一次函数图象的应用(教学案)典型例题+巩固练习+参考答案
一次函数图像练习题及答案
一次函数图像练习题及答案一次函数图像练习题及答案一次函数是数学中的基本概念之一,也是初中数学中的重点内容。
掌握一次函数的概念和图像特点,对于解决实际问题和理解其他函数类型都有很大帮助。
在这篇文章中,我将给出一些一次函数图像的练习题及其答案,希望能够帮助读者更好地理解和应用一次函数。
练习题一:已知函数f(x) = 2x + 3,求出函数的图像。
解答一:一次函数的一般形式为y = kx + b,其中k和b分别代表斜率和截距。
根据给定的函数f(x) = 2x + 3,我们可以得知斜率k = 2,截距b = 3。
根据斜率和截距的意义,我们可以得到以下图像特点:1. 斜率k = 2表示每增加1个单位的x,y的值增加2个单位。
2. 截距b = 3表示当x = 0时,y的值为3,即函数的图像与y轴相交于点(0, 3)。
根据上述特点,我们可以画出函数f(x) = 2x + 3的图像。
首先,我们将点(0, 3)标记在坐标系上,然后根据斜率k = 2,我们可以找到另外一个点(1, 5),再连接这两个点,就得到了一次函数的图像。
练习题二:已知函数g(x)的图像如下图所示,请写出函数g(x)的表达式。
解答二:根据给定的函数图像,我们可以得知函数g(x)与x轴相交于点(-2, 0)和(3, 0),并且函数图像在x轴的右侧上升。
根据这些特点,我们可以推测函数g(x)的表达式为g(x) = ax + b。
为了确定a和b的值,我们可以利用已知的两个点(-2, 0)和(3, 0)。
将这两个点的坐标代入函数表达式,可以得到以下方程组:-2a + b = 03a + b = 0解这个方程组,我们可以得到a = 0,b = 0。
因此,函数g(x)的表达式为g(x) = 0。
练习题三:已知函数h(x)的图像如下图所示,请写出函数h(x)的表达式。
解答三:根据给定的函数图像,我们可以观察到函数h(x)与x轴相交于点(0, -3),并且函数图像在x轴的右侧下降。
初中数学:一次函数的图象与性质课后巩固练习(附参考答案)
初中数学:一次函数的图象与性质课后巩固练习(附参考答案)1.在平面直角坐标系中,一次函数y=2x-3的图象是()2.一次函数y=-3x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.若一次函数y=kx+b的图象如图所示,则下列说法正确的是()A.k>0B.b=2C.y随x的增大而增大D.x=3时,y=04.点P(a,b)在函数y=4x+3的图象上,则代数式8a-2b+1的值等于() A.5B.-5C.7D.-65.在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=-x+1B.y=x+1C.y=-x-1D.y=x-16.A(x1,y1)和B(x2,y2)是一次函数y=(k2+1)x+2图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不确定7.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A B C D8.两条直线y1=mx-n与y2=nx-m在同一坐标系中的图象可能是图中的()A B C Dx都经过9.如图,一次函数y=kx+b(k,b为常数,且k>0)的图象与直线y=12x时,x的取值范围是()点A(2,1),当kx+b>12A.x<2B.x<1C.x>1D.x>210.点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是________.11.已知函数y=kx的图象经过第二、四象限,且函数图象不经过(-1,1),请写出一个符合条件的函数表达式_________________________12.若一次函数y=(k+3)x-1 的函数值y随x的增大而减小,则k值可能是()A.2B.32C .-12D .-413.关于一次函数y =x +1,下列说法正确的是( )A .图象经过第一、三、四象限B .图象与y 轴交于点(0,1)C .函数值y 随自变量x 的增大而减小D .当x >-1时,y <014.在同一平面直角坐标系中,一次函数y 1=ax +b (a ≠0)与y 2=mx +n (m ≠0)的图象如图所示,则下列结论错误的是( )A .y 1随x 的增大而增大B .b <nC .当x <2时,y 1>y 2D .关于x ,y 的方程组{ax −y =−b ,mx −y =−n的解为{x =2 y =3 15.已知一次函数y =kx +b 的图象经过点(1,3)和(-1,2),则k 2-b 2=16.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(-2,-1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数表达式为( )A .y =x +1B .y =x -1C .y =2x +1D .y =2x -117.甲气球地面起飞,乙气球从距离地面20 m 高的楼顶起飞,两气球同时匀速上升10 s .甲、乙气球所在的位置距离地面的高度y (单位:m)与气球上升的时间x (单位:s)之间的关系如图所示。
4.4.1一次函数的应用(教案)
3.逻辑推理:引导学生运用一次函数相关知识进行逻辑推理,培养他们分析问题、解决问题的逻辑思维能力。
4.数学抽象:培养学生从实际问题中抽象出数学模型,理解并运用一次函数的概念及其性质。
5.数学表达:通过一次函数图像的绘制和解释,提高学生的数学表达能力,使他们能够清晰、准确地描述数学问题和解答过程。
6.团队合作:鼓励学生在解决问题时进行合作交流,培养他们的团队协作能力和沟通能力。
三、教学难点与重点
1.教学重点
(1)一次函数的定义及其图像特点:y=kx+b(k≠0,k、b为常数),强调k、b的物理意义,斜率k代表直线的倾斜程度,截距b代表直线与y轴的交点。
-通过实例让学生理解k、b在图像中的具体表现,如:当k>0时,图像呈现上升趋势;当k<0时,图像呈现下降趋势;b>0时,图像与y轴正向相交;b<0时,图像与y轴负向相交。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)一次函数在实际问题中的应用:行程问题、价格问题、速度与时间问题等,掌握将实际问题转化为一次函数模型的方法。
-以行程问题为例,讲解如何根据速度和时间计算路程,以及如何利用一次函数图像分析物体的运动状态。
(3)一次函数图像的绘制方法:掌握根据实际问题绘制一次函数图像的步骤,包括确定坐标轴、标定关键点、绘制直线等。
北师大版数学八年级上册5《一次函数图象的应用》教案2
北师大版数学八年级上册5《一次函数图象的应用》教案2一. 教材分析《一次函数图象的应用》是北师大版数学八年级上册第五章的内容。
本节课主要让学生掌握一次函数图象与实际问题的联系,学会利用一次函数图象解决生活中的问题。
教材通过实例引导学生理解一次函数图象在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数的定义、性质和图象的一般形式。
但他们可能对如何将实际问题抽象成一次函数图象,以及如何利用一次函数图象解决实际问题还较为陌生。
因此,在教学过程中,教师需要引导学生将实际问题与一次函数图象联系起来,培养学生运用数学知识解决实际问题的能力。
三. 教学目标1.理解一次函数图象与实际问题的联系,学会利用一次函数图象解决生活中的问题。
2.提高学生运用数学知识解决实际问题的能力。
3.培养学生的团队合作精神和数学思维。
四. 教学重难点1.一次函数图象与实际问题的联系。
2.利用一次函数图象解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解一次函数图象与实际问题的联系。
2.小组合作学习:让学生在小组内讨论、探究,共同解决实际问题。
3.引导发现法:教师引导学生发现一次函数图象在解决实际问题时的作用,培养学生运用数学知识解决实际问题的能力。
六. 教学准备1.准备相关的实际问题,如购物、出行等。
2.准备一次函数图象的示例。
3.准备投影仪、幻灯片等教学设备。
七. 教学过程1.导入(5分钟)教师通过一个生活实例,如购物问题,引导学生思考如何用数学知识解决实际问题。
从而引出本节课的主题——一次函数图象的应用。
2.呈现(10分钟)教师展示一次函数图象的示例,让学生观察、分析一次函数图象与实际问题的联系。
引导学生发现一次函数图象在解决实际问题时的作用。
3.操练(10分钟)教师提出一系列实际问题,让学生分组讨论、探究,如何利用一次函数图象解决这些问题。
学生在小组内交流、分享解题过程,培养团队合作精神和数学思维。
一次函数图象的应用(图象共存问题)(人教版)(含答案)
学生做题前请先回答以下问题问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第_______象限;当k0时,图象必过第_______象限;当b0时,图象必过第_______象限;当b0时,图象必过第_______象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质_____________;②验证___________________________________.以下是问题及答案,请对比参考:问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第象限;当k0时,图象必过第象限;当b0时,图象必过第象限;当b0时,图象必过第象限.答:对于一次函数y=kx+b来讲,当k0时,图象必过第一、三象限;当k0时,图象必过第二、四象限;当b0时,图象必过第一、二象限;当b0时,图象必过第三、四象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质;②验证.答:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质判断k,b的符号;②验证另一个函数图象存在的合理性.一次函数图象的应用(图象共存问题)(人教版)一、单选题(共8道,每道12分)1.一次函数y=-ax+4与正比例函数y=2ax(a为常数,且a≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题2.一次函数y=kx-k2与正比例函数y=-kx(k为常数且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题3.一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题4.一次函数y=kx-b与正比例函数y=kbx(k,b为常数,且kb≠0)在同一坐标系内的大致图象不可能的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题5.两条直线与(k,b为常数,且kb≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题6.一次函数y=-kx+4-k与正比例函数y=3kx(k为常数,且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:图象共存问题7.一次函数y=ax-b与y=abx(ab≠0)在同一坐标系中的图象可能是( )A.①②B.③④C.②④D.①③答案:D解题思路:试题难度:三颗星知识点:图象共存问题8.两条直线y=mx-n与y=nx+m(m,n为常数,且mn≠0)在同一坐标系中的图象可能是( )A.①③B.①②C.②③D.③④答案:D解题思路:试题难度:三颗星知识点:图象共存问题。
初中数学《一次函数的图像》典型例题及答案解析
【答案】B
【解析】
由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为5、15、25、35、45等等,所以观察备选答案B错误.故选B.
15.下表是弹簧挂重后的总长度L(cm)与所挂物体重量x(kg)之间的几个对应值,则可以推测L与x之间的关系式是()
【解析】
【分析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】
分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y= AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
初中数学《一次函数的图像》典型例题及答案解析
1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:
m
1
2
3
4
v
0.01
2.9
8.03
15.1
则m与v之间的关系最接近于下列各关系式中的( )
A.v=2m-1B.v=m2-1C.v=3m-3D.v=m+1
【答案】B
【解析】
【分析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确;
故选:D.
【点睛】
本题考查的是函数图像,熟练掌握图像是解题的关键.
9.函数y= 的图象为( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分x 0和x 两种情况去掉绝对值符号,再根据解析式进行分析即可。
一次函数图像应用题(带解析版答案)
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
北师大版初中数学八年级上册 第六章《一次函数图象的应用》教案
课题:第六章第五节一次函数图像的应用(第二课时)课型:新授课教学目标:1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题(重点).2.从函数图象中正确“读”取信息(难点).3.解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识,培养学生学习数学的兴趣.教学重点一次函数图象的应用.教学难点从函数图象中正确读取信息.教法与学法指导:在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.本节课为第2课时,采用“自主探究,合作训练”的教学模式,解决生活中涉及两个一次函数之间关系的有关问题,关注问题之间的递进与联系.教学中应注意体会.和前一课时一样,注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.老师应多要求学生从图中“读”出结果,因此不应要求学生的结果与参考答案完全一致. 课前准备:制作课件,学生准备铅笔,直尺.教学过程:一、前情回顾师:请你看合作探究一(多媒体展示课件):一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.师:(1)农民自带的零钱是多少?生:5元.师:(2)试求降价前y与x之间的关系生:20-5=1515÷30=0.5y=0.5x+5师:(3)由表达式你能求出降价前每千克的土豆价格是多少?生:每千克0.5元.师:(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? 生:6÷0.4=15(千克) 15+30=45(千克)师:很好,同学们做的很快也很正确,同上一节课一样,这也是解决一些生活中涉及一个一次函数关系的有关问题.继续学习,一些生活中涉及两个一次函数之间关系的有关问题,如何解决呢?这就是本节课要学习的内容.( 师写出课题)【设计意图】:通过与上一课时相似的问题,回顾旧知,导入新知学习.二、创境导入师:请你看合作探究二(多媒体展示课件):小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h .(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km ?师:当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?你是怎么想的?与同伴交流.生:设经过t 时,小聪与小慧离“古刹”的路程分别为S 1、S 2, 由题意得:S 1=36t , S 2=26t+10将这两个函数解析式画在同一个直角坐标系上,观察图象,得 ⑴两条直线S 1=36t , S 2=26t+10的交点坐标为(1,36)这说明当小聪追上小慧时,S 1=S 2=36 km ,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸” ⑵当小聪到达“飞瀑”时,即S 1=45km ,此时S 2=42.5km .所以小慧离“飞瀑”还有45-42.5=2.5(km ) 师:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么?生:小聪的解析式为S 1=36t ,小慧的解析式为S 2=26t+10【设计意图】:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.说明:在这个环节的学习过程中,如果学生入手感到困难,可用以下问题串引导学生进行分析.⑴两个人是否同时起步? ⑵在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?⑶这个问题中的两个变量是什么?它们之间是什么函数关系?⑷如果用S 表示路程,t 表示时间,那么他们的函数解析式是一样?他们各自的解析式分别是什么? 深入探究师:请你看合作探究三(多媒体展示课件):我海 岸公 AB边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中l1,l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:师:(1)哪条线表示B到海岸的距离与时间之间的关系?生:观察图象,得当t=0时,B距海岸0海里,即S=0,故l1表示B到海岸的距离与追赶时间之间的关系;师:(2)A,B哪个速度快?生:从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快.师:(3)15分钟内B能否追上A?生:可以看出,当t=15时,l1上对应点在l2上对应点的下方,师:(4)如果一直追下去,那么B能否追上A?生:如图l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.师:(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?生:从图中可以看出,l1与l1交点P的纵坐标小于12,这说明在A逃入公海前,我边防快艇B能够追上A.师:大家兴趣都很高,如果咱们先来探究下面的问题,增强我们的技能后,相信都能完美的解答此问题.【设计意图】:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.三、情境问题师:请你看合作探究四(多媒体展示课件):观察甲、乙两图,解答下列问题师:1.填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节. 生:甲图生1:300÷40=760 (红线 ) 乌龟 35 760 760生2: 200÷5=40 300÷40=7.5(绿线) 兔子 40 40 7.5师:3.根据1中所填答案的图象求:乌龟经过多长时间追上了免子,追及地距起点有多远的路程? 生:23分钟.有200米的路程.师:4.请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量. 生:(很高兴的发挥想象,找一个回答)乌龟和兔子同时起跑,兔子很快5分钟跑了150米处.回头遥望,乌龟不跑了,正歇着喘气呢.赶快回去,问乌龟怎么回事?乌龟说:这几年,水质不好,食物也少,身体大不如以前啦,得歇会再跑. 兔子说:那就歇会吧.5分钟后,乌龟还是跑不动,兔子干脆驮着乌龟跑起来.这样经过25分钟一起跑到终点. 师:很好,回答的很好,掌声在哪里?没有提到的好多同学构思的也很巧妙,老师佩服这些同学的文采,提出表扬.【设计意图】:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整.练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.四、巩固提高师:请你看合作探究四(多媒体展示课件):如右图,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系.根据图象填空 师:1. 横轴表示_______,纵轴表示________ 生:销售量(吨) 销售收入(元)师:2. 当销售量为2吨时,销售成本=______元 生:3000师:3.观察图象还有没有其它关键信息? 交点(4.4000)有什么实际含义? 生:能看出没有销售量时,成本是2000元. 生:当销售量大4吨时,该公司就会盈利.师:4.当销量_______时该公司盈利,当销量_______时该公司亏本. 生:大于4吨小于4吨时【设计意图】 (1)能通过函数图像获取信息,发展形象思维.(2)能利用函数图像解决简单的实际问题,发展学生的数学应用能力.五、达标检测师:比一比,赛一赛,看谁做得对又快(多媒体展示课件):1.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y (微克)随时间x (时)的变化情况如图所示,当成人按规定剂量服药后, (1)服药后 时,血液中含药量最高,达每毫升微克,接着逐步衰减;(2)服药5时,血液中含药量为每毫升 微克;(3)当x ≤2时,y 与x 之间的函数关系式是 ; (4)当x ≥2时,y 与x 之间的函数关系式是 ;(5)如果每毫升血液中含药量3微克或3微克以上时,治疗疾病最有效,那么这个有效时间范围是 .2.如图,OB ,AB 分别表示甲、乙两人的运动图象,请根据图象回答下列问题: (1)如果用t 表示时间,s 表示路程,那么甲、乙两人各自的路程与时间的函数关系式是甲: ,乙: ;(2)甲的运动速度是 千米/时;(3)两人同时出发相遇时,甲比乙多走 千米. 学生:独立完成,并认真检查反思.教师:巡视指导,对提前完成的学生进行当堂批阅,予以鼓励表扬.师:展示优秀学生的答案,规范学生的结果.点拨:第一题答案:(1)2 (2)3 (3)y=3x(4)y=-x+8 (5)1≤x≤5第二题答案:(1)甲:y=4x 乙:y=3x+5(2)4 (3)5【设计意图】本检测题主要是进一步培养学生的识图能力,考查学生对本节课知识的掌握情况,了解学生存在的问题,针对出现的问题,查缺补漏,共同提高.知识拓展(学有余力的同学课下完成)个体车主或一个出租车公司其中的一家签定月租车合同,设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出公司的月租费用是y2元,y1,y2分别与x之间的函数关系图象如图,观察图象回答下列问题:(1)每月行驶路程在什么范围内时,租出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪一家的车合算?知识拓展答案:解:(1)0千米≤x<1500千米(2)1500千米(3)租出租车公司的车合算.六、总结归纳(师生合作总结)师:本节课我们学习了哪些知识?你有什么收获呢?生1:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题.生2:也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.生3:通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.生4:........【设计意图】让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.引导学生自己归纳总结运用一次函数解决实际问题的主要方法,使学生进一步明确本课所学知识,同时使学生对本课的知识形成体系,便于学生掌握和应用.七、作业布置作业:习题6.7板书设计:教学反思:1.教学中的成功体验:本节课是在学生已经掌握了一次函数的图象和有关性质的基础上,对有关知识进行应用和拓展.在教学过程中,通过问题情境的创设,激发了学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高了学生解决实际问题的能力.2.需进一步探讨的地方:如何处理好课堂时间与教学计划之间的关系,也是我适时思考的问题.新课程要求让学生自主地去探究新知,如果探究的时间过长,那相应的教学计划就可能被打乱,甚至有些内容来不及完成.本节课在多要求学生从图中“读”出结果方面,比如考虑到学生的兴趣问题,在新编龟兔赛跑寓言时探究时间过长,以至有些内容来不及完成. 因此,这一问题还有待改进一下,进一步商榷.3.需进一步提高的能力:学生方面:在课堂上应学会如何与同学进行合作学习及社会知识的广阔性方面.教师方面:多关注学困生,进一步提高课堂应变机制.。
一次函数的图像和性质练习题答案
一次函数的图像和性质练习题答案一次函数的图像和性质练习题答案一次函数是数学中的基础概念,也是我们日常生活中常见的函数类型之一。
它的数学表达式为y = ax + b,其中a和b为常数,x为自变量,y为因变量。
在这篇文章中,我们将通过一些练习题来探讨一次函数的图像和性质。
题目一:已知一次函数的图像经过点(2, 5),且斜率为3,求该函数的表达式。
解析:根据题意,我们可以得到函数的斜率为3,即a = 3。
又因为函数经过点(2, 5),代入函数表达式可得5 = 3*2 + b,解方程可得b = -1。
因此,该一次函数的表达式为y = 3x - 1。
题目二:已知一次函数的图像经过点(-1, 4),且与x轴交于点(3, 0),求该函数的表达式。
解析:根据题意,我们可以得到函数经过点(-1, 4)和(3, 0)。
由于函数与x轴交于点(3, 0),可知当x = 3时,y = 0。
代入函数表达式可得0 = 3*3 + b,解方程可得b = -9。
因此,该一次函数的表达式为y = 3x - 9。
题目三:已知一次函数的图像经过点(1, 3),斜率为-2,求该函数的表达式。
解析:根据题意,我们可以得到函数的斜率为-2,即a = -2。
又因为函数经过点(1, 3),代入函数表达式可得3 = -2*1 + b,解方程可得b = 5。
因此,该一次函数的表达式为y = -2x + 5。
通过以上的练习题,我们可以发现一次函数的图像和性质之间的关系。
斜率决定了函数图像的倾斜程度,正斜率表示图像向上倾斜,负斜率表示图像向下倾斜,斜率为0表示图像平行于x轴。
截距则决定了函数图像与y轴的交点位置,正截距表示图像在y轴上方,负截距表示图像在y轴下方。
除了斜率和截距外,一次函数还有其他重要的性质。
首先,一次函数的图像是一条直线,因此它是连续的。
其次,一次函数的定义域为所有实数,即函数对任意实数都有定义。
最后,一次函数的值域也为所有实数,即函数的取值范围没有限制。
一次函数图象性质应用(习题及答案).
一次函数图象性质应用(习题)➢复习巩固1.一次函数y=mx+2 与正比例函数y=2mx(m 为常数,且m≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.2.在同一坐标系中,函数y=-ax 与y =2x -a 的图象大致是3()A.B.C.D.3.两条直线y1=ax+b 与y2=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.4.已知一次函数y=kx+b 与正比例函数y=kbx,它们在同一平面直角坐标系中的图象可能是()A.B.C.D.15.函数y=mx-n 与正比例函数y=mnx(m,n 为常数,且mn≠0)在同一平面直角坐标系中的图象中,一定不正确的是()A.B.C.D.6. 已知点(-2,y1),(1,y2)在直线y=5x+3 上,则y1,y2 的大小关系是.7. 若A(-4,y1),B(2,y2),C(3,y3)三点都在直线y=(-k2-4)x-k上,则下列结论正确的是()A.y1>y2>y3 B.y1>y3>y2C.y3>y1>y2 D.y2>y3>y18. 若A(x1,-3),B(x2,2)是直线y=-2x+k 上的两点,则x1,x2的大小关系是.9.若一次函数y=kx+b的图象过第一、三、四象限,点A(-1,y1),B(3,y2)在其图象上,则y1,y2的大小关系是.10.若A(-2,y1),B(1,y2)在一次函数y=kx-1的图象上,且y1>y2,则一次函数y=kx-1的图象不经过第象限.11.一次函数y=kx+b的图象如图所示,则方程kx+b=3的解为.第11 题图第12 题图12.一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则关于x的方程k1x+b1=k2x+b2的解是.2⎩⎨2x -y =-n⎨⎪13.如图,直线y=x+1与直线y=mx-n相交于点M(1,b),则关于x,⎧x +1 =yy的方程组⎨mx -y =n的解为.⎧x -3 -y = 0 ⎧x =-514.已知方程组⎨2x + 2 -y = 0的解为⎨y =-8,则直线y=x-3与⎩⎩y=2x+2交点的坐标为.15.已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x,y的二元一次方程组⎧2x -y =-m的解的个数为⎩()A.0 个B.1 个C.2 个D.无数个⎧5x + 6 y = 1616.若关于x,y的方程组⎪6x +⎩ 5⎧4x + 5 y = 7y = 4m有无穷多组解,则关于x,y的方程组⎨⎩10mx + 7 y =11的解为.3⎩ ⎨ 【参考答案】 ➢ 复习巩固1. C2. A3. D4. A5. A6. y 2 > y 17. A8. x 1 > x 29. y 2 > y 110. 一11. x =212. x =-2 13. ⎧x = 1⎨ y = 214. (-5,-8)15. A ⎧x = 116. ⎪ 2 ⎪⎩ y = 14。
一次函数—巩固课期末总复习(含答案) 师生共用优秀教学案
完成情况期末总复习班级:_____________姓名:__________________组号:_________一次函数—巩固课一、巩固训练1.下列各图给出了变量x 与y 之间的函数是 ( )2.下列函数中,y 是x的正比例函数的是( )A .y=2x -1B .y=3xC .y=2x 2D .y=-2x+13.已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为: ( )A .y=2x -14B .y=-x -6C .y=-x+10D .y=4x 4如右图:一次函数y kx b =+的图象经过A 、B 两点,则△AOC 的面积为 。
5.某商店出售货物时,要在进价的基础上增加一定的利润,下表体现了其数量x (个)与售价y (元)的对应关系,根据表中提供的信息可知y 与x 之间的关系式6.已知一次函数y=kx +b 的图象如图1所示。
(1)写出点A 、B 的坐标,并求出k 、b 的值;(2)在所给的平面直角坐标系内画出函数y=bx +k 的图象。
ABD二、错题再现1.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元。
现两家商店搞促销活动,甲店:按定价的9折优惠;乙店:每买一副球拍赠一盒乒乓球。
某班级需购球拍4副,乒乓球若干盒(不少于4盒)。
(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款为y乙(元),分别写出在这两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)问x为何值时,在甲、乙两家商店的付款数相等?三、精练反馈1.一次函数y=kx+b满足kb>0且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=ax+b,若a+b=1,则它的图象必经过点()A.(-1,-1)B.(-1,1)C.(1,-1)D.(1,1)3.在函数2-y中,自变量x的取值范围是。
一次函数的图象教案6篇
一次函数的图象教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!一次函数的图象教案6篇下面是本店铺收集的一次函数的图象教案6篇一次函数图像教学内容分析,供大家参阅。
第六章 一次函数图象的应用教案(北师大版初中数学八年级上册)
第六章一次函数5.一次函数图象的应用(一)一、学生起点分析学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.二、教学任务分析《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第六章《一次函数》的第五节.本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.三、教学目标分析知识与技能目标:1.能通过函数图象获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法目标:1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;2.通过具体问题的解决,培养学生的数学应用能力;3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.情感与态度目标:1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.●教学重点一次函数图象的应用.●教学难点正确地根据图象获取信息,并解决现实生活中的有关问题.四、课前准备有条件的学校可以准备多媒体课件,没有条件的可以准备投影片或者小黑板.五、教学过程本节课分为八个教学环节第一环节 复习引入内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?在一次函数y kx b =+中 当0k >时,y 随x 的增大而增大,当0b >时,直线交y 轴于正半轴,必过一、二、三象限; 当0b <时,直线交y 轴于负半轴,必过一、三、四象限.当0<k 时,y 随x 的增大而减小,当0b >时,直线交y 轴于正半轴,必过一、二、四象限;当0b <时,直线交y 轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.说明:如果学生一次函数的图象和性质掌握较好,也可以直接从下一环节(第二环节)开始,进入本课题的学习.第二环节 初步探究内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,回答下列问题:(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?(根据图象回答问题,有困难的可以互相交流.) 答案:(1)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V 的值.当10t =时,V 约为1000万米3.同理可知当t 为23天时,V约为750万米3.意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力. 效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育. 说明:在具体的教学活动中,教师应注意学生对以上问题的掌握情况:如果学生掌握得好,进入下面的练习;如果学生掌握得不好,则可以再引导学生多练习一道类似的习题(见分层教学第1题).第三环节 反馈练习:内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.新$课$标$第$一$网(1)活动开始当天,全校有多少户家庭参加了该活动? (2)全校师生共有多少户?该活动持续了几天? (3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户? (5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式 答案:(1)200户;(2)全校师生共有1000户,该活动持续了20天; (3)平均每天增加了40户;(4)第15天时,参加该活动的家庭数达到800户;(5)40200S t =+ .意图:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.说明:在具体的教学活动中,教师应观察学生的表现,对知识是否掌握,如果学生掌握得好,进入下一个环节;如果学生掌握得不好,则可以再引导,以达到“过手”的目的.(视其情况,可以选用分层教学第2题)第四环节 深入探究内容:1.看图填空(1)当0y =时,______x =;(2)直线对应的函数表达式是________________. 答案:(1)观察图象可知当0y =时,2x =-;(2)直线过(-2,0)和(0,1) 设表达式为y kx b =+,得 20k b -+= ① 1b =②把②代入①得 0.5k = 2.议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)答案: 一元一次方程0.510x +=的解为2x =-,一次函数0.51y x =+包括许多点.因·200 100020 t (天)S (户) 0此0.510x +=是0.51y x =+的特殊情况.当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解.函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.意图:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解;从“形”的角度看,函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解. 效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.第五环节 反馈练习(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2. 解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200176)212-÷=,故到第12年底,该地区的沙漠面积能减少到176万千米2.意图:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.第六环节 探究升级内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水? (7)写出活动开展的第t 天节约的水量Y 与天数t 的函数关系. 答案:(6)第20天可节约100吨水;(7)420Y t =+.意图:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.说明:视学生的掌握情况,对学有余力的同学可以给出这个问题的第(8)问.(见分层教学第3题)第七环节 课堂小结内容:本节课主要应掌握以下内容: 1.能通过函数图象获取信息.2.能利用函数图象解决简单的实际问题. 3.初步体会方程与函数的关系.意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用. 说明:教师视其情况,可以选择展示一些前面小节中用过的实际问题与一次函数图象的实例的图片,让学生体会到数学与生活的联系,激发学生的学习热情.第八环节 布置作业内容:1. 课外探究 在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.2.课外作业 习题5.6六、教学设计反思(1)设计理念一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数·200100020 t (天)S (户)学的广泛运用,另一方面,在学科教育中渗透德育教育.(2)评价方式在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.(3)分层教学1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示.根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米? (2)摩托车每行驶100千米消耗多少升汽油? (3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x 轴交点的横坐标即为摩托车行驶的最长路程.(2)x 从0增加到100时,y 从10开始减少,减少的数量即为消耗的数量. (3)当y 小于1时,摩托车将自动报警. 答案:(1)观察图象,得当0y =时,500x =因此一箱汽油可供摩托车行驶500千米. (3)当1y =时,450x =因此行驶了450千米后,摩托车将自动报警.2.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程.盒内钱数y (元)与存钱月数x 之间的函数关系如图所示.观察图象回答下列问题:(1)盒内原来有多少元?2个月后盒内有多少元? (2)该同学经过几个月能存够200元?(3)该同学至少存几个月存款才能超过140元? 解:(1)40,80. (2)当200y =时,8x =,所以该同学经过8个月能存够200元.(3)观察图象可知,该同学经过5个月能超过140元.3.(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(8)写出活动开展到第5天时,全校师生共节约多少吨水? 答案:(8)第5天时,全校师生共节约160吨水.意图:学生知识上有一定的分层,可更好地调动不同学生的学习热情.教师可根据学生的掌握情况,适当选择上述题目要求学生分层完成.效果:通过分层练习,调动了不同学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,鼓励学生相互讨论,得出结果. ●附:板书设计一次函数图象的应用(一)一、做一做(保留性板书) (暂时性板书)四、课堂练习五、课后作业(有关水库蓄水量与干旱时间的问题)二、练一练(小明的倡议活动)三、议一议: 一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?· 200100020 t/天S/户 0。
初二数学八年级上册《4.4.1 一次函数图象的应用(一)》教案
§4.4 一次函数图象的应用(一)一、教学目标1、能通过函数图象获取信息,发展形象思维。
2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。
二、能力目标1、通过函数图象获取信息,培养学生的数形结合意识。
2、根据函数图象解决简单的实际问题,发展学生的教学应用能力。
3、通过方程与函数关系的研究,建立良好的知识联系。
三、情感目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。
四、教学重点一次函数图象的应用五、教学过程1、新课导入在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。
2、讲授新课(1)由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:①干旱持续10天,蓄水量为多少?连续干旱23天呢?②蓄水量小于400万米3时,将发生严重干旱警报。
干旱多少天后将发出严重干旱警报?③按照这个规律,预计持续干旱多少天水库将干涸?请大家根据图象回答问题,有困难的同学,请与同伴互相交流。
分析:(1)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值。
当t=10时,V约为1000万米3。
同理可知当t为23天时,V约为750万米3。
(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t值。
t约为40天。
(3)水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求。
当V 为0时,所对应的t的值约为60天。
练一练某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x (千米)之间的关系如图所示。
根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程。
初中数学八年级上册《一次函数图象的应用》教案-13页文档资料
第六章第五节一次函数图象的应用(一)课型:新授课教学目标:1.能通过函数图象获取信息,解决简单的实际问题.(重点)2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.(难点)3.培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识.教法与学法指导:创设情景法、合作探究式的教学方法:小组讨论—组内互评—全班展示—教师点拨.根据学生的认知特征和建构主义的数学教学理论,将学法定为自主探究学习法、小组合作教学法.课前准备:教师:多媒体课件,三角板;学生:直尺,讲学案教学过程:一、情境导入、目标展示情境导入师:水是生命之源,生活中我们处处离不开水!这里有一段有关水资源的资料,请一位同学读一下.生:今年3月22日是第20个世界水日,今年世界水日的主题是“水与粮食安全”.水是生命之源.虽然地球70.8%的面积被水覆盖,但97.5%的水是海水,既不能直接饮用也不能灌溉.在余下的2.5%的淡水中,人类真正能够利用的不足世界淡水总量的1%.师:由此可见,节约用水对我们的生活有多重要.请同学们观察下面这四幅图来反映了怎样的自然现象?生1:土地在龟裂;生2:水在减少导致干旱;生3:干涸,水资源在减少,土地都裂了.师:这几位同学说得很好.造成干旱的原因既有人为因素,也有自然因素.水在枯竭,如果我们还不珍惜,最后一滴水将与血液等价.今天我们就一起针对节约用水的问题,从数学知识的角度来进行全面的分析,首先大家先来仔细研究一个图像.从图象中你可以得到那些信息?这个图像里反映了一个怎样的问题?生: 反映了蓄水量随着干旱持续时间增加而减少的函数关系,是我们学过的一次函数的图像.师:回答的很好,这节课我们来共同学习如何用一次函数的图象来帮助我们解决生活中的实际问题.(板书课题,出示学习目标)设计意图:通过水资源的资料和生活中的图片引入新课比较贴近生活,可以吸引学生的注意力,增强学生的社会使命感,调动了学生学习新课的兴趣.二、自主学习、合作探究探究活动1 :师:多媒体展示:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量V(万米3)的关系如下图所示,回答下列问题:(1)上图反映的是和的函数图像.(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?师:同学们,这个问题先小组内交流一下,交流完成以后,找几名同学展示一下你的学习成果.(生小组内讨论交流3分钟.)师:哪位同学愿意展示你的学习成果.生1:蓄水量和干旱持续时间的函数图象.师:这位同学回答的很好,第二题呢?生1:1000.师:你是怎么得到的答案的呢?生2:先找到10天,然后做垂线,交图象与一点,再做垂线,可以找到1000.师:(通过多媒体演示)先在横轴上找到10天,并过这一点作横轴的垂线,与图像交于一点,过这一点作纵轴的垂线,得到蓄水量为1000万立方米.师:23天呢?生:700万米3师:(通过多媒体演示)先在横轴上找到23天,并过这一点作横轴的垂线,与图象交于一点,过这一点作纵轴的垂线,得到蓄水量为700万立方米.师:第三问呢?生:40.师:你能演示一下吗?生{用实物展台演示}:先在纵轴上找到400天,并过这一点作纵轴的垂线,与图像交于一点,过这一点作横轴的垂线,得到40天.师:最后一问呢?生:60.师:你是怎么得到的?生:先求解析式为V=-20t+1200,并让V=0时,求出t=60,即为60天干涸.师:还有其他方法吗?生:延长直线交横轴与一点,交点的横坐标即为所求.师:我们用了图象法和解析式法两种方法解决了这个问题,你能对比一下这两种方法的优缺点吗?生1:解析式法比较准确但是不直观.生2:图象法比较直观但是不够准确.师:这两个同学回答的非常好,掌声鼓励.(生响起一阵掌声.)设计意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力.学生通过自己的观察、分析、合作,初步感受到数形结合的解题方法,同时对比掌握图形观察法与表达式计算法两种方法的优点及缺点,培养学生灵活应用不同方法解决问题的能力.师:当得知周边地区的干旱情况后,滕南学校的小明意识到节约用水的重要性.当天在8.9班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S(户)与宣传时间t(天)的函数关系如图所示.根据图象回答下列问题:师:这个环节采用抢答的方式,回答最踊跃的两名同学老师有物质奖励.圣诞节就要到了,每人奖励一个苹果.(展示奖品)现在结合你的讲学案,准备一下,时间30秒.同学们知道答案可以直接站起来回答,看哪位同学最踊跃.师:(30秒后)(1)活动开始当天,全校有多少户家庭参加了该活动?生:200户.师:回答的很好.师:第二个问题该活动持续了几天?生1:30天.师:错了.生2:20天.师:对了,下一个问题:全校师生共有多少户参加?生:1000户.师:对了,第四个问题你知道平均每天增加了多少户?生:40户.师:正确,活动第几天时,参加该活动的家庭数达到800户?生:800户.师:正确,写出参加活动的家庭数S与活动时间t之间的函数关系式.生:40200=+S t师:通过这一环节抢答,田志广同学和王闯同学抢答的次数最多,都是2次,请这两个同学上台领奖.生:展示奖品.(全班响起热烈的掌声.)设计意图:通过创设情境,让学生进一步学习运用一次函数图象解决实际生活中的问题,倡导节约用水.同时,通过练习检验学生对已学内容是否掌握.抢答环节的设计也培养了学生的集体主义观念及语言表达的能力.探究活动21.看图填空(1)当0y=时,x=;______(2)直线对应的函数表达式是_2.议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)师:下面我们对一次函数的图像的运用进行深入的探究,同学们我们来看一下讲学案中的探究活动2.在这个环节里,我们先分组讨论,讨论完以后找几名同学来讲解一下.(生分组讨论.)师:同学们讨论的很热烈,哪一位同学能上台来讲解一下第一个问题. 生1:第一个答案是-2,第二个答案是 y=0.5x+1.师:哪个同学还能讲一下吗?能用实物展台板演一下吗?生2(借助实物展台):当y=O 时就是直线也x 轴的交点的横坐标为-2:第二个问题设函数表达式为y=kx+b ,图象过(-2,0),(0,1)两点,所以表达式为y=0.5x+1.师:回答的好不好.生:好(掌声一片).师:哪个同学能说一下议一议.生1:函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解. 生2: 当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解.师:这两个同学的答案你不同的方面说明了他们之间的关系,综合起来就更全面了,即:从“数”的方面看,当一次函数y=0.5x+1的函数值y=0时,相应的自变量的值即为方程0.5x+1=0解;从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解.设计意图:通过本题锻炼了学生的语言表达能力,同时让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x=+的函数值为0时,相应的自变量的值即为方程0.510x+=的解;从“形”的角度看,函数0.51=+与x轴交点的横坐标即为方程0.510y xx+=的解.师:通过上面的学习,我们对一次函数的运用有了进一步的理解,我们来巩固一下学习成果, 请同学们完成探究活动3的1至5题,请同学独立完成.多媒体展示:探究活动3某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x (千米)之间的关系如图所示.根据图象回答下列问题:1)横轴表示纵轴表示 .2)X=0时,y= ,此时表示:摩托车的油箱最多可储油升.3)y=0时,x= ,此时表示:一箱汽油最多可供摩托车行使千米.4)摩托车行使100千米后,剩余油量升,即耗油升.5)摩托车的剩余油量小于1升时,摩托车将自动报警.行驶千米后,摩托车将自动报警?师巡视,生独立完成.师:同学们都完成了,下面先小组内进行评议,纠错.师巡视,找出4个小组的代表的讲学案利用实物展台展示.边展示,边评价,得出等级.点拨答案:(1)摩托车行驶路程x;油箱中的剩余油量y(2)10:10(3)500;500(4)8;2(5)450.设计意图:通过摩托车的油箱的问题进一步培养学生的识图能力,让学生能从图象中获取信息,进一步巩固用函数图像的思想解决生活中的问题.三、归纳总结、拓展提高归纳总结:你的收获:你的困惑:师:学而不思则罔,思而不学则殆,在学习数学的过程中,我们只有不断地归纳总结才能精益求精.通过这节课的学习,你有哪些收获?我们先小组内互相说一下,然后再找几名同学来总结一下.生1:通过函数图象获取信息.生2:利用函数图象解决简单的实际问题.生3:初步体会方程与函数的关系.师(小结):我们从实际问题转化为坐标,由坐标找到了点,由点找到了对应的坐标,由找到的坐标来解决实际问题.设计意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.当堂达标:1.某植物t 天后的高度为y 厘米,图中反映了y 与t 之间的关系.根据图像回答下列问题:(1)3天后该植物高度为多少?(2)预测该植物12天后的高度;(3)几天后该植物的高度为10厘米?点拨:(1)3天后该植物高度为5厘米.(2)预测该植物12天后的高度为11.4厘米.(3)天后该植物的高度为10厘米.2.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一实际生活 坐标 点项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到1点拨:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于-÷=,故到第12年底,该地区的沙漠面积能减少到176万千(200176)212米2.教学方式:当堂达标,对做完的学生进行当堂批阅并点评.设计意图:巩固本节课所学的内容,让学生掌握用一次函数图像来解决实际问题的方法.板书设计:教后反思:通过函数图象获取信息,解决实际问题,培养学生的形象思维及数学应用能力,同时培养学生良好的环保意识和热爱生活的意识及利用函数图象解决简单的实际问题通过方程与函数关系的研究,建立良好的知识联系.第一个教学环节我们有水资源的的资料引人,贴近生活,展示4幅图片,让学生说出体现了什么自然现象,比较形象直观,能调动学生的学习积极性,这个问题用数学知识的角度应该怎么分析,可以通过一个图像来解决.来引出新课,板书课题.第二个环节主要调动学生的积极性,探究活动1先有学生小组内讨论学习,教师适当点拨,完成探究活动1,再利用抢答的形式巩固新知,对优秀的同学给予一定的物质奖励(如苹果);对于探究活动2,我采用小组讨论,然后找4名学生上台进行讲授,让学生成为学习的主体,实现“兵教兵”的教学模式,让学生成为学生的主体,探究活动3采用学生独立完成,然后由小组互评,最后找几个小组的优秀代表进行展评.第三个环节中的总结采用先小组内互相说自己的收获,然后再让学生代表来说明,最后由教师点拨的方式进行,总结完以后当堂达标,对做完的学生进行当堂批阅.但在教学中要适当分组,力求每一个小组都有优秀代表,达到“兵教兵”的目的,同时要把握好时间和节奏,不要让时间过紧或者过松.希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。
一次函数图像的应用 教案
6.5一次函数图象的应用教学目标知识与技能目标1.能利用函数图象解决简单的实际问题;2.初步体会方程与函数的关系,建立良好的知识联系。
过程与方法目标1.经历通过函数图象获取信息的过程,培养学生数形结合的意识,发展学生形象思维能力;2.经历利用函数图象解决实际问题的过程,发展学生的数学应用能力。
情感与态度目标1.经历对实际问题的解决过程在合作与交流活动中发展学生的合作意识和能力;2.经历从不同角度去观察、分析、思考、体验解决问题的多样性的过程,获得成功的体验,树立学习的信心。
教材分析《一次函数图象的应用》这节着重培养学生的识图能力,能对所给图象信息进行识别,培养学生的形象能力。
教材的第一课时重点放在将图形与文字语言建立对应关系,从而直接从图象上获取相应的解答。
教材最后的议一议提出了一元一次方程与一次函数的联系。
教材中重视这一环节,可提示学生从数、形两个方面进行探讨,为下一章的学习打下良好的基础。
教学重点:应用一次函数的图象,解决实际问题。
教学难点:图象信息的挖掘,一次函数和一元一次方程的联系学情分析由于学生之间存在着一定的差异,因此对于不同层次的学生的要求定位也不应完全相同。
对于基础较薄弱的学生主要要求他们会将图象信息与文字信息进行互化;而对于基础较好的学生,则要求他们从多角度对问题进行寻求多种解法。
但在教学中要注意不要故意引导学生使用代数方法解题,应避免习惯性的代数化倾向。
教学过程前面几节课,我们学习了有关一次函数图象的知识。
那么,请大家思考以下几个问题(见课件“知识回顾”1、2、3)。
今天我们就来利用一次函数图象来解决一些实际问题:我们知道,水库蓄水量是随着季节的变化而变化的在某段时间内。
一、情境引入问题一:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少。
干旱持续时间t(天)与蓄水量V(万米3)的关系如图所示,回答下列问题:(1)干旱持续10天,蓄水量为多少?连续干旱23天呢?(2)蓄水量小于400万米3时,将发出严重干旱警报。
初中数学一次函数图像及应用练习题(附答案)
初中数学一次函数图像及应用练习题一、单选题1.如图,一次函数11y k x b =+与一次函数224y k x =+的图象交于点(13)P ,,则关于x 的不等式124k x b k x +>+的解集是( )A.1x >B.0x >C.2x >-D.1x <2.在函数32y x =-中,自变量x 的取值范围是( ) A.1x >- B.1x - C.1x >-且2x ≠ D.1x -且2x ≠ 3.如果一个正比例函数的图象经过不同象限的两点()()2,,,3A m B n ,那么一定有( )A.0,0m n >>B.0,0m n ><C.0,0m n <>D.0,0m n <<4.若直线1l 经过点()04,,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()2,0-B .()2,0C .()6,0-D .()6,05.如果一次函数y kx b =+,当31x -≤≤时,17y -≤≤,则kb 的值为( ) A.10B.21C.-10或2D.-2或106.若一次函数y kx b =+,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值( ) A.增加4B.减小4C.增加2D.减小27.在平面直角坐标系中,已知(1,1),(3,5)A B ,要在坐标轴上找一点P ,使得PAB △的周长最小,则点P 的坐标为( )A.(0,1)B.(0,2)C.4,03⎛⎫⎪⎝⎭或(0,1) D.(0,2)或4,03⎛⎫⎪⎝⎭8.函数y kx b =+与21y x =-的图象关于x 轴对称,且交点在x 轴上,则该函数表达式为( ) A.21y x =-+B.21y x =--C.21y x =+D.以上都不对9.已知一次函数的图象与直线1y x =-+平行,且过点(6,2)-,那么一次函数解析式为( ) A.6y x =-B.4y x =--C.10y x =-+D.4y x =10.如果一条直线l 经过不同的三点()()(),,,,,A a b B b a C a b b a --,那么直线l 经过( )A. 第二、四象限B. 第一、二、三象限C. 第二、三、四象限D. 第一、三、四象限11.如图所示,直线4y x =+与两坐标轴分别交于A B 、两点,点C 是OB 的中点,D E 、分别是直线AB ,y 轴上的动点,则CDE 周长的最小值是( )A. B. 310C. D. 12.如图,把Rt ABC 放在直角坐标系内,其中905CAB BC ∠=︒=,,点A B 、的坐标分别为()10,、()40,,将ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为( )A. 4B. 8C. 16D. 13.如图,一次函数0ax by c ++=的图象与坐标轴交于A B ,两点,且,34x b y c ==-是方程3-2ax by c +=的一组解,则下列结论错误的是( )A .20c b -=B .0abc <C .0a c +=D .1OAB S ∆=14.下列各关系中,不是函数关系的是( ) A.(0)y x x =-≤ B.(0)y x x =±≥C.(0)y x x =≥D.(0)y x x =-≥15.下列式子:①35y x =-;②1y x=;③y =2y x =;⑤y x =。
(word完整版)利用一次函数的图像解决实际应用问题
例1.一列快车由甲地开往乙地,一列慢车由乙地开往甲地, 两车同时出发,匀速运动. 快车离乙地的路程y
1 (km) 与行驶的时间x(h) 之间的函数关系, 如图中线段AB 所示;慢车离乙地的路程y
2 (km)与行
驶的时间x(h) 之间的函数关系,如图中线段OC 所示。
根据图象进行以下研究。
解读信息:
(1) 甲、乙两地之间的距离为 ___ km ;
(2) 线段AB 的解析式为_________ ;线段OC 的解析式为 _________;
问题解决:
(3)设快、慢车之间的距离为y(km), 求y 与慢车行驶时间x(h)的函数关系式, 并画出函数图像.
例2:小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1
at 中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;
(2)求图2中A点的纵坐标h,并说明它的实际意义;
(3)爸爸在乙处等代理7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,行驶路程s(m)与时间t(s)的关系也at,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.满足s=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数图象的应用(教学案)典型例题+巩固练习+参考答案一、教学目标与要求:1、能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力。
2、能通过函数图象获取信息,发展形象思维;能利用函数图象解决简单的实际问题,进一步发展数学应用能力。
3、初步体会方程与函数的关系,建立良好的知识体系。
二、学习指导本讲重点:(1)根据所给信息确定一次函数的表达式。
(2)正确地根据图象获取信息。
本讲难点:(1)用一次函数的知识解决有关实际问题。
(2)从函数图象中正确读取信息。
考点指要一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图形解决问题是本节要解决的一个重要问题,这部分内容在中考中占有重要的地位,经常与方程组、不等式等知识联系起来考查. 三.典型例题例1 求下图中直线的函数表达式:分析: 观察图象可知:该一次函数图象经过点(2,0)、(0,3),而经过两点的直线可由待定系数法求出。
解:设y=kx+b ,∵x=2时,y=0;y=3时x=0 ∴2x+b=0且0x+b=3∴3,23=-=b k ∴323+-=x y例2 作出函数y=0.5x+1的图象,利用图象,求: (1)当2,0,4-=x 时,y 的值。
(2)当3,1,21-=y 时,x 的值。
(3)解方程315.0,115.0,2115.0=+=+-=+x x x (4)结合(2)(3),你能得出什么结论?(5)若解方程0.5x+1=0呢?它有什么特殊的几何意义? (6)何时y>0,y=0,y<0? 解:列表得描点、连线得函数图象:(1)由图象可知:当2,0,4-=x 时,相应的y 值分别为-1、1、2. (2)由图象可知:当3,1,21-=y 时,相应的x 值分别为-3、0、4. (3)三个方程的解分别为x=-3、x=0、x=4. (4)当一次函数y=0.5x+1的函数值为3,1,21-时,相应的自变量的值即为方程315.0,115.0,2115.0=+=+-=+x x x 的解。
(5)当一次函数y=0.5x+1的函数值为0时,相应的自变量的值即为方程0.5x+1=0的解。
它的几何意义是:直线y=0.5x+1与x 轴交点的横坐标即为方程0.5x+1=0的解。
(6)由图象可知,当x<-2 时,y<0;当x=-2时,y=0;当x>-2 时,y>0。
说明:要注意一次函数与相应的一元一次方程的关系。
事实上,利用一次函数图象可解决许多实际问题。
例3 一根弹簧长15cm ,它能挂的物体质量不能超过18kg ,并 且每挂1kg 就伸长0.5cm 。
写出挂上物体后的弹簧长度y (cm ) 与所挂物体的质量x (kg )之间的函数关系式,并且画出它的图象。
解:1521+=x y (0 ≤x ≤18) 经过点A (0,15)、B (18,24)作函数图象说明:要注意函数自变量的取值范围。
本题图象为线段AB ,而不是直线。
例4 某医药研 究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y (微克)随时间x (时)的变化情况如图所示,当成人按规定服药后:(1)服药后 时,血液中含药量最高为每升 微克,接着逐步衰减; (2)服药后5小时,血液中含药量为每升 微克; (3)当x ≤2时,y 与x 之间的函数关系式是 ; (4)当x ≥2时,y 与x 之间的函数关系式是 ;(5)如果每毫升血液中含药量3微克或3微克以上时,治疗疾病最有效,那么这个有效时间范围是 时。
解: 由图象可知:(1)服药后2时,血液中含药量最高为每升6微克,接着逐步衰减。
(2)服药后5小时,血液中含药量为每升3微克。
(3)当x ≤2时,设y=kx , ∵(0,0)、(1,3)在图象上, ∴解得k=3,∴y 与x 之间的函数关系式是y=3x 。
(4)当x ≥2时,设y=kx+b ∵(2,6)、(5,3)在图象上,∴⎩⎨⎧=+=+3562b k b k解得⎩⎨⎧=-=81b k∴y 与x 之间的函数关系式是y=8-x 。
(5)如果每毫升血液中含药量3微克或3微克以上时,治疗疾病最有效,那么由图象可知这个有效时间范围是1~5时。
说明: 由函数图象写函数关系式及由函数图象获取相关信息是本讲的重点内容。
例5 若一次函数y=kx-3的图象与x 轴、y 轴的交点之间的距离为5,求此函数的表达式。
解:由题意k ≠0,且直线y=kx-3与x 轴、y 轴的交点分别为(0,3k)、(3,0-) 由勾股定理得,222)3()3(5-+=k 解得34±=k-1334-±=x y 说明:直线y=kx+b 与x 、y 轴的交点分别是(0,kb-)、(b ,0),这在解题时经常用到。
例6 知a 为任意实数,且y=ax+1-2a 的图象经过一个与a 无关的定点,试求该定点的坐标。
解:不妨令a=1,得y=x-1 ;再令a=2,得y=2x-3联立得,x=2、y=1 即它俩都过点(2,1)又因为y=ax+1-2a 中,当x=2时,y=2a+1-2a=1 因此其图象必过定点(2,1)说明:事实上,随着a 的变化,直线y=ax+1-2a 也不相同,但它们都经过定点(2,1)。
这里,先在特殊情形下求交点,再验证一般情形也符合,进而得到一般情形下的结论。
中考试题点拨例1 对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计上的刻度可以看出,摄氏(℃)温度x 与华氏(°F )温度y 有如下的对应关系:(1)通过①描点;②猜测y 与x 之间的函数关系;③求解;④验证等几个步骤,试确定y 与x 之间的函数关系式.(2)某天,南昌的最高气温是8℃,澳大利亚悉尼的最高气温是91°F ,问这一天悉尼的最高气温比南昌的最高气温高多少摄氏度(结果保留整数)? 思路分析本题主要考查用待定系数法求一次函数的关系式.但结论未定,要求根据点的坐标描点连线,探索,求解并验证.本题既考查了一次函数的基础知识和技能,又考查了能力. 解:(1)①描点连线,如图6-9所示;②通过观察可猜测:y 是x 的一次函数;③设y=kx+b . (由于图象是线段,因此猜测是一次函数)将两对数值⎩⎨⎧==⎩⎨⎧==50y 10x ,32y 0x 分别代入y=kx+b ,得⎩⎨⎧+==b k 1050b 32(待定系数法求函数关系式)解得⎩⎨⎧==32b 8.1k∴y=1.8x+32;④验证:将其余三对数值⎩⎨⎧==⎩⎨⎧==⎩⎨⎧=-=86y 30x 68y 20x 14y 10x ,,分别代入y=1.8x+32,得1.8³(-10)+32=14, 1.8³20+32=68, 1.8³30+32=86,(验证是为了看猜测是否正确,让尽可能多的点符合函数关系式) 结果都成立.∴y 与x 之间的函数关系式是y=1.8x+32; (2)当y=91时,由91=1.8x+32,解得 x ≈32.832.8-8=24.8≈25(℃).(注意:不是91-8,应在同一单位制下进行运算) 答:这一天悉尼的最高温度比南昌的最高温度高约25℃.例2 某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (千克)的一次函数,其图象如图6-10所示.求: (1)y 与x 之间的函数关系式;(2)旅客可免费携带的行李的重量.思路分析本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,同时考查了在直角坐标系中的读图能力.解:(1)设一次函数的关系式为y=kx+b .∵当x=60时,y=6,当x=80时,y=10, ⎩⎨⎧=+=+∴10b k 806b k 60(这是一个二元一次方程组)解得⎪⎩⎪⎨⎧-==6b 51k(学会读图)∴所求函数关系式为6x 51y -=(x ≥30). (2)当y=0时,06x 51=-,(注意自变量的取值范围不能遗漏) ∴x=30.故旅客最多可免费携带30公斤行李.例3 A 市和B 市各有机床12台和6台,现运往C 市10台,D 市8台.若从A 市运1台到C 市、D 市各需要4万元和8万元,从B 市运1台到C 市、D 市各需要3万元和5万元. (1)设B 市运往C 市x 台,求总费用y 关于x 的函数关系式; (2)若总费用不超过90万元,问共有多少种调运方法? (3)求总费用最低的调运方法,最低费用是多少万元?(总费用y 是从A 市、B 市运往C 市和D 市的费用和,现将A 市、B 市运往C 市和D 市的费用分别表示成为含x 的代数式,再求费用和) 解:(1)设B 市运往C 市x 台,∴B 市运往D 市(6-x )台,A 市运往C 市(10-x )台,A 市运往D 市[12-(10-x )]台,根据题意,得y=3x+5(6-x )+4(10-x )+8(2+x ), 即y=2x+86. (2)由题意 2x+86≤90,x ≤2.∵B 市最多可运往C 市6台,∴0≤x ≤6, ∴0≤x ≤2,∴x 的取值可为0、1、2共三个数, ∴总费用不超过90万元的调运方法有3种.(这是一次函数的应用题,自变量x 的取值范围应由实际问题决定)(3)由一次函数y=2x+86知,y 随x 的增大而增大, 又∵0≤x ≤2,(要学会用一次函数的性质解决问题) ∴当x=0时,y 取最小值86.∴最低费用是86万元,调运方法是B 市运往D 市6台,A 市运往C 市10台,运往D 市2台. 例4 如图6-11,公路上有A 、B 、C 三站,一辆汽车在上午8时从离A 站10千米的P 地出发向C 站匀速前进,15分钟后离A 站20千米.(1)设出发x 小时后,汽车离A 站y 千米,写出y 与x 之间的函数关系式;(2)当汽车行驶到离A 站150千米的B 站时,接到通知要在中午12点前赶到离B 站30千米的C 处.汽车若按原速能否按时到达?若能,是在几点几分到达?若不能,车速最少应提高到多少? 思路分析这是一道实际问题的应用题,主要考查建立一次函数关系式的能力,求函数值的技能,同时还考查列方程解应用题的能力.解:(1)汽车匀速前进的速度为小时)(千米/4060151020=-, ∴y=40x+10.(2)当y=150+30=180时,(认真阅读题目,理解题意是解答应用题的关键) 40x+10=180.解得x=4.25(时),4.25+8=12.25(点) 因此汽车若按原速不能按时到达.当y=150时,40x+10=150,(理解如何判断能否按时到达) 解得x=3.5.设汽车按时到达C 处,车速至少提高到v 千米/小时,则[(12-8)-3.5]²v=30, 解得v=60.答:车速至少提高到60千米/小时.例5 科学家通过实验探究出一定质量的某气体在体积不变的情况下,压强P(千帕)随温度t(℃)变化的函数关系式是P=kt+b ,其图象如图6-11所示的射线AB . (1)根据图象求出上述气体的压强P 与温度t 的函数关系式; (2)求出当压强P 为200千帕时,上述气体的温度. 解:(1)∵ 函数P=kt+b 的图象过点(0,100),(25,110),∴⎩⎨⎧=+=,11025,100b k b 解之,得⎪⎩⎪⎨⎧==.52,100k b故所求函数关系是)0t (100t 52P ≥+=. (2)当P=200时,由(1)得2001052=+t .解之,得 t=250.即当压强为200千帕时,气体的温度是250℃.例6如图6-12所示,是某学校一电热淋浴器水箱的水量y (升)与供水时间x (分)的函数关系. (1)求y 与x 的函数关系式;(2)在(1)的条件下,求在30分钟时水箱有多少升水? 解:(1)由图可知y 与x 的函数关系是一次函数, (将实际问题转化为数学问题) 设这个函数的关系式为y=kx+b (k ≠0),根据题意得⎩⎨⎧=+=+,150b k 50,50b k 10解得⎪⎩⎪⎨⎧==,25b ,25k∴水箱的水量y (升)与时间x (分)的函数关系式是25x 25y +=(10≤x ≤50). (2)当x=30时,100253025y =+⨯=(升) (将实际问题转化为求函数值) ∴ 在30分钟时水箱有100升水.Q(件)BDCA 巩固练习 1、 选择(1)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q (升)与行驶时间t (时)的函数关系用图象表示应为 ( )oQ t /Éý/ʱ408±±±ABCD(2)某厂今年前五个月生产某种产品的月产量Q (件)关于时间t (月)的函数图象如图所示,则对这种产品来说,下列说法中,正确的是( )(A )1月至3月每月产量逐月增加,4、5两月每月产量逐月减少。