1.2.2数轴(1)-(2)
1.2.2数轴(教案,新教材)-七年级数学上册(人教版2024)
1.2.2数轴(教案,新教材)【教学目标】1.借助生活中的实例理解数轴的概念;2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3.感受数与形是可以相互转化的,渗透数形结合的数学思想.【教学重点】理解数轴的概念,数与形的相互转化.【教学难点】会用数轴上的点表示给定的有理数.【教学过程】一、情境导入情境:医生在给病人测量体温时常使用温度计.这是小学里我们学习了在有刻度的直线上表示出0和正数,借助这个图形直观和分析问题。
我们起来看一个实例:活动一:教师创设问题情况,引入课题问题:在一条东西的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一颗柳树和一根交通标志,汽车站牌西侧3m和4.8 m处分别有一颗槐树和一根电线杆,试画图表示这一情境。
学生活动:小组合作,动手操作画出示意图.教师活动:启发学生“画一直线表示马路,从左向右表示从西向东,直线上取一点O表示汽车站牌”,怎样用数简明表示各处的位置?师生活动:师生共同探究,情境中东、西,左、右都具有相反意义,在画的直线中,O点表示基点,取1个单位长度代表1m长,再用0表示点O,用负数表示点O左边的点,用正数表示点O右边的点。
二、合作探究活动二:认识理解数轴前面讲到的温度计可以看作表示正数、0和负数的直线,它和上面同学们所画的图有什么共同点?学生活动:和其他同学交流,注意交流时要发表自己的见解.师生活动:师生共同总结,具有三个条件:原点,正方向,单位长度.抽象出数轴定义,规定是正半轴,负半轴,原点的直线.活动三:强化对数轴的认识例1.下列图形中是数轴的是()A. B.C. D.学生活动:根据自己的认识判断.师生活动:教师给学生的判断进行评价,并总结要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.活动四:读出数轴上的点所表示的数例2.如图中所示,指出数轴上的A、B、C、D、E、F各点所表示的数.师生活动:师生共同探讨要确定数轴上的点所表示的数的步骤:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.活动五:有理数在数轴上表示问题:基于以上数据,讨论有理数a如何在数轴上表示?学生活动:当a是正数,负数时,讨论如何在数轴找到相应的点表示数a.教师活动:对学生讨论结果进行评价,并强调如何确定数轴上与原点距离是a的点.例3.画出数轴,并用数轴上的点表示下列各数5---3,4,4,0.5,0,,12学生活动:学生画出数轴,并在数轴上表示以上各数.师生活动:教师评价学生的操作,并关注所画数轴是否具备“三要素”.师生共同总结方法:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.活动六:拓展提升,数轴上两点间的距离问题例4.数轴上的点A表示的数是3,那么与点A相距5个单位长度的点表示的数是() A.2 B.±2 C.8D.8或-2学生活动:讨论与点A相距5个单位长度的点表示的数有2个,分别是8或-2.师生活动:评价学生讨论结果,总结如何求两点间的距离问题,解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.三、强化巩固1.学生练习:课本练习题1、3.学生解答,教师评价并给予规范.2. 快递小哥骑车从快递投放点出发,先向东骑行2.5km到达A村,继续向东骑行2km到达B村,然后向西骑行7km到C村,最后回到快递投放点.(1)以快递投放点为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)快递小哥一共骑了多少千米?学生讨论解答,教师规范写出解答过程.四、总结拓展学生小组合作对知识总结:1.什么是数轴,数轴三要素:(1)原点,(2)正方向,(3)单位长度.2.数轴上的点与有理数间的关系:原点表示零;原点右边的点表示正数;原点左边的点表示负数.3.数轴上点数a到原点的距离,两点间的距离的求法.学生小组合作对数学思想方法总结:数形结合,分类等数学思想。
人教版七年级数学上册:1.2.2《数轴》说课稿3
人教版七年级数学上册:1.2.2《数轴》说课稿3一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的内容,本节课主要介绍了数轴的定义、特点以及数轴上的基本运算。
数轴是数学中一种重要的工具,它将数的大小关系用一条直线上的点表示出来,使得复杂的数学问题直观化、简单化。
通过学习数轴,学生可以更好地理解实数的概念,掌握实数的运算规则,并为后续的数学学习打下基础。
二. 学情分析七年级的学生已经学习了有理数的概念,对实数的大小比较有一定的了解。
但是,学生对数轴的认识还比较陌生,需要通过本节课的学习,使他们能够熟练地运用数轴解决实际问题。
此外,学生对于数轴上的加减运算、乘除运算等基本运算规则也需要进行深入的理解和掌握。
三. 说教学目标1.知识与技能目标:理解数轴的定义,掌握数轴上的基本运算规则,能够运用数轴解决实际问题。
2.过程与方法目标:通过观察、实践、探究等方法,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的实际应用。
四. 说教学重难点1.教学重点:数轴的定义,数轴上的基本运算规则。
2.教学难点:数轴在实际问题中的应用,解决带有绝对值、相反数等复杂问题。
五. 说教学方法与手段本节课采用问题驱动法、合作探究法、案例教学法等多种教学方法,结合多媒体课件、数轴模型等教学手段,引导学生主动参与、积极思考,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数轴表示两个数的大小关系,从而引出数轴的概念。
2.自主学习:让学生通过阅读教材,了解数轴的定义和特点,掌握数轴上的基本运算规则。
3.合作探究:学生分组讨论,通过实际操作,探究数轴在实际问题中的应用,解决带有绝对值、相反数等复杂问题。
4.教师讲解:针对学生合作探究中的共性问题,进行讲解和解答,引导学生深入理解数轴的概念和运算规则。
【 七年级数学 上册】1.2.2《数轴》教案1
【七年级数学上册】1.2.2《数轴》教案1一. 教材分析《数轴》是七年级数学上册第一章第二节的内容,主要是让学生了解数轴的定义、特点和基本操作。
通过学习数轴,学生能够更好地理解实数的大小关系,提高解决问题的能力。
本节课的内容是学生学习更复杂数学知识的基础,具有重要的意义。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对数学符号有一定的了解。
但他们对数轴的认识还比较模糊,需要通过实例和操作来加深理解。
此外,学生可能对数轴的应用场景感到陌生,需要教师通过实际例子来引导学生。
三. 教学目标1.知识与技能:使学生了解数轴的定义、特点和基本操作,能够运用数轴比较实数的大小。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生数形结合的思维方式。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学探究的精神。
四. 教学重难点1.数轴的定义和特点。
2.数轴上实数的大小比较。
3.数轴在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入数轴的概念,让学生感受数轴的实际意义。
2.动手操作法:让学生亲自动手画数轴,加深对数轴的理解。
3.讨论法:分组讨论数轴上的问题,培养学生的合作能力。
4.引导发现法:引导学生发现数轴的性质和规律,提高学生的思维能力。
六. 教学准备1.教具:数轴模型、实数卡片、黑板。
2.教学素材:与数轴相关的例题和练习题。
3.教学课件:数轴的图片、动画等。
七. 教学过程1.导入(5分钟)利用生活实例,如火车站在数轴上的位置,引出数轴的概念。
让学生思考:如何在数轴上表示这个实例?2.呈现(10分钟)展示数轴的图片和动画,引导学生观察数轴的定义和特点。
同时,介绍数轴上的基本操作,如正方向、原点、单位长度等。
3.操练(10分钟)让学生分组讨论,互相画出数轴,并比较实数的大小。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示与数轴相关的练习题,让学生独立完成。
教师选取部分题目进行讲解,巩固数轴的知识。
人教版七年级数学上册:第一章有理数1.2.2数轴(教案)
-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。
人教版七年级数学上册 1.2.2 数轴 课件 (共25张PPT)
(1) 用数轴表示,,,的位置(建议以小敏家为原点).
(2) 一天,小敏从家里先去邮局寄信,之后以 /的速度往图
书馆方向走了约 ,试问:这时小敏约在什么位置?距图书馆和学
校各多少米?
(1) 用数轴表示,,,的位置(建议以小敏家为原点).
解:如图所示.
(2) 一天,小敏从家里先去邮局寄信,之后以 /的速度往图
书馆方向走了约 ,试问:这时小敏约在什么位置?距图书馆和学
校各多少米?
解:小敏在学校与图书馆之间,距图书馆约 ,距学校约 .
12.(几何直观)如图,在纸面上有一数轴,折叠纸面.
(1) 若表示1的点与表示−的点重合, 则表示−的点与表示____的点
数轴的三要素
单位长度
原点
正方向
规定了原点、正方向和单位长度的直线叫数轴.
数轴的概念
1.在数学中,用一条直线上的点表示数,规定了
正方向 和 单位长度
的水平直线叫做数轴.
原点
、
数轴的画法
1.画一条水平直线,定原点(如图),原点表示0.
2.规定从原点向右为正方向,那么相反的方向(从
原点向左)则为负方向.
第一章 有理数
1.2 有理数及其大小比较
1.2.2 数轴
1.知道数轴的三要素,正确认识三要素的重要性.
2.能正确地画出数轴,能用数轴上的点来表示有理数.
教学重难点
重点
数轴的概念与应用.
难点ቤተ መጻሕፍቲ ባይዱ
从直观认识到理性认识,从而建立数轴概念,掌
握数形结合的思想方法.
原点
正方向
单位长度
1.数轴的定义:规定了______、________和__________的直线叫作数轴.
1.2.2数轴-人教版七年级数学上册说课稿
1.2.2 数轴- 人教版七年级数学上册说课稿一、教材分析本节课是人教版七年级数学上册的1.2.2节,主要内容是数轴的介绍和运用。
通过本节课的学习,学生将能够理解数轴的概念,并能够使用数轴解决实际问题。
本节课的教学目标如下:1.理解数轴的定义和表示方法;2.掌握在数轴上表示整数;3.能够在数轴上表示有理数;4.能够在数轴上解决实际问题。
二、教学重点和难点本节课的教学重点是让学生掌握数轴的表示方法和运用,以及在数轴上解决实际问题。
教学难点是如何理解数轴上的有理数,并能够准确地在数轴上表示出来。
三、教学准备为了有效地展示本节课的内容,老师需要准备以下教学资源:1.教科书:人教版七年级数学上册;2.一张大型数轴图表,用于教学展示;3.一些实际问题的例子,用于课堂练习和讨论;4.讲台和黑板等教学硬件设备。
四、教学过程1. 导入和引入问题在课堂开始时,老师可以通过一个问题引发学生的兴趣。
例如,老师可以问学生:你们知道如何表示一个数在数轴上吗?2. 数轴的定义和表示方法接下来,老师可以向学生解释数轴的定义和表示方法。
可以通过教科书上的图示,向学生展示数轴的概念和结构,并教他们如何在数轴上表示整数。
3. 数轴上的有理数表示紧接着,老师可以介绍数轴上的有理数表示。
通过教科书上的例题,教导学生如何在数轴上表示有理数,并帮助他们理解有理数的概念。
4. 数轴在实际问题中的应用在学生对数轴表示方法有一定了解之后,老师可以设计一些实际问题,让学生应用数轴解决问题。
例如,老师可以给学生一些温度或距离的问题,让学生通过数轴进行解答。
同时,老师可以组织小组讨论,提高学生的合作能力和问题解决能力。
5. 总结和归纳课堂即将结束之前,老师可以对本节课的内容进行总结和归纳。
可以请学生回答一些问题,巩固他们对数轴的理解,同时也可以帮助老师检查学生的学习情况。
五、板书设计为了方便学生回顾和复习,老师可以在黑板上设计一些关键知识点。
板书内容如下:数轴的定义和表示方法:- 整数的表示方法- 有理数的表示方法数轴上的运用:- 实际问题的解答六、课堂小结通过本节课的学习,学生们已经初步掌握了数轴的概念和表示方法,能够在数轴上表示整数和有理数,并且能够运用数轴解决一些实际问题。
人教版七年级数学上册:1.2.2《数轴》教学设计
人教版七年级数学上册:1.2.2《数轴》教学设计一. 教材分析数轴是中学数学中的重要概念,是实数与数轴上的点一一对应的基础。
人教版七年级数学上册1.2.2《数轴》一节,主要让学生了解数轴的定义、特点及数轴上的基本运算。
通过本节课的学习,学生能理解数轴的概念,会画数轴,能在数轴上表示实数,并进行简单的运算。
二. 学情分析七年级的学生已经学习了有理数,对实数有一定的了解,但数轴的概念和运用对他们来说是一个新的挑战。
学生在学习本节课时,需要将已有的实数知识与数轴相结合,形成直观的数形结合思想。
同时,学生需要通过实践活动,掌握数轴的画法和运用。
三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴的特点,能在数轴上表示实数,并进行简单的运算。
2.过程与方法:通过实践活动,培养学生的数形结合思想,提高学生的动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.数轴的定义和特点。
2.数轴上的基本运算。
五. 教学方法采用问题驱动法、实践活动法和合作学习法。
通过提出问题,引导学生思考;通过实践活动,让学生亲身体验数轴的运用;通过合作学习,培养学生团队合作精神。
六. 教学准备1.教学PPT。
2.数轴图示。
3.练习题。
七. 教学过程1.导入(5分钟)通过提出问题:“什么是数轴?数轴有什么特点?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT展示数轴的定义和特点,让学生直观地理解数轴的概念。
3.操练(10分钟)让学生分组进行实践活动,每组画出一个数轴,并在数轴上表示给定的实数。
通过实践活动,让学生掌握数轴的画法。
4.巩固(10分钟)让学生进行小组讨论,总结数轴上的基本运算,如加法、减法、比较大小等。
通过小组讨论,巩固学生对数轴的理解。
5.拓展(5分钟)出示一些有关数轴的拓展问题,让学生独立解答。
如:“已知数轴上两点A、B,求线段AB的长度。
”通过拓展问题,提高学生的运用能力。
1.2.2数轴(教案)(1)1.doc
什么为基准?基准刻度线表示多少摄氏度?
(4)每摄氏度两条刻度线之间有什么特点?C,
— 一
r j ff j f
1、观察温度计
并回答问题
2、画示意图,体 会方向与距
离
创设情景引入课题
示习标示纲生学讲课示 、笏出练题 展学目出提学自{评出学案训课示习
同上
明确任务
单位长度
•“ f• ,*"*•
1
学生做练习
教
解疑
释惑
攻艰
解疑释惑攻坚克难
思考:在数轴上表示下列各数
+3,-4, —,-1.5 4
±
1| 「七5|4|【.I
学生做练习并点 评答案
学
过
克难
-4 -3 -2 -1 0 1 2 3 4f任何一个有理数都可以用数轴上的一个点来表! 示。
程
教
学
过
程
解疑
释惑 攻艰 克难
1甲11;1 F一
2、如图,数轴上点A表示的数为+3,把点A先向右平
移5个单位,再向左平移10个单位到点B,则点B表示• 的数为-2.
11111「1一
-10123
J
(
3、下列命题正确的是(B )
A:数轴上的点都表示整数。
B:数轴上表示5与-5的点分别在原点的
两侧,并且到原点的距离都等于54
k
学生做达标练习 并点评
单位长度。
C:数轴包括原点与正方向两个要素。
D:数轴上的点只能表示正数和零。
6.下列各图表示的数轴是否正确?
rI、・・・・・・・・・・・■»
-3-1 QI
(、、・・,・■・・・・»
七年级数学上册1.2.2 《数轴》教案1
七年级数学上册1.2.2 《数轴》教案1一. 教材分析《数轴》是七年级数学上册1.2.2的内容,本节内容是在学生已经掌握了有理数的概念和大小比较方法的基础上进行教学的。
数轴是数学中的一种重要工具,可以直观地表示数的大小和位置关系,对于学生理解数学概念和解决问题有着重要的作用。
本节课的主要内容是数轴的定义、特点以及如何利用数轴表示数和进行大小比较。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对于图形和空间概念有较强的兴趣和好奇心。
但是,由于年龄和认知水平的限制,部分学生可能对于数轴的概念和应用还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题出发,运用数轴解决问题,提高他们的实践能力。
三. 教学目标1.了解数轴的定义和特点,掌握数轴的基本操作。
2.能够利用数轴表示数和进行大小比较。
3.培养学生的空间想象能力和逻辑思维能力。
4.培养学生运用数轴解决问题的能力。
四. 教学重难点1.数轴的定义和特点。
2.利用数轴表示数和进行大小比较。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题出发,探索数轴的定义和特点。
2.利用多媒体辅助教学,展示数轴的图形和实例,增强学生的空间想象力。
3.采用小组合作学习的方式,让学生在讨论和交流中掌握数轴的基本操作和应用。
4.通过练习和总结,巩固学生对数轴的理解和应用。
六. 教学准备1.多媒体教学设备。
2.数轴图示和实例。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如“小明家和小华家的距离是多少?”引导学生思考如何用数学工具表示和解决问题。
2.呈现(10分钟)利用多媒体展示数轴的图形和实例,引导学生观察和思考数轴的特点和作用。
3.操练(10分钟)让学生分组讨论,尝试利用数轴表示数和进行大小比较。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生进行一些数轴相关的练习题,巩固对数轴的理解和应用。
人教版2024年新版七年级数学上册课件:1.2.2 数轴
这样,我们就用负数、0、正数表示出了一条直线上的点.
观察温度计,回答下列问题: (1)点A表示多少摄氏度? 点B呢? 点C呢? (2)温度计刻度的正负是怎样规定的? 以什么为基准? (3)每摄氏度两条刻度线之间的距离有什么特点?
50
45
40 35
B
30
25
20
10
15
A
5
0
-5
-10
-15
C
-20
把温度计平放,我们能从中发现什么?
50
45
40 35
30 25
20 15
10 5
0 -5
-10 -15
-20
零下
0
零上 分刻度
思考:你能借鉴温度计,用一条直线上的点表示数吗?
数轴
-2 -1
0
1
2
画一条直线,在直线上取一点表示0,并把这个点叫作原点, 选取某一长度作为单位长度,规定直线上向右的方向为正方向.
马路
交
汽
通
电
车
标
线
站
志
杆 槐树 牌 柳树 杆
4.8 3 0 3
7.5
思考:怎样简明地表示这些树、电线杆、交通标志杆 与汽车站牌的相对位置关系(方向、距离)?
为了使表达更清楚,我们规定向东为正,把汽车站牌左右两边 的数分别用负数和正数表示.
交
汽
通
电
车
标
线
站
志
西
杆 槐树 牌 柳树 杆
东
马路
-4.8 -33 0 3 7.5
随堂练习
2. 与原点距离是2.5个单位长度的5
C.±2.5
D.这个数无法确定
人教版初中七年级数学第一单元有理数《1.2.2_数轴》教学设计
人教版初中七年级数学第一单元有理数《1.2.2数轴》教学设计一、教学内容分析数轴是一个重要的概念,后续的平面直角坐标系也是以它为基础的.这是学生第一次学习数形结合的思想.数轴实际就是有理数的形的表示载体,或者说是有理数的另一种表示形式.如果要对有理数有一个深刻的理解,除了从符号的形式理解外,还要从形的角度理解有理数.如何利用数形结合理解有理数是本课时教学的关键问题.学生在本节课上已经完成了第一课时布置的任务:绘制一条路上的几个建筑物的位置关系图,并用文字语言描述建筑物的位置关系.以右图为例,如果想要准确地描述建筑物的位置关系,如体育馆在校史馆的西边25 m处,那么就要说清楚参考标准,以及建筑物相对参考标准的方向及距离,才能准确地表示出建筑物相对的位置关系,这三点缺少一个都无法准确地表示建筑物的位置关系.例如,如果缺少参考标准,那么体育馆可能在校史馆的西边25 m处,也可能在荣光楼的西边25 m处,这个位置是无法确定的;如果缺少方向,那么体育馆有可能在校史馆的西边25 m处,也有可能在校史馆的东边25 m处,位置无法确定;如果缺少距离,那么体育馆可能在校史馆的西边25 m处或是50 m处等等,位置也是无法确定下来的.因此,想要描述物体的位置关系,参考基准、方向和距离是缺一不可的.为了更加简洁地表示出位置关系,我们借用了数轴这一数学工具,用数学语言表示物体的位置关系.参考基准即为数轴上的原点,方向即为数轴上的正方向,距离体现为数轴上的单位长度.例如,如果以校史馆为原点,向东为正方向,单位长度为25 m,如下图,那么体育馆可以表示为-50 m处,用一个数字就简化了表示物体位置关系的方式,同样是一个数,在数轴上就具有了几何的意义:符号表示的是方向,符号后面的数表示的是距离原点的距离,这是我们后面课时要学习的内容.教材中给出的数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…,从原点向左,用类似的方法依次表示-1,-2,-3,…,如下图:根据研究概念的四个维度,我们从特征、由来、与已有知识的联系与区别、应用这几个角度对数轴进行总结:(1)特征:根据定义,数轴首先是一条直线,并且具备三个要素:原点、正方向和单位长度.这几个条件缺一不可,否则无法描述物体的位置关系.但是在选择原点、正方向和单位长度时取法是不唯一的,选择不同的取法,对应的数轴就会不同,表示物体位置的数也就会不同.(2)由来:用数简明地表示物体的位置关系.(3)与已有知识的联系与区别:数轴,拆开来就是数和轴.数轴与数有关,与直线也有关,这条直线具有原点、正方向和单位长度.给定一个数,可以在数轴上找到该数对应的点;给定数轴上的一个点,也可以读出该点对应的数.数的变化在数轴上体现为点动,反之,数轴上的点动体现为点所对应的数的变化.第二课时中有理数的分类,借助数轴能够更直观地分辨出正数、负数和0.要注意的是,有理数与数轴上点的关系:所有的有理数都可以用数轴表示,但不能说数轴上的点仅仅表示有理数.(4)应用:表示位置关系二、学情分析学生通过自主学习初步掌握了数轴及如何利用数轴表示位置关系等内容,并且完成了主干路上几个建筑物的位置关系图,能够描述出这些建筑物的位置关系. 但是为什么用数轴表示物体的位置关系?为什么数轴要有原点、正方向和单位长度?这三个要素是否是必备的?这些问题学生还理解不到位.学生由于第一次接触数形结合的思想,对于数在数轴上的几何意义还不能完全理解.因此,要结合学生完成的实际任务对上述问题进行分析.此外,数轴三要素的取法并不是唯一的,当选取的三要素发生变化时,同一个点所表示的数就会发生变化.下题是北京市2018年中考数学第8题,当平面直角坐标系的原点及单位长度发生变化时对应同一个点坐标的变化,学生作答情况并不好.平面直角坐标系是以数轴为基础进行学习的,因此学生要牢牢掌握数轴的基本知识,特别是落实清楚三要素变化对点所对应的数变化的影响(2018·北京)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④三、教学目标1.明确数轴三要素的作用,会画数轴.2.能读出数轴上的点所表示的有理数.3.能将有理数对应的点表示在数轴上.4.学会运用数形结合的思想解决问题●重点体会数轴三要素的作用,能够依据三要素的变化确定数轴上数的变化●难点理解有理数在数轴上的几何意义,学会运用数形结合思想解决问题四、评价设计学习评价量表五、教学活动设计置关系? 2.根据前两个活动的讨论结果,学生了解到数轴的三个要素是缺一不可的,原点、正方向、单位长度对于描述位置关系都有重要作用.3.在数轴上,我们用一个点表示物体所在的位置,那么该点所对应的数就能够体现出物体的位置.例如,根据上图所示,以校史馆为原点,向东为正方向,25 m为单位长度建立数轴,则体育馆在-50 m所对应的点的位置.-50 m中负号体现的是方向,与正方向相反,为向西;50表示体育馆到原点,即到校史馆的距离为50 m.4.总结:有理数在数轴上的几何意义:一个有理数对应为数轴上的一个点,体现了这个点的位置,符号表示点相对原点的方向,符号后面的数字体现为该点到原点的距离. 个环节对物体位置关系的描述,类比到数轴中来,让学生体会数轴三要素的作用,以及三要素选取不同,对应的点所表示的数不同等知识点.1.根据下图所示的文字语言,选取不同的原点画数轴,并把建筑物用点表示在数轴上.(1)以校史馆为原点(2)以荣光楼为原点六、板书设计七、达标检测与作业1.(A)画一条数轴,将有理数235,332--,,分别表示在数轴上,并依次记作点A,B,C,D.2.(A)把数轴上各点表示的数写出来.3.(B)数轴上点 M表示2,点N表示-3.5,点A表示-1,在点 M和点N中距离点A 较远的点是.4.(B)已知数轴上有A,B两点,A,B之间的距离为3,点A与原点O的距离为3,那么点B表示的数为.5.(B)如果将5个城市的国际标准时间(单位:时)在数轴上表示(如下图所示),那么北京时间2016年8月8日20时应是()A.伦敦时间2016年8月8日11时B.巴黎时间2016年8月8日13时C.纽约时间2016年8月8日5时D.首尔时间2016年8月8日19时6.(B)下图是北京地铁1号线一些站点的分布示意图.在图中,以东为正方向建立数轴.有如下四个结论:①当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-3.5时,表示公主坟的点所表示的数为6;②当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-7时,表示公主坟的点所表示的数为12;③当表示五棵松的点所表示的数为1,表示玉泉路的点所表示的数为-2.5时表示公主坟的点所表示的数为7;④当表示五棵松的点所表示的数为2,表示玉泉路的点所表示的数为-5时,表示公主坟的点所表示的数为14上述结论中正确的是()A.①②③B.②③④C.①④D.①②③④7.(B)小华骑车从家出发,先向东骑行2km到A村,继续向东骑行3km到达B村,接着又向西骑行9km到达C村,最后回到家.试回答下列问题:(1)画一条数轴,以家为原点,以向东方向为正方向,表示出家以及A,B,C 三个村庄的位置;(2)C村离A村有多远?(3)小华一共行驶了多少千米?8.(C)已知有理数-4,2,3543,在数轴上对应的点分别为A,B,C,D将点A向右移动5个单位长度,再向左移动2个单位长度后表示的数为;若点E向右移1个单位长度后恰好落在点C处,则点E表示的数为;B,E两点之间的距离为;若点F与点C关于原点对称,则点F表示的数为;若点G到点D的距离为3,则点G表示的数为.9.(C)如下图所示,一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时则它的左端在数轴上所对应的数为5,用1个单位长度表示1cm,由此可得到木棒长为.(2)受题(1)的启发,请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了?八、教学反思本课时旨在通过实际任务让学生认识数轴在表示物体位置关系时的简洁,让学生理解为什么要引入数轴,以及三要素的重要作用.数形结合思想是本节课重点渗透的思想,通过用数轴上的点表示物体,用点所对应的数表示点的位置,将有理数和数轴上的点对应起来,从而有理数就有了几何意义,其符号和符号后面的数字分别对应的是相对原点的方向和距离.在教学中,由于三要素选取不同,学生绘制的数轴各不相同.学生提前自主学习时对规范性没有要求,因此一开始画出的数轴并不标准,所以在课堂上教师需要规范这一标准.学生通过一系列的练习后可以进一步感知有理数在数轴上的几何意义.在运用数形结合思想解决问题时,有些学生还不能在本节课一下子吸收掌握,因此教师要逐渐渗透数轴还有一个非常大的作用就是让数变得有“序”,可以利用这点比较多个数的大小,这是之后学习的内容.但是在教学中,学生还较难发现这点,需要教师引导指出本节课在实施过程中虽然留给学生思考时间,但是学生交流讨论的时间还是不够,例如,三要素的选取这部分可以让学生通过完成实际任务自己发现这一结论,也可以引导学生自己提出变换原点、正方向、单位长度去表示位置关系这一问题.。
人教版七年级数学上册1.2.2《数轴》教学设计
人教版七年级数学上册1.2.2《数轴》教学设计一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的一部分,主要内容包括数轴的定义、特点、表示方法以及数轴上的基本运算。
这部分内容是学生学习数学的基础,对于培养学生的数学思维和解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于数轴这一概念可能较为抽象,需要通过具体实例和操作来理解和掌握。
同时,学生对于坐标系和图形的认识有所欠缺,需要在教学过程中进行引导和培养。
三. 教学目标1.了解数轴的定义和特点,掌握数轴上的表示方法。
2.能够运用数轴解决实际问题,提高解决问题的能力。
3.培养学生的数学思维和坐标系观念,提高学生的数学素养。
四. 教学重难点1.数轴的定义和特点2.数轴上的表示方法3.运用数轴解决实际问题五. 教学方法1.实例教学:通过具体实例引入数轴的概念,使学生更容易理解和接受。
2.操作教学:通过实际操作,让学生体验数轴的特点和运用方法。
3.问题解决:设计实际问题,引导学生运用数轴进行解决,提高学生的解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括数轴的定义、特点、表示方法以及实际问题的解决。
2.教学实例:准备一些实际问题,用于引导学生运用数轴进行解决。
3.教学工具:准备数轴的模型或者图片,方便学生进行观察和操作。
七. 教学过程1.导入(5分钟)通过一个实际问题引入数轴的概念,例如:“小明从家出发,向正北方向走了5公里,然后向正西方向走了3公里,请问小明现在在哪里?”让学生思考并尝试解答,引发学生对数轴的兴趣。
2.呈现(10分钟)通过PPT展示数轴的定义和特点,以及数轴上的表示方法。
同时,结合实例进行解释,让学生理解和掌握数轴的基本概念。
3.操练(10分钟)让学生进行实际操作,例如在数轴上表示不同的数,或者根据数轴上的点来确定物体的位置等。
通过操作,让学生更加熟悉数轴的特点和运用方法。
【七年级数学上册】1.2.2《数轴》说课稿1
【七年级数学上册】1.2.2《数轴》说课稿1一. 教材分析《数轴》是七年级数学上册第一章第二节的内容,本节课主要让学生了解数轴的定义、特点以及如何在数轴上表示数。
通过学习数轴,学生能够更好地理解实数的大小关系,为今后的数学学习打下基础。
二. 学情分析七年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力。
但部分学生对实数的大小关系理解不深,对数轴的概念和应用可能存在一定的困难。
因此,在教学过程中,要关注学生的学习差异,引导学生逐步理解和掌握数轴的知识。
三. 说教学目标1.知识与技能:了解数轴的定义、特点,学会在数轴上表示数,理解实数的大小关系。
2.过程与方法:通过观察、操作、思考,培养学生的动手能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 说教学重难点1.重点:数轴的定义、特点,以及在数轴上表示数的方法。
2.难点:理解实数的大小关系,以及数轴在实际问题中的应用。
五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究数轴的知识。
2.利用多媒体课件,展示数轴的图像,帮助学生直观理解。
3.运用合作学习法,让学生分组讨论,共同解决问题。
4.进行课堂练习,及时巩固所学知识。
六. 说教学过程1.导入:通过一个实际问题,引出数轴的概念。
2.自主学习:让学生阅读教材,了解数轴的定义和特点。
3.课堂讲解:讲解数轴的基本知识,如何在数轴上表示数,以及实数的大小关系。
4.动手实践:让学生在白板上画出数轴,并在数轴上表示给定的数。
5.小组讨论:让学生分组讨论,探讨数轴在实际问题中的应用。
6.课堂练习:布置一些有关数轴的练习题,让学生巩固所学知识。
7.总结:对本节课的主要内容进行总结,强调数轴的重要性。
七. 说板书设计板书设计如下:•定义:规定了原点、正方向、单位长度的直线•特点:原点、正方向、单位长度•表示数的方法:在数轴上找到对应的点•实数的大小关系:比较两点之间的距离八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
人教版(2024数学七年级上册1.2.2 数轴
数轴上与原点的距离是 a 个单位长度的点, 简称为数轴上与原点的距离是 a 的点.
例1 画出数轴,并在数轴上表示下列各数:
3,-4,4,0.5,0, 5 ,-1.
解:如下图所示.
-4
5
-1 0 0.5
34
-4 -3 -2 -1 O0 1 2 3 4
原点左边的数是负数← →原点右边的数是正数
例2 根据下面给出的数轴,解答下列问题:
第一章 有理数
1.2.2 数轴
人教版七年级(上)
教学目标
1. 识记数轴的三要素并会画数轴. 2. 能将已知数在数轴上表示出来,能说出数轴上的已
知点所表示的数,会用数轴比较有理数的大小. 3. 会用数形结合的思想理解在特定的条件下数与形是
可以相互转化的. 重点:数轴的概念,在数轴上表示数. 难点:正确的画出数轴,有理数和数轴上的点的对应
(2) 根据点 C 在数轴上的位置,点 C 可以看作是蚂蚁从 原点出发,向哪个方向爬了几个单位长度所到达的点?
C
AB
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
解:(2) 可以看作蚂蚁从原点向左平移 4 个单位长度达到.
(3) 如果移动点 A,B,C 中的两个点,使得三个点重 合,你有几种移动方法?请分别求出移动的长度之和.
-1 0 1 2
E.
1 234
B.
0
D.
1 0 -1 -2
F.
-2 0 2 4
原点、正 方向、单 位长度缺 一不可.
探究二 为了进一步研究马路情境图(数轴),仿照 A 点信 息填写表格.
ED
OA B
C
-4.8 -3
01 3
7.75
七年级数学上册1.2.2 《数轴》教学设计2
七年级数学上册1.2.2 《数轴》教学设计2一. 教材分析《数轴》是七年级数学上册1.2.2的内容,数轴是数学中的一个重要概念,是实数与数轴上的点一一对应的基础知识。
通过数轴,可以直观地表示出数的大小、距离、相反数等概念。
本节课的内容为数轴的定义、表示方法以及数轴上的基本运算。
二. 学情分析学生在七年级之前已经学习了有理数的概念,对正负数、加减法、乘除法等运算有一定的掌握。
但是,对于数轴这个概念,学生可能比较陌生,需要通过具体的实例和操作来理解和掌握。
三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴上的表示方法,能够进行数轴上的基本运算。
2.过程与方法:通过实例和操作,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.数轴的定义和表示方法。
2.数轴上的基本运算。
五. 教学方法采用“问题驱动”的教学方法,通过实例和操作,引导学生主动思考和探索,培养学生的观察能力、思考能力和动手能力。
同时,采用小组合作的学习方式,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教学PPT:包含数轴的定义、表示方法以及数轴上的基本运算的例子。
2.数轴教具:用于引导学生进行实际操作。
3.练习题:用于巩固所学内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入数轴的概念:小明从家出发,向正北方向走了3公里,然后又向正西方向走了2公里,请问小明现在在哪里?2.呈现(10分钟)呈现数轴的定义和表示方法,通过PPT和教具,解释数轴上的点与实数的一一对应关系。
3.操练(10分钟)学生分组进行数轴的操作,包括在数轴上表示给定的数,计算数轴上两点之间的距离等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成练习题,教师选取部分题目进行讲解和讨论。
5.拓展(5分钟)引导学生思考数轴在实际生活中的应用,例如计算两地之间的距离、确定物体的位置等。
人教版七年级数学上册:1.2.2《数轴》教学设计1
人教版七年级数学上册:1.2.2《数轴》教学设计1一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的一部分,主要内容包括数轴的定义、性质及其应用。
数轴是数学中一种重要的工具,可以帮助学生直观地理解实数的大小关系,解决绝对值、不等式等问题。
本节课的内容为学生深入学习数学知识奠定了基础。
二. 学情分析七年级的学生已经掌握了实数的基本概念,具备了一定的逻辑思维能力。
但部分学生在理解数轴时,可能会受到空间想象能力的限制。
因此,在教学过程中,教师需要注重引导学生建立数轴表象,培养学生运用数轴解决问题的能力。
三. 教学目标1.知识与技能:使学生了解数轴的定义、性质,学会在数轴上表示实数,理解数轴在解决绝对值、不等式等问题中的作用。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生运用数轴解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生感受数学在生活中的应用。
四. 教学重难点1.重点:数轴的定义、性质及其应用。
2.难点:数轴在解决绝对值、不等式等问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入数轴概念,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究数轴的性质,培养学生的问题解决能力。
3.合作学习法:学生进行小组讨论,培养学生的团队协作精神。
4.实践操作法:让学生亲自动手画数轴,提高学生的动手能力。
六. 教学准备1.教具:数轴模型、黑板、粉笔。
2.学具:练习本、铅笔、直尺。
3.教学素材:与数轴相关的案例、图片等。
七. 教学过程1.导入(5分钟)教师通过一个生活实例(如出租车行驶问题)引入数轴的概念,激发学生的学习兴趣。
然后简要介绍数轴的定义,引导学生思考数轴的性质。
2.呈现(10分钟)教师利用数轴模型、图片等教学素材,呈现数轴的性质,如原点、正方向、单位长度等。
同时,引导学生观察数轴,发现实数与数轴上的点一一对应的关系。
3.操练(10分钟)教师学生进行小组讨论,探讨如何利用数轴表示实数,以及如何通过数轴解决绝对值、不等式等问题。
《 1.2.2 数轴》教学设计教学反思-2023-2024学年初中数学人教版12七年级上册
《1.2.2 数轴》教学设计方案(第一课时)一、教学目标1. 知识与技能:学生能够理解数轴的概念,掌握数轴的基本性质。
2. 过程与方法:通过观察、思考、探究,学生能够熟练使用数轴表示有理数。
3. 情感态度与价值观:培养学生的数学思维,激发学生对数学的兴趣。
二、教学重难点1. 教学重点:引导学生理解数轴的概念,掌握数轴的基本性质及应用。
2. 教学难点:如何让学生熟练使用数轴表示有理数,形成正确的数学思维。
三、教学准备1. 准备教学用具:黑板、白板、粉笔、实物展示台;2. 制作数轴教具:可以准备一些带有刻度的直线教具,便于学生直观理解;3. 教材分析:深入分析教材,明确教学目标和重难点;4. 教学方法:采用观察、思考、探究等教学方法,引导学生逐步掌握数轴知识。
四、教学过程:1. 导入新课(5分钟)通过复习《1.2.1 有理数》的内容,引出有理数也可以用一种新的工具来表示,即数轴。
2. 讲授新课(20分钟)让学生观察教材上的数轴图片,找出共同点:原点、正方向和单位长度。
讲解数轴的三要素。
通过例题演示,让学生学会画数轴。
3. 合作探究(10分钟)出示问题,让学生以小组的形式进行讨论和探究,如:数轴上的点表示有理数的情况,有理数可以无限次地排列在数轴上吗?让学生通过实际操作和观察,得出结论。
4. 课堂练习(15分钟)通过练习题,让学生进一步掌握数轴的概念和画法,同时检查学生对知识的掌握情况。
5. 课堂小结(5分钟)让学生总结本节课所学到的知识和技能,强调数轴在数学中的应用和重要性。
四、教学过程具体内容1. 激发兴趣:通过有趣的实例和问题,激发学生的兴趣和好奇心,引导学生进入学习状态。
2. 直观展示:通过展示数轴的图片和实物,让学生直观地理解数轴的概念和特点。
3. 实例讲解:通过例题演示,让学生掌握数轴的画法和注意事项,同时引导学生自己动手画数轴。
4. 实践操作:让学生通过实际操作和观察,掌握数轴上的点和有理数的对应关系,培养学生的观察能力和动手能力。
人教版七年级数学上册:1.2.2《数轴》教学设计2
人教版七年级数学上册:1.2.2《数轴》教学设计2一. 教材分析《数轴》是人教版七年级数学上册第一章第二节的一部分,主要介绍了数轴的定义、特点以及数轴上的基本运算。
通过本节课的学习,学生能够理解数轴的概念,掌握数轴上的表示方法,以及运用数轴解决实际问题。
教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析七年级的学生已经具备了一定的数学基础,如实数、有理数等。
但他们对数轴的概念和应用可能较为陌生。
因此,在教学过程中,需要关注学生的认知水平,引导学生逐步理解数轴的本质,并通过丰富的实例让学生感受数轴在实际问题中的应用。
三. 教学目标1.知识与技能:理解数轴的定义,掌握数轴上的表示方法,能够运用数轴解决简单的问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 教学重难点1.重点:数轴的定义、特点以及数轴上的基本运算。
2.难点:数轴在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入数轴的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考、探究数轴的性质,培养学生的数学思维能力。
3.合作学习法:学生进行小组讨论,分享学习心得,提高学生的交流能力。
六. 教学准备1.教学课件:制作课件,展示数轴的图片、例题和练习题。
2.教学用具:黑板、粉笔、数轴模型等。
3.练习题:准备一些与数轴有关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)–利用生活实例,如地图上的距离、温度计等,引导学生思考数轴的概念。
–提问:同学们,你们认为数轴是什么?它有什么特点?2.呈现(10分钟)–讲解数轴的定义:数轴是一条直线,规定了原点、正方向和单位长度,用来表示实数。
–展示数轴的图片,让学生直观地感受数轴的特点。
–讲解数轴上的表示方法:数轴上的点表示实数,点的位置表示数的大小,点与原点的距离表示数的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①规定了原点,正方向和单位长度的直线叫数轴
②最小的整数是0 X
√
③任何一个有理数都可以用数轴上的点表示√
④数轴上的点都表示有理数 A. 0 B. 1 C. 2 X D.3
9.填空: 1 1 在数轴上,表示数-2,2.6, 4 ,0 , , 5 5
1 2 的点中,在原点左边的点有 -1, 5
电 线 杆
西 3m 4.8m
槐树
汽 车 站
柳树
杨树
0
3m
7.5m
东
电 线 杆 槐树 西 3m 4.8m
汽 车 站
柳树
杨树
0
3m
7.5m
东
怎样用数简明地表示这些树、电线杆与 汽车站的相对位置关系 (方向、距离) ?
E D O A B C
-4.8
-3
0
1
3
7.5
单位:m
图中的温度计可以看作表示正数、0、负数的 直线,它和前一题图有什么共同点?有什么不同点?
30 20 15 10 5 0 -5 -10 -15 -20 -25
用一条直线上的点表示数,这条直 线叫做数轴.
-3 -2 -1 0
1
2
3
-3 -2 -1 0
原点
1
2
3
原点、正方向和单位长度
1.下列图形哪些是数轴,哪些不是,为什么?
(1) (2)
-2 -1 0 1 2
不是 不是
不是 不是 是 不是
的点
个单位长度;
a 的点在原点的
左
边,与原点的距离是
a
个单位长度.
1.一只蜗牛从A地出发,先向东爬行15 cm,再向西爬行 25 cm,然后又向东爬行20 cm,再向西爬行35 cm, 问这只蜗牛最后停在何处?一共爬行了多少厘米? (要求画数轴分析并解题)
2.
,表示6的点在
侧,距原点的距离是 ___________ 6个单位长度 .
3.一个点从数轴原点出发,向左移动了3个单位 长度后又向右移动了6个单位长度,最后到达的
3 终点表示数 ______ .
4.在数轴上,离原点距离等于1的数是
5.到原点的距离不大于3的整数有 7
1
个,
.
-3,-2,-1, 0 ,1,2,3 它们是 ___________________________ .
1.掌握数轴的概念、三要素、画法; 2.会读取数轴上的点表示的有理数, 会用数轴上的点表示有理数; 3.正确理解有理数和数轴上的点的对应关系.
在一条东西向的马路上,有一个汽车站,汽车站东 3m 和 7.5m 处分别有一棵柳树和一棵杨树,汽车站西 3m 和 4.8m 处分别有一棵槐树和一根电线杆,试画图 表示这一情境.
-2 -1 1 2
(3) (4)
( 5)
-2
0
-1 0
-2 -1 0
1
1 2
2
(6)
-1 -2 0 1 2
数轴上的两上点,右边点表示的数与左边 点表示的数的大小关系?
越来越大
-3 -2 -1 0
大小关系:
1
2
3
数轴上两个点表示的数,右边的总比左边的大.
负数 < 0 < 正数
数轴上的任意一个点都表示一个有4,如果把原点O向负方向 移动1.5个单位,那么在新数轴上点A表示的数 是 ( C )
1 A. 5 2
B. -
4
1 C. 2 2
D.
1 2 2
11.在数轴上,A点和B点所表示的数分别为 -2 和 1 ,若使A点表示的数是B点表示的数的3倍, 应把 A 点 ( B ) A.向左移动5个单位长度 B.向右移动5个单位长度 C.向右移动4个单位长度 D.向左移动1个单位长度或向右移动5个单位长度
6.判断: 数轴上的两个点可以表示同一个有理数( X ) 7.下列命题正确的是( B A.数轴上的点都表示整数 ) X
B.数轴上表示5与-5的点分别在原点的两侧,
并且到原点的距离都等于5个单位长度 √ X X
C.数轴包括原点与正方向两个要素
D.数轴上的点只能表示正数和零
8.下列结论正确的是( C )
-4 -3 -2 -1 0 1 2 3 4
任何一个有理数都可以用数轴上的一个点来表示 . 但是,
数轴上的任意一个点不一定都表示一个有理数 .
a 一个正数,则数轴上表示数 a 的点在原点的 右 边,与原点的距离是 a 个单位 长度;表示数 a 的点在原点的 左 边,与原点的 距离是 a 个单位长度.
1.数轴的三要素: 原点,正方向,单位长度.
2.任何一个有理数都可以用数轴上的一个点来表示; 但是数轴上的任意一个点不一定都表示一个有理数 . 3.画数轴的步骤: 取定原点,规定正方向,选定单位长度,标上刻度. 4.一般地,设是
a
一个正数,则数轴上表示数
在原点的 右 边,与原点的距离是 表示数
a
a
一般地,设是
a
a
-4 -3 -2 -1 0
1
2
3
4
1.数轴上,如果表示数
那么
a 的点在原点的左边,
b 是一个
_____ 正数 .
a 是一个
_______ 负数 ;如果表示数 b 的点
在原点的右边,那么
2.填空:
数轴上表示-2的点在原点的 原点的距离是 原点的 右 2个单位长度 ______
左
侧,距