抽样分布理论
抽样分布、参数估计和假设检验
抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
研究方法——抽样的理论与实操
研究方法——抽样的理论与实操抽样是一种常用的研究方法,它能够通过从总体中选择部分样本来代表整体,从而节省时间和资源。
本文将介绍抽样的理论基础和实操过程,并探讨各种抽样方法的优缺点。
一、抽样的理论基础1.总体与样本:总体是指研究对象的全体,而样本是从总体中抽取的一部分个体。
在进行抽样研究时,样本的特点应该能够代表总体的特征。
2.抽样误差:抽样误差是指由于样本选择的随机性而产生的误差。
抽样误差的大小与样本量有关,样本量越大,抽样误差越小。
3.抽样分布:根据中心极限定理,当样本容量足够大时,抽样分布会接近正态分布。
这意味着从同一总体中多次抽取样本时,样本统计量的分布会接近正态分布。
4.抽样方法的选择:在选择抽样方法时,需要考虑总体特点、研究目标和资源限制等因素。
常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
二、抽样的实操步骤1.确定研究目标:在进行抽样研究之前,需要明确研究目标和所需信息。
确定研究问题有助于选择合适的抽样方法和样本量。
2.确定总体和抽样框架:总体是研究对象的范围,而抽样框架是总体中个体的列表或划分。
总体和抽样框架的确定直接影响到样本的代表性。
3.选择抽样方法:根据研究目标和总体特点,选择合适的抽样方法。
常用的抽样方法包括简单随机抽样、分层抽样、整群抽样、多阶段抽样等。
4.确定样本容量:样本容量的确定需要考虑抽样误差、置信水平和总体大小等因素。
通常,样本容量越大,抽样误差越小。
5.实施抽样:按照抽样方法进行样本的选择。
在实施抽样过程中,需要注意样本的随机性和代表性。
6.数据收集与分析:根据研究目标和设计,收集样本数据。
在数据分析中,需要使用合适的统计方法来推断总体参数。
三、抽样方法的优缺点1.简单随机抽样:优点是样本选择具有随机性,能够在一定程度上保证样本的代表性;缺点是不适用于总体存在分层特征的情况,且样本容量较大时工作量大。
2.分层抽样:优点是能够充分利用总体的分层特征,提高样本的代表性;缺点是需要提前了解总体分层特征,且分层抽样的过程相对复杂。
理论分布和抽样分布
所构成,其中事件A包含有m个基本事件,
则事件A的概率为m/n,即
P(A)=m/n
这样定义的概率称为古典概率。
13
2.1 概率的统计学意义
例如,在有两个孩子的家庭中,孩子性别
的组成有四种类型。即:男男、男女、女
男、女女。它们是四个基本事件,而且是
互不相容且等可能的,那么两个男孩的事
件A1为四个基本事件(n)中的一个(m) , A1的概率
27
第二章 理论分布和抽样分布
将Y的一切可能y1值 y2 , ,…,以及取得这些 值的概率p( y1) 、p( y2 ) …,排列起来, 就构成了 离散型随机变量的概率分布(probabiit distribution)。
表2-2 离散型随机变量的概率分布表。
Y
y1
y2
…
P(yi) p( y1 ) p( y2 )
本章在介绍概率论中最基本的两个概念——事件、概 率的基础上,重点介绍生物科学研究中常用的几种随 机变量的概率分布:间断性变数总体的理论分布:二 项分布、泊松分布;连续性变数总体的理论分布,即 正态分布; 从这两类理论分布中抽出的样本统计数的
分布,即抽样分布和t分布。
2
2.1 概率的统计学意义
一、事 件 1. 必然现象与随机现象 在自然界与生产实践和科学试验中,人们会观察到各种
这里的0.05或0.01称为小概率标准,生物 试验研究中通常使用这两个小概率标准。
21
2.3 理论分布
事件的概率表示了一次试验某一个结果发 生的可能性大小。若要全面了解试验,则 必须知道试验的全部可能结果及各种可能 结果发生的概率,即必须知道随机试验的 概率分布(probability distribution)。为 了深入研究随机试验 ,我们先引入随机变 量(random variable)的概念。
抽样分布知识点总结
抽样分布知识点总结抽样分布是统计学中一个重要的概念,它描述了在进行抽样时得到的样本统计量的分布情况。
抽样分布是统计推断的基础,它可以帮助我们理解抽样误差以及估计参数的可信度。
在本文中,我们将对抽样分布的基本概念、性质和相关理论进行总结和讨论。
一、基本概念1.1 抽样与总体在统计学中,总体是指我们想要研究的所有个体的集合,而抽样则是从总体中选取一部分个体作为样本,以获得对总体特征的估计。
抽样可以是随机抽样、分层抽样、系统抽样等方法,目的是代表性地反映总体的特征。
1.2 样本统计量在抽样中,对样本数据进行统计分析得到的统计量称为样本统计量,常见的样本统计量有均值、方差、标准差、比例等。
样本统计量能够提供有关总体参数的估计和推断。
1.3 抽样分布抽样分布是描述样本统计量的分布情况的统计学概念。
当我们从总体中抽取多个样本,并计算每个样本的统计量时,得到的这些统计量的分布就是抽样分布。
抽样分布可以反映出样本统计量的可变性、偏移和分布形态等特征。
二、性质2.1 中心极限定理中心极限定理是抽样分布理论中的重要定理,它描述了在一定条件下,样本均值的抽样分布近似服从正态分布。
中心极限定理对于理解抽样分布的性质和应用具有重要意义,也为许多统计推断方法提供了理论基础。
2.2 大数定律大数定律是另一个重要的抽样分布性质,它描述了当样本容量足够大时,样本均值会收敛于总体均值,即样本均值的抽样分布会集中在总体均值附近。
大数定律为我们理解样本统计量的稳定性和准确性提供了重要参考。
2.3 置信区间置信区间是根据抽样分布推断总体参数的一种方法,通过对抽样分布的分布情况进行分析,我们可以建立对总体参数的置信区间,从而对总体特征进行推断。
置信区间对于统计推断的可信度和精度有着重要的作用。
三、理论基础3.1 样本容量样本容量是影响抽样分布的一个重要因素,在实际抽样中,样本容量的大小对于样本统计量的分布情况有着重要的影响。
通常情况下,样本容量越大,抽样分布的稳定性和准确性越高。
统计学 抽样分布和理论分布
抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
统计学考研复习指导常考分布与抽样理论梳理
统计学考研复习指导常考分布与抽样理论梳理统计学是考研复习中的一门重要科目,而分布与抽样理论是统计学中的基础知识之一。
掌握分布与抽样理论对于考研复习非常重要,因此本文将对常考的分布与抽样理论进行梳理。
以下是各个分布与抽样理论的详细内容。
1. 正态分布正态分布是统计学中最常用的概率分布之一,也被称为高斯分布。
它具有许多特性,例如其形状对称、均值、方差决定了整个分布的特征等。
正态分布在统计学中的应用广泛,例如用于描述实际数据的分布情况、进行假设检验等。
2. t分布t分布是用于小样本情况下的概率分布。
在实际应用中,由于通常无法获得大样本数据,因此需要使用t分布进行统计推断。
t分布与正态分布有一定的关联,其形状与自由度有关。
在考研复习中,需要了解t分布的特性、应用以及与正态分布的关系。
3. 卡方分布卡方分布是用于分析分类数据的概率分布,常用于检验两个变量之间的独立性。
卡方分布的形状与自由度有关,自由度越大,分布越接近正态分布。
在考研复习中,需要掌握卡方分布的性质、应用以及与正态分布的关系。
4. F分布F分布是用于分析方差比较的概率分布,常用于方差分析等统计方法。
F分布的形状与两个自由度参数有关,具有右偏分布且不对称的特点。
在考研复习中,需要了解F分布的特性、应用以及与正态分布、卡方分布的关系。
5. 抽样与抽样分布抽样是指从总体中选取样本的过程,而抽样分布是指统计量在不同样本中的分布情况。
了解抽样与抽样分布非常重要,因为统计推断是建立在样本上的,而不是在总体上。
在考研复习中,需要掌握不同抽样方法的特点、抽样分布的基本概念以及与统计推断的应用。
总结:通过对常考的分布与抽样理论进行梳理,我们可以更好地理解统计学考研复习中的重要内容。
掌握分布与抽样理论,对于进行统计分析、假设检验以及进行统计推断非常重要。
在考研复习过程中,建议系统学习各个分布的特性、应用以及与其他分布的关系,同时理解抽样与抽样分布的基本概念和应用方法。
统计学中的抽样分布基本理论
统计学中的抽样分布基本理论统计学是一门广泛应用于各个领域的学科。
在许多领域都需要数据支撑决策,统计学是收集、分析和解释数据的科学。
而抽样分布的基本理论则是统计学中最为基础且至关重要的概念之一。
什么是抽样分布?抽样分布指的是在总体中选取一定数量样本的情况下,样本所呈现的分布情况。
这个分布被称为抽样分布。
抽样分布正是在原本无法得出准确结果时,在对样本进行检测和分析加以处理得出的模拟分布情况。
抽样分布的定义我们假设样本是从一个总体中随机抽取的,这个总体具有一个概率分布,并且每个样本都独立地从该概率分布中抽取。
根据中心极限定理,当样本数量足够大时,样本均值的分布将会近似正态分布,均值为总体均值,标准差为总体标准差除以样本量的平方根。
这个近似于正态分布的抽样分布称为样本均值的抽样分布。
抽样分布中的t分布因为在实际应用中,样本的真实总体均值和总体标准差都是为了推断或预测总体特征,而在抽样时这些特征是不确定的,所以会有一定误差。
这时我们便需要用到其它类型的抽样分布。
t分布就是这样一种抽样分布方式,它在样本量较小时,比正态分布更适用。
它类似于正态分布,但在小样本情况下,会有更宽的尾部和更高的峰值。
t分布具有参数自由度 (df) ,其在自由度越大时,越接近于正态分布。
当自由度大于30时,两者基本一致。
了解抽样分布形式和方法对于进行更高质量的统计分析意义重大。
在统计中,我们总是使用概率论和数理统计中的一些基本思想来尽可能减少污染。
特别是在数据采集的实际工作中,数据样本的选取是统计分析的重要基础之一,样本均值的分布越正常,那么就可以推断出样本中的点集越正常。
抽样分布是推断总体、检验总体分布、总体均值、总体比率、总体标准差等经典统计问题的基础。
(抽样检验)理论分布和抽样分布
第四章理论分布和抽样分布在上章样本分布及其特征的基础上本章将讨论总体的分布及其特征。
首先介绍间断性变数总体的理论分布,包括二项分布和泊松分布;其次介绍连续性变数总体的理论分布,即正态分布;最后介绍从这两类理论分布中抽出的样本统计数的分布,即抽样分布。
为了说明这些理论分布,必须首先了解概率的基本概念和计算法则。
第一节事件、概率和随机变量一、事件和事件发生的概率在自然界中一种事物,常存在几种可能出现的情况,每一种可能出现的情况称为事件,而每一个事件出现的可能性称为该事件的概率(probability)。
例如种子可能发芽,也可能不发芽,这就是两种事件,而发芽的可能性和不发芽的可能性就是对应于两种事件的概率。
若某特定事件只是可能发生的几种事件中的一种,这种事件称为随机事件(random event),例如抽取一粒种子,它可能发芽也可能不发芽,这决定于发芽与不发芽的机会(概率),发芽与不发芽这两种可能性均存在,出现的是这两种可能性中的一种。
事件发生的可能性(概率)是在大量的实验中观察得到的,例如棉田发生盲蝽象为害的情况,并不是所有的棉株都受害,随着观察的次数增多,我们对棉株受害可能性程度大小的把握越准确、越稳定。
这里将一个调查结果列于表4.1。
调查5株时,有2株受害,受害株的频率为40%,调查25株时受害频率为48%,调查100株时受害频率为33%。
可以看出三次调查结果有差异,说明受害频率有波动、不稳定。
而当进一步扩大调查的单株数时,发现频率比较稳定了,调查500株到2000株的结果是受害棉株稳定在35%左右。
表4.1 在相同条件下盲蝽象在某棉田危害程度的调查结果调查株数(n) 5 25 50 100 200 500 1000 1500 2000 受害株数(a) 2 12 15 33 72 177 351 525 704 棉株受害频率(a/n)0.40 0.48 0.30 0.33 0.36 0.354 0.351 0.350 0.352现以n代表调查株数,以a代表受害株数,那么可以计算出受害频率p=a/n。
理论分布与抽样分布
若记体重概率分布密度函
数为f(x),则x取值于区间
[a,b)的概率为图中阴影
部分的面积,即
b
P(a≤x<b)=
f (x)dx a
上式为连续型随机变量 x
在 区间[a,b)上取值概率
的表达式。可见,连续型
随机变量的概率由概率分
布密度函数确定。
理论分布与抽样分布
1.3连续型随机变量的概率分布
连续型随机变量概率分布的性质:
理论分布与抽样分布
1.3连续型随机变量的概率分布
126头基础母羊的体重的次数分布表
组别
组中值 次数(f)
图中纵坐标取频率与组距
36.0
37.5
1
的比值 。可以设想 ,如
39.0
40.5
1
果样本取得越来越大
42.0
43.5
6
(n→+∞),组分得越来越
45.0
46.5
18
细(i→0),某一范围内的
理论分布与抽样分布
2.1贝努力试验及其概率公式
在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件 A 恰好发生k (0≤k≤n) 次的概率 Байду номын сангаасn(k) 。
先取n=4,k=2来讨论。在4次试验中,事件A发 生2次的方式有以下 C 42种:
A1A2 A3A4
A1 A2 A3 A4
1、分布密度函数总是大于或等于0,即 f(x)≥0;
2、当随机变量x取某一特定值时,其概率等于0;即
c
P(xc) f(x)dx0
(c为任意实数)
c
3、 在一次试验中 随机变量 x 之取值必在[-∞, +∞]
统计学_抽样分布
统计学_抽样分布统计学——抽样分布在统计学的广袤领域中,抽样分布无疑是一个至关重要的概念。
它就像是一把神奇的钥匙,能够帮助我们从局部的样本数据中窥探到总体的特征和规律。
那么,究竟什么是抽样分布呢?想象一下,我们面前有一个巨大的“总体”,这个总体可以是某个城市所有居民的收入情况,也可以是某批产品的质量数据等等。
但由于总体太过庞大,我们无法对其进行全面的测量和分析。
这时候,抽样就派上用场了。
我们从这个总体中抽取一部分个体,这部分个体就构成了一个样本。
而抽样分布,简单来说,就是指从同一个总体中抽取相同大小的多个样本,这些样本统计量(比如均值、方差等)所形成的概率分布。
为了更直观地理解抽样分布,我们以一个简单的例子来说明。
假设我们要研究某个班级学生的考试成绩。
这个班级学生的成绩总体就是我们要研究的对象。
我们先随机抽取 10 名学生的成绩作为一个样本,计算这 10 名学生成绩的平均值。
然后,我们重复这个抽样过程,多次抽取 10 名学生的成绩,每次都计算平均值。
这些平均值就会形成一个分布,这就是抽样分布。
抽样分布有着不同的类型,其中最常见的就是样本均值的抽样分布和样本方差的抽样分布。
先来说说样本均值的抽样分布。
根据中心极限定理,如果总体的分布不论是什么形状,只要样本容量足够大(通常认为大于 30),那么样本均值的抽样分布就近似服从正态分布。
这意味着,我们可以利用正态分布的性质来进行很多统计推断。
比如说,我们可以计算出样本均值落在某个区间内的概率,从而对总体均值进行估计和推断。
再谈谈样本方差的抽样分布。
样本方差的抽样分布与自由度有关。
自由度这个概念可能有些抽象,但可以简单理解为在计算样本方差时能够自由取值的变量个数。
对于样本容量为 n 的样本,其自由度为 n 1。
了解抽样分布对我们有什么实际用处呢?它的作用可大了!首先,抽样分布能够帮助我们进行参数估计。
比如说,我们想要知道总体均值是多少,但又无法直接测量总体中的每一个个体。
概率论抽样分布
概率论抽样分布说明在概率论中,抽样分布是指从总体中选取样本并计算样本统计量的分布。
通过研究抽样分布,可以推断总体的性质和参数。
在这篇文档中,我们将介绍概率论抽样分布的基本概念、特性以及常用的分布类型。
抽样分布的定义抽样分布是由于从总体中抽取样本导致的统计量的分布。
在统计学中,统计量是从样本数据中计算得出的数值,如样本均值、样本方差等。
通过从总体中不断抽取样本并计算统计量的值,可以得到抽样分布。
抽样分布的特性抽样分布具有以下特性:1.中心极限定理:当样本容量足够大时,抽样平均值的抽样分布近似呈正态分布。
2.抽样分布的均值等于总体均值:样本均值的期望值等于总体均值。
3.抽样分布的方差等于总体方差除以样本容量:样本均值的方差等于总体方差除以样本容量。
常见的抽样分布类型在概率论中,常用的抽样分布类型包括:1.正态分布:也称为高斯分布,是最常用的抽样分布。
当样本容量足够大时,均值的抽样分布近似呈正态分布。
2.t分布:用于小样本(样本容量较小)情况下对总体均值的推断。
相对于正态分布,t分布有更宽的尾部。
3.卡方分布:用于推断总体方差时的抽样分布。
卡方分布的形态由自由度决定。
4.F分布:用于比较两个总体方差是否相等的抽样分布。
F分布的形态由两个样本的自由度决定。
抽样分布的应用抽样分布广泛应用于统计学和概率论中的推断与检验问题。
通过从总体中抽取样本并计算统计量的分布,可以进行以下应用:1.参数估计:通过抽样分布,我们可以估计总体参数的取值,如总体均值、总体方差等。
2.假设检验:通过比较样本统计量与抽样分布的临界值,我们可以判断总体参数是否满足某个假设。
3.置信区间估计:通过计算抽样分布的分位数,我们可以得到总体参数的置信区间,从而评估参数的精确性。
总结抽样分布是概率论中的重要概念,用于推断总体的性质和参数。
具备了中心极限定理、均值和方差的性质等特点,常见的抽样分布类型包括正态分布、t分布、卡方分布和F分布。
通过抽样分布,我们可以进行参数估计、假设检验和置信区间估计等应用。
统计学中的抽样分布理论
统计学中的抽样分布理论统计学是一门研究数据收集、分析和解释的学科。
在统计学中,抽样分布理论是一个重要的概念。
抽样分布理论是指在特定的抽样方法下,样本统计量的分布情况。
本文将介绍抽样分布理论的基本概念、应用以及与推断统计学的关系。
一、抽样分布理论的基本概念抽样分布理论是统计学的基石之一,它是建立在大数定律和中心极限定理的基础上的。
大数定律指出,当样本容量趋向于无穷大时,样本均值会趋于总体均值。
中心极限定理则指出,当样本容量足够大时,样本均值的分布会接近于正态分布。
基于这些定理,抽样分布理论可以推导出许多重要的统计量的分布情况,如样本均值的分布、样本方差的分布等。
这些分布可以用来进行统计推断和假设检验,帮助我们对总体参数进行估计和推断。
二、抽样分布理论的应用抽样分布理论在实际统计分析中有着广泛的应用。
首先,它可以用来进行参数估计。
在抽样分布理论的指导下,我们可以利用样本统计量对总体参数进行估计。
例如,通过样本均值的抽样分布,我们可以估计总体均值的置信区间。
其次,抽样分布理论可以用于假设检验。
在假设检验中,我们需要根据样本数据判断总体参数的真实值是否在某个范围内。
抽样分布理论提供了关于样本统计量的分布情况,从而帮助我们进行假设检验。
例如,通过样本均值的抽样分布,我们可以判断总体均值是否与某个假设值相等。
此外,抽样分布理论还可以用于确定样本容量。
在实际调查中,我们往往需要确定样本容量以达到一定的置信水平和抽样误差。
通过抽样分布理论,我们可以计算出所需的样本容量,从而保证统计结果的可靠性。
三、抽样分布理论与推断统计学的关系抽样分布理论是推断统计学的基础。
推断统计学是利用样本数据对总体参数进行推断的一种方法。
而抽样分布理论则提供了关于样本统计量的分布情况,为推断统计学提供了理论依据。
推断统计学的核心是利用样本数据来推断总体参数的真实值。
通过抽样分布理论,我们可以得到样本统计量的分布情况,从而对总体参数进行估计和推断。
数理统计中的三大抽样分布理论系统与题型题法
一、 三大抽样分布的分布函数综 述:)a 根据大数定理和中心极限定理,但样本容量n 较大时(数学上一般要求45n >),任何分布都依概率收敛于正态分布()2, N μσ,并可标准化为()0, 1N 。
)b 现实世界和工程技术中的任何数据样本流到目前为止,不外乎()0, 1N 的函数分布,集中表现为3大抽样分布规律。
)c 考研数学中规定:()0, 1N 的分位数定义为下分位数(从图形上看为左边面积),3 大抽样分布的分位数定义都为上分位数(从图形上看为右边面积)1. ()2n χ分布(分布函数不要求掌握)量纲模型:性 质:()1{}i X ()2 可加性212~()n n χ+++()3证 明()3:由于()()()~0,10; 1i i i X N E X D X ⇒==()()()()()2224421 1,2,,3i i i i x iE X E X E X D X i n E X x edx +∞--∞=-===⎡⎤⎣⎦==()()()()()()()()()224222211222113122iii n ni i i i n n i i i i D X E X E X E n E X E X n D n D X D X nχχ====⎡⎤=-=-=⎣⎦⎛⎫=== ⎪⎝⎭⎛⎫=== ⎪⎝⎭∑∑∑∑样本函数中的必需记住的数字特征()4 上分位点 α定义为()2n χ分布的分位数2. ()t n 分布(分布函数不要求掌握){}i X 独立同分布 2~(0,1), ~(); i X N Y n X Y χ和独立 性 质:()1 t 分布密度函数()()~(0,1)t n n f x N →∞⇒()2 上分位点 α定义为()t n 分布的分位数()3 ()0, 22nEX DX n n ==>- ()4 性质T 分布具有对称性, 1()(); 45t nt n n αα-=->时,()t n Z αα≈3.(), F m n 分布(分布函数不要求掌握)X 、Y 相互独立,2~(); ~()X m Y n χχ;量纲模型:例:假定()12, X X 来自正态整体()2~0, X N σ的一个样本,求()()2122124X X P X X ⎡⎤+<⎢⎥-⎢⎥⎣⎦。
理论分布与抽样分布
在回归分析中的应用
建立回归模型
根据自变量和因变量的关系,建立合 适的回归模型,如线性回归、非线性 回归等。
估计模型参数
利用样本数据对回归模型的参数进行 估计,得到回归方程的系数和截距。
检验模型显著性
通过计算F值或t值等统计量,对回归 模型的显著性进行检验,判断自变量 对因变量是否有显著影响。
预测和控制
理论分布与抽样分布
目 录
• 引言 • 理论分布概述 • 抽样分布概述 • 理论分布与抽样分布的关系 • 理论分布与抽样分布在实践中的应用 • 总结与展望
01
引言
目的和背景
阐述理论分布与抽样分布的概念及其关系 分析在统计学中理论分布与抽样分布的重要性 探讨如何利用理论分布与抽样分布进行统计推断
汇报范围
在方差分析中的应用
方差齐性检验
在进行方差分析前,需要对各组的方差 进行齐性检验,以确定是否满足方差分
析的前提条件。
计算统计量
利用样本数据计算各组均值、总均值、 组间方差和组内方差等统计量。
建立模型
根据研究问题和数据特点,建立方差 分析模型,包括因素、水平、交互作 用等。
进行F检验
根据方差分析模型,计算F值,并利 用F分布进行假设检验,判断因素对 结果是否有显著影响。
抽样分布的形状和特性与总体分布密切相 关。
依赖于样本量
统计量的分布
随着样本量的增加,抽样分布的形状逐渐 趋近于正态分布。
抽样分布描述的是统计量(而非单个样本 值)的分布情况。
抽样分布的形成原理
中心极限定理
当从均值为μ、方差为σ^2的总体中随机抽取容量为n的样本时,随着n的增大,样本均值的抽样分布逐渐趋近于 均值为μ、方差为σ^2/n的正态分布。
理论分布和抽样分布
THANKS FOR WATCHING
感谢您的观看
确定拒绝域
根据显著性水平和检验统计量 的分布,确定拒绝原假设的区 域。
作出决策
将计算得到的检验统计量值与 拒绝域进行比较,决定是否拒 绝原假设。
抽样分布在假设检验中的意义和作用
提供理论基础
确定拒绝域
通过抽样分布可以确定检验统计量的分布和拒绝域 ,从而进行假设检验的决策。
抽样分布理论为假设检验提供了理论基础, 使得我们能够从样本数据中推断总体参数。
05 抽样分布在参数估计中的 应用
点估计方法介绍
矩估计法
利用样本矩来估计总体矩,从而得到参数的估计 值。
最大似然估计法
根据样本数据,选择使得似然函数达到最大值的 参数值作为估计值。
最小二乘法
通过最小化误差的平方和来得到参数的估计值。
区间估计方法介绍
置信区间法
利用样本数据构造一个置信区间,该区 间以一定的概率包含总体参数的真值。
进行假设检验
在参数假设检验中,需要利用抽样分布来确定检验统计量的分布及其临界值。
06 抽样分布在假设检验中的 应用
假设检验的基本思想和步骤
选择检验统计量
根据假设选择合适的检验统计 量,如$t$统计量、$F$统计量 等。
计算检验统计量的值
根据样本数据计算检验统计量 的值。
建立假设
根据研究问题提出原假设 ($H_0$)和备择假设 ($H_1$)。
报告范围
01 理论分布的定义、性质及其常见的类型。
02 抽样分布的概念、性质及其与样本量的关系 。
03
理论分布和抽样分布在假设检验、置信区间 估计等统计推断方法中的应用。
04
通过实例和案例分析,展示理论分布和抽样 分布在实践中的具体应用。
统计学中的抽样分布理论
统计学中的抽样分布理论统计学是一门深奥而又广泛应用的学科,其中抽样分布理论是其中一个重要支柱。
本文将从抽样、样本统计量和抽样分布三个方面进行论述,以便更好的理解其理论和应用。
一、抽样与样本统计量统计学的基本任务之一是推断总体特征。
但由于总体数据规模庞大,难以全面观察和分析,因此我们通常采用小样本的方式来代表总体。
这就是抽样的概念。
抽样是指从总体中随机抽取一部分数据,用这一部分数据代表总体,以此估计总体的特征。
常用的抽样包括简单随机抽样、分层抽样、整群抽样等。
在抽样中,一个样本统计量的重要性凸显出来,因为它可以帮助我们更好的估计总体的特征。
比如,一个数据集的均值和标准差就是两个重要的样本统计量。
二、抽样分布抽样分布是指在所有可能的样本中,某个样本统计量的分布情况。
这里需要区分参数(population)和统计量(sample statistic)之间的关系。
参数是总体参数,是我们想要研究的总体特征,比如总体均值、总体方差等。
统计量是在样本中计算出来的数值,比如样本均值、样本方差等。
样本统计量是对总体参数的估计,不同的样本统计量可能对总体参数的估计存在一定的差异。
抽样分布不同于总体分布。
总体分布是指总体中所有变量的分布,而抽样分布是指在所有可能的样本中,某个样本统计量的分布。
抽样分布是一个特殊的概率分布,其形状和参数取决于总体分布和样本大小。
这是因为在计算样本统计量时,会受到样本数量和样本变异的影响。
在实际使用中,我们通过抽样分布来推断总体参数。
具体方法是:首先,通过采样方法得到一个样本,计算该样本统计量的值。
然后,通过数学公式推算样本统计量的抽样分布,从而得到一个概率区间。
若该样本统计量恰好位于这个区间内,则认为该样本统计量的估计值与总体参数的差异可以用统计学上的概率来表示。
这个概率就是所谓的显著性水平(signicance level)。
三、中心极限定理中心极限定理是抽样分布理论中最为重要的定理之一。
抽样分布的基本概念与基本原理
抽样的基本概念
抽样分布的基本原理
第一节 抽样的基本概念
抽样调查的特点 经济性 时效性 必要性
抽样所需样本必需要有代表性 抽样误差与非抽样误差
抽样误差是指随机抽取于总体中的一部分 的样本而引起的误差
非抽样误差是指在调查过程中出现的所有 人为错误
❖ 抽样方法
抽样方式
解:由于总体标准差未知 ,所以采用t分布
t
x
S
n
其中,n=25,自由度=n-1=24 t7 .6 8 .5,则 P (x 7 .6 ) P (t 2 .8 1 3 7 )
1 .6 / 2 5
查 t 分 布 表 得 , 0 . 0 0 2 5 P ( x 7 . 6 ) 0 . 0 0 5
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
第二节 抽样分布的基本原理
总体参数与样本统计量 抽样分布定理
x 总体标准差 不明确时 的抽样分布
比率抽样分布
❖ 总体参数
总体平均值 总体方差 总体标准差 总体比率
Xi
随着自由度的增加,t-分布与正态分布之间的差
距将会不断减小(n>30),且t-分布的离散程度
也将减小
t-分布的均值为0,方差为 (1) 2
❖ t分布与标准正态的对比
标准正态分布
标准正态分布
t (df = 13)
t 分布
x
t 分布与标准正态分布的比较
t (df = 5)
z
t
不同自由度的t分布
❖ t分布表的使用
样本统计量的概率分布,是一种理论分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i=1
χ 分布图示
2
fχ2 ( x)
0.5
k=1
0.4
k=2
0.3 0.2 0.1
k=6
O
2
4
6
8
10
12
14
x
3
注:
χ (1) 可以证明, 分布具有可加性:即 ) 可以证明, 分布具有可加性: 2 χ12 和 χ2 相互独立,且 相互独立, 若随机变量 2 χ12 ~ χ 2 (k1 ), χ2 ~ χ 2 (k2 ), 则它们的和 2 χ12 + χ2 ~ χ 2 (k1 + k2 ). 分位数: (2) 上α分位数:对于不同自由度 k及 ) 2 不同的数 α(0 < α < 1),定义χα 为自由度为 k 2 分位数, 的 χ 分布的上 α 分位数,如果其满足 +∞ 2 2 P(χ ≥ χα ) = ∫ f χ ( x)dx = α χ 2 χ0.05 (15) = 25.0 例如: 例如:
12
例如: 0.05 例如: F ( 5,10) = 3.33
F α
F分布上α 分位数
fF ( x)
α
O
Fα
x
13
§5.5
正态总体统计量的分布
1.单个正态总体的统计量的分布
约定: 从总体 X中抽取样本容量为 n的样 约定: 本 X1, X2 ,L, Xn ,样本均值与样本方差分别是
2 1 n 1 n 2 X = ∑Xi , S = ∑( Xi − X ) n i=1 n −1 i=1
6
t分布图示
ft ( x)
k =∞, N ( 0,1)
k=6
k =2
O
x
7
注: (1) 可以证明,t ( ∞) ~ N ( 0,1) ) 可以证明, 分位数: (2) 上α分位数:对于不同自由度 k及 ) 不同的数 α(0 < α < 1),定义 tα为自由度为 k 分位数, 的 t 分布的上 α 分位数,如果其满足
2 x
U=
σ
2 x
推论 N ( µy ,σ 2 ),则统计量 从 ( X −Y ) −( µx − µy )
U= 1 1 + σ nx ny
ny 2 设总体 X 服从 N ( µx ,σ ),总体 Y服
~ N ( 0,1)
nx
+
2 σy
~ N ( 0,1)
19
定理7 定理 设总体 X 服从 N ( µx ,σ ),总体 Y服 N ( µy ,σ 2 ),则统计量 从 ( X −Y ) −( µx − µy )
抽样分布理论
1
χ 分布 t 分布 F 分布 分布· 分布·
2
1. χ 分布
2
定理1 相互独立, 定理 设随机变量 X1, X 2 ,L, X k 相互独立, 且均服从 N(0,1) ,则称随机变量
χ 2 = ∑X i
k
χ2 χ 2 ~ χ 2 (k)。 服从自由度为k的 分布, 服从自由度为 的 分布,记作
P( t ≥ tα ) = ∫
+∞
例如: 例如: 0.05 (15) =1.753 t
tα
ft ( x) dx = α
8
t 分布上α 分位数
ft ( x)
α
O
tα
x
9
3. F 分布
定理3 相互独立, 定理 设随机变量 X ,Y 相互独立,分别 服 2 分布, 从自由度为 k1, k2的 χ 分布,则称随机变量
18
2.两个正态总体的统计量的分布 约定: 约定:从总体 X中抽取样本容量为 nx 的样
y
ny的样本 Y ,Y2,L,Yn 。假设所有的样本均独立。 假设所有的样本均独立。 1
定理6 定理 设总体 X 服从 N ( µx ,σ ),总体 Y服 2 N ( µy ,σ y ),则统计量 从 ( X −Y ) −( µx − µy )
14
值 X 满足
N ( µ,σ 2 ),则样本均 定理1 定理 设总体 X 服从
σ2 X ~ N µ, n
N ( µ,σ 2 ) ,则统计量 定理2 定理 设总体 X 服从 X −µ u= 满足 σ n X −µ u= ~ N ( 0,1) σ n
15
定理3 定理 设总体 X 服从 N ( µ,σ ),则统计量
2
T=
Sω
1 1 + nx ny
~ t ( nx + ny − 2)
其中, 其中,
Sω Sy (
nx + ny − 2
20
2 N ( µx ,σx ),总体 Y服 定理8 定理 设总体 X 服从 2 从 N ( µy ,σ y ),则统计量
F=
∑( Xi − µx ) ∑(Yi − µy )
2
χ =
2
1
σ
2
N ( µ,σ 2 ) ,则 定理4 定理 设总体 X 服从
∑( X − µ) 满足 1 χ = ∑( X − µ) σ
2 i=1 i n 2 2 i=1 i
n
2
~ χ2 ( n)
相互独立; (1)样本均值 X与样本方差 S2相互独立; ) 2
( n −1) S (2)统计量 χ = ) 满足 2 σ ( n −1) S2 ~ χ2 n −1 χ2 = ( ) 2
2
α
2 2
4
χ 分布上α 分位数
2
fχ2 ( x)
α
O
χα2
x
5
2. t 分布
定理2 相互独立, 定理 设随机变量 X ,Y 相互独立,且 X 服 2 Y 分布, 从 N(0,1) , 服从自由度为 k 的 χ 分布,则称 随机变量 X
t= Yk
服从自由度为k的 分布, 服从自由度为 的 t 分布,记作 t ~ t ( k ) 。
2
σ
16
N ( µ,σ 2 ),统计量 定理5 定理 设总体 X 服从 X −µ t= 满足 S n X −µ t= ~ t ( n −1) S n
(本节各定理的证明从略)。 本节各定理的证明从略)。
17
本 X1, X2 ,L, Xnx;从总体 Y中抽取样本容量为 取自两个总体的样本均值和样本方差分别记作: 取自两个总体的样本均值和样本方差分别记作: 2 1 nx 1 nx 2 X = ∑Xi , Sx = ∑( Xi − X ) nx i=1 nx −1 i=1 ny ny 2 1 1 2 Y = ∑Yi , Sy = ∑(Yi −Y ) ny i=1 ny −1 i=1
X k1 F= Y k2
分布, 服从自由度为( k1, k2 )的 F 分布,记作F ~ F ( k1, k2 ) 称为第一自由度; 称为第二自由度。 其中 k1称为第一自由度; k2 称为第二自由度。
10
F分布图示
fF ( x)
(1,10)
( ∞,10)
(10,10) (5,10)
O
x
11
注: 分位数: (1) 上α分位数:对于不同自由度 ( k1, k2 ) ) 及不同的数α(0 < α < 1),定义 F 为自由度 α 分位数, 为 ( k1, k2 )的 F分布的上α 分位数,如果其 满足 +∞ P( F ≥ F ) = ∫ fF ( x) dx = α α (2)可以证明,F−α ( k1,k2 ) ⋅ F ( k2 , k1 ) =1 )可以证明, 1 α
i=1 i=1 ny
nx
2
2 nxσx 2 nyσ y
2
~ F ( nx , ny )
2 x
定理9 定理 设总体 X 服从 N ( µx ,σ ),总体 Y服 2 N ( µy ,σ y ),则统计量 从 2 2 Sx σx F = 2 2 ~ F ( nx −1, ny −1) S σy
21