(完整)三年级奥数-行程问题(一)
小学奥数全国推荐三年级奥数通用学案附带练习题解析答案51行程问题基础(一)
年级三年级学科奥数版本通用版课程标题行程问题基础(一)我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题。
行程问题是数学中一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包含很多方面,但基础在于路程、速度和时间三个基本量之间的关系,在这三个量中,已知两个量,即可求出第三个量,掌握这三个数量间的关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,即根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程问题三要素之间的关系:(1)速度×时间=路程,可简记为:s=vt(2)路程÷速度=时间,可简记为:t=s÷v(3)路程÷时间=速度,可简记为:v=s÷t显然,知道其中的两个量就可以求出第三个量。
二、速度是描述物体运动快慢的量,时间是事件从开始到结束的时刻间隔,有些行程问题是多段路程、不同速度的叠加,解题时要区分各段路程对应的速度。
例1小黑上山用2小时,每小时行2千米,下山用1小时,求小黑下山的速度。
分析与解:小黑上山和下山的路程是一样的,即路程=2×2=4(千米),下山的速度=4÷1=4(千米/小时)。
例2小白从家骑车去学校,每小时行15千米,用时2小时,回来时以每小时10千米的速度行驶,问:需要多少时间?分析与解:小白家到学校的距离是固定的,即从家到学校的路程=15×2=30(千米),回来时所用的时间=30÷10=3(小时)。
例3甲、乙两车同时从A、B两城相对开出,甲车的速度是54千米/时,乙车的速度是53千米/时,经5小时两车相遇,A、B两城间距离多少千米?分析与解:甲、乙两车从开始出发到相遇所用的时间相同,都为5小时。
如图,A、B两城间距离=甲车所走的路程+乙车所走的路程=甲车的速度×甲车所用的时间+乙车的速度×乙车所用的时间=54×5+53×5=535(千米)。
小学奥数模块教程行程问题(一)(2016)
一、速度、路程、时间的基本关系我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
关于s 、v 、t 三者的基本关系:速度×时间=路程 可简记为:s vt = 路程÷速度=时间 可简记为:t s v =÷ 路程÷时间=速度 可简记为:v s t =÷二、平均速度平均速度的基本关系式为: 平均速度=总路程÷总时间; 总时间=总路程÷平均速度; 总路程=平均速度⨯总时间。
三、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么行程问题(一) 发现不同知识框架相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间 =速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=t S V 和和四、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=t S V 差差例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t 后甲乙同时到达终点,甲乙的速度分别为v 甲和v 乙,那么我们可以看到经过时间t 后,甲比乙多跑了5米,或者可以说,在时间t 内甲的路程比乙的路程多5米,甲用了时间t 追了乙5米五、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径.例题精讲【例1】甲、乙两地相距100千米.下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?从广州到上海1200公里,上午8点,一辆A汽车从广州地出发前往上海,每小时走120千米;下午1点,一辆B汽车从甲地出发驶向乙地,为了使B汽车不比A汽车晚到达乙地,B汽车每小时最少要行驶多少千米?【例2】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米.3小时两车相遇.甲、乙两个城市的路程是多少千米?聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【例3】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米.甲、乙两车相遇时,各行了多少千米?【例4】孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141公里;出发后5小时,两车相遇.A、B两地相距______ 公里.【例5】甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?【例6】甲乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【例7】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?【例8】下午放学时,弟弟以每分钟40米的速度步行回家.5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家).解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,12小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?【例9】一辆慢车从甲地开往乙地,每小时行40千米,开出5小时后,一辆快车以每小时90千米的速度也从甲地开往乙地.在甲乙两地的中点处快车追上慢车,甲乙两地相距多少千米?甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?【例10】王芳和李华放学后,一起步行去体校参加排球训练,王芳每分钟走110米,李华每分钟走70米,出发5分钟后,王芳返回学校取运动服,在学校又耽误了2分钟,然后追赶李华.求多少分钟后追上李华?甲、乙两车同时从A地向B地开出,甲每小时行38千米,乙每小时行34千米,开出1小时后,甲车因有紧急任务返回A地;到达A地后又立即向B地开出追乙车,当甲车追上乙车时,两车正好都到达B地,求A、B两地的路程.【例11】小聪和小明从学校到相距2400米的电影院去看电影.小聪每分钟行60米,他出发后10分钟小明才出发,结果俩人同时到达影院,小明每分钟行多少米?六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?【例12】甲、乙两车同时从A、B两地沿相同的方向行驶.甲车如果每小时行驶60千米,则5小时可追上前方的乙车;如果每小时行驶70千米,则3小时可追上前方的乙车.由上可知,乙车每小时行驶_____千米(假设乙车的行驶速度保持不变).王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?【例13】小新和正南二人同时从学校和家出发,相向而行,小新骑车他的三轮车每分钟行100米,5分钟后小新已超过中点50米,这时二人还相距30米,正南每分钟行多少米?甲、乙两列火车同时从东西两镇之间的A地出发向东西两镇反向而行,它们分别到达东西两镇后,再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?课堂检测【随练1】大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【随练2】甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?【随练3】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的明具盒忘在家中,爸爸带着明具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?当爸爸追上小明时他们离家多远?【随练4】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.【随练5】小明和小军分别从甲、乙两地同时出发,相向而行.若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇.甲、乙两地相距多少千米?家庭作业【作业1】甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?【作业2】甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?【作业3】甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?【作业4】哥哥和弟弟在同一所学校读书.哥哥每分钟走65米,弟弟每分钟走40米,有一天弟弟先走5分钟后,哥哥才从家出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?【作业5】小李骑自行车每小时行13千米,小王骑自行车每小时行15千米.小李出发后2小时,小王在小李的出发地点前面6千米处出发,小李几小时可以追上小王?【作业6】作业6 甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?【作业7】甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?。
三年级奥数--行程问题(一)
训练点21——行程问题例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。
所以狗共行了500×10=5000米。
练习二1,甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
(完整版)小学奥数行程问题经典整理
第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
小学奥数 行程问题1
行程问题(1)例1:客车和货车同时从A 、B 两地相对开出。
客车每小时行驶50千米,货车的 速度是客车的80%,相遇后客车继续行3.2小时到达B 地。
A 、B 两地相距 多少千米?思考:如果把“相遇后客车继续行3.2小时到达B 地”改为“相遇后货车继续行3.2小时到达A 地”,该怎样解答?例2:客车和货车同时从A 、B 两地相对开出,客车每小时行60千米, 货车每小时行全程的101,当货车行到全程的2413时,客车已行了全程的85。
A 、B 两地间的路程是多少千米?练习:客车和货车同时从上海、北京两地相对开出。
客车每小时行100千米,货车每小时行全程的151,相遇时客车所行路程是货车的45,上海和北京两地 相距多少千米?例3:甲乙两人分别从A 、B 两地同时相向出发,相遇后,甲继续向B 地走,乙 马上返回往B 地走,甲从A 到B 地,比乙返回B 地迟到0.5小时。
已知甲的速度是乙的43,甲从A 地到B 地共用了多少小时?练习:1、一辆汽车把货物从甲地运往乙地往返只用了5小时,去时所用的时间是回来的121倍,去时每小时比回来时慢17千米。
汽车往、返共行了多少千米?2、甲、乙两车分别从A 、B 两地同时出发相向而行,匀速前进。
如果每人按一定 的速度前进,则4小时相遇;如果每人都比原计划每小时少走1千米,则5 小时相遇。
求A 、B 两地的路程。
能力检测:1、甲、乙两车同时从A 地开往B 地,当甲车行至A 、B 两地中点时,乙车行了A 、B 两地路程的53;当甲车到达B 地时,乙车已超过B 地24千米。
求A 、B 两 地的路程。
ACB 2、客车和货车从A 地驶向B 地,货车比客车提前32小时出发,结果同时到达B 地,已知两地相距240千米,客、货两车的速度比是5∶4,客车每小时行多 少千米?3、甲、乙两人同时骑自行车从东、西两镇相向而行,甲和乙的速度比是3:4。
已知甲行了全程的31,离相遇点还有20千米,相遇时甲比乙少行多少千米?4、摩托车和小汽车同时从A 地出发,沿长方形的路两边行驶,结果在B 点相遇。
小学奥数之 行程问题1
行程专题(一)一、时间相同速度比等于路程比【例1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以A、B两地相距2301057÷=(千米).【例2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。
【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:10分钟因为丙的速度是甲、乙的3倍,分步讨论如下:(1)若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信5分钟5分钟当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)(2)同理先追及甲需要时间为120分钟【例3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?【分析】甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744-⨯=,所以A、B两点的距离为1607=16804⨯÷(米).【例4】甲、乙两车分别从A、B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B 地时,乙离A地还有10 千米.那么A、B 两地相距多少千米?【解析】两车相遇时甲走了全程的59,乙走了全程的49,之后甲的速度减少20%,乙的速度增加20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+=,所以甲到达B 地时,乙又走了4689515⨯=,距离A地58191545-=,所以A、B 两地的距离为11045045÷=(千米).【例5】早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是15 千米.下午 3 点时,两人之间的距离还是l5 千米.下午 4 点时小王到达乙地,晚上7 点小张到达乙地.小张是早晨几点出发?【解析】从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是l5 千米.下午 3 点时,两人之间的距离还是l5 千米,所以下午2 点时小王距小张15 千米,下午 3 点时小王超过小张15千米,可知两人的速度差是每小时30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走30 千米,那小张3 小时走了15 30 45=+千米,故小张的速度是45 ÷3=15千米/时,小王的速度是15 +30 =45千米/时.全程是45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午10 点出发的。
【奥数】三年级行程问题
例1李红早晨7点从家出发去学校,她走了2 分钟后发现忘记带语文书了,她立即回家拿了书立即往学校赶,这样她到学校时是7点2o分。
如果她每分钟走80米,李红家离学校有多远?
例2一辆货车从甲城往乙城运货·每小时行42千米,预计6小时到达。
但行到一半时,由于机器出了故障,用1小时进行修理。
如果仍要求在预计时间到达乙地,余下的路程必须每小时行多少千米?
1.1辆卡车上午10时从南京出发开往镇江.原计划每小时行驶60千米,下午1时到达·但实际晚点2小时。
这辆汽车实际每小时行驶多少千米?
2明明家离学校有200米、他走了4分钟,如果用同样的速度,从学校到少年宫明明走了12分钟。
学校到少年宫有多少米?
3.小李骑摩托车以每分钟650米的速度从甲村到乙村去办事·他骑出5分钟后,因忘记带东西立即返回去拿·然后又立即出发去乙村,这样他一共用了25分钟才到达乙村。
两个村相距有多少米?
4一列火车早上5时从甲地开往乙地,下午1时可以到达。
开汽车从甲地到乙地要多用2小时·如果汽车每小时行52千米,甲、乙两地相距多少千米?
5张青平时都用每分钟66米的速度从家出发去上学,这样他1o分钟就能到学校。
有一天,他走到一半时,遇到一个熟人讲了2分钟话,如果他仍要按时到校·余下的路程每分钟要走多少米?
6一辆汽车从A城开往B城·每分钟行525米,预计40分钟到达。
但行到一半路程时,机器坏了,用5分钟修完,如果仍要求在预定时间到达乙地,行驶余下的路程每分钟必须比原来多行多少米?。
(完整版)小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
小学奥数行程问题
行程问题(一)——追及问题本讲学习的追及问题与相遇问题同属于行程问题中的一类,它是同向运动问题。
追及问题的基本特点是:两个物体同向运动,慢走在前,快走在后面,它们之间的距离不断缩短,直到快者追上慢者。
追及问题属于较复杂的行程问题。
追及问题中的各数量关系是:路程差=速度差×追及时间;速度差=路程差÷追及时间;追及时间=路程差÷速度差;解答追及问题可适当的选择画图法、假设法、比较法等思考方法解题。
在解决同向问题时,要注意以下几点:(1)要弄清题意,紧扣速度差、追及时间和路程差这三个量之间的基本关系;(2)对复杂的同向运动问题,可以借助直观图来帮助理解题意,分析数量关系;(3)要注意运动物体的出发点、出发时间、行走方向、善于扑捉速度、时间、路程对应关系。
(4)要善于联想、转化、使隐藏的数量关系明朗化,找准理解题目的突破口。
【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:追及时间=路程差÷速度差150÷(75-60)=10(分钟)答:10分钟后乙追上甲。
【小结】提醒学生熟练掌握追及问题的三个公式。
【例2】骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?【思路分析】这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差,根据公式:速度差=路程差÷追及时间:速度差:450÷3=150(千米)自行车的速度: 150+60=210(千米)答:骑自行车的人每分钟行210千米。
【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。
【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?【思路分析】根据题意可知,第一辆汽车先行2小时后,第二辆汽车才出发,画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用追及时间=路程差÷速度差。
小升初奥数第21讲 行程问题 (一) 相遇
4.A、B 两地相距 900 千米,甲车由 A 地到 B 地需 15 小时,乙车由 B 地到 A 地 需 10 小时。两车同时从两地开出,相遇时甲车距 B 地还有多少千米?
5.甲、乙两辆汽车早上 8 点钟分别从 A、B 两城同时相向而行。到 10 点钟时两 车相距 112.5 千米。继续行进到下午 1 时,两车相距还是 112.5 千米。A、B 两 地间的距离是多少千米?
4.两辆汽车同时从某地出发,运送一批货物到距离 165 千米的工地。甲车比乙 车早到 48 分钟,当甲车到达时,乙车还距工地 24 千米。甲车行完全程用了多 少小时?
5、甲、乙两地之间的距离是 420 千米。两辆汽车同时从甲地开往乙地。第一 辆汽车每小时行 42 千米,第二辆汽车每小时行 28 千米。第一辆汽车到乙地立 即返回。两辆汽车从开出到相遇共用多少小时?
3.它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和; (2)相背而行:相背距离=速度和×时间;(3)同向而行:速度慢的在前, 快的在后;追及时间=追及距离÷速度差。
4.解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来, 有助于分析数量关系,有助于迅速地找到解题思路。 1. 相遇问题
1.一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行 40 千米, 摩托车每小时行 65 千米,当摩托车行到两地中点处时,与汽车还相距 75 千米。 甲、乙两地相距多少千米?
2.学校运来一批树苗,五(1)班的 40 个同学都去参加植树活动,如果每人植 3
棵,全班同学都能植这批树苗的一半还多 20 棵。如果这批树苗全部给五(1)
公式: 路程和=速度和 时间 路程差=速度差 时间
例1 : 甲、乙两车同时从东、西两地相向开出,甲车每小时行 56 千米,乙车每小
奥数比例中的行程问题
奥数比例中的行程问题一、什么是奥数比例中的行程问题呢?哎呀,小伙伴们,这个奥数比例中的行程问题啊,就像是一场有趣的冒险。
想象一下,你有一个小木偶,它要在不同的路程里跑来跑去,而且速度还不一样呢。
比如说,小木偶在一段路程里跑得可快啦,就像一阵小旋风;在另一段路程里呢,又慢腾腾的,像只小蜗牛。
这里面就涉及到比例关系啦。
如果把路程看成是一堆小饼干,速度就是小木偶吃饼干的速度,那时间呢,就是小木偶吃完这些饼干需要多久。
这个时间、速度和路程之间的关系,就可以用比例来表示啦。
二、一些常见的题型类型1. 简单的速度比例问题比如说,小木偶A的速度是小木偶B速度的2倍,它们同时出发,走同样的路程。
那小木偶A和小木偶B所用的时间比例是多少呢?这就很有趣啦,就像两个小朋友比赛跑步,一个跑得快,一个跑得慢,那他们到达终点的时间肯定不一样。
根据速度和时间成反比的关系,小木偶A的速度是小木偶B的2倍,那么小木偶A所用的时间就是小木偶B的1/2。
2. 往返行程中的比例问题小木偶从A地出发到B地,然后再从B地返回A地。
去的时候速度是v1,回来的时候速度是v2,那往返的平均速度是多少呢?这可不能简单地把v1和v2相加除以2哦。
我们要根据路程和时间的关系来算。
设A到B的路程是s,那么去的时间就是s/v1,回来的时间就是s/v2,往返的总路程是2s,总时间是s/v1 + s/v2,通过化简就能得到平均速度的表达式啦。
3. 多人行程中的比例问题假设有小木偶A、小木偶B和小木偶C。
小木偶A和小木偶B从甲地出发,小木偶C从乙地出发,相向而行。
小木偶A的速度是v1,小木偶B的速度是v2,小木偶C的速度是v3。
当小木偶A和小木偶C相遇的时候,小木偶B和他们的距离是多少呢?这就要考虑到他们的速度比例和行走的时间啦。
因为相遇的时候,小木偶A和小木偶C行走的时间是相同的,根据路程 = 速度×时间,我们可以算出他们各自走的路程,然后再根据小木偶B的速度和时间,就能算出小木偶B和他们的距离啦。
吉林省松原市数学小学奥数系列3-1-1行程问题(一)
吉林省松原市数学小学奥数系列3-1-1行程问题(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共23题;共115分)1. (5分)解答题(1)三年级师生去农场劳动。
女生去了256人,男生去了224人,老师去了24 人,4人一组,一共可以分多少组?(2)以(1)中的数据为依据,再提出一个有关除法的数学问题并解答。
2. (5分)一辆小汽车4小时行360千米,一辆卡车2小时行170千米。
哪辆车跑得快?3. (5分)学校准备给二年级的学生发日记本,每班发145本,发给11个班,还需要留40本作为备用,学校应买多少本是记本?4. (5分)体育用品专卖店有54个足球,排球的个数比足球的3倍少12个,篮球的个数是足球和排球总数的2倍。
篮球有多少个?5. (5分)五(3)班同学开展爬山活动。
从山脚到山顶2.4 km,同学们上山用了1.3 h,沿原路下山用了1.1 h。
同学们上下山的平均速度是多少?6. (5分) (2019三下·泗洪期中) 一个玻璃瓶自身重250克,往瓶里倒入5杯水后,连瓶称正好1千克,平均每杯水重多少?7. (5分) (2019三上·通榆期中) 王老师每天从家步行20分钟到学校,他每分钟大约走100米,王老师的家距学校有多远?8. (5分)看图回答(1)小货车出发3时后,大约在什么位置?(用▲在图上作标记)(2)小货车8:00出发,走完一半路程是什么时间?(3)小货车要几时才能到达乙地?9. (5分)甲、乙两地相距60千米,自行车和摩托车同时从甲地驶向乙地。
摩托车比自行车早到4小时,已知摩托车的速度是自行车的3倍,摩托车的速度是多少?10. (5分)甲、乙两地相距247.5千米,已行驶了4.5小时,这时距乙地还有67.5千米。
照这样的速度,还需几小时才能到达乙地?(保留两位小数)11. (5分) (2019四上·临河期末) 小乐每分钟走65米,小红每分钟走60米.小乐从家到学校一共520米,小红从家到学校比小乐多走5分钟,小红家离学校多少米?12. (5分)(2020·盐城) 某人从甲村骑自行车到县城去开会,每小时行15千米能按时到达,行了全程的后因自行车发生故障,只能步行,步行速度是每小时5干米,结果迟到20分钟,若按时到达所用的时间是多少小时?从甲村到县城的距离是多少千米?13. (5分)在比例尺是1∶3000000的地图上,量得甲、乙两地的距离为3.6厘米,如果汽车以每小时60千米的速度从甲地行驶到乙地,多少小时可以到达?14. (5分) (2019三下·沂源期末) 甲车的速度是80千米/时,乙车的速度是75千米/时,两车同时从车站分别向东、西两个方向开出,3小时后两车相距多少千米?(先画图整理条件和问题,再解答)15. (5分)一列火车车长180米,每秒行20米,这列火车通过320米长的大桥,需要多少时间?16. (5分)小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同17. (5分)有甲、乙两列货车,甲车长116米,每秒行驶10米;乙车长124米,每秒行驶14米。
吉林省通化市数学小学奥数系列3-1-1行程问题(一)
吉林省通化市数学小学奥数系列3-1-1行程问题(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共23题;共115分)1. (5分) (2020三下·未央期末) 今年疫情期间,某装备厂计划每天做120套防护服,4天完成任务。
实际只用了3天就完成任务,实际平均每天做多少套防护服?2. (5分)同学们从学校到公园春游,每分钟行60米,出发15分后,同学们走了多长的路程?3. (5分)自来水公司铺设一条800米长的自来水管道。
第一天铺了120米,剩下的打算5天铺完。
剩下的平均每天铺多少米?4. (5分) (2019四上·卢龙期末) 李红和父母一起坐车去南京游玩,去的时候汽车的速度是80千米/时,行了3小时,回来的时候行了4小时.(1)从南京回来的时候,汽车的速度是多少?(2)如果去时这辆汽车的速度是120千米/时,那么从李红家出发后几小时能到达南京?5. (5分) (2020四上·沭阳期末) 一辆汽车从甲地开往乙地,4小时行了360千米。
照这样的速度,再行驶2小时就可以到达乙地。
甲地到乙地有多少千米?6. (5分) (2020四上·保定期末) 学校图书馆准备购买《童话故事》5套,购买《中华上下五千年》105本,问:共需要支付多少钱?7. (5分) (2020四上·郴州期中) 张伯伯从张家庄出发去县城送蔬菜。
去时的速度是60千米/时,用了4小时。
原路返回时用了3小时,返回时平均每小时行多少千米?8. (5分) (2019四上·开平期中) 李大爷从县城出发去王庄乡送化肥。
去的时候每小时40千米,共用了3小时。
返回时只用了2小时。
原路返回时平均每小时行多少千米?9. (5分)小明从家出发,每分钟走65米,走了20分钟。
(1)如果向北走,小明现在在图书馆的北面还是南面?(2)如果向西走,大概走到哪个位置?在图中标出来。
奥数行程问题归纳总结及部分例题及答案
奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程(一) 相遇追及(多次)、电车问题
行程(一)相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。
同时也是小学奥数专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。
(一)典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。
追及问题BA乙甲路程差(原始距离)BA相遇问题乙甲路程和(原始距离)(二) 多次相遇追及通过图示介绍直线上的相遇和追及的规律 这部分内容涉及以下几个方面:1 求相遇次数2 求相遇地点3 由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。
举个例子:假设A 、B 两地相距6000米,甲从A 地出发在AB 间往返运动,速度为6千米/小时,乙从B 出发,在AB 间往返运动,速度为4千米/小时。
我们可以依次求出甲、乙每次到达A 点或B 点的时间。
为了说明甲、乙在AB 间相遇的规律,我们可以用“折线示意图”来表示。
GF E D C时间行程乙甲2400米6小时6小时5小时4.5小时4小时3小时1.5小时2小时1小时第六次相遇第五次相遇第四次相遇第三次相遇第二次相遇第一次相遇72分钟72分钟72分钟72分钟72分钟36分钟0BA折线示意图能将整个行程过程比较清晰的呈现出来:例如AD表示的是,甲从A地出发运动到B地的过程,其中D点对应的时间为1小时,表示甲第一次到达B点的时间为1小时,BF表示乙从B地出发到达A地的过程,F点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD与BF相交于C点,对应甲、乙的第一次相遇事件,同样的G点对应是甲、乙的第二次相遇事件。
(完整)三年级奥数行程问题
志在育人强在教学
地址:电子五路融侨馨苑星光大道南门口
电话:029--88814440 用良心做教育1志强教育一对一讲义
教师:
日期:星期:时段:学生签字:______ 课题行程问题
学习目标熟练掌握解题技巧
学习重点熟练掌握解题技巧
学习方法
启发式学习内容与过程
例题1、一辆汽车和摩托车同时从相距
860千米的两地出发,汽车每小时行45千米,摩托车每小时行70千米。
6小时后两车相距多少千米?1、一辆汽车和摩托车同时从相距
1000千米的两地出发,汽车每小时行30千米,摩托车每小时行70千米。
8
小时后两车相距多少千米?2、一辆汽车和摩托车同时从两地相向出发,汽车的速度是每小时15千米,摩托车的速度是每小时25千米。
行驶10个小时以后,两车还相距100米,求两地之间的距离》例题2、一列火车长120米,它以每秒20米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需
多少秒?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:行程问题(一)
专题简析
我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例题精讲
【例题1】甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?
【思路导引】这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习1:(1)甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?
(2)一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?
(3)甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A
城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?
【例题2】王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立
即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?
【思路导引】要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。
所以狗共行了500×10=5000米。
练习2:(1)甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?
(2)A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。
这样一直飞下去,燕子飞了多少千米,两车才能相遇?
(3)甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。
一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
【例题3】甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
【思路导引】这是一道相背问题。
所谓相背问题是指两个运动的物体作背向运动的问题。
在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。
要求几小时能行完36千米,就是求36千米里面有几个12千米。
所以,36÷12=3小时。
练习3:(1)甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
(2)甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。
经过3小时后,两人相隔60千米。
南北两庄相距多少千米?
(3)东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。
两人的速度各是多少?
【例题4】甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。
几小时后甲可以追上乙?
【思路导引】这是一道追及问题。
根据题意,甲追上乙时,比乙多行了24千米(路程差)。
甲骑自行车每小时行13千米,乙步行每小时走5千米,甲每小时比乙多行13-5=8千米(速度差),即甲每小时可以追上乙8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米。
因此,24÷8=3小时甲可以追上乙。
练习4:(1)甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米。
几小时后甲可追上乙?
(2)解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络。
多长时间后,通讯员能赶上队伍?
(3)小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。
3分钟后两人相距多少米?
【例题5】甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。
如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?
【思路导引】这是一道封闭线路上的追及问题。
甲和乙同时同地起跑,方向一致。
因此,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的路程差是400米。
根据“路程差÷速度差=追及时间”即可求出甲追上乙所需的时间:400÷(290-270)=20分钟。
练习5:(1)一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?
(2)光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑。
亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?
(3)甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍。
现在甲在乙后面250米,乙追上甲需要多少分钟?。