不定方程的解法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本介绍编辑本段
不定方程是数论的一个分支,它有着悠久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。
古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969年,莫德尔较系统地总结了这方面的研究成果。
2发展历史编辑本段
不定方程是数论中最古老的分支之一。古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。
研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,
公元5世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何?”。设x,y,z分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。
3常见类型编辑本段
⑴求不定方程的解;
⑵判定不定方程是否有解;
⑶判定不定方程的解的个数(有限个还是无限个)。
4方程相关编辑本段
4.1一次不定方程
二元一次不定方程的一般形式为ax+by=c。其中 a,b,c 是整数,ab ≠ 0。此方程有整数解的充分必要条件是a、b的最大公约数整除c。若a、b互质,即它们的最大公约数为1,(x0,y0)是所给方程的一个解,则此方程的解可表为{(x=x0-bt,y=y0+at)|t为任意整数}。
S(≣2)元一次不定方程的一般形式为a1x1+a2x2+…+asxs=n0a1,…,as,n为整数,且a1…as≠0。此方程有整数解的充分必要条件是a1,…,as的最大公约数整除n。
埃拉托塞尼筛法产生的素数普遍公式是一次不定方程公元前300年,古希腊数学家欧几里得就发现了数论的本质是素数,他自己证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种筛法:
一“要得到不大于某个自然数N的所有素数,只要在2---N中将不大于√N的素数的倍数全部划去即可”。
二后来人们将上面的内容等价转换:“如果N是合数,则它有一个因子d满足1 三再将二的内容等价转换:“若自然数N不能被不大于(根号)√N的任何素数整除,则N是一个素数”。见(代数学辞典[上海教育出版社]1985年。屉部贞世朗编。259页)。 四上面这句话的汉字可以等价转换成为用英文字母表达的公式: N=p1m1+a1=p2m2+a2=......=p k m k+a k。⑴ 其中p1,p2,.....,p k表示顺序素数2,3,5,,,,,。a≠0。即N不能是2m+0,3m+0,5m+0,...,p km+0形。若N 五可以把(1)等价转换成为用同余式组表示: N≡a1(modp1), N≡a2(modp2),.....,N≡ak(modpk)。⑵ 例如,29,29不能够被根号29以下的任何素数2,3,5整除,29=2x14+1=3x9+2=5x5+4。29≡1(mod2),29≡2(mod3), 29≡4(mod5)。29小于7的平方49,所以29是一个素数。 以后平方用“*”表示,即:㎡=m*。 由于⑵的模p1,p2,....,pk 两两互素,根据孙子定理(中国剩余定理)知,⑵在 p1p2.....pk范围内有唯一解。 例如k=1时,N=2m+1,解得N=3,5,7。求得了(3,3*)区间的全部素数。 k=2时,N=2m+1=3m+1,解得N=7,13,19; N=2m+1=3m+2,解得N=5,11,17,23。求得了(5,5*)区间的全部素数。 k=3时, ---------------------| 5m+1-|- 5m+2-| 5m+3,| 5m+4.| ---------------------|---------|----------|--------|---------| n=2m+1=3m+1= |--31----|--7,37-|-13,43|--19----| n=2m+1=3m+2= |-11,41-|-17,47-|--23---|---29---| ------------------------------------------------------------ 求得了(7,7*)区间的全部素数。仿此下去可以求得任意大的数以内的全部素数。4.2多元一次不定方程 关于整数多元一次不定方程,可以有矩阵解法、程序设计等相关方法辅助求解。 4.3二次不定方程 二元二次不定方程本质上可以归结为求二次曲线(即圆锥曲线)的有理点或整点问题。 一类特殊的二次不定方程是x^2+y^2=z^2,其正整数解称商高数或勾股数或毕达哥拉斯数,中国《周髀算经》中有“勾广三,股修四,经隅五”之说,已经知道 (3,4,5)是一个解。刘徽在注《九章算术》中又给出了(5,12,13),(8,15,17), (7,24,25),