高中数学必修4《三角函数》复习资料
高中数学必修4《三角函数》知识点归纳总结
《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈锐角:{}090αα<< 小于90的角:{}90αα<任意角的概念弧长公式 角度制与 弧度制 同角三角函数的基本关系式 诱导 公式 计算与化简 证明恒等式任意角的 三角函数 三角函数的 图像和性质 已知三角函数值求角和角公式 倍角公式 差角公式 应用应用 应用 应用应用 应用 应用5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π8、角度与弧度对应表: 角度 0︒ 30︒ 45︒ 60︒90120︒ 135︒ 150︒ 180︒ 360︒弧度6π 4π 3π 2π 23π 34π 56π π2π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,22r x y =+.2、三角函数值对应表:3、三角函数在各象限中的符号度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α 01222 32132 22121 0cos α132 221212- 22-32-1- 0 1tan α 0 331 3无3- 1-33-无ry)(x,αP口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第二象限:0,0.><y x sin α>0,cos α<0,tan α<0, 第三象限:0,0.<<y x sin α<0,cos α<0,tan α>0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, c o s 1x x x OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
新人教A版高中数学必修四三角函数复习资料(含答案)
高一三角函数复习资料一、范例分析例1、 已知函数y=21cos 2x+23sinx·cosx+1 (x ∈R ),(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?说明:这类题一般的解法是:先化成关于sinωx,cosωx 的齐次式,降幂后最终化成y=22b a +sin (ωx+ϕ)+k 的形式。
解:(1)y=21cos 2x+23sinx·cosx+1=41 (2cos 2x -1)+ 41+43(2sinx·cosx )+1=41cos2x+43sin2x+45=21(cos2x·sin 6π+sin2x·cos 6π)+45=21sin(2x+6π)+45所以y 取最大值时,只需2x+6π=2π+2kπ,(k ∈Z ),即 x=6π+kπ,(k ∈Z )。
所以当函数y 取最大值时,自变量x 的集合为{x|x=6π+kπ,k ∈Z}(2)将函数y=sinx 依次进行如下变换:(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6π)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π)的图像;(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6π)的图像;(iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+45的图像。
综上得到y=21cos 2x+23sinxcosx+1的图像。
例2()已知向量,,,,,,其中a x xb x xc =⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪=-cos sin cos sin 32322231x R ∈.(I )当a ⊥b 时,求x 值的集合;()求的最大值。
II a c -解:()由⊥·I a b a b →→→→⇔=0即··coscos sin sin 3223220x x x x -=则cos20x =()得22x k k Z =+∈ππ()∴x k k Z =+∈ππ24∴当⊥时值的集合为,a b x x x k k Z →→=+∈⎧⎨⎩⎫⎬⎭|ππ24解法一:()II a c a c a a c c a a c c ||()||||→→→→→→→→→→→→-=-=-+=-+22222222又||c o s s i n a x x →=⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=22232321()||c →=+-=222314a b x x x x x →→=-=-⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪·332322323212322326cos sin cos sin cos π∴||c o s c o s a c xx→→-=-+⎛⎝ ⎫⎭⎪+=-+⎛⎝ ⎫⎭⎪214326454326ππ∴||m a xa c →→-=29∴||m i n a c →→-=3即的最大值为||a c →→-3解法二:||cos sin a c x x →→-=-+⎛⎝ ⎫⎭⎪22323321, =-⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪cos sin 32332122x x =-++++cos cos sin sin 223223323322321x x x x=-⎛⎝ ⎫⎭⎪+2323325sin cos x x =-⎛⎝ ⎫⎭⎪+43235sin x π∴||maxa c →→-=29∴||max a c →→-=3说明:三角函数与向量之间的联系很紧密,所以此类题目往往是命题人所青睐。
高中数学必修4三角函数专题复习学生用资料
专题复习 三角函数 一三角函数的概念一、知识要点:1、角:角可以看成平面内一条射线绕着端点从一个位置旋转另一个位置所成的图形。
按逆时针方向旋转所形的角叫做_____;按顺时针方向旋转所形成的角叫做_____。
2、象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合.角的终边落在第几象限,就说这个角是第几象限角。
象限角的集合为:第一象限角:{}36036090,k k k Z αα︒︒︒⋅<<⋅+∈第二象限角:{}36090360180,k k k Z αα︒︒︒︒⋅+<<⋅+∈ 第三象限角:{}360180360270,k k k Z αα︒︒︒︒⋅+<<⋅+∈ 第四象限角:{}360270360360,k k k Z αα︒︒︒︒⋅+<<⋅+∈3、终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合{}Z k k ∈+⨯=,360|αββ 4、轴线角(即终边落在坐标轴上的角)(1)终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ (2)终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ (3)终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ 5、角的度量(1)角度制 (2)弧度制(3)角度制与弧度制的转换:180π=,1801()()57.3rad π︒︒=≈。
6、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形7、三角函数值的符号规律:sin α一、二象限为正,三、四象限为负,cos α一、四象限为正,二、三象限为负,tan α一、三象限为正,二、四象限为负8、单位圆中三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.9、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则r y =αsin rx=αcos x y =αtan10、特殊角的三角函数值(要熟记)二、典例讲解☞☞☞【例题1】角α的终边为射线2y x =-(0)x ≤,求2sin α+cos α的值。
高中数学必修4《三角函数》知识点与易错点归纳
高中数学必修4《三角函数》知识点与易错点归纳知识点(一)任意角和弧度制1.与θ终边相同的角的集合是 ;第一或第三象限角的集合是 ;x 轴上的角的集合是 ;2.若α是锐角,则πα-是第 象限角;πα+是第 象限角;2πα-是第 象限角;α-是第 象限角;32πα-是第 象限角;2πα+是第 象限角。
3.180°=π;1°= 弧度; 1弧度= ;圆心角α弧度数的绝对值||α= ;扇形面积公式S = 。
4.角ααcos 2=-,则2α角是 象限角。
知识点二.任意角的三角函数1.任意角的三角函数的定义:设α是任意一个角,(,)P x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin α= ,cos α= ,tan α= 。
2.如图,三角函数线:正弦线是 、余弦线是 、正切线是 ;4.已知角α的终边经过点(3,4)P -,则sin tan αα+的值为 ; 5.函数sin cos tan |sin ||cos ||tan |y αααααα=++的值域是 ; 6.sin cos θθ<⇔ ;sin cos θθ>⇔ 。
知识点三.同角三角函数的基本关系式及诱导公式1.平方关系:22sin cos αα+= ;商数关系:tan α= ;2.已知tan 2α=,则ααααcos sin cos 3sin +-= ;sin cos αα⋅= ;4.1419costan()34ππ+-的值为 ; 5.化简23sin (180)cos(360)sin(270)cos (180)cos(90)tan(180)αααααα+⋅-⋅-=--⋅+⋅+ 。
yTA xα B SO M P知识点四.正弦、余弦、正切公式及倍角公式1.基本公式及变式()()22222sin sin cos cos sin sin 22sin cos 1sin 2(sin cos )cos cos cos sin sin cos2cos sin 2cos 112sin t αβαβαβαβαβαααααααβαβαβααααα==±=±−−−→=⇒±=±±=−−−→=-=-=-↓↓令令 ()222tan tan 2tan 1+cos21cos2an tan 2cos sin 1tan tan 1tan 22αβααααβααααβα±-±=→=- = ,=变式:1tantan tan tan()(1tan tan),tan()1tan4απαβαβαβαα++=+⋅-⋅=+-;sin cos ),sin 2sin(cos 2sin()436πππθθθθθθθθθ±=±±=±±=±2.4411111212cos sin ππ-= ;sin163sin 223sin 253sin313+= ; 3.在ABC ∆中,53sin ,cos 135A B ==,则cos C = ; 4.在直角ABC ∆中,sin sin A B ⋅的最大值为 ;5.已知等腰三角形的一个底角的正弦值为13,则这个三角形的顶角的余弦值是 。
高中数学必修4第一章_三角函数知识复习
1第一章 三角函数知识点1、角的定义:⎧⎪⎪⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。
第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。
5、长度等于半径长的弧所对的圆心角叫做1弧度。
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=。
7、弧度制与角度制的换算公式:180********.3180πππ⎛⎫===≈ ⎪⎝⎭,,8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==。
9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin yrα=,cos x r α=,()tan 0y x x α=≠。
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正。
高中数学必修四三角函数知识点总结,附真题讲解!
高中数学必修四三角函数知识点总结,附真题讲解!
2、象限角角a的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,
则称a为第几象限角.3、
的象限已知a是第几象限角,确定所在象限的
方法:先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则a原来是第几象限对应的标
号即为终边所落在的区域.4、弧度制⑴ 1弧度的定义:长度等于半径长的弧所对的圆心角叫做1弧度.⑵ 弧长公式 半径为r的圆的圆心角a所对弧的长为l,则角a的弧度数的绝对值是
.⑶弧度制与角度制的换算公式:,,
.⑷若扇形的圆心角为a(a位弧度制),半径为
r,弧长为l,周长为C,面积为S,则,,
.
【答案】。
(完整版)高一数学必修4三角函数知识点及典型练习
第一、任意角的三角函数一:角的看法:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角, 与角终边相同的角的会集| 2k , k z , 弧度制,弧度与角度的换算, 弧长 lr 、扇形面积 s1lr1 r2 ,22二:任意角的三角函数定义: 任意角 的终边上 任意取 一点 p 的坐标是( x , y ),它与原点的距离是 rx2y 2(r>0),那么角 的正弦 sin ay、余弦 cos ax、正切 tan ay,它们都是 以角rrx为自变量,以比值为函数值的函数 。
三角函数值在各象限的符号 :三:同角三角函数的关系式与引诱公式:1. 平方关系 : sin2cos21 2. 商数关系 :sintancos3.引诱公式——口诀: 奇变偶不变,符号看象限 。
正弦 余弦 正切sinsin cos cos sin4. 两角和与差公式: coscos cosm sinsintantantan1 m tantansin 2 2sincos5. 二倍角公式:cos 2cos 2 sin 22cos 21 1 2sin 2tan 22 tan 21 tan余弦二倍角公式变形:2cos 21 cos2 ,2sin 21 cos2第二、三角函数图象和性质基础知识 : 1、三角函数图像和性质y=sinxy37 -5 - 21222-4 -7 -3-2-3 - -1o2 53 42 2 22y=cosxy-537-3- - 1322 22-4-7 -2-3 -1o25 42222yy=tanxxx3 -- o3-2222x剖析式 y=sinxy=cosxy tan x定义域yy当 x,当 x,值域 y 取最小值- 1和最 值当 xy 取最大值 1周期性 T 2奇偶性奇函数在 2k2 ,2k2单调性上是增函数在 2k2 ,2k32上是减函数yy 取最小值- 1,当 x,无最值y 取最大值 1T2T偶函数奇函数k Z在 2k,2k k Z 上 是 增, k k Z在 k函数22k Z在 2k ,2k 上为增函数k Z 上是减函数对称中心 ( k ,0)k Z对称中心 (k 2 ,0) kZ 对称中心 ( k ,0)k Z对称性k对称轴方程 xk , kZ也许对 称 轴 方 程 x2,对称中心 (k2 ,0) k Zk Z2、 熟练求函数 yA sin( x ) 的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作 yAsin( x ) 简图:五点分别为:、、、、 。
高中数学必修四——三角函数(知识点总结及经典例题)
高中数学必修四——三角函数(知识点总结及经典例题)1、正弦函数、余弦函数和正切函数的图象与性质:正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象图象定义域定义域 R R,2x x k kppìü¹+ÎZíýîþ值域值域 []1,1-[]1,1-R最值最值当22x kpp=+()kÎZ时,max1y=;当()22x k kpp=-ÎZ时,min1y=-.当()2x k kp=ÎZ时,时,max1y=;当()2x k kp p=+ÎZ时,min1y=-.既无最大值也无最小值既无最大值也无最小值 周期性周期性 2p2p p奇偶性奇偶性 奇函数奇函数 偶函数偶函数 奇函数奇函数单调性单调性在2,222k kp pp péù-+êúëû()kÎZ上是增函数;在上是增函数;在32,222k kp pp péù++êúëû()kÎZ上是减函数.上是减函数.在[]()2,2k k kp p p-ÎZ上是增函数;在[]2,2k kp p p+()kÎZ上是减函数.上是减函数.在,22k kp pp pæö-+ç÷èø()kÎZ上是增函数.上是增函数. 对称性对称性对称中心()(),0k kpÎZ对称轴对称轴()2x k kpp=+ÎZ对称中心对称中心(),02k kppæö+ÎZç÷èø对称轴()x k kp=ÎZ对称中心对称中心(),02kkpæöÎZç÷èø无对称轴无对称轴 函数性质2.正、余弦定理:在ABC D 中有:①正弦定理:2sin sin sin a b cR A B C ===(R 为ABC D 外接圆半径)外接圆半径)2sin 2sin 2sin a R A b R B c R C =ìï=íï=î Þ s i n 2s i n 2s i n 2a A R b B R c C R ì=ïïï=íïï=î注意变形应用 ②面积公式:111sin sin sin 222ABCSabs Cac Bbc AD ===③余弦定理:③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ì=+-ï=+-íï=+-îÞ 222222222c o s 2c o s 2c o s 2b c a A bc a c b B ac a b c C ab ì+-=ïï+-ï=íï+-=ïî3.三角函数恒等变形的基本策略。
(完整版)高中数学三角函数复习专题
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
【精品】教材同步导学高中必修四全册复习资料三角函数知识要点总结
【精品】教材同步导学高中必修四全册复习资料三角函数知识要点总结一、任意角和弧度制 1.任意角(1)角的分类⎩⎪⎨⎪⎧①正角:按逆时针方向旋转形成的角;②负角:按顺时针方向旋转形成的角;③零角:一条射线不作任何旋转称它形成一零角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可以构成一个集合S ={}β|β=α+k ·360°,k ∈Z .第一象限角的集合:{α|2k π<α<π2+2k π,k ∈Z };第二象限角的集合:{α|π2+2k π<α<π+2k π,k ∈Z };第三象限角的集合:{α|π+2k π<α<3π2+2k π,k ∈Z };第四象限角的集合:{α|3π2+2k π<α<2π+2k π,k ∈Z };终边落在x 轴上的角的集合:{α|α=k π,k ∈Z }; 终边落在y 轴上的角的集合:{α|α=π2+k π,k ∈Z };终边落在坐标轴上的角的集合:{α|α=k π2,k ∈Z }.2.弧度制 (1)弧度制:①1弧度的角:把长度等于半径长的孤所对的圆心角叫做1弧度的角. ②弧度制:用弧度来度量角的制度,单位符号“rad”. (2)角度与弧度的互化公式: ①角度化成弧度:180°=π rad,1°=π180rad ≈0.017 45 rad ; ②弧度化成角度:π rad =180°,1 rad =(180π)°≈57.30°.(3)扇形的弧长与面积公式: ①扇形的弧长公式:l =|α|r ;②扇形的面积公式:S =12lr =12|α|r 2.二、任意角的三角函数 1.任意角三角函数的定义在平面直角坐标系中,角α的终边经过点P (x ,y ),且|OP |=r =x 2+y 2,则sin α=yr ,cos α=x r ,tan α=yx.2.单位圆中三角函数的定义角α的顶点在坐标原点,始边与x 轴非负半轴重合,角α的终边与单位圆的交点为P (x ,y ),则y =sin α,x =cos α,yx=tan α(x ≠0).3.正弦、余弦、正切函数值在各象限的符号4.三角函数线三角函数线是表示三角函数值的有向线段,线段的方向表示了三角函数值的正负,线段的长度表示了三角函数值的绝对值.如上图,α终边与单位圆交于P ,过P 作PM 垂直于x 轴,有向线段MP 即为正弦三、同角三角函数的基本关系式 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α.重要变形:1-sin 2α=cos 2α,1-cos 2α=sin 2α, sin α=tan αcos α. 四、诱导公式 1.诱导公式(1)公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,tan(α+2k π)=tan α,k ∈Z . (2)公式二:sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α. (3)公式三:sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α. (4)公式四:sin(π-α)=sin α,cos(π-α)=-cos α,tan(π-α)=-tan α. (5)公式五:sin(π2-α)=cos α,cos(π2-α)=sin α.(6)公式六:sin(π2+α)=cos α,cos(π2+α)=-sin α.α+2k π,k ∈Z ,-α,π±α的三角函数值,等于α的同名三角函数值前面加上一个把α看成锐角时原函数值的符号.π2±α的正弦(余弦)函数值等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.也可以用口诀记忆:“奇变偶不变,符号看象限”.2.诱导公式的作用把任意角的三角函数转化为锐角三角函数,一般步骤为:五、正弦、余弦、正切函数的性质函数六、函数y =A sin(ωx +φ)的图象1.函数y =A sin(ωx +φ)(A >0,ω>0)中参数的意义 A ——振幅,T =2πω——周期,f =1T ——频率,φ——初相,ωx +φ——相位. 2.“五点法”作图步骤:列表→描点→连线,注意列表取值时,要作变量代换,令ωx +φ分别取0,π2,π,3π2,2π来求相应的x 和y . 3.图象变换y =sin x 1ω−−−−−−−−−−→坐成原的,坐不横标变来纵标变y =sin ωx (0)(0)ϕϕϕω><−−−−−−−−−−−−→向左或向右平移位度个单长 y =sin(ωx +φ)―――――――――――――――→纵坐标变成原来的A 倍,横坐标不变y =A sin(ωx +φ).或者y =sin x ―――――――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ) 1ω−−−−−−−−−−→坐成原的,坐不横标变来纵标变纵坐标变成原来的A倍,横坐标不变y=sin(ωx+φ)―――――――――――――――→y=A sin(ωx+φ).。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
三角函数知识点复习填空
高中数学必修4知识点第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为:______________________________ 第二象限角的集合为:____________________________ 第三象限角的集合为:_____________________________ 第四象限角的集合为:_____________________________ 终边在x 轴上的角的集合为 ____________________ 终边在y 轴上的角的集合为 _______________________终边在坐标轴上的角的集合为 ____________________ 3、与角α终边相同的角的集合为__________________4、_______________________________的圆心角叫做1弧度的角.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 6、弧度制与角度制的换算公式:2360π= ,1180π= ,180157.3π⎛⎫=≈ ⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,S=_______________________.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin α=_____,cos α=_______,tan α9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系:(1)________________________ (2)________________________ (3)________________________ 12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sinsin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:________________________,_________________________13、①的图象上所有点向左(右)平移_____个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的_____倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的___倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移___个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.第三章 三角恒等变换24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式sin 2cos 1,cos 2cos 122αααα=-=+⇒降幂公式2cos α2α ⑶22tan tan 21tan ααα=-. 26、⇒(后两个不用判断符号,更加好用)27、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
(完整版)高中必修四三角函数知识点总结
§04。
三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。
01745 1=57。
30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。
30°=57°18ˊ. 1°=180π≈0。
01745(rad )3、弧长公式:rl ⋅=||α。
扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。
yr=αcsc 。
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。
数学必修四复习提纲——三角函数与三角恒等变换
yACB第一章 三角函数1、任意角:正角、零角、负角;与α终边相同的角表示为{}|2,k k Z ββαπ=+∈2、轴线角: 终边在x 轴上的角的集合:{}|,k k Z ββπ=∈; 终边在y 轴上的角的集合:|,2k k Z πββπ⎧⎫=+∈⎨⎬⎩⎭; 终边在坐标轴上的角的集合:|,2k k Z πββ⎧⎫=∈⎨⎬⎩⎭等;(见笔记)(提醒:终边相同的角不一定相等,相等的角终边一定相同) 3、象限角: 如第一象限角:|22,2k k k Z παπαπ⎧⎫<<+∈⎨⎬⎩⎭; 4、弧度制:弧长等于半径的圆弧所对的圆心角叫做1弧度的角; (提醒:一个式子中不能角度,弧度混用)换算:180°=π弧度; 1弧度= 0'18057.305718π⎛⎫≈≈ ⎪⎝⎭; 1°= 180π弧度 计算:角的大小α=l r ;弧长l = r α⋅,面积S = 12l r ⋅=212r α⋅=212l α。
5、任意角的三角函数:1)定义:角α终边上任意一点P(x ,y),则r )0r >,sin y rα=、cos x r α= 、tan y xα=。
提醒:如果点P 在单位圆上,即r=1,则sin ,cos ,tan yy x xααα===)特殊角的三角函数值(任意角均可由诱导公式化成特殊角)2)三角函数线: sin MP α= cos OM α= tan AT α=3)三角函数值符号:一全正、二正弦、三正切,四余弦sin αcos α tan α4)同角三角函数的基本关系: ①1cos sin 22=+αα ②sin tan +,cos 2k k Z απααπα⎛⎫=≠∈ ⎪⎝⎭5)三角函数的诱导公式:sin(2)sin cos(2)cos tan(2)tan k k k πααπααπαα+=+=+= x x x x xx t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=-πππ x x x x xx t a n )t a n (c o s )c o s(s i n )s i n (-=-=--=- x x x x xx t a n )t a n (c o s )c o s (s i n )s i n (=+-=+-=+πππ提醒:求任意角的三角函数值一般步骤如下6、三角函数的图象和性质:cos()sin 2παα+=-sin()cos 2παα+=cos()sin 2παα-=sin()cos 2παα-=7、()sin y A x ωϕ=+的图像和性质:1)作图:①五点法:依次令x ωϕ+= 0 、2π、π、32π、2π ②变换作图法: (A>0,ω>0) (横向伸缩和左右平移变的都是系数为1的x )● 方法1:将y =sinx 的图像0,x ||0,x ||ϕϕϕϕ><−−−−−−−−→沿轴向左平移个单位沿轴向右平移个单位()sin y x ϕ=+ 1ω−−−−−−−−−→横坐标伸长或缩短为原来的倍()sin y x ωϕ=+ A −−−−−−−−−→纵坐标伸长或缩短为原来的倍()sin y A x ωϕ=+● 方法2:将y =sinx 的图像1ω−−−−−−−−−→横坐标伸长或缩短为原来的倍()sin y x ω=||0,x ||0,x ϕϕωϕϕω><−−−−−−−−−→沿轴向左平移个单位沿轴向右平移个单位()sin y x ωϕ=+A −−−−−−−−−→纵坐标伸长或缩短为原来的倍()sin y A x ωϕ=+2)振幅|A|;周期T = 2||πω ;频率f = 1T ;初相x ωϕ+;相位ϕ(A >0,ω>0)3)定义域 【练习19】函数的定义域是( )(答:B ) A 、B 、C 、D 、解析:由题意可得sinx ﹣≥0⇒sinx ≥,由单位圆可知, 又x∈(0,2π)∴函数的定义域是. 故选B .4)最值(先把ω化成正的) 【练习21】函数,当f (x )取得最小值时,x 的取值集合为( )(答:A ) A 、 B 、 C 、D 、解析:∵函数当 sin (﹣)=﹣1时函数取到最小值, ∴﹣=﹣+2k π,k∈Z 函数, ∴x=﹣+4k π,k∈Z,5)()sin y A x ωϕ=+的对称轴、对称中心①对称轴0x x =满足:0(Z)2x k k πωϕπ+=+∈;②对称轴中心0(,0)x 满足:0(Z)x k k ωϕπ+=∈6)单调区间(先把ω化成正的) 若A >0,增区间:令 22k ππ-+≤x ωϕ+≤22k ππ+ ,再解不等式减区间:令22k ππ+≤x ωϕ+≤322k ππ+,再解不等式 若A <0,反过来。
高中三角函数公式大全
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
必修四-第一章-三角函数(知识点与题型整理)
三角函数模块专题复习 ——任意角的三角函数与诱导公式二.要点精讲1.任意角的概念旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.终边相同的角、区间角与象限角 3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。
角有正负零角之分,它的弧度数也应该有正负零之分.角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。
角度制与弧度制的换算主要抓住180rad π︒=。
弧度与角度互换公式:1rad =π180° 1°=180π〔rad 〕。
弧长公式:r l ||α=〔α是圆心角的弧度数〕, 扇形面积公式:2||2121r r l S α==。
4.三角函数定义利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=; 〔2〕x 叫做α的余弦,记做cos α,即cos x α=; 〔3〕yx 叫做α的正切,记做tan α,即tan (0)y x xα=≠。
5.三角函数线6.同角三角函数关系式〔1〕平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 〔2〕倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 〔3〕商数关系:sin cos tan ,cot cos sin αααααα== 几个常用关系式:sin α+cos α,sin α-cos α,sin α·cos α;(三式之间可以互相表示)7.诱导公式可用十个字概括为“奇变偶不变,符号看象限〞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4《三角函数》复习资料
【1.1】任意角和弧度制
角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角
终边相同的角的集合
}{|2,k k z
ββπα=+∈.
弧度制:弧度与角度的换算:180°=π。
弧长l
r α=、扇形面积2
1122
s lr r α==
【1.2】任意角的三角函数
任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22
r
x y =+(r>0),
那么角α
的正弦r
y
a
=
sin 、余弦r x a =
cos 、正切)0(tan ≠=x x
y
a ,它们都是以角为自变量,以比值为函数值的函数。
同角三角函数的关系式与诱导公式:1.平方关系:2
2sin
cos 1
αα+=
2. 商数关系:
sin tan cos α
αα
= 【1.3】三角函数的诱导公式
诱导公式——口诀:奇变偶不变,符号看象限。
正弦 余弦
正切
【1.4】三角函数的图像与性质
解析式 y=sinx
y=cosx
tan y x =
定义域
值域和最值
y ∈
当x
= ,1y 取最小值- 当x
= ,1y 取最大值
y ∈
当x = 1y 取最小值- 当x
= ,1y 取最大值
y ∈
无最值
周期性 π2=T
π2=T
π
=T
奇偶性 奇函数
偶函数
奇函数
单调性
[]2222π
πππ+-k k ,k Z ∈上增 []2
3222π
πππ++k k ,k Z ∈上减 []πππk k 22,-k Z ∈上增
[]πππ+k k 22,k Z ∈上减
⎪⎭⎫ ⎝
⎛
+-2,2ππππk k k Z ∈上
为增函数
对称性 对称中心(,0) k k Z π∈ 对称轴
2x k ππ=+, k Z ∈
对称中心2(,0)k ππ
+ k Z ∈
对称轴x k π= , k Z ∈
对称中心(,0) k k Z π∈ 或2(,0)k ππ
+k Z ∈
y=tanx
3π2
π
π2
-
3π2
-π-
π2
o
y
x
五点作图法:
sin y x =(1) (2) (3) (4) (5)
【1.5】函数)sin(ϕω+=x A y 的图像
1.图象的基本变换:相位变换:
sin sin()y x y x ϕ=⇒=+
周期变换:sin()sin()y x y x ϕωϕ=+⇒=+ 振幅变换:sin()sin()y x y A x ωϕωϕ=+⇒=+ 2.求函数sin()y A x ωϕ=+的解析式:即求A 由最值确定,ω由周期确定,ϕ由特殊点确定。
第三章 三角恒等变换
【3.1】两角和与差的正弦、余弦和正切公式
()cos cos cos sin sin αβαβαβ-=+;()cos cos cos sin sin αβαβαβ+=-; ()sin sin cos cos sin αβαβαβ-=-;
()sin sin cos cos sin αβαβαβ
+=+;
()tan tan tan 1tan tan αβαβαβ
--=
+;
()tan tan tan 1tan tan αβαβαβ
++=
-
二倍角的正弦、余弦和正切公式:
sin22sin cos ααα=2
22)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒
2222cos2cos sin 2cos 112sin ααααα=-=-=-
⇒升幂公式 2
sin 2cos 1,2
cos 2cos 12
2
α
αα
α=-=+
⇒降幂公式
2cos 21cos 2αα+=,21cos 2sin 2α
α-=
.
【3.2】简单的三角恒等变换
把两个三角函数的和或差化为“一个三角函数”: 辅助角公式: .tan )sin(sin cos 22a
b
b a b a =±+=±θθααα
,
例1.已知角α终边上一点P (-4,3),求)
2
9sin()211cos()
sin()2cos(απαπαπαπ
+---+的值.
例2.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ; (2)21
2sin cos cos ααα
+.
例3.化简0
000160cos 120cos 80cos 40cos .
例4.已知函数sin()y A x B ωϕ=++的一部分图象 如右图所示,如果0,0,||2
A π
ωϕ>><,
(1)求此函数的周期及最大值和最小值; (2)求这个函数函数解析式.
例5.已知函数2
3
cos 3cos sin 2
-
+=x x x y .求: (Ⅰ)单调区间与周期; (Ⅱ)当⎥⎦
⎤
⎢⎣⎡∈2,0πx 时,函数的值域.
课后作业:
1、sin 225︒= ;tan(600)-=o
;cos15︒= ; tan 75︒= 。
2、已知扇形AOB 的周长是6cm ,该圆心角是6
π弧度,则扇形的面积= cm 2
.
3、设a <0,角α的终边经过点)4,3(a a P -,那么ααcos 2sin +的值等于
4、函数y =的定义域是_____ __
5的结果是 。
6、函数x y 2sin 3=的图象可以看成是将函数)3
x 2sin(3y π
-=的图象( ) (A )向左平移个6π单位 (B )向右平移个6π单位(C )向左平移个3π单位 (D )向右平移个3
π
单位
7.化简
(1)0
0020
cos 20sin 10cos 2-; (2))310(tan 40sin 0
0-.。