浅谈数学教学中的“问题情境”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈数学教学中的“问题情境”
在数学教学过程中,课堂提问既是重要的教学手段,又是完美的教学艺术,它是联系教师、学生和教材的纽带,是激发学生学习兴趣,启发学生深入思考,引导学生扎实训练、检验学生学习效率的有效途径。创设问题情境就是能更好的引起学生学习兴趣的提问。随着我国基础教育课程改革和素质教育改革的深入,提问在课堂教学中扮演着越来越重要的角色。提问是惊奇与怀疑的开始,是教与学的纽带,是从“以教师为中心”的教学转向“以学生为中心”的教学的手段之一,如果运用得当,那么对于巩固学生知识、启发学生思维开发学生潜能、培养学生素质都有重要的作用。因而课堂提问的研究也受到了越来越多的重视。本文就创设问题情境的原则,如何创设有效问题情境进行探讨。
(一)创设问题情境的原则
为保证课堂教学中提问的有效性,教师的提问还应该坚持一些提问的基本原则。中学数学课堂教学都是围绕着某一特定教学目的展开的,教学的中心是“传授知识,解决问题”,这就意味着课堂教学的过程是激疑、集疑、释疑的过程,因此必须精心设计课堂提问,提问时应注重坚持以下几项基本原则:
(1) 目的性原则。数学中问题情境的创设一般处于探求新知的起始阶段,教师一般先要将设计的课件、挂图或实物等给学生观察,让学生在情境中发现问题,发现数学问题,发现今天要研究探讨的数学问题,因而情境创设必须有明确的目的,必须能围绕本节课的教学内容、学习任务来进行,否则,再好的问题情境,不能完成教学任务,也是徒劳的。斯苗儿老师曾这样说:“情境只在为教学服务的时候才能叫做好情境,不能为教学服务,一切花哨都是多余的。”这其中的意思,也是体现创设数学问题情境的目的性原则。如:七年级(上)
“生活中的立体图形”这一节,我们可以尝试用模型、用多媒体课件,学生学习兴趣盎然。如:在学习“截一个几何体”时,可提出问题:用一个平面去截一个正方体,截出的面会是什么形状?让学生很自然地进入到立体思维中去,再通过动手操作来验证所得出的结论。这样既丰富了学生的数学活动经验,又使学生的空间观念得到了充分的发展。
(2) 趣味性原则。兴趣是最好的教师,因此数学问题情境的创设和表现形式必须新颖、奇特、生动,对学生要能产生吸引力,能激起学生对此事的关注和兴趣。因此,可以把教材中的内容,通过创设“数学问题情境”编成简短的故事讲给学生听,使学生产生身临其境的感觉,能够有效地调动学生学习的积极性,使学生全身心地投入到教学活动之中。如:在《有理数的乘方》一课的新课教学时,以“印度国王奖赏象棋发明家的故事”为素材,设置问题情境来引入。
(3) 参与性原则。数学的知识、思想和方法,必须经由学生在现实的数学实践活动中理解和掌握,而不是单纯地依赖教师的讲解去获得。这就需要我们在教学实践中将“数学问题情境”活动化。即让学生亲自投身到“数学问题情境”活动中去,使学生在口说、手做、耳听、眼观、脑想的过程中,学习知识,增长智慧,提高能力。这不仅有利于保证学生在教学中的主体地位,而且对于促进学生从动作向思维过渡也是非常有利的。如:“有理数的加法”,我引导学生关注足球比赛这个实例,组织学生讨论全场净胜球的可能情况,并把结果用数学式子表示出来,最后根据式子的特点归纳出法则。学生在这个过程中,不仅学会了知识,也学到了方法。
(4) 障碍性原则。数学问题情境中学生产生的问题要具有一定的难度和坡度,适合学生的实际水平,能造成一定的认知冲突,保证大多数学生在课堂上处于积极的思维状态。在新知的实际应用中,数学
问题情境创设可以出现一些多余条件或缺少必要条件的情景,让学生收集、整理一些相关信息,以及分析、取舍一些相关信息,从而解决实际问题。如:在引入负数时,我们可以通过一些游戏,让学生记分,结果出现数不够用了,怎么办呢?由学生的疑问来引出问题,从而产生要解决问题的愿望。这样,不仅培养了学生的自主学习和合作交流的学习习惯,而且体验了从生活中发现、“重新创造”数学知识的乐趣,培养了创新精神。
(5) 层次性原则。数学问题应包括较丰富的内涵。以点带面,逐渐扩展和深入,通过对一个数学问题的探究,全面触及知识的纵横,使学生从一个数学问题的解决中,有层次地掌握知识和技能,使课堂教学内容大大精练,促进课堂效益的提高。同时,针对水平不同的学生,设计不同层次的数学问题,使每一个学生都能获得学习的乐趣。
(6)创造性原则。“数学问题情境”的创设,要能让学生自己去探索知识,发现知识,这样不但有利于对所学知识的理解和掌握,更有利于培养学生的主体意识和创新精神,激励他们热爱学习,学会学习。在教学中,我常常将抽象的数学知识寓于生动鲜明的形象之中,引导学生先运用学具摆摆、弄弄,再谈谈摆弄的过程,最后启发他们思索,找出规律性的知识。
(7)技巧性原则。数学问题情境的创设源于生活,但要高于生活,是把“生活数学“课堂化。实际生活中的情景往往综合许多因素,比较复杂,如果原封不动的展现在学生面前,学生会受到知识水平、能力、时空的限制,解决起来,难度大,也可能需要很长时间。因此,教师要作适当的技术处理,对现实情境中有些因素要进行提练,删去多余的和无关紧要的东西,增添要表达的内容,要能突出知识点和教学任务,使学生在活动中很快进入状态,直奔主题,为教学服务。
(8)适时原则,课堂提问的适时性应该包含两层意思,其一是
抓住时机,其二是提问次数要适度,课堂提问的效果直接与提问时机有关,什么样的设问应在某节课的什么时机提出,要讲究提问的艺术性,即要因时设问,恰到好处,同时提问次数不是越多越好,过多过频的课堂提问表面上看起来热热闹闹,实际上常会导致学生随大流,不去深入思考,增大回答问题的盲目性,各学科各种课型、内容各不相同,提问设计中把握适时适度尤为重要。
(9)梯度原则。现代信息论认为,教学是一种循序渐进地有效地选取、组织、传递和运用知识信息、促进学生了解信息、掌握知识的活动,从课堂教学整体上看,必须抓住教材、教学内容的整体要求,根据学生认识水平与心理状态,科学地按一定梯度展开设问,提出的问题要按知识点难易级差从低到高逐层进行,要贯彻因材施教的原则,对不同层次的问题,要选择不同层次的学生对象进行回答,从易到难,由简到繁。
(二)如何创造有效的数学问题情境
1.利用和现实生活中的现象类比的方法创设问题情境。
学生都处在实实在在的生活中,认知最牢靠和最根深蒂固的部分就是生活中经常接触和经常用的知识,有些已经进入了他们的潜意识。如果教学中能和学生的这些知识做类比,将是非常受学生欢迎的,一旦接受也会被学生牢牢的掌握。而现代的教学手段很容易让现实生活中的现象再现或模拟于课堂之上。例如:在整式同类项的教学中,我们可以和实际中的例子相比较,把数学分类的思想形象化,在电化教室对一群猪羊的图片进行分类,分类的方法:无角的是猪,有角的是羊。这基本就是一个游戏,每个同学都可以轻而易举的做到,还感到新奇以至于达到情绪高涨,这时抓住时机自然的过渡到同类项的分类中来,分类的方法:字母相同,相同字母的指数相同。学生乘胜追击,很自然的应用刚刚在猪羊分类中形成的程序,先看字母,再