 于点A ,过点A 1,作直线L 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线L 于点A ,这样依次下去,得到△A 0A 1A 2,△A 2A 3A 4,△A 4A 5A 6,…其面积分别记为S 1,S 2,S 3,…,则 S 100为 3√3×2395 .【解答】解:∵点A 0的坐标是(0,1),∴OA 0=1,∵点A 1在直线y =√33x 上,∴OA 1=2,A 0A 1=√3,∴OA 2=4,∴OA 3=8,∴OA 4=16,得出OA n =2n ,∴A n A n +1=2n •√3,∴OA 198=2198,A 198A 199=2198•√3,∵S 1=12(4﹣1)•√3=32√3,∵A 2A 1∥A 200A 199,∴△A 0A 1A 2∽△A 198A 199A 200,∴S 100S 1=(198√3√3)2, ∴S 100=2396•3√32=3√3×2395 故答案为3√3×2395.16.(2021•鼓楼区校级一模)矩形ABCD 中,E 为AD 边上的一点,动点P 沿着B ﹣E ﹣D 运动,到D 停止,动点Q 沿着B ﹣C 运动到C 停止,它们的速度都是1cm /s ,设它们的运动时间为xs ,△BPQ 的面积记为ycm 2,y 与x 的关系如图所示,则矩形ABCD 的面积为 72 cm 2.【解答】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,x =10,y =30,过点E 作EH ⊥BC 于H ,由三角形面积公式得:y =12BQ ⋅EH =12×10×EH =30,解得EH =AB =6,∴AE =√BE 2−AB 2=√102−62=8,由图2可知当x =14时,点P 与点D 重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72(cm2).故答案为:72.17.(2022•丰县二模)如图,平面直角坐标系中,有A、B、C、D四点,若直线l经过点(4,﹣3)且与y轴垂直,则直线l会经过上述四点中的点B.(填“A”或“B”或“C”或“D”)【解答】解:∵直线l经过点(4,﹣3)且与y轴垂直,∴经过直线l的点纵坐标与点(4,﹣3)纵坐标相等,∵点B的坐标(0,﹣3),∴点B符合题意.故答案为:B.18.(2021•徐州模拟)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2021的坐标是(﹣21010,﹣21010).【解答】解:由已知,点A 每次旋转转动45°,则转动一周需转动8次,每次转动点A 到原点的距离变为转动前的√2倍,∵2021=252×8+5,∴点A 2021的在第三象限的角平分线上,OA 2020=(√2)2020=21010,故答案为:(﹣21010,﹣21010).19.(2021•徐州模拟)在平面直角坐标系中,若干个半径为1个单位长度,圆心角为60的扇形组成一条连续的曲线(如图),点P 从原点O 出发,沿这条曲线向右上下起伏运动,点P 在直线上的速度为1个单位长度/秒,在弧线上的速度为π3个单位长度/秒,则2021秒时,点P 的坐标是 (20212,√32) .【解答】解:设第n 秒运动到P n (n 为自然数)点,观察,发现规律:P 1(12,√32),P 2(1,0),P 3(32,−√32),P 4(2,0),P 5(52,√32),…, ∴P 4n +1(4n+12,√32),P 4n +2(4n+22,0),P 4n +3(4n+32,−√32),P 4n +4(4n+42,0), ∵2021=4×505+1,∴P 2021为(20212,√32),故答案为:(20212,√32). 三.解答题(共5小题)20.(2022•睢宁县模拟)某地突发新冠肺炎疫情,医用防护面罩紧缺.某小型医用防护面罩加工厂迅速组织甲组员工加工,甲组在加工过程中因机器故障暂停一会,然后以原来的工作效率继续加工.由于时间紧任务重,负责人立即召集乙组员工也加入工作,直到完成加工任务.设甲组加工时间t (分钟),甲组加工医用防护面罩的数量为y 甲(个),乙组加工用防护面罩的数量为y 乙(个),其函数图象如图所示.(1)求y 乙与t 之间的函数关系式,并写出t 的取值范围;(2)求a 的值,并说明a 的实际意义;(3)甲组加工多长时间时,两组加工医用防护面罩的总数为480个?【解答】解:(1)设y 乙与t 之间的函数关系式是y 乙=kt +b ,则{50k +b =080k +b =360, 解得{k =12b =−600, 即y 乙与t 之间的函数关系式是y 乙=12t ﹣600(50≤t ≤80);(2)由图象可得,甲组加工医用防护面罩的速度为120÷30=4(个/分钟),∴a =120+4×(80﹣40)=280,即a 的值是280,实际意义是当甲组加工医用防护面罩80分钟时,一共加工医用防护面罩280个;(3)由题意可得,当40≤t ≤80时,由于工作效率没有变,∴y 甲=120+4(t ﹣40)=4t ﹣40,当y 甲+y 乙=480时,4t ﹣40+12t ﹣600=480,得t =70,∴甲组加工70分钟时,甲、乙两组加工医用防护面罩的总数为480个.21.(2021•徐州模拟)某商店计划投入8万元购进A ,B 两种型号的电动自行车共30辆,其中每辆B 型电动自行车的进价比每辆A 型电动自行车多500元.用5万元购进的A 型电动自行车与用6万元购进的B 型电动自行车数量一样.(1)求A ,B 两种型号电动自行车的进价;(2)若A 型电动自行车每辆售价为2800元,B 型电动自行车每辆售价为3500元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部售完可获利润y 元,写出y 与m 之间的函数关系式,并写出m 的取值范围;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【解答】解:(1)设A 、B 两种型号电动自行车的进货单价分别为x 元,(x +500)元. 由题意:50000x =60000x+500,解得x =2500,经检验:x =2500是分式方程的解.答:A 、B 两种型号电动自行车的进货单价分别为2500元,3000元;(2)由题意得:y =300m +500(30﹣m )=﹣200m +15000;由2500m +3000(30﹣m )≤80000,得m ≥20,∴20≤m ≤30;(3)由(1)可知y =﹣200m +15000,∵﹣200<0,∴y 随x 的最大而减小,∴m =20时,y 有最大值,最大值为11000元,即商店购进A 型号电动自行车20辆,B 型号电动自行车10辆时获得最大利润,最大值为11000元.22.(2021•徐州模拟)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y (km )与小王的行驶时间x (h )之间的函数关系.请你根据图象进行探究:(1)小王的速度是 10 km /h ,小李的速度是 20 km /h ;(2)求线段BC 所表示的y 与x 之间的函数表达式,并写出自变量x 的取值范围.(3)求当两人相距18千米时,小王行驶多少小时?【解答】解:(1)由图可得,小王的速度为:30÷3=10(km /h ),小李的速度为:(30﹣10×1)÷1=20(km /h ),答:小王和小李的速度分别是10km /h 、20km /h ,故答案为:10,20;(2)小李从乙地到甲地用的时间为:30÷20=1.5(h ),当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,解得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5);(3)①(30﹣18)÷(20+10)=0.4(小时);②18÷10=1.8(小时).答:当两人相距18千米时,小王行驶0.4小时或1.8小时.23.(2021•鼓楼区校级一模)A ,B 两城市之间有一条公路相连,公路中途穿过C 市,甲车从A 市到B 市,乙车从C 市到A 市,甲车的速度比乙车的速度慢20千米/时,两车距离C 市的路程y (单位:千米)与行驶的时间t (单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是 60 千米/时,在图中括号内填入正确的数;(2)求图象中线段MN 所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C 市的路程之和是460千米.【解答】解:(1)由题意,甲的速度为4808=60千米/小时.乙的速度为80千米/小时, 48080=6(小时),4+6=10(小时),∴图中括号内的数为10.故答案为:60.(2)设线段MN 所在直线的解析式为 y =kt +b ( k ≠0 ).把点M (4,0),N (10,480)代入y =kt +b ,得:{4k +b =010k +b =480, 解得:{k =80b =−320. ∴线段MN 所在直线的函数解析式为y =80t ﹣320.(3)(480﹣460)=20,20÷60=13(小时),或60t ﹣480+80(t ﹣4)=460,解得t =9,答:甲车出发13小时或9小时时,两车距C 市的路程之和是460千米. 24.(2021•徐州模拟)2020年初,新冠肺炎疫情暴发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只) 甲 乙项目成本12 4 售价 18 6(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5, 答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.。
中考数学专题训练第9讲二次函数2(原卷版)
二次函数题型一 二次函数的相关概念1.(2021·上海市洛川学校九年级期中)下列函数中.属于二次函数的是( )A .()()242 y x x x =-++B .()()213y x x =+-C .2y ax bx c =++D .42x y x= 2.(2021·山东·济南市莱芜实验中学九年级期中)若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数.那么m 的值是( )A .3B .2-C .2D .2或33.(2021·山东省陵城区江山实验学校九年级月考)下列函数中不属于二次函数的是( )A .(1)(2)y x x =+-B .21(1)2y x =+C .222(2)2y x x =+-D .213y x =-4.(2021·北京海淀·九年级期中)如图.在ABC 中.90C ∠=︒.5AC =.10BC =.动点M .N 分别从A .C 两点同时出发.点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动.点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t .点M .C 之间的距离为y .MCN △的面积为S .则y 与t .S 与t 满足的函数关系分别是( )A .正比例函数关系.一次函数关系B .正比例函数关系.二次函数关系C .一次函数关系.正比例函数关系D .一次函数关系.二次函数关系5.(2021·河北赵县·九年级月考)对于y =ax 2+bx +c .有以下四种说法.其中正确的是( ) A .当b =0时.y =ax 2+c 是二次函数 B .当c =0时.y =ax 2+bx 是二次函数C .当a =0时.y =bx +c 是一次函数D .以上说法都不对6.(2021·北京·首都师范大学附属中学九年级月考)边长为5的正方形ABCD .点F 是BC 上一动点.过对角线交点E 作EG ⊥EF .交CD 于点G .设BF 的长为x .△EFG 的面积为y .则y 与x 满足的函数关系是( )A .正比例函数B .一次函数C .二次函数D .以上都不是 7.(2021·北京海淀·二模)如图.一架梯子AB 靠墙而立.梯子顶端B 到地面的距离BC 为2m .梯子中点处有一个标记.在梯子顶端B 竖直下滑的过程中.该标记到地面的距离y 与顶端下滑的距离x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系8.(2021·安徽·宣城市第六中学九年级期中)若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数.则( )A .a ≠1B .a ≠﹣1C .a =1D .a =±19.以x 为自变量的函数:①(2)(2)y x x =+-.②2(2)y x =+.③2123y x x =+-.④()21y x x x =--.是二次函数的有( )A .②③B .②③④C .①②③D .①②③④ 10.(2021·湖南炎陵·九年级期末)已知二次函数y=(m+2)23m x -.当x<0时.y 随x 的增大而增大.则m 的值为( )A .5B 5C .5±D .211.(2021·湖北嘉鱼·九年级期末)下列各点中.一定不在抛物线222y mx mx =-+上的是( )A .(1.1)B .(2.2)C .(1.2)D .(1.3)12.(2021·浙江湖州·九年级月考)在抛物线245y x x =--上的一个点的坐标为( ) A .()0,4- B .()2,0 C .()1,0 D .()1,0-题型二 二次函数的图像与性质13.(2021·北京·景山学校九年级期中)抛物线y =(x ﹣3)2+1的顶点坐标是( ) A .(3.1) B .(3.﹣1) C .(﹣3.1) D .(﹣3.﹣1) 14.(2021·北京房山·九年级期中)已知二次函数2(2)6y x =--.当14x -≤≤时.y 的最小值为( )A .3B .0C .2-D .6-15.(2021·广东·珠海市九洲中学九年级期中)顶点(﹣5.﹣1).且开口方向、形状与函数y =13x 2的图象相同的抛物线是( )A .2153y x =-B .21(5)13y x =-+ C .21(5)13y x =-- D .21(5)13y x =+- 16.(2021·浙江·杭州市文晖中学九年级期中)对于二次函数y =﹣(x ﹣1)2+4的图象.下列说法正确的是( )A .开口向上B .顶点坐标是(﹣1.4)C .图象与y 轴交点的坐标是(0.4)D .函数有最大值417.(2021·吉林磐石·九年级期中)抛物线y =﹣x 2+3的顶点在( )A .x 轴上B .y 轴上C .第一象限D .第二象限 18.(2021·湖北江汉·九年级期中)已知抛物线y =ax 2+bx +c (a .b .c 为常数且a ≠0)经过P 1(1.y 1).P 2(2.y 2).P 3(3.y 3).P 4(4.y 4)四点.若y 3<y 2<y 1.则下列说法中正确的是( ) A .抛物线开口向下B .对称轴可能为直线x =3C .y 1>y 4D .5a +b >019.(2021·上海市洛川学校九年级期中)已知抛物线()222y ax x a =++-.a 是常数.且0a <.下列选项中可能是它大致图像的是( )A .B .C .D .20.(2021·安徽·宣城市第六中学九年级期中)关于二次函数228y x x =-.下列结论中正确的是( )A .图象与x 轴有两个交点B .当2x =时.y 有最大值8-C .当1x >时.y 随x 的增大而增大D .函数图象开口朝下21.(2021·山东·日照港中学九年级月考)已知二次函数2225y x bx b b =-++-(b 为常数)的图象与x 轴有交点.且当 3.5x <时.y 随x 的增大而减小.则b 的取值范围是( ) A .5b ≤ B .5b ≥ C .3.55b ≤≤ D .3.55b ≤< 22.(2021·北京十四中九年级期中)点()10,A y .()25,B y 在二次函数241y x x =-+的图象上.1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .无法比较 23.(2021·浙江·杭州市采荷中学九年级期中)已知二次函数y =2mx 2+(4﹣m )x .它的图象可能是( )A .B .C .D .24.(2021·福建·厦门市第十一中学九年级期中)将二次函数262y x x =+-化成()2y x h k =-+的形式应为( ) A .()237y x =++B .()311y x =-+C .()2311y x =+-D .()224y x =++题型三 二次函数图像与系数的关系25.(2021·山东嘉祥·九年级期中)如图.抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >.②240b ac ->.③a c b +>.④80a c +<.正确的有( )A .1个B .2个C .3个D .4个26.(2021·山东惠民·九年级期中)如图是二次函数2y ax bx c =++图象的一部分.该图象过点()5,0A -.对称轴为直线2x =-.下列结论:①0abc <.②420a b c -+>.③若()13,B y -与()24,C y -是抛物线上两点.则21y y >.④50a c +=.其中正确的有( )A .1个B .2个C .3个D .4个27.(2021·天津市第七中学九年级期中)已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =-.该抛物线与x 轴的一个交点为()1,0x .且101x <<.有下列结论:①0abc >②930a b c -+>③b a <④30a c +>.其中正确结论的个数是( )A .1B .2C .3D .428.(2021·山东·临沭县第五初级中学九年级月考)关于抛物线y =x 2﹣2x +1.下列说法错误的是( )A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x =1D .当x >1时.y 随x 的增大而减小 29.(2021·广东惠阳高级中学初中部九年级期中)如图所示.已知二次函数y =ax 2+bx +c 的图象与x 轴交于A 、B 两点.与y 轴交于点C .对称轴为直线x =1.直线y =﹣x +c 与抛物线y =ax 2+bx +c 交于C 、D 两点.D 点在x 轴下方且横坐标小于3.则下列结论:①2a +b +c >0.②a ﹣b +c <0.③ax 2﹣a ≥b ﹣bx .④a <﹣1.其中正确的有( )A .4个B .3个C .2个D .1个30.(2021·广东·珠海市九洲中学九年级期中)如图.二次函数y =ax 2+bx 的图象经过点P .若点P 的横坐标为﹣1.则一次函数y =(a ﹣b )x +b 的图象大致是( )A .B .C .D .31.(2021·云南·云大附中九年级期中)已知反比例函数b y x=的图象如图所示.则一次函数y cx a =+和二次函数2y ax bx c =++在同一直角坐标系中的图象可能是( )A .B .C .D .32.(2021·山东南区·九年级期末)在同一平面直角坐标系中.二次函数y =ax 2+bx .一次函数y =ax +b 和反比例函数y ab x =的图象可能是( )A.B.C.D.33.(2021·山东·青岛大学附属中学二模)一次函数y=ax+b与反比列函数y=cx的图象如图所示.则二次函数y=ax2+bx+c的大致图象是()A.B.C .D .34.(2021·山东·青岛实验学校九年级期末)已知二次函数21y ax bx c =++和22y bx ax c =++.a b >.则下列说法正确的是( )A .当0x <时.12y y <B .当01x <<时.12y y <C .当01x <<时.12y y >D .当1x >时12y y <35.(2021·安徽淮南·九年级月考)在同一平面直角坐标系中.函数y =ax 2+b 与y =bx 2+ax 的图象可能是( )A .B .C .D . 36.(2021·广东·汕头市龙湖实验中学九年级期中)如图.抛物线2(0)y ax bx c a =++≠的顶点为(1,)n .与x 轴的一个交点(3,0)B .与y 轴的交点在(0,3)-和(0,2)-之间.下列结论中:①0ab c>.②22()0a c b +-=.③22c a n -<.则正确的个数为( )A .0B .1C .2D .3题型四 二次函数的对称性与最值37.(2021·广东·广州市南武中学九年级期中)二次函数y =ax 2+bx +c 的图象如图所示.则该二次函数的顶点坐标为( )A .(1.3)B .(0.1)C .(0.—3)D .(2.1) 38.(2021·广东·珠海市九洲中学九年级期中)已知二次函数y =ax 2+bx +c (a ≠0)图象上部分点的坐标(x .y )的对应值如表所示.则方程ax 2+bx +2.32=0的根是( ) x …… 0 5 4 …… y …… 0.32 ﹣2 0.32 ……A .0或4B .1或5C .5或4﹣5D .5或5﹣2 39.(2021·陕西·安康高新区初级中学(汉滨初中高新校区)九年级期中)已知点()11,A y -、()23,B y -、()32,C y 均在抛物线22y x x m =-+-上.则1y .2y .3y 的大小关系是( ) A .123y y y >> B .231y y y >> C .213y y y >> D .312y y y >>40.(2021·山西·九年级期中)如果三点()()1122,1,1,P y P y -和()335,P y 在抛物线25y x x c =-++的图象上.那么123,,y y y 之间的大小关系是( )A .312y y y <<B .231y y y <<C .132y y y <<D .321y y y <<41.(2021·四川·江油外国语学校九年级月考)已知抛物线和直线l 在同一直角坐标系中的图象如图所示.抛物线的对称轴为直线x =﹣1.P 1(x 1.y 1)、P 2(x 2.y 2)是抛物线上的点.P 3(x 3.y 3)是直线l 上的点.且﹣1<x 1<x 2.x 3<﹣1.则y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 142.(2021·湖北武昌·九年级月考)若点(2.5).(4.5)在抛物线y =ax 2+bx +c 上.则它的对称轴是( ) A .x =0B .x =1C .x =2D .x =343.(2021·福建福州·九年级期末)二次函数y =x 2+2bx +4c 的图象与x 轴的两个交点的横坐标分别为x 1.x 2.且x 1>1.x 2-x 1=4.当1≤x ≤3时.该函数的最小值为m .则m 与b .c 的数量关系是( ) A .m =1+2b +4c B .m =4+4b +4c C .m =9+6b +4cD .m =-b 2+4c44.(2021·福建省泉州实验中学九年级期中)若二次函数2y ax bx c =++的图象经过()11,A x y 、()22,B x y 、()2,C m n -、()()1,D m n y n ≠则下列命题正确的是( )A .若0a >且1211x x ->-.则12y y <B .若0a <且12y y <.则1211x x -<-C .若1211x x ->-且12y y >.则0a <D .若()12122x x x x +=≠.则//AB CD45.(2021·浙江平阳·九年级期中)二次函数221y x x =-++.当12x -≤≤时.下列说法正确的是( )A .有最大值1.有最小值-2B .有最大值2.有最小值-2C .有最大值1.有最小值-1D .有最大值2.有最小值146.(2021·湖北十堰·九年级期中)若二次函数24y mx x m =-+有最大值-3.则m 等于( ) A .4m =B .1m =或-4C .4m =-D .1m =47.(2021·辽宁台安·九年级月考)函数21215555y x x =---的最大值是( )A .15-B .155C .5-D .155-48.(2021·江苏·南闸实验学校九年级月考)如图.矩形ABCD 中.AB =8.AD =4.E 为边BC 上一个动点.连接AE .取AE 的中点G .点G 绕点E 顺时针旋转90°得到点F .连接DF 、DE .EFD 面积的最小值是( )A .15B .16C .14D .12题型五 二次函数的解析式与图像平移49.(2021·广东海珠·九年级期中)已知二次函数的图象的顶点是(1,2)-.且经过点(0,5)-.则二次函数的解析式是( ). A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x50.(2021·安徽·合肥蜀山行知学校九年级期中)已知抛物线与二次函数y =2x 2的图象的开口大小相同.开口方向相反.且顶点坐标为(﹣1.2021).则该抛物线对应的函数表达式为( )A .y =﹣2(x ﹣1)2 +2021B .y =2(x ﹣1)2 +2021C .y =﹣2(x +1)2+2021D .y =2(x +1)2+202151.(2021·福建·龙岩市第五中学九年级月考)设函数y =a (x ﹣h )2+k (a .h .k 是实数.a ≠0).当x =1时.y =1.当x =6时.y =6.( ) A .若h =2.则a <0 B .若h =3.则a >0 C .若h =4.则a>0D .若h =5.则a >052.(2021·浙江·杭州市公益中学九年级开学考试)已知抛物线2y ax bx =+经过点(3,3)A --.且该抛物线的对称轴经过点A .则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx xD .2123y x x =+53.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格.则下列结论:①c =2.②b 2﹣4ac >0.③方程ax 2+bx =0的两根为x 1=﹣2.x 2=0.④7a +c <0.其中正确的有( ) x … ﹣3 ﹣2 ﹣1 1 2 … y …1.875 3m1.875…54.(2021·湖南绥宁·九年级期末)在平面直角坐标系中.如果点P 的横坐标与纵坐标相等.则称点P 为和谐点.例如:点P (1.1)、(﹣2.﹣2)、(0.5.0.5)….都是和谐点.若二次函数y =ax 2+7x +c (a ≠0)的图象上有且只有一个和谐点(﹣1.﹣1).则此二次函数的解析式为( ) A .y =3x 2+7x +3B .y =2x 2+7x +4C .y =x 2+7x +5D .y =4x 2+7x +255.(2021·湖南长沙·模拟预测)如图.是抛物线21y ax bx c =++(0a ≠)图象的一部分.抛物线的顶点坐标是A (1.3).与x 轴的一个交点B (4.0).直线2y mx n =+(0m ≠)与抛物线交于A .B 两点.下列结论:①20a b +=. ②抛物线与x 轴的另一个交点是(2-.0).③方程23ax bx c ++=有两个相等的实数根.④当时14x <<.有21y y <.⑤若221122ax bx ax bx +=+.且12x x ≠.则121x x =+.则命题正确的个数为( )A .5个B .4个C .3个D .2个56.(2021·天津津南·九年级期中)把抛物线21(2)12y x =+-向上平移2个单位长度.则平移后抛物线的解析式是( )A .2112y x =-B .21(2)2y x =+C .21(2)12y x =++ D .21(4)12y x =+-57.(2021·山东惠民·九年级期中)在平面直角坐标系中.将抛物线244y x x =--向左平移3个单位.再向上平移5个单位.得到抛物线的表达式为( ) A .()2113y x =+- B .()2513y x =-- C .()253y x =--D .()213y x =+-58.(2021·浙江·杭州市采荷中学九年级期中)将抛物线y =3x 2的图象先向右平移2个单位.再向上平移5个单位后.得到的抛物线解析式是( ) A .y =3(x ﹣2)2﹣5 B .y =3(x ﹣2)2+5 C .y =3(x +2)2﹣5D .3(x +2)2+559.(2021·广东·广州市第九十七中学九年级期中)抛物线22y x =-向左平移2个单位长度.再向下平移3个单位长度后得到的抛物线解析式为( ) A .()2223y x =-+- B .()2223y x =--- C .()2223y x =-++D .()2223y x =--+.60.(2021·辽宁连山·九年级月考)如图.在平面直角坐标系中.二次函数212y x b =-+的图象经过正方形ABOC 的顶点A .B .C .且A 点为其顶点.将该抛物线经过平移.使其顶点为C 点.则平移后抛物线的表达式为( )A .21(2)22y x =--+B .21(2)22y x =-++ C .22(2)2y x =-+- D .22(2)2y x =--+题型六 二次函数与一元二次方程61.(2021·黑龙江·鸡西市第一中学校九年级期中)如果二次函数2y ax bx c =++中.有0a b c -+=.那么二次函数图像一定经过的点是( )A .(1,0)B .(1,0)-C .(0,1)-D .(0,1)62.(2021·山东费县·九年级期中)抛物线221y x x =-+与坐标轴的交点个数为( )A .0个B .1个C .2个D .3个63.(2021·北京市大兴区第三中学九年级期中)如图.抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1.与x 轴的一个交点坐标为(﹣1.0).其部分图象如图所示.下列结论: ①4ac <b 2.②方程ax 2+bx +c =0的两个根是x 1=﹣1.x 2=3. ③3a +c >0④当y >0时.x 的取值范围是﹣1≤x <3.其中结论正确的个数是( )A .4个B .3个C .2个D .1个64.(2021·安徽·蒙城县第六中学九年级期中)若抛物线y =ax 2+bx +c 与x 轴两个交点之间的距离为10.且4a +b =0.则关于x 的方程ax 2+bx +c =0的根为( ) A .x 1=﹣7.x 2=3B .x 1=﹣6.x 2=4C .x 1=6.x 2=﹣4D .x 1=7.x 2=﹣365.(2021·天津市南开田家炳中学九年级月考)已知抛物线212y x x =-.它与x 轴的两个交点间的距离为( ) A .0B .1C .2D .466.(2021·安徽合肥·九年级月考)已知抛物线y=x2-x-1.与x轴的一个交点为(m.0).则代数式m2-m+2021的值为()A.2019 B.2020 C.2021 D.2022 67.(2021·河北·育华中学九年级月考)如图.点A.B的坐标分别为(1.4)和(4.4).抛物线y=a(x﹣m)2+n的顶点在线段AB上运动.与x轴交于C、D两点(C在D的左侧).点C的横坐标最小值为﹣3.则点D的横坐标最大值为()A.13 B.7 C.5 D.8 68.(2021·广东·珠海市九洲中学九年级期中)抛物线y=x2+4x﹣m2+2(m是常数)与坐标轴交点的个数为()A.0 B.1 C.3 D.2或3 69.(2021·湖北武昌·九年级月考)抛物线y=x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.3 70.(2021·陕西·交大附中分校模拟预测)将抛物线y=x2+2mx+m2﹣1向左平移8个单位.平移后的抛物线对称轴为直线x=1.则平移后的抛物线与y轴的交点坐标为()A.(0.0) B.(0.4) C.(0.15) D.(0.16) 71.(2021·天津·南开翔宇学校九年级开学考试)如图.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1.0).与y轴的交点B在(0.﹣2)和(0.﹣1)之间(不包含这两点).对称轴为直线x=1.在下列结论中:①abc>0.②16a+4b+c<0.③4ac﹣b2<8a.④13<a<23.⑤b<c.正结论的个数为()A.1 B.2 C.3 D.4 72.(2021·广东·佛山市华英学校九年级月考)根据表格对应值:x 1.1 1.2 1.3 1.4 ax 2+bx +c﹣0.590.842.293.76判断关于x 的方程ax 2+bx +c =3的一个解x 的范围是( ) A .1.1<x <1.2B .1.2<x <1.3C .1.3<x <1.4D .无法判定题型七 二次函数与不等式73.(2021·广东·广州市第九十七中学九年级期中)如图.直线1y x b =-+与抛物线()220y ax a =≠交于点A (-2.4).B (1.1).若12y y <.则x 的取值范围是( )A .2x <-B .21x -<<C .2x <-或1x >D .1x >74.(2021·吉林·长春市第八十七中学九年级月考)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示.它与x 轴的一个交点坐标为(﹣3.0).当y >0时.则x 的取值范围是( )A .x <﹣3B .x >1C .﹣3<x <1D .x <﹣3或x >175.二次函数y =a x 2+bx +c 的图象如图所示.且方程a x 2+bx +c =k 有两个不相等的实数根.则k 的取值范围是( )A .k <2B .k ≤2C .k <3D .1<k <376.(2021·江苏·苏州高新区实验初级中学九年级月考)如图.反比例函数4y x=的图象和二次函数23y x x =+图象交于点()1,4A .则不等式32340x x +->的解集为( )A .1x >B .01x <<C .0x <D .1x >或0x <77.(2021·山东济南·二模)已知函数227y x ax =-+.当3x ≤时.函数值随x 增大而减小.且对任意的112x a ≤≤+和212x a ≤≤+.1x .2x 相应的函数值1y .2y 总满足129y y -≤.则实数a 的取值范围是( ) A .34a -≤≤B .35a -≤≤C .34a ≤≤D .35a ≤≤78.(2021·山东·胶州市初级实验中学模拟预测)函数2y x bx c =++与y x =的图象如图所示.下面结论:①240b c ->.②10b c ++=.③360b c ++=.④当13x <<时.()210x b x c +-+<.其中正确的是( )A .②③④B .③④C .①②③④D .①79.(2021·福建·厦门市槟榔中学九年级期中)已知二次函数y =x 2+bx +1当102x <<的范围内.都有y ≥0.则b 的取值范围是( ) A .b ≥0B .b ≥﹣2C .b ≥﹣52D .b ≥﹣380.(2021·浙江杭州·九年级期中)若二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表x … 0 1 2 3 … y…1-232…点()11,A x y 点()22,B x y 在该函数图象上.当12101,23,x x y <<<<与2y 的大小关系是( ) A .12y y <B .12y y >C .12y y ≥D .12y y ≤81.(2021·江苏建湖·二模)如图为某二次函数的部分图像.有如下四个结论:①此二次函数表达式为y =14x 2﹣x +9:②若点B (﹣1.n )在这个二次函数图像上.则n >m .③该二次函数图像与x 轴的另一个交点为(﹣4.0).④当0<x <5.5时.m <y <8.所有正确结论的序号是( )A .①③B .①④C .②③D .②④82.(2021·陕西·安康高新区初级中学(汉滨初中高新校区)九年级期中)如图.抛物线()20y ax bx c a =++≠的对称轴为直线1x =.与x 轴的一个交点坐标为(-1.0).其图象如图所示.下列结论:①0abc >.②24ac b <.③方程20ax bx c ++=的两个根是11x =-.23x =.④30a c +>.⑤当0y >时.x 的取值范围是13x .⑥()a b m am b +>+(1m ≠.m 为实数).其中结论正确的个数是( )A .4个B .3个C .2个D .1个83.(2021·浙江·杭州市余杭区维翰学校九年级月考)已知函数y 1=ax 2+bx +c 与函数y 2=kx +b 的图象大致如图所示.若y 1<y 2.则自变量x 的取值范围是( )A .﹣2<x <32B .x >2或x <﹣32C .x <﹣2或x >32D .﹣32<x <284.(2021·重庆云阳·九年级月考)如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分.抛物线的顶点坐标A (1.3).与x 轴的一个交点B (4.0).直线y 2=mx +n (m ≠0)与抛物线交于A .B 两点.下列结论:①2a +b =0.②abc >0.③方程ax 2+bx +c =3有两个相等的实数根.④抛物线与x 轴的另一个交点是(﹣1.0).⑤当1<x <4时.有y 2<y 1.其中正确结论的个数是( )A .5B .4C .3D .2题型八 二次函数综合85.(2021·黑龙江·鸡西市第一中学校九年级期中)已知抛物线()230y ax bx a =++≠交x轴于(1,0)A 和(3,0)B -.交y 轴于C .(1)求抛物线的解析式.(2)D 是抛物线的顶点.P 为抛物线上的一点(不与D 重合).当PAB ABD S S ∆∆=时.求P 的坐标.86.(2021·广东·广州市南武中学九年级期中)如图.已知抛物线的顶点为A (1.4).抛物线与y 轴交于点B (0.3).与x 轴交于C 、D 两点. (1)求此抛物线的解析式. (2)求△BCD 的面积.87.(2021·吉林·九年级期中)如图.在平面直角坐标系中.过原点的抛物线的顶点M 的坐标为()1,1--.点A 的坐标为()1,1.以OA 为边的菱形OABC 的顶点C 在x 轴的正半轴上.把菱形OABC 沿AB 向上翻折得到菱形EABD . (1)求抛物线对应的函数关系式.(2)若把抛物线向右平移使抛物线经过点D .求平移的距离.88.(2021·甘肃·平凉市第十中学九年级期中)如图.已知顶点是M的抛物线()230y ax bx a=+-≠与x轴交于()1,0A-.()3,0B两点.与y轴交于点C.(1)求抛物线对应的函数解析式.(2)点P是x轴上方抛物线上的一点.若PAB△的面积等于3.求点P的坐标.(3)是否在y轴存在一点Q.使得QBM为直角三角形?若存在.求出Q的坐标.若不存在.说明理由.89.(2021·吉林·长春市第八十七中学九年级月考)在平面直角坐标系中.函数y=x2﹣ax+2a﹣2(a为常数)与y轴交于点A.(1)当函数图象经过点(1.0)时.①求此函数的表达式并写出当y随x的增大而增大时.自变量x的取值范围.②此时函数有最值为.(2)已知点M(1.2)、N(3.2).连结M、N.若函数y=x2﹣ax+2a﹣2(a为常数)的图像与线段MN只有一个交点.直接写出a的取值范围.90.(2021·河南·息县教育体育局基础教育教学研究室九年级月考)已知二次函数2 13y x bx=+-的图象与直线21y x=+交于点()1,0A-和点()4,B m.(1)求1y 的表达式和m 的值.(2)当12y y 时.则自变量x 的取值范围为__________.(3)将直线AB 沿y 轴上下平移.当平移后的直线与抛物线只有一个公共点时.求平移后的直线表达式.。
(名师整理)最新数学中考专题冲刺《函数》压轴真题训练(含答案)
冲刺中考《函数》压轴真题训练第Ⅰ卷(选择题)一.选择题1.(2019•兴安盟)如图,反比例函数y =的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.82.(2019•恩施州)函数y =﹣中,自变量x的取值范围是()A.x ≤B.x ≥C.x <且x≠﹣1 D.x ≤且x≠﹣1 3.(2019•济南)函数y=﹣ax+a与y =(a≠0)在同一坐标系中的图象可能是()A .B .1C .D .4.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)5.(2019•铁岭)如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A .B .C .D .6.(2019•盘锦)如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()2A .B .C .D .7.(2019•恩施州)抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有()A.5个B.4个C.3个D.2个38.(2019•朝阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.49.(2019•营口)如图,A,B是反比例函数y =(k>0,x>0)图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,CD=3AC,cos∠BED =,则k的值为()A.5 B.4 C.3 D .10.(2019•莱芜区)如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y =(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()4A.1 B.2 C.3 D.411.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)12.(2019•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取5值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个6第Ⅱ卷(非选择题)二.填空题13.(2019•无锡)如图,已知A(0,3)、B(4,0),一次函数y =﹣x+b的图象为直线l,点O关于直线l的对称点O′恰好落在∠ABO的平分线上,则b的值为.14.(2019•无锡)如图,A为反比例函数y=(k<0)的图象上一点,AP⊥y轴,垂足为P.点B在直线AP上,且PB=3PA,过点B作直线BC∥y轴,交反比例函数的图象于点C,若△PAC的面积为4,则k的值为.15.(2019•兴安盟)若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.16.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.717.(2019•朝阳)如图,直线y =x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.18.(2019•营口)如图,在平面直角坐标系中,直线l1:y=x+与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.8三.解答题19.(2019•无锡)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD =,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.20.(2019•恩施州)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y =﹣(x<0)的图象过点B(﹣3,a),反比例函数y =(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y =交于点C.求△OAC的面积.21.(2019•济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y =(x>0)9的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E ,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.22.(2019•济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx ﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP =∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.1023.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E 的坐标和的值.(3)点F(0,y)是y轴上一动点,当y 为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H ,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.24.(2019•兴安盟)如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.11(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.25.(2019•抚顺)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON =,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.1226.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y =(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.27.(2019•丹东)如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y =﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC =时,求点F的坐标.13(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t ≤),请直接写出S与t的函数关系式.14参考答案一.选择1.解:∵反比例函数y =,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:C.2.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x ≤且x≠﹣1.故选:D.3.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y =在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y =(a≠0)在二、四象限,只有D符合;故选:D.4.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB ==5,15∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.5.解:∵AB=AC,AG⊥BC,∴BG=GC =,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FD=CD,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x =4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.16故选:A.6.解:tan∠DBC ===,tan∠DAH ====﹣x,y=EF﹣EM﹣NF=2﹣BF tan∠DBC﹣AE tan∠DAH=2﹣x ×﹣x ()=x2﹣x+2,故选:B.7.解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a<0,∴b<0,c>0,∴ab>0且c>0,故①错误,∵抛物线对称轴x=﹣1,经过(1,0),∴(﹣2,0)和(0,0)关于对称轴对称,∴x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴x=﹣4时,y<0,17∵b=2a,∴16a﹣8a+c<0,即8a+c<0,故③错误,∵c=﹣3a=3a﹣6a,b=2a,∴c=3a﹣3b,故④正确,∵直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,∴方程ax2+(b﹣2)x+c﹣2=0的两个根分别为x1,x2,∴x1+x2=﹣,x1•x2=,∴x1+x2+x1x2=﹣+=﹣+=﹣5,故⑤错误,故选:D.8.解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,18即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.9.解:∵BD∥x轴,∴∠EDB=90°,∵cos∠BED ==,∴设DE=3a,BE=5a,∴BD ===4a,∵点B的横坐标为5,∴4a=5,则a =,∴DE =,设AC=b,则CD=3b,∵AC∥BD,∴===,19∴EC =b,∴ED=3b +b =,∴=,则b=1,∴AC=1,CD=3,设B点的纵坐标为n,∴OD=n,则OC=3+n,∵A(1,3+n),B(5,n),∴A,B是反比例函数y =(k>0,x>0)图象上的两点,∴k=1×(3+n)=5n,解得k =,故选:D.10.解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA =,∵CD∥OB,AB=BC,∴OD=OA =,CD=2OB=2a,20∴C (,2a),∵反比例函数y =(x>0)的图象经过点C,∴k =×2a=4.故选:D.11.解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.12.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,21∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,22即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.二.填空题(共6小题)13.解:延长OO'交AB于点C,交l于点E,过点O'作DG⊥x轴交于G,过点E作EF⊥x轴于点F;∵A(0,3)、B(4,0),∴直线AB的解析式为y =﹣x+3,∵直线l的解析式为y =﹣x+b,∴AB∥l,∵OO'⊥l,∴OC⊥AB,∵OA=3,OB=4,由等积法可求,OC =,∵∠COB+∠AOC=∠BAO+∠AOC=90°,∴∠BOC=∠BAO,∵BO'是∠ABO的角平分线,∴CO'=GO',23∴sin∠BAO ====,∴OO'=,∴O'G =﹣=,在Rt△OO'G中,GO =,∵E、F是△OO'G的中位线,∴E (,),∵E点在直线l上,∴=﹣×+b,∴b =,故答案为.14.解:当B点在P点右侧,如图,设A(t ,),∵PB=3PA,24∴B(﹣3t ,),∵BC∥y轴,∴C(﹣3t ,﹣),∵△PAC的面积为4,∴×(﹣t )×(+)=4,解得k=﹣6;当B点在P点左侧,设A(t ,),∵PB=3PA,∴B(3t ,),∵BC∥y轴,∴C(3t ,),∵△PAC的面积为4,∴×(﹣t )×(﹣)=4,解得k=﹣12;综上所述,k的值为﹣6或﹣12.故答案为﹣6或﹣12.2515.解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.16.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.17.解:在直线y =x+1中,当x=0时,y=1;当y=0时,x=﹣3;26∴OA=1,OM=3,∴tan∠AMO =,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB =,∴OB =.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.18.解:∵y =x +与x轴交于点A1,与y轴交于点A2,∴,27在y =中,当x=﹣1时,y =﹣,∴,设直线A2B1的解析式为:y=kx+b,可得:,解得:,∴直线A2B1的解析式为:,令y=0,可得:x =﹣,∴C1(﹣,0),∴=,∵△A1B1B2∽△A2B2B3,∴△C1B1B2∽△C2B2B3,∴,∴,同理可得:…,∴△C2019B2019B2020的面积=,28故答案为:.三.解答题(共9小题)19.解:(1)过点D作DH⊥x轴于点H,如图1,∵二次函数y=ax2﹣4ax+c,∴对称轴为x =,∴B(2,0),∵C(0,﹣2),∴OB=OC=2,∴∠OBC=∠DBH=45°,∵BH =,∴BH=DH=1,∴OH=OB+BH=2+1=3,∴D(3,1),把C(0,﹣2),D(3,1)代入y=ax2﹣4ax+c中得,,29∴,∴二次函数的解析式为y=﹣x2+4x﹣2;(2)∵y=ax2﹣4ax+c过C(0,﹣2),∴c=﹣2,∴y=ax2﹣4ax+c=a(x﹣2)2﹣4a﹣2,∴A(2,﹣4a﹣2),∵P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,∴①当抛物线的顶点A在x轴上时,∠POA=90°,则OP=OA,这样的P点只有2个,正、负半轴各一个,如图2,此时A(﹣2,0),∴﹣4a﹣2=0,解得a =;②当抛物线的顶点A不在x轴上时,∠AOB=30°时,则△OPA为等边三角形或∠AOP=120°的等腰三角形,这样的P点也只有两个,如图3,30∴AB=OB•tan30°=2×=,∴|﹣4a﹣2|=,∴或.综上,a =﹣或或.20.解:(1)∵比例函数y =﹣(x<0)的图象过点B(﹣3,a),∴a =﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD31∴===,∴AD =•OE ==3,OD =•BE ==∴A (,3),∵反比例函数y =(x>0)的图象过点A,∴k =×=9;(2)由(1)可知AD=3,OD =,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y =上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.3221.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y =(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y =,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),33∵DF⊥x轴于点F,交反比例函数y =的图象于点E,∴E(5,),∴DE=4﹣=,EF =,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC =,∴=m,34∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.22.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx 中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx ﹣中,得0=﹣4k ﹣,解得k =,∴直线l解析式为y =x ﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,35∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m =•(﹣2m )﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB ===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB =,在x轴下方过点O作OH⊥OE,在OH上截取OH =OE =,36过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y =﹣x,解方程组,得,,∴点P 的横坐标为:或.3723.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y =x2﹣x﹣2;(2)如图1,∠AOC=90°,AC =,AB=4,设直线AC的解析式为:y=kx+b ,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时38=()2=()2=,∵S△AOC=1,∴S△AEB =,∴AB×|y E|=,AB=4,则y E =﹣,则点E (﹣,﹣);由△AOC∽△AEB 得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,39则FG=CF sin∠FCG =CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y =﹣时,即点F(0,﹣),CF+BF 有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),40∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m +),解得:m =,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).24.解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)41∴抛物线W 的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b 得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S 有最大值,最大值为∴当时,;42(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0).25.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.43(2)如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON =.在Rt△OHM中,∠OHM=90°,OH=1.∴,∴M1(1,1);M2(1,﹣1).①当M1(1,1)时,直线OM解析式为:y=x,依题意得:x=x2﹣2x﹣3.解得:,,∵点Q在对称轴右侧的抛物线上运动,∴Q点纵坐标y =.∴,②当M2(1,﹣1)时,直线OM解析式为:y=﹣x,同理可求:,综上所述:点Q 的坐标为:,,44(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC =,AD =,CD =,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE =,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).45Ⅱ.PC=AD,PE=AC,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为P1(﹣3,﹣4),P2(﹣1,﹣6),P3(2,1),P4(4,﹣1).26.解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y =(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y =,∵点A的纵坐标是4,∴4=,得x=1,46∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.27.解:(1)直线y =﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y =﹣x2+bx+2,将点C坐标代入上式并解得:b =,故抛物线的表达式为:y =﹣x2+x+2…①;(2)抛物线的对称轴为:x =,47点N 的横坐标为:+=5,故点N的坐标为(5,﹣3);(3)∵tan∠ACO ==tan∠FAC =,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r =,即点R 的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n 得:,解得:,故直线AR的表达式为:y =﹣x+2…②,48联立①②并解得:x =,故点F (,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tan α==,则sin α=,cos α=;①当0≤t ≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT ====t,DS =,S=S△DST =DT×DS =t2;②当<t ≤时(右侧图),49同理可得:S=S梯形DGS′T′=×DG×(GS′+DT ′)=3+(+﹣)=t ﹣;③当<t ≤时,同理可得:S =t +;综上,S =.50。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
九年级数学下册2023年中考专题培优训练(培优篇):函数
九年级数学下册2023年中考专题培优训练(培优篇):函数一、单选题1.下列曲线中不能..表示y 是x 的函数的是( ) A . B .C .D .2.如图,直线1:3L y x =+与直线2:L y ax b =+相交于点()4A m ,,则关于x 的不等式3x ax b +≤+的解集是( ).A .4x ≥B .4x ≤C .1x ≥D .1x ≤3.若直线3y x =与x 轴所夹的锐角为α,则sin α的值为( ) A 3B .12C 3D 34.下列四个选项中,不符合直线3y x =--的性质特征的选项是( ) A .经过第二、三、四象限 B .y 随x 的增大而减小 C .与x 轴交于()3,0 D .与y 轴交于()0,3-5.已知反比例函数()0ky k x=≠,当21x -≤≤-时,y 的最大值是6,则当2x ≥时,y 有( )A .最小值6-B .最小值3-C .最大值6-D .最大值3-6.如图,正比例函数y ax =(a 为常数,且0a ≠)和反比例函数ky x=(k 为常数,且0k ≠)的图像相交于)(2,A m -和B 两点,则不等式kax x<的解集为( )A .<2x -或2x >B .22x -<<C .20x -<<或2x >D .<2x -或02x <<7.对于反比例函数2023y x=,下列说法正确的是( ) A .图象分布在第二、四象限内 B .图象经过点()1,2023-- C .y 随x 的增大而减小 D .0x <时,y 随x 的增大而增大8.如图,P 是反比例函数()50y x x=>的图象上一点,PA x ⊥轴于点A ,动点B 从原点O 出发,沿y 轴正方向移动,连接AB ,BP .在点B 移动过程中,PAB 的面积( )A .越来越大B .不变C .越来越小D .先变大后变小9.对于二次函数()222y x =-+的图像,下列说法正确的是( ) A .对称轴为直线2x =- B .最低点的坐标为()2,2 C .与x 轴有两个公共点D .与y 轴交点坐标为()0,210.如图,在平面直角坐标系中,点()12,A m y -,()2,B m y 都在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围是( )A .1m <B .1m >C .2m <D .>2m11.如图,一场篮球比赛中,一名篮球运动员投篮,球沿抛物线20.2y x bx c =-++运行,然后准确落入篮筐内,已知球出手时离地面高2.25米,距篮筐中心的水平距离OH 是4米,篮筐的中心离地面的高度为3.05m ,该抛物线的表达式为( )A .20.2 2.25y x x =--+B .20.2 2.25y x x =-++C .20.22 2.25y x x =--+D .20.22 2.25y x x =-++12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,其对称轴为直线12x =-,且与x轴的一个交点坐标为()2,0-.下列结论:①0abc >;①a b =;①930a b c -+>;①20a c +=;①关于x 的一元二次方程20ax bx c ++=有两个相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题13.如图,点A 是反比例函数ky x=图象上一点,过点A 作AH x ⊥轴,垂足为H ,连接OA ,已知AOH △的面积是6,则k 的值是__________.14.把抛物线2(1)3y x =-++向左平移2个单位长度,然后向下平移3个单位长度,平移后抛物线的表达式为__________.15.一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系kt v=,其图象为如图所示的一段曲线,且端点为()40,1A 和(),0.5B m .若行驶速度不得超过60km/h ,则汽车通过该路段最少需要_________h ?16.反比例数4y x =-,当4y <时,x 的取值范围是______.17.如图,在平面直角坐标系中,OAC 的顶点A 在反比例函数ky x=的图象上,点C 在x 轴上,AC 边交反比例函数图象于点B ,若2BOCS=,且2AB BC =,则k 的值为___________.18.如图,直线334y x =--与x 轴、y 轴分别交于点A 和点B ,点C 是x 轴上的一个动点,将ABC 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,则点C 的坐标为______.三、解答题19.如图,直线1l :23y ax =+与x 轴和y 轴分别交于B ,C 两点,直线2l :23y x b =-+与x轴交于点A ,并且这两直线交点P 的坐标为()22,.(1)求两直线的解析式; (2)求四边形AOCP 的面积.20.李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (①)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 ①.(2)求乙壶中水温y 关于加热时间x 的函数解析式. (3)当甲壶中水温刚达到80①时,乙壶中水温是 ①.21.如图,直线2y ax =+与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0k y x x=>相交于点P ,PC x ⊥轴于点C ,且4PC =,点A 的坐标为()4,0-.(1)求一次函数的解析式; (2)求双曲线的解析式;(3)若点Q 为双曲线上点P 右侧的一点,且QH x ⊥轴于H ,当以点Q 、C 、H 为顶点的三角形与AOB 相似时,求点Q 的坐标. 22.如图,已知一次函数112y x =-与反比例函数()0k y k x =≠相交于点(),1A m 、()2,B n -.过点A 分别向x 轴、y 轴作垂线,垂足分别为点M 、N .连接,,OA OB AB .(1)求反比例函数的解析式;(2)若四边形OMAN 的面积记作1S ,AOB 的面积记作2S ,求12S S 的值. 23.为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y (单位:3mg/m )与时间x (单位:min )的函数关系如图所示.在进行药物喷洒时y 与x 的函数关系式为2y x =,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为(5,)A n .(1)n 的值为__________;(2)当5x ≥时,y 与x 的反比例函数关系式为__________;(3)当教室空气中的药物浓度不高于31mg/m 时,对人体健康无危害.当教室药物喷洒完成45min 后,学生能否进入教室?请通过计算说明.24.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,增种后果园橙子的总产量为y 个,那么请你求出当果园增种多少棵橙子树时,橙子的总产量最多,并求出此时的总产量.25.如图,抛物线2y ax bx c =++经过点()()2,0,4,0A B -,与y 轴正半轴交于点C ,且2OC OA =,抛物线的顶点为D ,直线y mx n =+经过B ,C 两点,与对称轴交于点E .(1)求抛物线及直线BC 的函数表达式;(2)点M 是直线BC 上方抛物线上的动点,连接,MB ME ,得到MBE △,求出MBE △面积的最大值及此时点M 的坐标;(3)直线()0y kx k =>交线段BC 于点H ,若以点O ,B ,H 为顶点的三角形与CDE 相似,求k 的值;(4)点N 在对称轴上,满足BNC ABC ∠=∠,求出点N 的坐标.。
2023年中考九年级数学高频考点专题训练--二次函数与一元二次方程
2023年中考九年级数学高频考点专题训练--二次函数与一元二次方程一、综合题1.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0)。
(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式。
(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点( 1r,0)。
(3)若函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值。
2.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.3.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.4.如图1,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0)且经过点(0,1),将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P.(1)求抛物线C1的解析式;(2)如图2,连结AP,过点B作BC△AP交AP的延长线于C,设点Q为抛物线上点P至点B 之间的一动点,连结BQ并延长交AC于点F,①当点Q运动到什么位置时,S△PBD×S△BCF=8?②连接PQ并延长交BC于点E,试证明:FC(AC+EC)为定值.5.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?6.如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.7.已知二次函数y=x2−2mx+2m−1.(1)求证:二次函数的图象与x轴总有交点;(2)若二次函数的图象与x轴的一个交点为原点,求方程x2−2mx+2m−1=0的解.8.某运动器材批发市场销售一种篮球,每个篮球进价为50元,规定每个篮球的售价不低于进价,经市场调查,每月的销售量y(个)与每个篮球的售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数关系式;(不需求自变量x的取值范围)(2)该批发市场每月想从这种篮球销售中获利8000元,又想尽量多给客户实惠,应如何给这种篮球定价?(3)物价部门规定,该篮球的每个利润不允许高于进货价的50%,设销售这种篮球每月的总利润为w(元),那么销售单价定为多少元可获得最大利润?最大利润是多少?9.如图,已知:P(-1,0),Q(0,-2).(1)求直线PQ的函数解析式;(2)如果M(0,m)是线段OQ上一动点,抛物线y=ax2+bx+c(a≠0)经过点M和点P,①求抛物线y=ax2+bx+c与x轴另一交点N的坐标(用含a,m的代数式表示);②若PN= 12是,抛物线y=ax2+bx+c有最大值m+1,求此时a的值;③若抛物线y=ax2+bx+c与直线PQ始终都有两个公共点,求a的取值范围.10.已知二次函数y=ax2+bx+3(a≠0)的最小值为1,图象上一点的坐标为(2,3)。
初三数学中考复习 求函数表达式及其应用 专题训练题 含答案
精品基础教育教学资料,仅供参考,需要可下载使用!初三数学中考复习 求函数表达式及其应用 专题训练题1.在函数y =1x +1中,自变量x 的取值范围是( )A .x >-1B .x <-1C .x ≠-1D .x =-1 2.函数y =x 3-x的自变量的取值范围是( )A .x ≠3B .x ≠0C .x ≠3且x ≠0D .x <33. 据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有将水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数表达式是( )A .y =0.05xB .y =5xC .y =100xD .y =0.05x +1004. 某工程队承建一条长30 km 的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的函数表达式为( )A .y =30-14xB .y =30+14xC .y =30-4xD .y =14x5. 图中的圆点是有规律地从里到外逐层排列的,设y 为第n 层(n 为正整数)圆点的个数,则下列函数表达式中正确的是( )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2 6. 函数12x -3中,自变量x 的取值范围是_________. 7. 如图,△ABC 的边BC 的长是8,BC 边上的高AD ′是4,点D 在BC 上运动,设BD 长为x ,请写出△ACD 的面积y 与x 之间的函数关系式_______________.8. A ,B 两地相距20 km ,小李步行从A 地到B 地,若设他的速度为每小时5 km ,他与B 地的距离为y km ,步行的时间为x 小时,则y 与x 之间的函数关系式为____________,自变量x 的取值范围是_____________. 9. 如图,用边长60 cm 的正方形铁皮做一个无盖水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,如果截去的小正方形的边长是x cm ,水箱的容积是y cm 3,则y 与x 之间的函数表达式是_____________,自变量x 的取值范围是___________.10. 某自行车存车处在星期日存车4 000辆,其中变速车存车费是每辆一次0.30元,普通车存车费是每辆一次0.20元,若普通车存车数为x ,存车总收入y(元)与x 的函数表达式是_________________,自变量x 的取值范围是________________. 11. 求下列函数的自变量的取值范围. (1)y =x 2+5;(2)y =x -2x +4;(3)-x ;(4)y =1x 2+2.12. 如图,正方形ABCD的边长为16,M为DC边上一个动点,M点不与D,C点重合,CM=x.(1)试写出△ADM的面积y关于x的函数表达式;(2)求出自变量x的取值范围;(3)当x取多少时,△ADM面积为64?13. 李大爷要围成一个长方形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米,要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,长方形ABCD的面积为S.(1)分别求出y,S与x之间的函数表达式;(2)求自变量x的取值范围.14. 高空的气温与距地面的高度有关,某地地面气温为24℃,且已知离地面距离每升高1 km,气温下降6 ℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为-6 ℃处距地面的高度h.15. 某剧院的观众席的座位为扇形,且按下列方式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.16. 如图,在Rt△ABC中,已知∠ACB=90°,BC=4 cm,AC=9 cm,点D在射线CA上从点C出发向点A方向运动(点D不与点A重合),且点D运动的速度为2 cm/s,现设运动时间为x(s)时,对应的△ABD 的面积为y(cm2).(1)填写下表:时间x(s) … 2 4 6 … 面积y(cm 2)……(2)请写出y 与x 之间满足的关系式.(3)在点D 的运动过程中:①直接指出出现△ABD 为等腰三角形的次数有______次,当第一次出现△ABD 为等腰三角形时,请用所学知识描述此时点D 所在的位置为__________________与________的交点处; ②求当x 为何值时,△ABD 的面积是△ABC 的面积的14.参考答案:1---5 CABAB 6. x ≠327. y =-2x +168. y =20-5x 0≤x ≤4 9. y =(60-2x)2·x 0<x<30 10. y =1 200-0.1x 0≤x ≤4 000 11. (1) 解:x ≠-4. (2) 解:x 是任意实数. (3) 解:x ≥0. (4) 解:x 是任意实数 12. 解:(1) y =128-8x. (2) 0<x<16. (3) x =8.13. 解:(1) y =-12x +12,S =-12x 2+12x.(2) 0<x<24.14. 解:(1)∵离地面距离每升高1 km ,气温下降6 ℃,∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T =24-6h.(2)当h =3时,T =24-6×3=6(℃).(3)当T =-6℃时,-6=24-6h ,解得h =5,答:距地面的高度h 为5 km.15. 解:(1)由图表中数据可得,当x 每增加1时,y 增加3. (2)由题意可得,y =50+3(x -1)=3x +47.(3)某一排不可能有90个座位,理由:由题意可得:y =3x +47=90,解得x =433.x 不是整数,故某一排不可能有90个座位. 16. (1) 10 2 6(2) ①当点D 在线段AC 上时(不包括A 点),y =12AD ·BC =12(9-2x)×4=-4x +18;②当点D 在CA 的延长线时,y =12AD ·BC =12(2x -9)×4=4x -18.综合①②,得y =⎩⎪⎨⎪⎧-4x +18(0≤x<92)4x -18(x>92).(3) ① AB 的垂直平分线 AC②△ABC 的面积=12AC ×BC =12×9×4=18,令y =184,即184=-4x +18,或者184=4x -18,解得x =278或x =458.∴当x =278或x =458时,△ABD 的面积是△ABC 面积的14.。
(中考试题)初中数学专题训练-函数
函数一.选择题(共20小题)1.(2014•射阳县校级模拟)若点P(a,a﹣b)在第四象限,则点Q(b,﹣a)在()A.第四象限B.第三象限C.第二象限D.第一象限2.(2012•翁源县校级模拟)函数的自变量x的取值范围是()A.x≥1B.x≥﹣1或x≠﹣3C.x≥﹣1 D.x≥﹣1且x≠﹣33.(2017春•姜堰区校级月考)如图,在物理实验课上,小明用弹簧秤将铁块A 从完全置身水槽外,到匀速向下放入盛有水的水槽中,直至铁块完全浸入水面下的一定深度,则图能反映弹簧秤的读数y(单位:N)与铁块下降的高度x(单位:cm)之间的函数关系的大致图象是()A.B .C.D.4.(2012•山西模拟)一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是()初中数学A.摩托车比汽车晚到1h B.A,B两地的路程为20kmC.摩托车的速度为45km/h D.汽车的速度为60km/h 5.(2011•大同校级模拟)有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y升与时间x分之间的函数关系如图所示.则在第7分钟时,容器内的水量为()升.A.15B.16C.17D.18 6.(2016•阳泉模拟)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm)2.已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=0.8C.当0<t≤10时,y=0.4t2D.当t=12s时,△PBQ是等腰三角形7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,D是AB边上的一个动点(不与点A,B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示与的函数关系的图象大致是()A.B.C.D.8.(2016春•新洲区期末)若一次函数y=(1﹣m)x|m|﹣1+3的函数值y随x的增大而增大,则m的取值为()A.2B.1C.﹣2D.﹣1 9.(2014•泗县校级模拟)函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.B.C.m<﹣1D.m>﹣110.(2014•永嘉县校级模拟)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较11.(2012春•翠屏区校级期中)直线y=kx+3与x轴的交点是(1,0),则k的值是()A.3B.2C.﹣2D.﹣312.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为()A.y=﹣x+2B.y=x﹣2C.y=﹣x﹣2D.y=x+2 13.(2014•白云区校级模拟)根据下表中,反比例函数的自变量x与函数y的对应值,可得p的值为()x﹣21y3pA.3B.1C.﹣2D.﹣614.一次函数y=kx+b(b>0)与反比例函数y=在同一直角坐标系下的大致图象为()A.B.C.D.15.(2014•泗县校级模拟)若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.不能确定16.(2014•泗县校级模拟)如图,A为反比例函数图象上一点,AB⊥x轴于=3,则k的值为()点B,若S△AOBA.3B.6C.D.无法确定17.(2014•鼓楼区校级模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1 18.(2014•磐石市校级模拟)已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是()A.B.C.D.19.(2014•溧水县校级模拟)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣4;(2)若y<0,则x的取值范围为0<x<2;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.0B.1C.2D.320.对二次函数进行配方,其结果及顶点坐标是()A.B.C.D.二.填空题(共20小题)21.根据点所在位置填表(图)点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限22.(2015秋•灯塔市期末)坐标平面内的点与是一一对应的.23.(2017秋•昌平区校级期中)从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t(分)之间的函数关系式是.24.(2014•新泰市校级模拟)函数y=中,自变量x的取值范围是;函数中,自变量x的取值范围是.25.(2012秋•合肥期末)根据图中所示的程序计算变量y的值,若输入自变量x 的值为,则输出的结果是.26.(2016春•西和县校级月考)用描点法画函数图象的一般步骤是、、.27.(2014•无棣县校级模拟)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2.则y 与x 的关系式为,当重叠部分的面积是正方形面积的一半时,三角形移动时间是.28.(2015秋•深圳校级期中)函数的三种表示方式分别是.29.(2017•和平区校级模拟)当m=时,函数y=(m +3)x 2m +1+4x ﹣5(x≠0)是一次函数.30.(2014•泗县校级模拟)已知函数y=2x ﹣3,当x 时,y ≥0;当x时,y <5.31.一次函数y=kx +b 的图象与性质k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图象的大致位置经过象限第象限第象限第象限第象限性质y 随x 的增大而y 随x 的增大而y 随x 的增大而y 随x 的增大而32.(2014•射阳县校级模拟)如图,点A (﹣3,4)在一次函数y=﹣3x ﹣5的图象上,图象与y 轴的交点为B ,那么△AOB 的面积为.33.(2014秋•路北区期末)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于.34.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为;点E的坐标为.35.(2008春•通城县期中)反比例函数y=的图象经过点(﹣,5)和(a,﹣3),则a=.36.(2014•泗县校级模拟)已知y﹣2与x成反比例,当x=3时,y=1,则y与x 的函数关系式为.37.二次函数y=2x2﹣4x+5的对称轴方程是x=;当x=时,y有最小值是.38.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,1)的下方.下列结论:①a﹣b+c=0,②0<b<﹣a,③a+c>0,④a﹣b+1>0,其中正确结论的个数是个.39.(2014•射阳县校级模拟)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2.(填“>”,“<”或“=”)40.(2014•大石桥市校级模拟)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为.三.解答题(共10小题)41.已知点M(3a+8,﹣1﹣a),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点M在一、三象限角平分线上;(3)点M在第四象限,并且a为最小自然数;(4)N点坐标为(﹣3,6),并且直线MN∥y轴.42.在平面直角坐标系中,已知点A(﹣3,4),点B(﹣1,﹣2),点C(1,2),O是坐标原点.(1)求△AOB的面积;(2)求△ABC的面积.43.求下列函数自变量x的取值范围.(1)y=﹣x2﹣5x+6;(2)y=;(3)y=;(4)y=.44.已知一次函数y=(m+2)x+2﹣n,求:(1)y随x的增大而增大,m的取值范围;(2)函数的图象与y轴的交点在x轴的下方时,m,n的取值范围;(3)m,n为何值时图象与坐标轴交于原点;(4)函数的图象经过第一、二、三象限,m,n的取值范围.45.(2016•阳泉模拟)已知方程x2+mx+n=0的两根是直角三角形的两个锐角的余弦.(1)求证:m2=2n+1;(2)若P(m,n)是一次函数y=x﹣图象上的点,求点P的坐标.46.(2014•浙江模拟)如图,直线AB与x轴交于点A(1,0),与y轴交于点B (0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S=2,求点C的坐标.△OBC47.(2016•阳泉模拟)如图所示,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(6,n)在边AB上,反比例函数y=(k ≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的表达式和n的值.48.如图所示,直线y=2x+3与双曲线y=相交于A,B两点,与轴交于点C,且△OCA的面积为1.5.(1)求双曲线y=的解析式;(2)若点D,B关于原点对称,一动点P沿着x轴运动,则|PA﹣PD|是否有最大值?如果有,请确定点P的位置;如果没有,请说明理由.49.(2014•溧水县校级模拟)已知:二次函数y=ax2+bx+c(a≠0)中的x,y满足下表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求m的值;(2)根据上表求y>0时的x的取值范围;(3)若A(p,y1),B(p+1,y2)两点都在该函数图象上,且p<1,试比较y1与y2大小.50.如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过y=ax2+bx+c(a≠0)点A.(1)求c的值;(2)若a=﹣1,且抛物线与矩形有且只有三个交点,A,D,E,求△ADE的面积S的最大值.第11页(共11页)。
2019-2020年中考数学专题训练二次函数与反比例函数1
2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。
中考数学真题二次函数专项练习(带答案)
中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。
2023年九年级数学中考专题训练——二次函数与特殊的四边形
中考专题训练——二次函数与特殊的四边形1.已知二次函数y=a(x﹣1)2+k的图象与x轴交于A,B两点,AB=4,与y轴交于C点,E为抛物线的顶点,∠ECO=135°.(1)求二次函数的解析式;(2)若P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,且S△EAP=3S△EMN,求点P的坐标;(3)过直线BC上两点P,Q(P在Q的左边)作y轴的平行线,分别交抛物线于N,M,若四边形PQMN 为菱形,求直线MN的解析式.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C,对称轴为直线x=12.(1)请用a的代数式表示C点坐标.(2)连接AC,BC,若△ABC的面积为10,求该抛物线的解析式.(3)在(2)的条件下,点P是直线y=x+2上一点(位于x轴下方),点Q是反比例函数y=kx(k>0)图象上一点,若以点A,C,P,Q为顶点的四边形是菱形,则直接写出k的值(不需要写出计算过程).3.如图,在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x﹣3经过B,C两点.(1)求抛物线的解析式;(2)点P是第四象限内抛物线上的动点,过点P作PD⊥x轴于点D,交直线BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t.①求线段MN的长d与t之间的函数关系式(不要求写出自变量t的取值范围);②点Q是平面内一点,是否存在一点P,使以B,C,P,Q为顶点的四边形为矩形?若存在,请直接写出t 的值;若不存在,请说明理由.4.如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)M在抛物线上,线段MA绕点M顺时针旋转90°得MD,当点D在抛物线的对称轴上时,求点M的坐标;(3)P在对称轴上,Q在抛物线上,以P,Q,B,C为顶点的四边形为平行四边形,直接写出点P的坐标.5.如图,在平面直角坐标系内,抛物线223=-++与x轴交于点A,C(点A在点C的左侧),与y轴y x x交于点B,顶点为D.点Q为线段BC的三等分点(靠近点C).△的周长最(1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当MQC △面积的最大值;小时,求CME(2)在(1)的条件下,当CME △的面积最大时,过点E 作EN x ⊥轴,垂足为N ,将线段CN 绕点C 顺时针旋转90°得到点N ,再将点N 向上平移16个单位长度.得到点P ,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H ,使点D ,P ,G ,H 构成菱形.若存在,请直接写出点H 的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 经过点(0,6),其对称轴为直线x =32.在x 轴上方作平行于x 轴的直线l 与抛物线交于A 、B 两点(点A 在对称轴的右侧),过点A 、B 作x 轴的垂线,垂足分别为D 、C .设A 点的横坐标为m .(1)求此抛物线所对应的函数关系式.(2)当m 为何值时,矩形ABCD 为正方形.(3)当m 为何值时,矩形ABCD 的周长最大,并求出这个最大值.7.如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点()5,0A -和点()10B ,.(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作DMN DBA ∠=∠,MN 交线段AD 于点N ,是否存在这样点M ,使得DMN ∆为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.8.如图,在平面直角坐标系xOy 中,二次函数y =x 2﹣2x +m (m >0)的对称轴与比例系数为5的反比例函数图象交于点A ,与x 轴交于点B ,抛物线的图象与y 轴交于点C ,且OC =3OB .(1)求点A 的坐标;(2)求直线AC 的表达式;(3)点E 是直线AC 上一动点,点F 在x 轴上方的平面内,且使以A 、B 、E 、F 为顶点的四边形是菱形,直接写出点F 的坐标.9.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索); (3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)10.在平面直角坐标系中,抛物线C 1:y=x²+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3.0),与y 轴交于C (0,-3)(1)求抛物线C 1的表达式;(2)分别写出抛物线C 1关于B 点,关于A 点的对称抛物线C 2, C 3的函数表达式(3)设C 1的顶点为D ,C 2与x 轴的另一个交点为A 1顶点为D 1,C 3与x 轴的另一个交点为B 1,顶点为D 2,在以A 、B 、D 、A 1、B 1、D 1、D 2这七个点中的四个点为顶点的四边形中,求面积最大的四边形的面积.11.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC ,(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.13.如图,已知抛物线2y ax bx c =++的顶点为()4,3A ,与y 轴相交于点()0,5B -,对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.14.如图①,抛物线2y ax bx a b =+--与x 轴相交于()5,0A -、B 两点,过点A 的直线y x t =+与y 轴和抛物线相交于点C .(1)求抛物线的解析式和点C 的坐标;(2)点P 是抛物线上的一动点,当点P 在直线AC 的上方时,连接OP 、PC ,并把POC ∆沿着OC 翻折得到'P OC ∆,是否存在点P ,使得到四边形'POP C 为菱形,若存在,请求出点P 的坐标;若不存在,请说明理由.(3)如图②,动点E 在线段OA 上,过点E 作x 轴的垂线与AC 交于点M ,与拋物线交于点N ,试问:抛物线上是否存在点Q ,使EQN ∆与BEM ∆的面积相等时,线段NQ 的长度有最小值?若存在,请求出点Q 的坐标;若不存在,请说明理由.15.如图,已知抛物线1M :22y ax x =-与直线y x =的一个交点记为A ,点A 的横坐标是3.将抛物线1M :22y ax x =-向左平移3个单位,再向下平移3个单位,得到抛物线2M ,直线y x =与2M 的一个交点记为B ,点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF .(1)求抛物线1M 的表达式及顶点坐标;(2)当点C 的横坐标为2时,直线y x n =+恰好经过正方形CDEF 的顶点F ,求此时n 的值; (3)在点C 的运动过程中,若直线y x n =+与正方形CDEF 始终没有公共点,求n 的取值范围. 16.如图①,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于点A 、C ,与y 轴交于点B ,抛物线的顶点在直线4y x =-上,且横坐标为0,已知2OA =.(1)求抛物线的解析式;(2)如图②,将抛物线沿直线4y x =-平移得到新抛物线,设新抛物线顶点的横坐标为m ,在平移过程中,若新抛物线与直线AB 有且只有一个公共点,求m 的值;(3)设新抛物线的顶点为P ,在平移的过程中,在y 轴上是否存在一点Q ,使得以点A ,B ,P ,Q 为顶点的四边形为平行四边形,若存在,请求出Q 点的坐标;若不存在,请说明理由.17.如图,已知二次函数()31:430L y ax ax a a =-+>与x 轴交于A ,B 两点,与y 轴交于点C ,过点C 作直线//CD x 轴交抛物线1L 于一点D ,将抛物线1L 沿着直线CD 翻折,并向右平移m 个单位()0m ≥,得到抛物线2L ,抛物线2L 交直线CD 于E ,F 两点(E 在F 的左边),点M ,N 分别是1L ,2L 的顶点,连接CN ,NF ,FM ,MC 得到四边形CNFM.(1)当1a =,0m =时,直接写出抛物线2L 的解析式;(2)若点D ,E 是线段CF 三等分点,求m 的值;(3)在平移过程中,是否存在以点C ,N ,F ,M 为顶点的四边形是矩形的情形,若存在,求出m 应满足的关系式,若不存在,请说明理由.18.如图1,在平面直角坐标系中,抛物线y =﹣12x 2﹣72x ﹣3交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C(1)求直线AC 的解析式;(2)点P 是直线AC 上方抛物线上的一动点(不与点A ,点C 重合),过点P 作PD ⊥x 轴交AC 于点D ,求PD 的最大值;(3)将△BOC 沿直线BC 平移,点B 平移后的对应点为点B ′,点O 平移后的对应点为点O ′,点C 平移后的对应点为点C ′,点S 是坐标平面内一点,若以A ,C ,O ′,S 为顶点的四边形是菱形,求出所有符合条件的点S 的坐标.19.已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB 围成的封闭图形记作G .(1)求此抛物线的解析式;(2)点P 为图形G 中的抛物线上一点,且点P 的横坐标为m ,过点P 作//PQ y 轴,交线段AB 于点Q .当APQ △为等腰直角三角形时,求m 的值;(3)点C是直线AB上一点,且点C的横坐标为n,以线段AC为边作正方形ACDE,且使正方形ACDE与图形G在直线AB的同侧,当D,E两点中只有一个点在图形G的内部时,请直接写出n的取值范围.20.如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为______;当二次函数L1,L2的y值同时随着x的增大而增大时,则x的取值范围是______;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点,①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?。
中考数学专题复习:函数基础知识练习题(含答案)
中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
中考数学二次函数专题训练50题(含参考答案)
中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。
一次函数、二次函数中考数学大题
一次函数中考大题专题训练1.(2008,河北)如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求点D的坐标;(2)求直线L2的解析表达式;(3)求△ADC的面积;(4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.2.(2008,南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y•与x之间的函数关系.根据图像进行以下探究:(1)甲,乙两地之间的距离为_____km;(2)请解释图中点B的实际意义.(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.•在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,•求第二列快车比第一列快车晚出发多少小时.3.(2005,•黑龙江省)•某企业有甲,•乙两个长方体的蓄水池,将甲池中的水以6m3/h的速度注入乙池,甲,乙两个蓄水池中水的深度y(m)与注水时间x(h)之间的函数图像如图所示,结合图像回答下列问题:(1)分别求出甲,乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)求注水多长时间甲,乙两个蓄水池的蓄水池相同.4.(2005,哈尔滨市)甲,乙两名同学进行登山比赛,图5-42所示为甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,•各自行进的路程随时间变化的图象,根据图像中的有关数据回答下列问题:(1)分别求出表示甲,乙两同学登山过程中路程s(km)与时间t(h)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1h,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5km,相遇后甲,•乙各自按原来的线路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?解(1):甲乙两同学登山过程的图像都是正比例函数图像设甲同学登山的函数解析式为s=mt,乙同学登山的函数解析式为s=nts=mt过点(2,6);s=nt过点(3,6)把t=2,s=6代入s=mt得:2m=6,m=3把t=3,s=6代入s=nt得:3n=6,n=2所以,甲同学登山过程的函数解析式为s=3t;乙同学登山过程的函数解析式为s=2t (2):当甲到达山顶时,s=12,有3t=12,t=4把t=4代入s=2t得:s=2×4=8,这乙登山的高度是8千米A点与山顶的距离为:12-8=4千米(3):B点与山顶的距离是1.5千米,那么乙在B点时,登山的高度是12-1.5=10.5千米把s=10.5代入s=2t得:2t=10.5,t=5.25B点的坐标为(5.25,10.5)因为C点的坐标为(4,12),甲在山顶休息的图像为CD,所以D点的坐标为(5,12)设直线DF的函数解析式为s=kt+b,s=kt+b经过点D(5,12)和点B(5.25,10.5)分别把t=5,s=12;t=5.25,s=10.5代入s=kt+b得关于k,b的方程组:5k+b=125.25k+b=10.5解得:k=-6,b=42所以,甲下山路段DF的解析式为s=-6t+42当乙到达山顶时,s=12,把s=12代入s=2t得:2t=12,t=6再把t=6代入s=-6t+42得:s=-6×6+42=-36+42=6当乙到达山顶时,甲离山脚的距离是6千米.5.(2005,长春市)如图a所示,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线的函数关系式为y=34x,AD=8.矩形ABCD沿DB方向以每秒1•单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经过点B到达点C,用了14s.(1)求矩形ABCD的周长.(2)如图b所示,图形运动到第5s时,求点P的坐标;(3)设矩形运动的时间为t.当0≤t≤6时,点P所经过的路线是一条线段,•请求出线段所在直线的函数关系式;(4)当点P在线段AB或BC上运动时,过点P作x轴,y轴的垂线,垂足分别为E,F,则矩形PEOF是否能与矩形ABCD相似(或位似)?若能,求出t的值;若不能,说明理由.6.(2006,绍兴)某校部分住校学生,放学后到学校锅炉房打水,每人接水2L,•他们先同时打开两个放水龙头,后来故故障关闭一个放水龙头,假设前后两个接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(L)与接水时间x(min)的函数图像如图所示.请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3min”.•你说可能吗?请说明理由.7.如图,1l 表示商场一天的家电销售额与销售量的关系,2l 表示一天的销售成本与销售量的关系.(1)当销售量x=2时,销售额= 万元,销售成本= 万元,利润(收入﹣成本)= 万元.4 l 1 y (万元) l 2(2)一天销售台时,销售额等于销售成本.(3)当销售量时,该商场赢利(收入大于成本),当销售量时,该商场亏损(收入小于成本).(4)l1对应的函数表达式是.(5)写出利润与销售额之间的函数表达式.8.某单位为减少用车开支准备和一个体车主或一家出租车公司签订租车合同.设汽车每月行驶xKm,个体车主的月费用是y 1元,出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图像,如图,观察图像并回答下列问题;(1)每月行驶的路程在什么范围内时,租用公司的车更省钱?(2)每月行驶的路程在什么范围内时,租两家的车的费用相同?(3)如果这个单位估计每月行驶的路程在2300Km,那么这个单位租哪家的车比较合算?y(元)yy1(km)O10001500300030009.在直角坐标系中,有以A (-1,-1),B (1,-1),C (1,1),D (—1,1)为顶点的正方形.设正方形在直线y =x 上方及直线y =-x +2a 上方部分的面积为S .(1)求a =12 时,S 的值.(2)当a 在实数范围内变化时,求S 关于a 的函数关系式.10.已知一次函数y=34x+m的图像分别交x轴、y轴于A、B两点,且与反比例函数y=24x的图像在第一象限交于点C(4,n),CD⊥x轴于D.(1)求m、n的值,并作出两个函数图像;(2)如果点P在x轴上,并在点A与点D之间,点Q在线段AC上,且AP=CQ,那么当△APQ与△ADC相似时,求点Q的坐标。
中考数学专题练习 函数及一次函数(含解析)-人教版初中九年级全册数学试题
函数及一次函数一、选择题1.一次函数y=2x﹣3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y23.一个水池接有甲,乙,丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量v(m3)与时间t(h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是()A.乙>甲B.丙>甲C.甲>乙D.丙>乙4.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3 B.4 C.5 D.65.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.6.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m 的最大值是()A.1 B.2 C.24 D.﹣9二、填空题7.已知关于x,y的一次函数y=(m﹣1)x﹣2的图象经过平面直角坐标系中的第一、三、四象限,那么m的取值X围是.8.如图,正方形ABCD的边长为10,点E在CB的延长线上,EB=10,点P在边CD上运动(C,D两点除外),EP与AB相交于点F,若CP=x,四边形FBCP的面积为y,则y关于x的函数关系式是.9.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是.三、解答题11.由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金.他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价y(万元/台)与月次x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月次x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价;(4)请通过计算说明他这一年是否完成了年初计划的销售量.12.如图①是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量x的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图①分别改画成图②和图③,(1)说明图①中点A和点B的实际意义;(2)你认为图②和图③两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图④中画出符合这种办法的y与x的大致函数关系图象.13.(12分)某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口票数y(人)与售票时间x(分)的函数关系如图②所示.某天售票厅排队等候购票的人数y(人)与售票时间x(分)的函数关系如图③所示,已知售票的前a分钟开放了两个售票窗口.(1)求a的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?14.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一X标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁xX、按裁法二裁yX、按裁法三裁zX,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=,n=;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的X数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少X?15.如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t <10).(1)求直线l2的解析式;(2)设△PCQ的面积为S,请求出S关于t的函数关系式;(3)试探究:当t为何值时,△PCQ为等腰三角形?函数及一次函数参考答案与试题解析一、选择题1.一次函数y=2x﹣3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的图象.【分析】根据一次函数y=ax+b(a≠0)的a、b的符号判定该一次函数所经过的象限即可.【解答】解:∵一次函数y=2x﹣3的k=2>0,b=﹣3<0,∴一次函数y=2x﹣3经过第一、三、四象限,即一次函数y=2x﹣3不经过第二象限.故选:B.【点评】本题考查了一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k >0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可知.【解答】解:根据k<0,得y随x的增大而减小.①当x1<x2时,y1>y2,②当x1>x2时,y1<y2.故选:C.【点评】熟练掌握正比例函数图象的性质,正比例函数图象是经过原点的一条直线.①当k>0时,图象经过一、三象限,y随x的增大而增大;②当k<0时,图象经过二、四象限,y随x的增大而减小.3.一个水池接有甲,乙,丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量v(m3)与时间t(h)之间的函数关系如图,则关于三个水管每小时的水流量,下列判断正确的是()A.乙>甲B.丙>甲C.甲>乙D.丙>乙【考点】函数的图象.【专题】压轴题.【分析】依题意,如图可知,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙.按此关系可知甲的水流量大于乙.【解答】解:由题意可得,甲是注水管,乙、丙是排水管,由“先打开甲,一段时间后再打开乙,水池注满水后关闭甲”,可得,甲>乙,否则是不会注满水的.故选C.【点评】此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3 B.4 C.5 D.6【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】正确理解函数图象横纵坐标表示的意义.【解答】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y 在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD 的面积是=3.故选A.【点评】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.5.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型;图表型.【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.【解答】解:根据题意可得:①F、A重合之前没有重叠面积,②F、A重叠之后到E与A重叠前,设AE=a,EF被重叠部分的长度为(t﹣a),则重叠部分面积为S=(t﹣a)•(t﹣a)tan∠EFG=(t﹣a)2tan∠EFG,∴是二次函数图象;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积等于S=S△EFG﹣(t﹣a)2tan∠EFG,符合二次函数图象,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故选:B.【点评】本题考查动点问题的函数图象,学会分段讨论是解题的关键,需要构建函数解决问题,属于中考常考题型.6.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m 的最大值是()A.1 B.2 C.24 D.﹣9【考点】一次函数与一元一次不等式.【专题】计算题;压轴题;数形结合.【分析】联立两个函数的解析式,可求得两函数的交点坐标为(1,2),在﹣5≤x≤5的X围内;由于m总取y1,y2中的较小值,且两个函数的图象一个y随x的增大而增大,另一个y随x的增大而减小;因此当m最大时,y1、y2的值最接近,即当x=1时,m的值最大,因此m的最大值为m=2.【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的X围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.二、填空题7.已知关于x,y的一次函数y=(m﹣1)x﹣2的图象经过平面直角坐标系中的第一、三、四象限,那么m的取值X围是m>1 .【考点】一次函数图象与系数的关系.【专题】计算题.【分析】根据题意得m﹣1>0,然后解不等即可得到m的取值X围.【解答】解:∵y=(m﹣1)x﹣2的图象经过平面直角坐标系中的第一、三、四象限,∴m﹣1>0,∴m>1.故填空答案:m>1.【点评】此题主要考查了一次函数图象与系数的关系,要求学生能够根据k,b的符号正确判断直线所经过的象限.8.如图,正方形ABCD的边长为10,点E在CB的延长线上,EB=10,点P在边CD上运动(C,D两点除外),EP与AB相交于点F,若CP=x,四边形FBCP的面积为y,则y关于x的函数关系式是y=(0<x<10).【考点】三角形中位线定理;根据实际问题列一次函数关系式;梯形.【专题】压轴题;动点型.【分析】BF是△ECP的中位线,四边形FBCP为梯形,根据公式求解.【解答】解:∵正方形ABCD的边长为10,CP=x,EB=10∴BF是ECP的中位线,∴BF=CP=x∵AB∥CD∴四边形FBCP是梯形,S梯形FBCP=(BF+CP)•BC=•×10=即y=(0<x<10).故答案为:y=(0<x<10).【点评】本题很简单,只要熟知三角形的中位线定理及梯形的面积公式即可解答.9.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.【专题】压轴题.【分析】由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.【解答】解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.【点评】本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是(22014﹣1,22013).【考点】一次函数图象上点的坐标特征;正方形的性质.【专题】规律型.【分析】首先求得直线的解析式,分别求得B1,B2,B3…的坐标,可以得到一定的规律,据此即可求解.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),…,∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.B n的坐标是(2n﹣1,2n﹣1)∴B2014的坐标是(22014﹣1,22013).故答案为:(22014﹣1,22013).【点评】此题考查的是一次函数图象上点的坐标特点及用待定系数法求函数解析式和坐标的变化规律,正确得到点的坐标的规律是解题的关键.三、解答题11.由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金.他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价y(万元/台)与月次x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月次x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价;(4)请通过计算说明他这一年是否完成了年初计划的销售量.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)要根据自变量的不同取值X围,运用待定系数法分段计算出p与x的函数关系式;(2)可根据实际销售利润=单件的利润×销售的数量,然后根据题目中给出的售价与月次的函数式以及(1)中销售量与月次的关系式,得出实际销售利润与月次的函数关系式;(3)要根据自变量的不同的取值X围分别进行讨论,然后找出最高售价;(4)可根据“完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元”作为判断依据来计算出它能否完成年初的销售计划.【解答】解:(1)由题意得:;+0.25﹣0.1)(﹣5x+40)=(x﹣3)(x﹣8)=即w与x间的函数关系式w=;(3)①当1≤x<+∴x=1时,y最大②当4≤x≤6时,y=0.1万元,保持不变③当6<x≤+∴x=12时,y最大×12+综合得:全年1月份售价最高,最高为0.2万元/台;(4)设全年计划销售量为a台,则:34≤+5≤40解得:290≤a≤350∵全年的实际销售量为:35+30+25+20+22+24+26+28+30+32+34+36=342(台)>290台∴这一年他完成了年初计划的销售量.【点评】本题是利用一次函数的有关知识解答实际应用题,由此看来一次函数是常用的解答实际问题的数学模型,是中考的常见题型.借助函数图象表达题目中的信息,读懂图象是关键.12.如图①是某公共汽车线路收支差额y(票价总收人减去运营成本)与乘客量x的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图①分别改画成图②和图③,(1)说明图①中点A和点B的实际意义;(2)你认为图②和图③两个图象中,反映乘客意见的是 3 ,反映公交公司意见的是 2 .(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图④中画出符合这种办法的y与x的大致函数关系图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)读题看图两结合,从中获取信息做出判断.点A表示这条线路的运营成本为1万元;点B表示乘客数达1.5万人时,这条线路的收支达到平衡;(2)结合点的意义可知反映乘客意见的是③,反映公交公司意见的是②;(3)将图④中的射线AB绕点A逆时针适当旋转且向上平移即可得到符合题意的直线.【解答】解:(1)点A表示这条线路的运营成本为1万元;点B表示乘客数达1.5万人时,这条线路的收支达到平衡;(2)反映乘客意见的是图③;反映公交公司意见的是图②;(3)将图④中的射线AB绕点A逆时针适当旋转且向上平移.(平移距离和旋转角不可太大,点A 平移到x轴或其上方,不给分).【点评】本题有着浓厚的时代气息,题意与人们的日常出行密切相关,关键是能否正确理解题意,读取信息,作出正确解答.13.某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口票数y(人)与售票时间x(分)的函数关系如图②所示.某天售票厅排队等候购票的人数y(人)与售票时间x(分)的函数关系如图③所示,已知售票的前a分钟开放了两个售票窗口.(1)求a的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?【考点】一次函数的应用.【专题】压轴题.【分析】这是个动态问题,比较复杂,需从新增人数和售出票数两个方面同时考虑.(1)a分钟新增4a人,两个窗口售出2×3aX票,此时窗口有240人,据此得方程求解;(2)运用待定系数法求直线解析式,求x=60时的函数值;(3)根据题意列不等式求解.【解答】解:(1)由图①②可知,每分钟新增购票人数4人,每个售票窗口每分钟售票3人,则:300+4×a﹣3×2×a=240解这个方程,得a=30.(2)设第30﹣78分钟时,售票厅排队等候购票的人数y与售票时间x的函数关系式y=kx+b,则30k+b=240;78k+b=0.解得k=﹣5,b=390.∴y=﹣5x+390.当x=60时,y=﹣5×60+390=90.因此,售票到第60分钟时,售票厅排队等候购票的旅客有90人.(3)设至少同时开放n个售票窗口,依题意得:300+30×4≤30×3×n解得n≥.因此至少同时开放5个售票窗口.【点评】本题是函数与实际问题的综合应用大题,要注意函数图象的运用及方程、不等式的联合运用.14.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一X标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁xX、按裁法二裁yX、按裁法三裁zX,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= 0 ,n= 3 ;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的X数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少X?【考点】多元一次方程组.【专题】压轴题.【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)由题意得:共需用A型板材240块、B型板材180块,又因为满足x+2y=240,2x+3z=180,然后整理即可求出解析式;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x和,[注:事实上,0≤x≤90且x是6的整数倍].由一次函数的性质可知,当x=90时,Q最小.此时按三种裁法分别裁90X、75X、0X.【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B 型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;∴m=0,n=3;(2)由题意得:共需用A型板材240块、B型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理即可求出解析式为:y=120﹣x,z=60﹣x;(3)由题意,得Q=x+y+z=x+120﹣x+60﹣x.整理,得Q=180﹣x.由题意,得解得x≤90.[注:事实上,0≤x≤90且x是6的整数倍]由一次函数的性质可知,当x=90时,Q最小.由(2)知,y=120﹣x=120﹣×90=75,z=60﹣x=60﹣×90=0;故此时按三种裁法分别裁90X、75X、0X.【点评】本题重点考查了一次函数图象和实际应用相结合的问题,在做题时要明确所裁出A型板材和B型板材的总长度不能超过150cm.15.如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t <10).(1)求直线l2的解析式;(2)设△PCQ的面积为S,请求出S关于t的函数关系式;(3)试探究:当t为何值时,△PCQ为等腰三角形?【考点】二次函数综合题;一次函数综合题.【专题】压轴题.【分析】(1)因为l1过点B,所以代入直线l1的解析式求得点B的坐标,又因为直线l2经过B,C 两点,所以将点B、C的坐标代入直线y=kx+b(k≠0),列方程组即可求得;(2)过Q作QD⊥x轴于D,则△CQD∽△CBO,得出,由题意,知OA=2,OB=6,OC=8,BC==10,得出,故QD=t,即可求得函数解析式;(3)要想使△PCQ为等腰三角形,需满足CP=CQ,或QC=QP,或PC=PQ.【解答】解:(1)由题意,知B(0,6),C(8,0),设直线l2的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6,则l2的解析式为y=﹣x+6;(2)解法一:如图,过P作PD⊥l2于D,∵∠PDC=∠BOC=90°,∠DCP=∠OCB∴△PDC∽△BOC∴由题意,知OA=2,OB=6,OC=8∴BC==10,PC=10﹣t∴=,∴PD=(10﹣t)∴S△PCQ=CQ•PD=t•(10﹣t)=﹣t2+3t;解法二:如图,过Q作QD⊥x轴于D,∵∠QDC=∠BOC=90°,∠QCD=∠BCO∴△CQD∽△CBO∴由题意,知OA=2,OB=6,OC=8∴BC==10∴∴QD=t∴S△PCQ=PC•QD=(10﹣t)•t=﹣t2+3t;(3)∵PC=10﹣t,CQ=t,要想使△PCQ为等腰三角形,需满足CP=CQ,或QC=QP,或PC=PQ,∴当CP=CQ时,由题10﹣t=t,得t=5(秒);当QC=QP时, =,即=解得t=(秒);当PC=PQ时, =,即=,解得t=(秒);即t=5或或.【点评】此题考查了一次函数与三角形的综合知识,要注意待定系数法的应用,要注意数形结合思想的应用.。
九年级数学中考复习:函数专题训练(含答案)
中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。