大学物理下练习卷含答案
大学物理下习题册答案详解
解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
大学物理考卷答案(下学期)
大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
大一物理习题及答案(下)
大学物理练习十一.选择题:1.C 1和C 2两空气电容器串联起来接上电源充电。
然后将电源断开,再把一电介质板插入C 1中,则(A) C 1上电势差减小,C 2上电势差增大。
(B) C 1上电势差减小,C 2上电势差不变。
(C) C 1上电势差增大,C 2上电势差减小。
(D) C 1上电势差增大,C 2上电势差不变。
解∶电源断开意味着电量不变。
由于C 1 放入介质,C 1电容增大,则电势差减小。
[ B ]2.两只电容器,F C F C μμ2,821==,分别把它们充电到1000V ,然后将它们反接(如图所示),此时两极板间的电势差为: (A) 0V (B) 200V(C) 600V (D) 1000V [C ] 解∶311108-⨯==V C Q 库 ,322102-⨯==V C Q 库。
将它们反接321106-⨯=-=Q Q Q 库,3.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,平衡在极板间的空气区域中。
此后,若把电介质抽去,则该质点(A) 保持不动 (B) 向上运动 (C) 向下运动 (D) 是否运动不能确定 [ B ] 解∶原来+q 的质点平衡在极板间的空气区域中,qE m g =故电势差增大,场强E 增大。
电场力大于重力。
4.一球形导体,带电量q ,置于一任意形状的空腔导体中。
当用导线将两者连接后,则与未连接前相比系统静电场能将 (A) 增大 (B) 减小(C) 不变 (D) 如何变化无法确定 [ B ]+Q解∶任意形状的空腔导体中,球形导体带电量q 不变 未连接前腔内、腔外均有电场存在。
只不过连接后电量q 跑到空腔的外表面上,则腔外电场不变。
但腔内电场则为 零了。
故与未连接前相比系统静电场能将减小。
5.用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将 (A) 都增加。
大学物理下考试题及答案
大学物理下考试题及答案一、选择题(每题2分,共20分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100m/sB. 300m/sC. 1000m/sD. 3×10^8 m/s答案:D2. 一个物体的动能是其势能的两倍,如果物体的总能量是E,那么它的势能U是多少?A. E/2B. E/3C. 2E/3D. E答案:B3. 在理想气体状态方程PV=nRT中,P代表的是:A. 温度B. 体积C. 压力D. 气体常数答案:C4. 下列哪个现象不是由量子力学效应引起的?A. 光电效应B. 原子光谱C. 超导现象D. 布朗运动答案:D5. 一个电子在电场中受到的电场力大小是1.6×10^-19 N,如果电子的电荷量是1.6×10^-19 C,那么电场强度E是多少?A. 1 N/CB. 10 N/CC. 100 N/CD. 1000 N/C答案:A6. 根据狭义相对论,一个物体的质量m与其静止质量m0之间的关系是:A. m = m0B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * sqrt(1 - v^2/c^2)D. m = m0 * (1 - v^2/c^2)答案:C7. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是:A. h = 1/2 gt^2B. h = gt^2C. h = 2gtD. h = gt答案:A8. 在双缝干涉实验中,相邻的明亮条纹之间的距离是相等的,这种现象称为:A. 单缝衍射B. 多缝衍射C. 双缝干涉D. 薄膜干涉答案:C9. 一个电路中的电阻R1和R2并联,总电阻Rt可以用以下哪个公式计算?A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = (R1 * R2) / (R1 + R2)答案:C10. 根据热力学第一定律,一个系统吸收了100 J的热量,同时对外做了50 J的功,那么系统的内能增加了多少?A. 50 JB. 100 JC. 150 JD. 200 J答案:B二、填空题(每题2分,共20分)11. 光的粒子性质在________现象中得到了体现。
大学物理(下)练习题及答案
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
大学物理下考试题及答案
大学物理下考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 根据牛顿第二定律,力和加速度的关系是:A. F=maB. F=mvC. F=m/aD. F=a/m答案:A3. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系为:A. s = 1/2at^2B. s = 1/2vtC. s = 1/2atD. s = vt答案:A4. 在理想气体状态方程中,压强、体积、温度的关系是:A. PV = nRTB. PV = nTC. PV = nRD. PV = n答案:A二、填空题(每题5分,共20分)1. 根据能量守恒定律,一个物体的动能和势能之和在任何情况下都______。
答案:保持不变2. 电场强度的定义式为______。
答案:E = F/q3. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其公式为______。
答案:F = kQq/r^24. 光的折射定律表明,入射角和折射角之间的关系为______。
答案:n1sinθ1 = n2sinθ2三、简答题(每题10分,共40分)1. 简述波粒二象性的概念。
答案:波粒二象性是指微观粒子如电子、光子等,既表现出波动性,也表现出粒子性。
在某些实验条件下,它们表现出波动性,如干涉和衍射现象;而在另一些实验条件下,它们表现出粒子性,如光电效应和康普顿散射。
2. 什么是电磁感应定律?请给出其数学表达式。
答案:电磁感应定律描述了变化的磁场在导体中产生电动势的现象。
其数学表达式为ε = -dΦ/dt,其中ε是感应电动势,Φ是磁通量,t是时间。
3. 简述热力学第一定律的内容。
答案:热力学第一定律,也称为能量守恒定律,指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式。
《大学物理》下册试卷及答案
《大学物理》下册试卷及答案纯碱感动破旧一些不在此列厅局级一些在地一工作2022年-2022年《大学物理》(下)考试试卷一、选择题(单选题,每小题3分,共30分):1、两根无限长平行直导线载有大小相等方向相反的电流I,I以dI/dt的变化率增长,一矩形线圈位于导线平面内(如图所示),则。
(A),矩形线圈中无感应电流;(B),矩形线圈中的感应电流为顺时针方向;(C),矩形线圈中的感应电流为逆时针方向;(D),矩形线圈中的感应电流的方向不确定;2,如图所示的系统作简谐运动,则其振动周期为。
(A),T 2 mmsin ;(B), T 2 ;kkmcos;kmsin;kcos(C), T 2(D), T 23,在示波器的水平和垂直输入端分别加上余弦交变电压,屏上出现如图所示的闭合曲线,已知水平方向振动的频率为600Hz,则垂直方向的振动频率为。
(A),200Hz;(B), 400Hz;(C), 900Hz;(D), 1800Hz;4,振幅、频率、传播速度都相同的两列相干波在同一直线上沿相反方向传播时叠加可形成驻波,对于一根长为100cm的两端固定的弦线,要形成驻波,下面哪种波长不能在其中形成驻波?。
(A),λ=50cm;(B), λ=100cm;(C), λ=200cm;(D), λ=400cm;5,关于机械波在弹性媒质中传播时波的能量的说法,不对的是。
(A),在波动传播媒质中的任一体积元,其动能、势能、总机械能的变化是同相位的;(B), 在波动传播媒质中的任一体积元,它都在不断地接收和释放能量,即不断地传播能量。
所以波的传播过程实际上是能量的传播过程;(C), 在波动传播媒质中的任一体积元,其动能和势能的总和时时刻刻保持不变,即其总的机械能守恒;(D), 在波动传播媒质中的任一体积元,任一时刻的动能和势能之和与其振动振纯碱感动破旧一些不在此列厅局级一些在地一工作幅的平方成正比;6,以下关于杨氏双缝干涉实验的说法,错误的有。
大学天文学专业《大学物理(下册)》期末考试试题 含答案
大学天文学专业《大学物理(下册)》期末考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
2、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。
3、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
在距盘心为处取一宽度为的圆环,则该带电圆环相当的电流为________,该电流所受磁力矩的大小为________ ,圆________盘所受合力矩的大小为________。
4、一质点作半径为R的匀速圆周运动,在此过程中质点的切向加速度的方向______,法向加速度的大小______。
(填“改变”或“不变”)5、一圆锥摆摆长为I、摆锤质量为m,在水平面上作匀速圆周运动,摆线与铅直线夹角,则:(1) 摆线的张力T=_____________________;(2) 摆锤的速率v=_____________________。
6、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
7、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
大学物理学专业《大学物理(下册)》模拟考试试卷 含答案
大学物理学专业《大学物理(下册)》模拟考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
2、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
3、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
4、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
5、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
6、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
7、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
8、一根长为l,质量为m的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
大学基础教育《大学物理(下册)》期末考试试题C卷 含答案
大学基础教育《大学物理(下册)》期末考试试题C卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。
2、动方程当t=常数时的物理意义是_____________________。
3、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
4、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
5、设描述微观粒子运动的波函数为,则表示_______________________;须满足的条件是_______________________;其归一化条件是_______________________。
6、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
7、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为:()。
①②③④试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代号填在相应结论后的空白处。
(1) 变化的磁场一定伴随有电场;__________________(2) 磁感线是无头无尾的;________________________(3) 电荷总伴随有电场.__________________________8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
大学物理下册练习及答案
电磁学 磁力图所示,一电子经过A 点时,具有速率s m /10170⨯=υ。
(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场大小和方向;(2) 求电子自A 运动到C 所需的时间。
解:(1)电子所受洛仑兹力提供向心力 Rv m B ev 200=得出T eR mv B 3197310101.105.0106.11011011.9---⨯=⨯⨯⨯⨯⨯== 磁场方向应该垂直纸面向里。
(2)所需的时间为s v R T t 870106.110105.0222-⨯=⨯⨯===ππ eV 3100.2⨯的一个正电子,射入磁感应强度B =0.1T 的匀强磁场中,其速度矢量与B 成B 的方向。
试求这螺旋线运动的周期T 、螺距h 和半径r 。
解:正电子的速率为731193106.21011.9106.110222⨯=⨯⨯⨯⨯⨯==--m E v k m/s 做螺旋运动的周期为101931106.31.0106.11011.922---⨯=⨯⨯⨯⨯==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --⨯=⨯⨯⨯⨯==T v h m半径为3197310105.1.0106.189sin 106.21011.989sin ---⨯=⨯⨯⨯⨯⨯⨯==eB mv rm d =1.0mm ,放在B =1.5T 的磁立方厘米有8.42210⨯个自由电子,每个电子的电荷19106.1-⨯-=-e C ,当铜片中有I =200A 的电流流通时,(1)求铜片两侧的电势差'aa U ;(2)铜片宽度b 对'aa U 有无影响?为什么?解:(1)531928'1023.2100.1)106.1(104.85.1200---⨯-=⨯⨯⨯-⨯⨯⨯==nqd IB U aa V ,负号表示'a 侧电势高。
(2)铜片宽度b 对'aa U =H U 无影响。
大学物理考试卷及答案下
汉A一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得3分,共15分)1、强度为的自然光,经两平行放置的偏振片,透射光强变为,若不考虑偏振片的反射和吸收,这两块偏振片偏振化方向的夹角为【】A。
30º;B。
45º;C.60º;D。
90º.2、下列描述中正确的是【】A。
感生电场和静电场一样,属于无旋场;B。
感生电场和静电场的一个共同点,就是对场中的电荷具有作用力;C.感生电场中可类似于静电场一样引入电势;D。
感生电场和静电场一样,是能脱离电荷而单独存在.3、一半径为R的金属圆环,载有电流,则在其所围绕的平面内各点的磁感应强度的关系为【】A。
方向相同,数值相等; B。
方向不同,但数值相等;C.方向相同,但数值不等;D.方向不同,数值也不相等。
4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【】A。
感生电场和涡旋磁场; B。
位移电流和位移电流密度;C。
位移电流和涡旋磁场; D.位移电流和感生电场.5、当波长为λ的单色光垂直照射空气中一薄膜(n〉1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【】A。
; B。
;C. ;D。
;二、填空题(本大题共15小空,每空2分,共30 分.)6、设杨氏双缝缝距为1mm,双缝与光源的间距为20cm,双缝与光屏的距离为1m.当波长为0。
6μm的光正入射时,屏上相邻暗条纹的中心间距为.7、一螺线管的自感系数为0。
01亨,通过它的电流为4安,则它储藏的磁场能量为焦耳。
8、一质点的振动方程为(SI制),则它的周期是,频率是,最大速度是。
9、半径为R的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设为已知,则感生电场在r〈R区域为,在r〉R区域为.10、一个电子射入的均匀磁场中,当电子速度为时,则电子所受的磁力=。
11、自然光入射到两种媒质的分界面上,当入射角等于布儒斯特角i B时,反射光线与Id折射光线之间的夹角等于.12、铝的逸出功为4。
大学物理下练习题答案
大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。
( D )以上说法都不正确。
3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A ) i a02πελ.(B) 0.(C)i a 04πελ. (D) )(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C )(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向.(D) 大小为)2022a q πε, 方向沿y 轴负向.5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) πR 2E .(B) πR 2E /2 . (C) 2πR 2E .(D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+λ-λ∙ (0, a ) xy O图1.1图1.2图1.3(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。
(完整版)《大学物理》下期末考试有答案
《大学物理》(下)期末统考试题(A 卷)说明 1考试答案必须写在答题纸上,否则无效。
请把答题纸撕下。
一、 选择题(30分,每题3分)1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为:(A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ参考解:v =dx/dt = -Aωsin (ωt+φ),cos )sin(424/ϕωϕωπA A v T T T t -=+⋅-== ∴选(C)2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(2212421221221221=-=kA k kA kA mv A ∴选(E )3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.参考解:这里的条件是“平面简谐波在弹性媒质中传播”。
由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。
质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。
∴选(D )4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
大学物理(下册)习题与答案
大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S S O 大学物理(下)练习卷
一. 填空题
1. 速率分布函数的f (v )的物理意义为:[ B ]
A. 具有速率v 的分子占总分子数的百分比。
B. 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比。
C. 具有速率v 的分子数。
D. 速率分布在v 附近的单位速率间隔的分子数。
2. 绝热封闭容器被隔板分成相等的两部分,左边充有某种气体,压强为P,右边
为真空,若把隔板抽去(对外不漏气),当又达到平衡时气体的压强为:
[ A ]
A .P B.P/2 C.2P D.P/2^r
3. 在双缝干涉实验中,若单色光源S 到两缝S1、S2距离相等,则观察屏上中央
明条纹位于图中O 处,现将光源S 向下移动到示意图中的S ´位置,则
[ B ]。
(A )中央明纹向上移动,且条纹间距增大;
(B )中央明纹向上移动,且条纹间距不变;
(C )中央明纹向下移动,且条纹间距增大;
(D )中央明纹向下移动,且条纹间距不变;
4.强度为0I 的自然光,经两平行放置的偏振片,透射光强变为 ,若不考虑偏振片的反射和吸收,这两块偏振片偏振化方向的夹角为 [ B ]
A.30º;
B. 45º ;
C.60º;
D. 90º。
5. 在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹:
[ A ] .
(A) 宽度变小; (B) 宽度变大;
(C) 宽度不变,且中心强度也不变; (D) 宽度不变,但中心强度增大
6.波长550nm λ=的单色光垂直入射于光栅常数41.010d cm -=⨯ 的光栅上,可能
观察到的光谱线的最大级次为[ A ]
(A) 4 (B) 3 (C) 2 (D) 1
7. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中的某质元在负的最大位
移处,则它的能量是:[ A ]
(A) 动能为零,势能最大 (B)动能为零,势能为零
(C) 动能最大,势能最大 (D)动能最大,势能为零
8.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氮气的体积比
V1/V2=1/2,则其内能之比E1/E2为:[ C ]
(A)3/10 (B)1/2 (C)5/6 (D)5/3
40I
d 9.三个容器A、B、C中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为
()()()4:2:1::2
12212212=C B A v v v
则其压强之比 C B A P P P ::为( C )。
(A)1:2:4 (B)4:2:1 (C)1:4:16 (D)1:4:8
10.在温度分别为327摄氏度和27摄氏度的高温热源和低温热源之间工作的热机,理论上的最大效率为[ B ]
(A)25% (B)50% (C)75% (D)91.74%
11.一横波以速度u 沿x 轴负方向传播,t 时刻波形
图如图(a )所示,则该时刻。
[ A ]
(A ) A 点相位为π; (B )B 点静止不动;
(C ) C 点相位为2
3π; (D )D 点向上运动;
12.利用等厚干涉条纹,测量细金属丝的装置如图所示
把金属丝向远离两块平板玻璃相交的棱边方向移动,则在移动
的过程中,观测到“干涉条纹间距Δl ”.和“交棱到金属丝之
间的干涉条纹总数N”的变化情况是D
(A )Δl 增大,N 减小 (B )Δl 增大,N 增大
(C )Δl 减少,N 增大 (D )Δl 增大,N 不变
二. 填空题
13.容器内储有1mol 气体,当外界输入210J 热量后,其温度升高10K ,则该气体分子的自由度____________. 5
14. 如图所示为一平面简谐波在t =0 时刻的波形图,则
该波的波动
方程是:__________。
⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=208.052cos 04.0ππx t x 15. 压强、体积和温度都相同的氢气和氦气(均视为刚性分
子的理想气体),它们的质量之比为12:=m m __________,它们的内能之比为12:E E =_______, (各量下角标1表示氢气,2表示氦气) 1:2 1:1
16.在玻璃(折射率1.60)表面镀一层MgF2(折射率 1.38)薄膜作为增透膜,为了使波长为500nm 的光从空气正入射时尽可能少放射,MgF2薄膜的最少厚度应是____________。
90.6nm
17.波长为400nm 的平面波沿X 方向传播,如果波长的不确定量Δλ/λ=105- 则光子动
量的不确定量为_________________,光子坐标的不确定量为__________________。
1.66*10^-32 10^-2/pi
18.已知波源的振动周期为s 10
× 42-,波的传播速度为300m/s ,波沿x 轴正方向传播,则位于x1=10.0m 和x2=16.0m 的两质点振动相位差为_____π_______。
三. 计算题
19.在双缝干涉实验中,波长550nm λ= 的单色平行光垂直入射到缝间距4210m a -=⨯ 的双缝上,屏到双缝的距离2m D = 。
求:1) 中央明纹两侧的两条第10级明纹中心的间距;
2) 用一厚度为66.610m e -=⨯ 、折射率为 1.58n = 的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处? 9(1nm 10m)-= (8分) 解:(1)20/x D a λ∆= =0.11 m 2
分 (2分)
(2) 覆盖云玻璃后,零级明纹应满足
12(1)n e r r -+= (2分) 设不盖玻璃片时,此点为第K 级明纹,则应有
21r r k λ-= (2分) 所以 (1)n e k λ-=
(1)/ 6.967k n e λ=-=≈
零级明纹移到原第7级明纹处 (2分)
20.波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.求:(1) 求波的周期及波长;(2) 写出波动方程.(7分) 知识点:波动方程、周期、波长 类型:A
分析:先将运动方程与其一般形式()ϕω+=t cos A y 进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式 ()[]0cos ϕω+-=u x t A y / 中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν=2π/T 和 λ=u T 即可求解.
解:(1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的
周期就是振动的周期,故有
s 1033.8/π23-⨯==ωT ……………(2分)
波长为: λ=uT =0.25 m…………(2分)
(2)将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0×10-3m ,1s π240-=ω,φ0 =0,故以波源为原点,以u=30m·s-1 的速度沿x 轴正向传播的波的波动方程为:
()[]()()分)(分)
(1π8π2401004230............m cos ........................../cos x t u x t A y -⨯=+-=-ϕω
21.如图,同一气体经过等压过程AB , 等温过程AC ,绝热过程AD 。
问(1)哪个过程作功最多?(2)通过公式计算判断哪个过程吸热最多?(3)通过公式计算哪个过程内能变化最大
?
00
22.两个偏振片P1,P2叠在一起,其偏振化方向之间的夹角为30度,一束强度为I0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I0之比为3/8,使求入射
光中的线偏振光的光矢量方向与P1的偏振化方向之间的夹角θ. (45度)。