中考数学一轮复习 夯实基础 第七章 图形与变换 第25节 投影与视图 新人教版

合集下载

中考数学第一部分基础知识过关第七章图形与变换第25讲投影与视图课件

中考数学第一部分基础知识过关第七章图形与变换第25讲投影与视图课件

3.常见几何体的三视图
几何体
主视图
左视图
总纲目录
栏目索引
俯视图
总纲目录
栏目索引
4.由三视图确定几何体 由三视图描述几何体,一般先根据各视图想象从各个方向看到的 几何体形状,然后综合起来确定几何体的形状,再根据“长对正、 高平齐、宽相等”的关系确定轮廓线的位置以及各面的尺寸,最 后画出几何体.
栏目索引
第25讲 投影与视图
总纲目录
泰安考情分析 基础知识过关 泰安考点聚焦 随堂巩固练习
总纲目录
栏目索引
泰安考情分析
泰安考情分析
栏目索引
总纲目录
栏目索引
基础知识过关
知识点一 投影 知识点二 视图 知识点三 立体图形的侧面展开图立体图形 的侧面展开图
总纲目录
栏目索引
知识点一 投影
1.投影的定义 一般地,用光线照射物体,在某个平面上得到的影子叫做物体的①
考点二 由三视图判断几何体
例2 (2018泰安)下图是下列哪个几何体的主视图与俯视图( C )
总纲目录
栏目索引
变式2-1 (2017威海)一个几何体由n个大小相同的小正方体搭 成,其左视图、俯视图如图所示,则n的最小值是 ( B )
A.5 B.7 C.9 D.10 方法技巧 由主视图分清几何体的上下左右,由左视图分清几 何体的上下前后,由俯视图分清几何体的左右前后.
总纲目录
栏目索引
例4 有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完 全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂 成绿色一面的对面的颜色是 ( C )
A.白 B.红 C.黄 D.黑
解析 由前两个图知“绿”与“白”“黑”“蓝”“红”相邻, 故“绿”的对面是“黄”.故选C.

人教版中考数学第一轮复习第七章图形与变换

人教版中考数学第一轮复习第七章图形与变换

第七章图形与变换第二十四讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.2.点P(2,-1)关于x轴对称的点P′的坐标是.3.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?4.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是5.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)7.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°9.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2 10.已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.13.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.14.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.第二十五讲相似图形(一):【知识梳理】1.比例基本性质及运用(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比a、b中,a叫做比的前项 b叫做比的后项.注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;③其比值为一个不带单位的正数.(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例的项,线段a、d叫做比例外项,线段b、d叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.(3)比例的性质,①基本性质:如果a:b=c:d,那么ad=bc;反之亦成立。

中考数学第一轮考点系统复习第七章图形与变换第25讲尺规作图及投影与视图讲本

中考数学第一轮考点系统复习第七章图形与变换第25讲尺规作图及投影与视图讲本

错误的是( D ) A.AD=CD
B.∠ABP=∠CBP
C.∠BPC=115°
D.∠PBC=∠A
3.(2020·武威)如图,在△ABC中,D是边BC上一点,且BD=BA. (1)尺规作图(保留作图痕迹,不写作法):
①作∠ABC的平分线,交AD于点E;
②作线段DC的垂直平分线,交DC于点F; 解:(1)①如图,BE即为所求. ②如图,线段DC的垂直平分线交DC于点F.
③最后由主视图的竖列得到构成几何体的小正方体从左至右的列数;由主 视图中的横行得到构成几何体的小正方体所摆的层数. 注意:该方法也适用于由三视图判定小正方体的个数. 3.由几何体的三视图及其所标尺寸计算几何体的表面积或体积问题,关键是 先由以上方法还原几何体,再将三视图的尺寸对应标注在几何体上,最后 利用几何体的相关计算公式求解.
A.5
B.6
C.7
D.8
考点3 立体图形的展开与折叠 考点精讲 5.(2020·泰州)把如图所示的纸片沿着虚线折叠,可以得到的几何体是( A )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
6.(2021·广东)下列图形是正方体的展开图的有( C )
A.1个
B.2个
C.3个
D.4个
正方体表面展开图的记忆口诀: 中间四个面,上下各一面;中间三个面,一二隔河见;中间二个面,楼梯天 天见;中间没有面,三三连一线.(结合知识点4中的正方体展开图的常见类 型及相对面进行理解)
第七章 图形与变换
第25讲 尺规作图及投影与视图
知识点1 尺规作图及其基本步骤 1.定义:只用直尺和圆规来完成画图,称为尺规作图.
2.基本步骤: (1)已知:写出已知的线段和角,画出图形. (2)求作:求作什么图形,使它符合什么条件. (3)作法:运用五种基本尺规作图,保留作图痕迹. (4)证明:验证所作图形的正确性. (5)结论:对所作的图形下结论.

中考数学高分一轮复习 第一部分 教材同步复习 第七章 图形与变换 课时25 视图、投影及尺规作图

中考数学高分一轮复习 第一部分 教材同步复习 第七章 图形与变换 课时25 视图、投影及尺规作图
10 12/10/2021
• 3.三视图的作法步骤 • (1)三种视图位置的确定:先确定主视图的位置,在主视图的下面画出
俯视图,在主视图的右面画出左视图. • (2)在画视图时,主、俯视图要长对正;主、左视图要高平齐;左、俯
视图要宽相等. • 【注意】在画视图时,要注意实线与虚线的画法,看得见部分的轮廓
l
(3)分别以点
A,B
为圆心,大于12AB
长为半径画
弧,两弧在点 M 同侧交于点 N;
(4)作直线 PN,则 PN 即为所求垂线
图示
21 12/10/2021
• 【注意】尺规作图题目的常用解题方法: • (1)首先分析题设要用哪种尺规作图.如:①作平行线的实质是作等角;
②作三角形中线的实质是作线段的平分线;③作三角形的外接圆的实 质是作线段的垂直平分线;④作三角形内切圆的实质是作角平分线、 过一点作已知线段的垂线等. • (2)对于已知作法进行有关结论的判断或计算问题,要能通过作图步骤 判断是哪种基本作图,作出的线段、角有什么关系,以及要知道作出 图形的性质,进而作出判断或计算,如根据作图步骤知作角平分线则 可得到角相等.
2 12/10/2021
• 1.平行投影 • 由①_____平_行__光_线___形成的投影叫做平行投影.太阳光线可以看成是平行
光线,如物体在太阳光的照射下形成的影子(简称日影)就是平行投 影.日影的方向可以反映当地时间. • 2.中心投影 • 由同一点(点光源)发出的光线形成的投影叫做②_中__心_投__影______,如物体在 灯泡发出的光照射下形成的影子就是中心投影.
三视图 左视图 视图
俯视图 正投影情况下,在水平面内得到的由上向下观察物体的视图
7 12/10/2021

中考数学第一轮复习 第7章第25讲 投影与视图(共15张PPT)

中考数学第一轮复习 第7章第25讲 投影与视图(共15张PPT)
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
变式运用►1.[教材改编题]如图所示,平地上一棵树高为6米,
两次观察地面上的影子,第一次是当阳光与地面成60°时,
第二次是阳光与地面成30°时,第二次观察到的影子比第一 次长( ) B
第七章 图形与变换 第25讲 投影与视图
考点梳理
考点1 投影
定义
分 类
一般地,用光线照射一个物体,在某个平面上得到的
影子叫做物体的投影,照射光线叫①__投影线__,投
影所在的平面叫②__投影面__
由③__平行__光线形成的投影是平行投
平行 投影
影.如:物体在太阳光的照射下形成的 影子就是平行投影.平行投影中,投影 线④__垂直__投影面产生的投影叫做正
【思路分析】(1)连接MB并延长,与过点O作垂直于路面的直线 相交于点P,连接PD并延长交路面于点N,点P、点N即为所求; (2)利用相似三角形对应边成比例列式求出AM,CN,然后相减 即可得解.
【自主解答】 (1)如图所示.
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 6:20:06 PM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/72021/9/72021/9/7Tuesday, September 07, 2021

2024年云南省中考数学一轮复习 第25讲 投影与视图课件

2024年云南省中考数学一轮复习 第25讲 投影与视图课件

观察几何体三视图时出现错误 1.如图所示的空心圆柱,其俯视图是( D )
2.如图所示,将小立方块①从6个大小相同的小立方块所搭的几何体中 移走后,所得几何体( D ) A.俯视图不变,左视图改变 B.主视图改变,左视图改变 C.主视图不变,左视图不变 D.俯视图改变,左视图改变
由视图联想实物时辨别失误 3.如图所示的是某几何体从上面看到的平面图形,小正方形中的数字 表示该位置小正方体的个数,则从正面看到的该几何体的平面图形是 ( B)
A.合 B.同 C.心 D.人
1.三个立体图形的展开图如图所示,则相应的立体图形是( A ) A.①圆柱,②圆锥,③三棱柱 B.①圆柱,②球,③三棱柱 C.①圆柱,②圆锥,③四棱柱 D.①圆柱,②球,③四棱柱
2.把如图所示的正方体展开,得到的平面展开图可能是( B )
与视图有关的计算(命题热点) (2021云南)下列是某几何体的三视图(其中主视图也称正 视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形,若 主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几 何体的体积为 3π .
3.如图所示的是由几个大小完全相同的小正方体搭成的几何体.
(1)请分别画出该几何体的三视图;
(2)图中共有
个小正方体.
解:(1)几何体的三视图,如图所示.
(2)8
角度2 由三视图判断几何体
(2023云南)某班同学用几个几何体组合成一个装饰品美化
校园,其中 一个几何体的三视图(其中主视图也称正视图,左视图也 称侧视图)如图所示,这个几何体是( A )
搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变
小明所搭几何体的形状). (1)按照小明的要求,小亮至少需要 18 个正方体积木; (2)按照小明的要求,小亮所搭几何体的表面积最小为 46 .

中考数学复习 第7章 图形与变换 第25讲 投影与视图课件

中考数学复习 第7章 图形与变换 第25讲 投影与视图课件
2021/12/8
第十三页,共十七页。
6.[2012·潍坊,4,3分]如图空心圆柱体的主视图的画法(huà fǎ)正确的
是( )
C
2021/12/8
第十四页,共十七页。
6.[2012·潍坊,4,3分]如图空心圆柱体的主视图的画法(huà fǎ)正确的
是( )
C
C 从前面观察物体(wùtǐ)可以发现,它的主视图应为矩形, 又因为该几何体为空心圆柱,故中间的两条棱在主视图中应 为虚线.
2021/12/8
第七页,共十七页。
变式运用►2.[2017·内江中考]由一些大小相同的小正方体搭成的几何体的俯视图如
图所示,其中(qízhōng)小正方形中的数字表示该位置上的小正方体的个数,那么该
几何体的主视图是( )
A
由已知条件可知,主视图有3列,每列小正方形数目分别(fēnbié)为1,2,3.据此 可画出图形,如图所示.
第三页,共十七页。
考点3 立体图形的展开(zhǎn kāi)与折叠
1.在实际生活中常常要了解一个立体图形展开的形状,需要沿着立体图形的一些 棱将它剪开,可以把立体图形展开成一个平面图形,同一个立体图形按不同的方式 (fāngshì)展开,会得到不同的平面展开图.
2.常见几何体的侧面展开图:(1)正方体侧面展开图是① 长方形 ;(2) 棱柱侧面展开图是② 长方形 ;(3)圆柱的侧面展开图是③ 长方形 ;(4) 圆锥的侧面展开图是④ 扇形 .
2021/12/8
第四页,共十七页。
典型例题(lìtí)运用 类型(lèixíng)1 投影
【例1】我们常用“y随x的增大而增大(或减小)”来表示两个(liǎnɡ ɡè)变
量之间的变化关系.有这样一个情景:如图,小王从点A经过路灯C的正下

中考数学一轮复习精准辅导讲义 第七单元 视图与图形变换

中考数学一轮复习精准辅导讲义  第七单元 视图与图形变换

物体的三视图 1.在正投影面内得到的由前向后观察物体的视图,叫做__主视图__. 2.在水平投影面内得到的由上向下观察物体的视图,叫做__俯视图__. 3.在侧投影面内得到的由左向右观察物体的视图,叫做__左视图__. 4.画三视图的要求:长对正,高平齐,宽相等.
尺规作图
六种尺规作图
步骤
作一条线段 OA (1)作射线 OP;
图示
第 1页
中考数学一轮复习精准辅导讲义 第七单元 视图与图形变换
作线段 AB 的垂 直平分线 MN
(1)分别以点 A,B 为圆心,以大于 1AB 的长为 2
半径,在 AB 两侧作弧,分别交于点 M 和点 N; (2)过点 M,N 作直线 MN,直线 MN 即为线段
AB 的垂直平分线
(1)在∠α中以 O 为圆心,以任意长为半径作弧, 交∠α的两边于点 P,Q;
过直线上一点 O 作直线 l 的垂线
MN
弧,分别交直线于 A,B 两点;(2)分别以点 A, B 为圆心,以大于 1AB 的长为半径向直线两侧
2 作弧,两弧分别交于点 M,N,过点 M,N 作直
线 MN,则直线 MN 即为所求垂线
(1)在直线另一侧取点 M;
(2)以点 P 为圆心,PM 为半径画弧,分别交直线
过直线 l 外一点 P 作直线 l 的垂线
PN
l 于 A,B 两点; (3)分别以 A,B 两点为圆心,以大于 1AB 的长
2 为半径画弧,交 M 同侧于点 N;
(4)过点 P,N 作直线 PN,则直线 PN 即为所求
垂线
第 2页
中考数学一轮复习精准辅导讲义 第七单元 视图与图形变换
续表
六种尺规作图
分线定义及三角形内角和定理可得出结论.【答案】56°

中考数学备考大一轮复习第七单元视图、投影与变换第25课时视图与投影

中考数学备考大一轮复习第七单元视图、投影与变换第25课时视图与投影
第七单元 视图、投影与变换 第25课时 视图与投影
授课人:
1
考点聚焦
考点一 三视图
视图 (1)定义:从某一方向观察一个物体,所看到的平面图形叫做物体的一个 视图.视图可以看作物体在某一方向光线下的正投影.对一个物体在三个投影 面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图; 在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的 由左向右观察物体的视图,叫做左视图. (2)画三视图的具体步骤: ①确定主视图位置,画出主视图; ②在主视图的正下方画出俯视图,注意与主视图长对正; ③在主视图的正右方画出左视图,注意与主视图高平齐,与俯视图宽相等.
强化训练
考点一:几何体的三视图
例1(扬州中考)如图所示的几何体的主视图是( B )
A.
B.
C.
D.
解:从正面看第一层是两个小正方形,第二 层左边一个小正方形,第三层左边一个小正 方形. 故选:B.
归纳拓展
【归纳拓展】 解答本考点的有关题目,关键在于掌握三视图的有关概 念. 注意以下要点: 简单组合体的三视图,主视图是从物体的正面由前往后 看得到的视图,俯视图是从物体的上面从上往下看得到 的视图;左视图是从物体左面由左往右看得到的视图.
考点聚焦
考点三 投影
(2)平行投影中物体与投影面平行时的投影是全等的. (3)正投影:在平行投影中,投影线垂直于投影面产生的投影叫做正投 影. 3. 中心投影 (1)定义:由同一点(点光源)发出的光线形成的投影叫做中心投影, 如物体在灯光的照射下形成的影子就是中心投影. (2)中心投影的光线特点是从一点出发的投射线,物体与投影面平行时 的投影是放大(即位似变换)的关系. 3.投影的应用
强化训练

中考数学一轮复习 第一部分 系统复习 成绩基石 第七章 图形与变换 第25讲 投影与视图课件

中考数学一轮复习 第一部分 系统复习 成绩基石 第七章 图形与变换 第25讲 投影与视图课件

由题意,得OP∥CD∥AB,∴ AM = AB ,即 x = 1 . 6 ,
OM OP
x 20
8
解得x=5.
CN = CD ,即 y = 1 . 6 ,解得y=1.5 .
ON
OP
y (2014) 8
∴x-y=5-1.5=3.5 .
∴身影的长度变短了,变短了3.5米.
第八页,共十五页。
1.[2017·贺州]小明拿一个(yī ɡè)等边三角形木框在太阳下玩耍,发现等 边三角形木框在地面上的投影不可能是( ) B 2.[2016·南宁]把一个正六棱柱如图摆放(bǎi fànɡ),光线由上向下照射此正
第一页,共十五页。
考点 视图
1.三视图
主视图:主视图反映(fǎnyìng)物体长的和高

.
左视图(shìtú):左视图(shìtú)反映物宽体和的高

.
俯视图:俯视图反映(fǎnyìng)物体的长和宽

.
2.画物体的三视图:主视图和俯视图要④
长,对主正视图和左视图要⑤Biblioteka ,高左平视齐图和俯视图要⑥
.宽相等
第五页,共十五页。
5.[2013·泰安,T5,3分]下列(xiàliè)几何体中,主视图是矩形,俯视 图是圆的几何体是(A )
关联(guānlián)考题►[2016·泰安,T5,3分]见第23讲过真题第4题
第六页,共十五页。
类型 投影的应用 例1►如图,身高1.6米的小明从距路灯的底部(点O)20米处的点A沿AO方 向行走14米到点C处,小明在A处,头顶B在路灯投影下形成的影子在M
第十五页,共十五页。
D
A.0.324πm2 B.0.288πm2 C.1.08πm2 D.0.72πm2

2024中考数学一轮复习核心知识点精讲—投影与视图

2024中考数学一轮复习核心知识点精讲—投影与视图

2024中考数学一轮复习核心知识点精讲—投影与视图1.掌握平行投影和中心投影的区别和性质;2.根据简单几何体或简单组合几何体判断其三视图;3.掌握立体图形的展开与折叠。

考点1:投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.考点2:视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.【题型1:平行投影与中心投影】【典例1】(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【答案】A【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.【变式1-1】(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【答案】D【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,灯在纸板上方,∴上面两条边离点光源近,在同一投影面上的影子就长于下方离点光源远的两条边,∴上方投影比下方投影要长,故选:D.【变式1-2】(2020•贵阳)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【答案】C【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【题型2:三视图】【典例2】(2023•德州)如图所示几何体的俯视图为()A.B.C.D.【答案】C【解答】解:从上面看,是一个矩形,矩形的两边与矩形内部的圆相切.故选:C.【变式2-1】(2023•沈阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解答】解:此几何体的主视图从左往右分3列,小正方形的个数分别是1,2,1.故选:A.【变式2-2】(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【答案】C【解答】解:如图所示的几何体的主视图如下:.故选:C.【变式2-3】(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.【答案】D【解答】解:A、选项不符合三种视图,不符合题意;B、选项是主视图,不符合题意;C、选项是右视图,不符合题意;D、选项是左视图,符合题意;故选:D.【变式2-4】(2023•金华)某物体如图所示,其俯视图是()A.B.C.D.【答案】B【解答】解:该物体的俯视图是:B.故选:B.【题型3:由三视图还原几何体】【典例3】(2023•淮安)如图是一个几何体的三视图,则该几何体的侧面积是()A.12πB.15πC.18πD.24π【答案】B【解答】解:由三视图可知此几何体为圆锥,∵d=6,h=4,∴圆锥的母线长为=5,∴圆锥的侧面积为:×6π×5=15π,故选:B.【典例3-1】(2023•河北)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解答】解:平台上至少还需再放这样的正方体2个,故选:B.【变式3-2】(2023•呼和浩特)如图是某几何体的三视图,则这个几何体是()A.B.C.D.【答案】C【解答】解:根据主视图可知,这个组合体是上、下两个部分组成且上下两个部分的高度相当,上面是长方形,可能是圆柱体或长方体,由左视图可知,上下两个部分的宽度相等,且高度相当,由俯视图可知,上面是圆柱体,下面是长方体,综上所述,这个组合体上面是圆柱体,下面是长方体,且宽度相等,高度相当,所以选项C中的组合体符合题意,故选:C.【变式3-3】(2023•湖北)如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥【答案】D【解答】解:根据三视图的知识,正视图和左视图都为一个三角形,而俯视图为一个圆,故可得出这个图形为一个圆锥.故选:D.一.选择题(共8小题)1.用3个同样的小正方体摆出的几何体,从正面看到的形状图如图所示,则这个几何体可能是()A.B.C.D.【答案】A【解答】解:A.从正面看到,底层是两个小正方形,上层的右边是一个小正方形,故本选项符合题意;B.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意;C.从正面看到,底层是两个小正方形,上层的左边是一个小正方形,故本选项不符合题意;D.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意.故选:A.2.下列四个几何体中,从正面看和从上面看都是圆的是()A.B.C.D.【答案】D【解答】解:A、圆柱的主视图是矩形、俯视图是圆,不符合题意;B、圆台主视图是等腰梯形,俯视图是圆环,不符合题意;C、圆锥主视图是等腰三角形,俯视图是圆和圆中间一点,不符合题意;D、球的主视图、俯视图都是圆,符合题意.故选:D.3.从正面、左面、上面观察某个立体图形,得到如图所示的平面图形,那么这个立体图形是()A.B.C.D.【答案】C【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选:C.4.日晷是我国古代利用日影测定时刻的一种计时仪器,它由“晷面”和“晷针”组成.当太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是()A.中心投影B.平行投影C.既是平行投影又是中心投影D.不能确定【答案】B【解答】解:晷针在晷面上形成的投影是平行投影.故选:B.5.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()A.B.C.D.【答案】A【解答】解:两棵小树在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等,所以A选项满足条件.故选:A.6.如图,在一间黑屋子的地面A处有一盏探照灯,当人从灯向墙运动时,他在墙上的影子的大小变化情况是()A.变大B.变小C.不变D.不能确定【答案】B【解答】解:如图所示:当人从灯向墙运动时,他在墙上的影子的大小变化情况是变小.故选:B.7.如图是小红在一天中四个时刻看到的一棵树的影子的图,请你将它们按时间先后顺序进行排列()A.①②③④B.①③④②C.②①④③D.④②①③【答案】D【解答】解:西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为:④②①③.故选:D.8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC =1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m【答案】A【解答】解:∵BE∥AD,∴△BCE∽△ACD,∴即=且BC=1,DE=1.8,EC=1.2∴=∴1.2AB=1.8,∴AB=1.5m.故选:A.二.填空题(共1小题)9.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是图2.(填“图1”或“图2”)【答案】图2.【解答】解:图1中的人的影子比较长,所以图1中反映的时间比图2中反映的时间要晚,所以小红参加200m比赛的照片为图2.故答案为图2.三.解答题(共1小题)10.如图,是由若干个完全相同的小正方体组成的一个几何体.从正面、左面、上面观察该几何体,在方格图中画出你所看到的几何体的形状图.(用阴影表示)【答案】见解答.【解答】解:如图所示.一.选择题(共7小题)1.如图是一个正六棱柱的主视图和左视图,则图中a的值为()A.B.4C.2D.【答案】D【解答】解:正六棱柱的底面如图所示,过点A作AH⊥BC于H.由题意得,2AH+BD=4,∵∠BAC=120°,AC=AB,∴∠CAH=∠BAH=60°,∴∠ABH=30°,∴AB=2AH,∴4AH=4,∴AH=1,∴BH=AH=,∴a的值为,故选:D.2.如图所示的是由两个长方体组成的几何体,这两个长方体的底面都是正方形,则该几何体的俯视图是()A.B.C.D.【答案】C【解答】解:该几何体的俯视图是.故选:C.3.如图所示是一个由若干个相同的正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是()A.5个B.6个C.11个D.13个【答案】A【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.4.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2【答案】C【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴=,而OD=3,CD=1,∴OC=OD﹣CD=3﹣1=2,BC=×1.6=0.8,∴=,∴AD=1.2,=π×1.22=1.44πm2,∴S⊙D即地面上阴影部分的面积为1.44πm2.故选:C.5.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A.320cm B.395.2cm C.297.9cm D.480cm【答案】C【解答】解:根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边.则AC=40÷2=20(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=10(cm),所以AD=2AB=20(cm),胶带的长至少=20×6+15×6≈297.8(cm).所以至少需要297.9cm的胶带故选:C.6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D.7.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.9πB.6πC.3πD.(3+)π【答案】A【解答】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.∴正三角形的边长==2,∴圆锥的底面圆半径是,母线长是2,∴底面周长为2π∴侧面积为×2π×2=6π,∵底面积为πr2=3π,∴这个物体的表面积是9π.故选:A.二.填空题(共3小题)8.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为12.【答案】见试题解答内容【解答】解:过P作PE⊥x轴于E,交AB于M,如图,∵P(4,4),A(0,2),B(6,2).∴PM=2,PE=4,AB=6,∵AB∥CD,∴=.∴=,∴CD=12,故答案为:12.9.如图,在直角坐标系中,点P(3,2)是一个点光源.木杆AB两端的坐标分别为(2,1),(5,1).则木杆AB在x轴上的投影长为6.【答案】6.【解答】解:如图,延长PAPB交x轴分别于点A′、点B′,过点P作PN⊥x轴,交AB于点M,垂足为N,∵点A(2,1),点B(5,1),∴AB=|2﹣5|=3,AB∥x轴,∴PN⊥AB,又∵点P(3,2),∴PN=2,PM=MN=1,∵AB∥x轴,∴△PAB∽△PA′B′,∴==,∴A′B′=2AB=6,即AB在x轴上的影长为6,故答案为:6.10.航拍器拍出的照片会给我们视觉上带来震撼的体验,越来越受追捧.如图,航拍器在空中拍摄地面的区域是一个圆,且拍摄视角α固定:(1)现某型号航拍器飞行高度为36m,测得可拍摄区域半径为48m.若要使拍摄区域面积为现在的2倍,则该航拍器还要升高(36﹣36)m;(2)航拍器由遥控器控制,与(1)中同型号的航拍器最远飞行距离为距遥控器2000m,则该航拍器可拍摄区域的最大半径为m.(忽略遥控器所在高度)【答案】见试题解答内容【解答】解:(1)由题意:tan==,∵拍摄区域面积为现在的2倍,∴可拍摄区域半径为48m,设航拍器飞行高度为hm,则有tan==,∴h=36,该航拍器还要升高(36﹣36)m,故答案为(36﹣36).(2)如图,由题意航拍器在以O为圆心,2000m为半径的圆上运动.航拍器可拍摄区域的最大直径为EE′,此时PE⊥OP,PE′⊥OP′,则有=,∴OE=(m),故答案为.三.解答题(共1小题)11.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?【答案】17πcm3.【解答】解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π×12×1=17π(cm3).答:该工件的体积是17πcm3.1.(2023•大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看,是一个矩形.故选:A.2.(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.【答案】D【解答】解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选:D.3.(2023•陕西)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm【答案】A【解答】解:∵是⊙O的一部分,D是的中点,AB=24cm,∴OD⊥AB,AC=BC=AB=12cm.设⊙O的半径OA为R cm,则OC=OD﹣CD=(R﹣8)cm.在Rt△OAC中,∵∠OCA=90°,∴OA2=AC2+OC2,∴R2=122+(R﹣8)2,∴R=13,即⊙O的半径OA为13cm.故选:A.4.(2023•牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.9【答案】B【解答】解:根据主视图和左视图可得:这个几何体有2层,3列,最底层最多有3×2=6个正方体,第二层有1个正方体,则搭成这个几何体的小正方体的个数最多是6+1=7个;5.(2023•贵州)如图所示的几何体,从正面看,得到的平面图形是()A.B.C.D.【答案】A【解答】解:从正面看到的平面图形为等腰梯形.故选:A.6.(2023•自贡)如图中六棱柱的左视图是()A.B.C.D.【答案】A【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:.7.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.【答案】见试题解答内容【解答】解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.8.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【答案】9.88.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.9.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.【答案】(170+60)cm.【解答】解:延长AD交BN于点E,过点D作DF⊥BN于点F,在Rt△CDF中,∠CFD=90°,∠DCF=30°,则DF=CD=90(cm),CF=CD•cos∠DCF=180×=90(cm),由题意得:=,即=,解得:EF=135,∴BE=BC+CF+EF=(255+90)cm,则=,解得:AB=170+60,答:立柱AB的高度为(170+60)cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档