蜗轮蜗杆设计
蜗轮蜗杆设计
了解蜗杆传动的特点,它的适用场合。
了解蜗杆传动的主要参数,如模数、压力角、螺旋头数、螺旋导程角、螺旋螺旋角、螺旋分度圆等。
•熟悉蜗杆、蜗轮构造,蜗杆与蜗轮常用什么材料制造,那个易被损害。
•掌握蜗杆传动效率低的机理,蜗杆传动中箱体内的润滑油温度过高有什么危害,如何降低。
第一节概述蜗杆传动是由蜗杆和蜗轮组成的(图3-52),用于传递交错轴之间的运动和动力,通常两轴交错角为90°。
在一般蜗杆传动中,都是以蜗杆为主动件。
从外形上看,蜗杆类似螺栓,蜗轮则很象斜齿圆柱齿轮。
工作时,蜗轮轮齿沿着蜗杆的螺旋面作滑动和滚动。
为了改善轮齿的接触情况,将蜗轮沿齿宽方向做成圆弧形,使之将蜗杆部分包住。
这样蜗杆蜗轮啮合时是线接触,而不是点接触。
蜗杆传动具有以下特点:1.传动比大,且准确。
通常称蜗杆的螺旋线数为螺杆的头数,若蜗杆头数为z 1,蜗轮齿数为z2,则蜗杆传动的传动比为2=n1/n2=z2/z1ω1/ωi=(3-60)通常蜗杆头数很少(z1=1~4),蜗轮齿数很多(z2=30~80),所以蜗杆传动可获得很大的传动比而使机构比较紧凑。
单级蜗杆传动的传动比i≤100~300;传递动力时常用i=5~83。
2.传动平稳、无噪声。
因蜗杆与蜗轮齿的啮合是连续的,同时啮合的齿对较多。
03.当蜗杆的螺旋升角小于啮合面的当量摩擦角时,可以实现自锁。
=0.4~0.45。
η=0.82~0.92。
具有自锁时,η=0.75~0.82;z1=3~4时,η=0.7~0.75;z1=2时,η4.传动效率比较低。
当z1=1时,效率5.因啮合处有较大的滑动速度,会产生较严重的摩擦磨损,引起发热,使润滑情况恶化,所以蜗轮一般常用青铜等贵重金属制造。
由于普通蜗杆传动效率较低,所以一般只适用于传递功率值在50~60kW以下的场合。
一些高效率的新型蜗杆传动所传递的功率可达500kW,圆周速度可达50 m/s。
第二节蜗杆传动的主要参数和几何尺寸本节只讨论普通圆柱蜗杆传动,或称阿基米德圆柱蜗杆传动(在垂直于蜗杆轴线的剖面中,齿廓线是一条阿基米德螺旋线,故称为阿基米德螺杆)。
蜗轮蜗杆设计步骤
蜗轮蜗杆设计步骤蜗轮蜗杆设计步骤:步骤一:确定工作参数首先需要确定蜗轮蜗杆的工作参数,例如传递功率、转速、转矩、受力方向等。
这些参数将决定蜗轮蜗杆的基本设计参数。
步骤二:选择材料在确定工作参数之后,需要根据工作条件选择适合的材料。
蜗轮一般选用高强度的材料,例如硬质合金、铸钢、铸铁等。
对于蜗杆来说,一般选用高硬度、高强度的材料,例如45钢、40Cr、35CrMo等。
步骤三:计算传动比传动比 = 蜗轮齿数 ÷蜗杆螺旋线高度。
传动比决定了蜗轮和蜗杆的相对转速和转矩大小。
步骤四:选择蜗杆模数蜗杆的模数可以根据蜗轮和蜗杆的传动比和齿数来选择,一般在0.2~2之间。
步骤五:计算齿距和齿宽齿距和齿宽需要结合蜗轮和蜗杆的模数和齿数来计算,保证蜗轮蜗杆的齿轮啮合平稳。
步骤六:计算螺距角螺距角是蜗杆的重要参数。
螺距角过大会造成摩擦力过大,螺距角过小则会导致螺杆摩擦力不足。
一般螺距角为5°至30°。
步骤七:计算轴心距和啮合角轴心距和啮合角是设计蜗轮蜗杆过程中非常重要的参数,需要根据传动比、模数、齿数等因素来计算。
步骤八:校核设计参数设计蜗轮蜗杆的参数后,需要进行校核检验,确保设计参数的合理性和可靠性。
校核包括强度校核、接触应力校核等。
步骤九:设计蜗轮蜗杆装配尺寸蜗轮蜗杆装配尺寸需要考虑啮合状态下的轴向间隙、径向间隙和公差等因素。
在设计装配尺寸时需要考虑到装配的方便性和精度要求。
步骤十:绘制蜗轮蜗杆图纸蜗轮蜗杆图纸需要按照设计参数进行详细绘制,包括蜗轮和蜗杆的各项参数和装配尺寸等。
绘制时需要考虑到制造的方便性和加工精度要求。
以上是蜗轮蜗杆的设计步骤,设计时需要注意各个参数的合理性和可靠性,同时考虑到加工和制造的实际情况。
蜗轮蜗杆设计步骤
蜗轮蜗杆设计步骤第一步:确定传动比蜗轮蜗杆传动是一种非常特殊的传动方式,它的传动比取决于蜗杆的头数、蜗轮的齿数、蜗杆的导程角以及蜗轮与蜗杆轴线的交角等因素。
设计蜗轮蜗杆传动时,要根据传动要求和传动动力参数来计算传动比。
第二步:选择材料在选择蜗轮和蜗杆的材料时,考虑到它们的载荷、传动功率和工作环境温度等因素。
通常,蜗轮和蜗杆都可以采用高强度的合金钢材料。
第三步:确定齿轮参数蜗轮的齿数和模数都是通过计算得到。
注意,蜗轮的轴向厚度越小,蜗杆的导程角越小,那么蜗轮和蜗杆的接触线就会越靠近齿面根部。
在选择齿轮参数时需要进行综合考虑,以保证蜗轮蜗杆传动的良好性能。
第四步:计算蜗杆的导程和展角根据蜗杆轴线与垂直轴线的夹角以及螺旋线的参数,可以计算出蜗杆的导程和展角。
展角的计算对于蜗轮蜗杆传动来说非常重要,因为它直接影响到传动效率和噪声。
一般来说,展角越大,传动效率越高,但噪声也会增加。
第五步:计算蜗轮蜗杆的几何参数根据蜗杆的导程、蜗轮的模数和齿数,可以计算出蜗轮和蜗杆的几何参数,包括齿顶直径、节圆直径、齿根直径、齿顶高度、齿根高度和重要齿廓参数。
这些参数决定了蜗轮蜗杆传动的传动效率、运行平稳性和噪声等关键性能指标。
第六步:进行蜗轮蜗杆的装配在进行蜗轮蜗杆的装配之前,需要对蜗轮齿形进行测量,以保证齿形质量。
然后,将蜗轮和蜗杆进行配合,精确控制配合间隙大小。
还要注意蜗轮和蜗杆的对中度和平行度等装配要求,以保证传动系统的稳定性和性能。
总结:1. 传动效率的优化:传动效率是蜗轮蜗杆传动系统的重要性能指标,也是设计过程中需要优化的关键因素之一。
通常情况下,使用高质量的蜗轮和蜗杆、采用适当的润滑方式、控制装配精度、优化齿轮参数以及合理设计蜗杆展角等方法,可以大大提高传动效率。
2. 噪声的控制:蜗轮蜗杆传动在工作时容易产生噪声,主要是由于蜗轮和蜗杆的接触面积较小,表面接触压力较大,同时还会在传动过程中产生震动和共振。
为了降低噪声,可以优化设计参数、采用低噪声等级的蜗轮和蜗杆材料、选用合适的蜗杆展角、进行制造精度控制以及采用降噪材料等方式。
蜗轮蜗杆设计参数
圆柱蜗轮、蜗杆设计参数选择蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。
蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。
在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。
蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。
若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。
计算速比(i)的公式如下:i=蜗杆转速n1蜗轮转速n2=蜗轮齿数z2蜗杆头数z11、蜗轮蜗杆主要参数与尺寸计算主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。
(1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt 为标准模数。
对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。
标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。
表A图1图2(2)蜗杆分度圆直径d1 再制造蜗轮时,最理想的是用尺寸、形状与蜗杆完全相同的蜗轮滚刀来进行切削加工。
但由于同一模数蜗杆,其直径可以各不相同,这就要求每一种模数对应有相当数量直径不同的滚刀,才能满足蜗轮加工需求。
为了减少蜗轮滚刀数目,在规定标准模数的同时,对蜗杆分度圆直径亦实行了标准化,且与m 有一定的匹配。
蜗杆分度圆直径d1与轴向模数mx之比为一标准值,称蜗杆的直径系数。
即q=蜗杆分度圆直径模数=d1m d1=mq有关标准模数m 与标准分度圆直径d1的搭配值及对应的蜗杆直径系数参照表A (3) 蜗杆导程角r 当蜗杆的q 和z1选定后,在蜗杆圆柱上的导程角即被确定。
为导程角、导程和分度圆直径的关系。
tan r=导程分度圆周长 = 蜗杆头数x 轴向齿距分度圆周长 =z1px d1π =z1πm πm q =z1q相互啮合的蜗轮蜗杆,其导程角的大小与方向应相同。
(4) 中心距a 蜗轮与蜗杆两轴中心距a 与模数m 、蜗杆直径系数q 以及蜗轮齿数z2间的关系式如下:a=d1+d22 =m q(q+z2)蜗杆各部尺寸如表B蜗轮各部尺寸如表C2、 蜗轮蜗杆的画法(1) 蜗杆的规定画法 参照图1图2 (2)蜗轮的规定画法 参照图1图2 (3)蜗轮蜗杆啮合画法 参照图1图2.。
蜗轮蜗杆设计步骤
蜗轮蜗杆设计步骤蜗轮蜗杆是一种常见的传动机构,它可以将高速旋转的电机转换成低速高扭矩的输出,广泛应用于各种机械设备中。
在设计蜗轮蜗杆时,需要遵循一定的步骤,以确保传动系统的可靠性和高效性。
本文将介绍蜗轮蜗杆设计的步骤和注意事项。
一、确定传动比和输出扭矩在设计蜗轮蜗杆传动系统时,首先需要确定传动比和输出扭矩。
传动比是指输入轴转速与输出轴转速的比值,通常用i表示。
输出扭矩是指输出轴所能提供的扭矩大小,通常用T表示。
传动比和输出扭矩的确定需要考虑到传动系统的工作条件和要求,如负载大小、转速范围、传动效率等。
二、选择蜗轮和蜗杆的材料和加工工艺蜗轮和蜗杆是蜗轮蜗杆传动系统的核心部件,其材料和加工工艺的选择对传动系统的性能和寿命有着重要的影响。
一般来说,蜗轮和蜗杆的材料应具有高强度、高硬度、高耐磨性和高耐腐蚀性等特点。
常用的材料有合金钢、不锈钢、铜合金等。
加工工艺方面,蜗轮和蜗杆的加工精度要求较高,通常采用数控加工或磨削加工等高精度加工工艺。
三、确定蜗轮和蜗杆的几何参数蜗轮和蜗杆的几何参数包括蜗轮的齿数、蜗杆的螺旋角、蜗杆的导程等。
这些参数的确定需要考虑到传动比、输出扭矩、传动效率等因素。
一般来说,蜗轮的齿数越多,传动效率越高,但制造难度也越大;蜗杆的螺旋角越小,传动效率越高,但输出扭矩也越小。
四、进行传动系统的设计计算在确定了传动比、输出扭矩、蜗轮和蜗杆的几何参数后,需要进行传动系统的设计计算,以确定各个部件的尺寸和工作参数。
设计计算包括蜗轮和蜗杆的模数、齿宽、轴径、轴承尺寸、传动效率等参数的计算。
设计计算的准确性和合理性对传动系统的性能和寿命有着重要的影响。
五、进行传动系统的结构设计在进行传动系统的结构设计时,需要考虑到传动系统的安装、维修和保养等方面的要求。
传动系统的结构设计应尽可能简单、紧凑、可靠,方便安装和维修。
同时,还需要考虑到传动系统的密封性、散热性等方面的问题,以确保传动系统的正常工作。
六、进行传动系统的试验和验证在完成传动系统的设计和制造后,需要进行试验和验证,以确保传动系统的性能和可靠性。
机械设计课程设计-蜗轮蜗杆减速器设计说明书
机械设计课程设计蜗轮蜗杆减速器的设计一、选择电机1)选择电动机类型按工作要求和工作条件选用Y系列三相异步电动机。
2)选择电动机的容量工作机的有效功率为从电动机到工作机输送带间的总效率为=式中各按【1】第87页表9.1取η-联轴器传动效率:0.991η-每对轴承传动效率:0.982η-涡轮蜗杆的传动效率:0.803η-卷筒的传动效率:0.964所以电动机所需工作功率3)确定电机转速工作机卷筒的转速为所以电动机转速的可选范围是:符合这一范围的转速有:750、1000、1500三种。
综合考虑电动机和传动装置尺寸、质量、价格等因素,为使传动机构结构紧凑,决定选用同步转速为1000。
根据电动机的类型、容量、转速,电机产品目录选定电动机型号Y112M-6,其主要性能如下表1:/(9402 确定传动装置的总传动比和分配传动比:总传动比:3 计算传动装置各轴的运动和动力参数: 1)各轴转速:Ⅰ轴Ⅱ轴卷筒轴 2)各轴输入功率: Ⅰ轴 Ⅱ轴卷筒轴3) 各轴输入转矩:电机轴的输出转矩Ⅰ轴Ⅱ轴卷筒轴运动和动力参数结果如下表:940二、涡轮蜗杆的设计1、选择材料及热处理方式。
考虑到蜗杆传动传递的功率不大,速度也不高,蜗杆选用45号刚制造,调至处理,表面硬度220250HBW;涡轮轮缘选用铸锡磷青铜,金属模铸造。
2、选择蜗杆头数和涡轮齿数i=15.16 =2 =i=215.16303、按齿面接触疲劳强度确定模数m和蜗杆分度圆直径1)确定涡轮上的转矩,取,则2)确定载荷系数K=根据工作条件确定系数=1.15 =1.0 =1.1K==1.15 1.0 1.1=1.2653)确定许用接触应力由表查取基本许用接触应力=200MPa应力循环次数 N=故寿命系数4)确定材料弹性系数5)确定模数m和蜗杆分度圆直径查表取m=6.3mm,=80mm4、计算传动中心距a。
涡轮分度圆直径a=满足要求5、验算涡轮圆周速度、相对滑动速度及传动效率<3符合要求tan=0.16,得=8.95°由查表得当量摩擦角=1°47,所以=0.790.80与初值相符。
蜗轮蜗杆设计计算
蜗杆传动的效率计算
总结词
根据蜗轮蜗杆的设计参数和工况,计算出蜗杆传动的效率。
详细描述
蜗杆传动的效率计算是评估蜗杆传动性能的重要指标之一。通过分析蜗轮蜗杆的设计参 数和工况,如蜗杆的导程角、模数、转速和载荷等参数,可以计算出蜗杆传动的效率。
蜗轮齿面接触疲劳强度的计算
总结词
根据蜗轮齿面上的载荷分布和材料属性 ,计算出蜗轮齿面的接触疲劳强度。
刚度分析
进行蜗轮蜗杆的刚度分析, 以减小传动过程中的变形 和振动。
可靠性设计
为确保自动化设备的可靠 性,对蜗轮蜗杆进行可靠 性设计和寿命预测。
THANKS
感谢观看
材料应具备较好的抗疲劳性能,以承受交 变载荷的作用;
04
材料应具有良好的工艺性能,易于加工制 造。
04
蜗轮蜗杆设计计算方法
蜗轮齿面载荷分布计算
总结词
根据蜗杆传动的实际工况,通过分析蜗轮齿面上的受力情况,计算出蜗轮齿面上的载荷分布。
详细描述
在进行蜗轮齿面载荷分布计算时,需要考虑蜗杆传动的实际工况,如传动比、转速、载荷大小和方向 等因素。通过分析蜗轮齿面上的受力情况,可以确定蜗轮齿面上的载荷分布,为后续的设计计算提供 基础。
蜗轮蜗杆设计计算
• 蜗轮蜗杆简介 • 蜗轮蜗杆设计参数 • 蜗轮蜗杆材料选择 • 蜗轮蜗杆设计计算方法 • 蜗轮蜗杆设计实例分析
01
蜗轮蜗杆简介
蜗轮蜗杆的定义
01
蜗轮蜗杆是一种常用的传动装置 ,由两个交错轴线、相互咬合的 齿轮组成,其中一个是蜗杆,另 一个是蜗轮。
02
蜗轮蜗杆具有传动比大、传动效 率高、传动平稳、噪音低等优点 ,因此在各种机械传动系统中得 到广泛应用。
VS
蜗轮蜗杆设计
蜗轮蜗杆设计(2)设计原则:根据给定的中心距及传动比(或按照结构及设计的要求自定中心距和传动比)然后从蜗杆传动中心距标准值系列表中选取中心距的标准系列值,然后从经验公式先估算相关参数值,估算后在参考标准值系列表,确定标准值。
1计算传动比上式中:δp 为脉冲当量,β为步距角,L 为滚珠丝杠导程。
2初选几何参数参照蜗轮蜗杆参数推荐值表[1],i =4时,选z 1=6;则z 2= i z 1=24; 3蜗轮输出转矩T 21955021i P T n η=[2]123ηηηη=[3] tan =1tan +γηγρ()[3] =arctan ρμ[4]=μμ[5]式中:P 1, n 1分别为蜗杆轴输入功率,转速。
η1为螺旋副啮合效率;η2为轴承效率,滚动轴承时取0.990.9952η≈;η3为搅油及溅油效率,0.960.993η≈;μ为啮合摩擦系数;η0为标准圆盘滚子试件摩擦系数;R z 为设计蜗杆的齿面粗糙度;R z0为标准圆盘试件的表面粗糙度;代入数据得η=0。
76 根据所选电机得P 1=8kW,n 1=800r/min所以30.7649550290.322300T Nm ⨯⨯==4载荷系数123456K K K K K K K =[6]上式中:K 为载荷系数;K 1为动载荷系数,当蜗轮圆周速度23m /s v ≤时K 1取1。
0;K 2为啮合质量系数,查表得0.95;K 3为小时载荷率系数,查表得0。
78;K 4为环境温度系数,查表得1.09;K 5为工作情况系数,查表得1。
0;K 6为风扇系数,查表得0.92。
代入数据得:10.950.78 1.0910.920.74K =⨯⨯⨯⨯⨯=5计算m 和q7]代入数据:14.65≥==查表取16.443= m =6。
3 q =186主要几何尺寸18 6.3113.41d qm ==⨯= 6.324151.222m d z ==⨯=7蜗杆传动强度及刚度验算 确定许用接触应力σHp采用锡青铜蜗轮:Hp Hbp z z s n σσ=[8]分别查滑动速度曲线表,滑动速度影响系数表及寿命系数得2220/Hbp N mm σ= 0.96z s =0.78z n =所以22200.960.78165/Hp N mm σ=⨯⨯=3603600.00511.264p i L δβ⨯===⨯0.5(2)0.5 6.3(18240)132.322a m q x z =++=⨯⨯++=确定许用接触应力σHH σ=9]代入数据得:2134.57/H mm N σ=== 可见134.57165HHP σσ=<=,所以接触强度足够。
蜗轮蜗杆旋转台结构设计
蜗轮蜗杆旋转台结构设计的主要目的是通过蜗轮蜗杆的传动方式实现旋转运动。
这种设计通常包括以下几个关键部分:
蜗轮和蜗杆:蜗轮和蜗杆是旋转台的核心部件,通过它们的相互啮合实现旋转运动。
蜗轮通常固定在旋转台上,而蜗杆则通过电机或其他驱动装置驱动。
轴承和支撑结构:为了保证旋转台的平稳运行,需要设计合适的轴承和支撑结构来支撑蜗轮和蜗杆。
这些结构需要能够承受旋转台在工作过程中产生的力和力矩。
驱动装置:驱动装置是使蜗杆旋转的动力源,可以是电机、气缸或其他类型的驱动器。
驱动装置的选择需要根据实际应用场景和性能要求来确定。
控制系统:控制系统用于控制驱动装置的运行,从而实现对旋转台速度和方向的精确控制。
控制系统可以包括电气控制元件、传感器和反馈装置等。
在设计过程中,需要考虑到旋转台的承载能力、刚度、稳定性以及使用寿命等因素。
同时,还需要根据实际应用场景进行优化设计,以满足特定的性能要求和使用环境。
请注意,以上仅为蜗轮蜗杆旋转台结构设计的一般概述,具体的设计方案需要根据实际情况进行详细的分析和计算。
如果您有具体的设计需求或问题,建议咨询专业的机械设计师或工程师。
蜗轮蜗杆测绘、设计计算及图纸标注
蜗轮蜗杆的测绘
一、蜗轮、蜗杆齿轮的功用与结构
蜗轮、蜗杆的功用主要用于传递交错轴间运动和动力,通常,轴交角∑=90°。其优点是传动 比大,工作较平稳,噪声低,结构紧凑,可以自锁;缺点是当蜗杆头数较少时,传动效率低,常需 要采用贵重的减摩有色金属材料,制造成本高。 蜗轮是回转形零件,蜗轮的结构特点和齿轮基本相似,直径一般大于长度,通常由外圆柱面、 内环面、内孔、键槽(花键槽) 、轮齿、齿槽等组成。根据结构形式的不同,齿轮上常常还有轮缘、 轮毂、腹板(孔板) 、轮辐等结构。按结构不同蜗轮可分为实心式、腹板式、孔板式、轮辐式等多种 型式。 蜗杆的结构和轴相似,其结构特点是长度一般大于直径,通常由外圆柱面、圆锥面、螺纹及阶 梯端面等所组成。蜗杆上啮合部分的轮齿呈螺旋状,有单头和多头之分, 单头蜗杆的自锁性能好、 易加工,但传动效率低。 由于圆柱蜗杆工艺性好,尤其是阿基米德圆杆蜗杆,因此,圆柱蜗杆获得了广泛应用。
3.537 3.625 4 4.043 4.233 4.500 4.548 5
33.340 34.930 35.470 36.510 37.700 38.100 39.900 41.270
10.612 11.117 11.289 11.622 12 12.127 12.700 13.138
如图 8-17 所示,用游标卡尺的深度尺或其他测量工具直接量得 h,则 ma 即可算出。 ③ 根据计算公式 da2 = mt (z2+2) ,则
12. 13. 14. 15.
蜗轮蜗杆的传动设计原理
蜗轮蜗杆的传动设计原理蜗轮蜗杆传动是一种常见的机械传动方式,具有传动比大、承载能力强、传动平稳等优点,常用于工业机械设备中。
其传动原理是通过蜗轮和蜗杆之间的啮合来实现转矩和转速的传递。
蜗轮蜗杆传动由蜗轮(也称为蜗杆齿轮)和蜗杆组成,蜗轮的外形为螺旋状,蜗杆的外形为带有螺旋槽的杆状。
当蜗轮和蜗杆啮合时,通过蜗轮的旋转使蜗杆产生旋转运动,从而实现传递动力。
蜗轮和蜗杆之间的啮合形成斜面传动,有效地提高了传动的效率。
蜗轮蜗杆传动的设计原理主要包括以下几个方面:一、蜗杆的螺旋角度:蜗轮的螺旋角度对传动效率和稳定性有重要影响。
螺旋角度越小,蜗杆旋转一周所实现的传动比越大,但摩擦力和损耗也会增加。
因此,在设计中需要合理选择螺旋角度,以平衡传动比和效率。
二、蜗轮和蜗杆的材质和硬度:蜗轮通常选择高强度、耐磨损的材料制造,如合金钢。
蜗杆则通常选择高硬度、耐磨损的材料制造,如硬化钢或淬火淬硬钢。
选用合适的材质和硬度能够提高蜗轮蜗杆传动的承载能力和使用寿命。
三、蜗轮蜗杆的啮合准确度:蜗轮蜗杆的啮合准确度直接影响传动的稳定性和传动效率。
要求蜗轮蜗杆的啮合面光洁平整,啮合角度准确,否则容易产生额外的摩擦和磨损,降低传动效率,甚至导致传动失效。
四、润滑和散热:蜗轮蜗杆传动需要进行充分的润滑,以减少摩擦和磨损。
常见的润滑方式包括润滑油膜润滑、浸油润滑和油浸润滑等。
同时,蜗轮蜗杆传动还需要考虑散热问题,以保证传动过程中温度的稳定性。
五、传动比的选择:蜗轮蜗杆传动的传动比通常为大于1的数值,决定了输入和输出之间的速度和转矩的比例。
传动比的选择需要根据实际应用需求和机械设备的工作特性来确定。
六、传动效率和传动精度的考虑:蜗轮蜗杆传动的效率通常较低,为60%~90%,且传动精度也会受到蜗轮蜗杆啮合面质量的影响。
因此,在设计中需要综合考虑传动效率和传动精度的要求,以满足实际应用的需要。
综上所述,蜗轮蜗杆传动的设计原理包括蜗杆的螺旋角度、蜗轮和蜗杆的材质和硬度、啮合准确度、润滑和散热、传动比的选择,以及传动效率和传动精度的考虑等方面。
(完整word版)蜗轮蜗杆设计
蜗轮蜗杆设计摘要蜗杆传动从属齿轮传动,在现代工业中应用非常广泛。
蜗轮蜗杆包含两个部分:蜗杆和蜗轮,其齿形大多数由直线、平面或者平面上的曲线经过一次或两次展成运动形成。
由于蜗轮蜗杆结构性特点,它用于传递空间两相错轴间的运动和动力。
蜗杆传动机构多数情况下蜗杆为主动件,蜗轮为被动件。
蜗杆传动具有传动比大、体积小、运转平稳、噪音小等特点。
在机床制造业中,普通圆柱蜗杆传动的应用尤为普遍,并且几乎成了一般低速传动工作台和连续分度机构的唯一传动形式;冶金工业轧机压下机构都采用大型蜗杆传动;煤矿设备中的各种类型的绞车及采煤机组牵引传动;起重运输业中各种提升设备及无轨电车等都采用蜗杆传动。
其他,在精密仪器设备、军工、宇宙观测仪器中,蜗杆传动常用作分度机构、操纵机构、计算机构、测距机构等等,大型天文望远镜、雷达等也离不开蜗杆传动。
关键词:蜗轮蜗杆目录第一章蜗杆传动的类型和特点 (88)1.1 蜗杆传动的类型 (88)1。
2 蜗杆传动的特点 (89)第二章蜗轮传动的基本参数和几何尺寸计算 (90)2。
1 蜗杆传动的基本参数 (90)2。
2 蜗杆传动的几何尺寸计算 (93)第三章蜗轮传动的失效形式、设计准则、材料和结构 (95)3。
1 蜗杆传动的失效形式和设计准则 (95)3。
2 蜗杆、蜗轮的材料和结构 (96)第四章蜗轮传动的强度计算 (98)4。
1蜗杆传动的受力分析 (98)4.2 蜗轮齿面接触疲劳强度计算 (99)4。
3 蜗轮轮齿的齿根弯曲疲劳强度计算 (100)第五章蜗轮传动的效率、润滑和热平衡计算 (101)5.1蜗杆传动的效率 (101)5.2 蜗杆传动的润滑 (101)5.3 蜗杆传动的热平衡计算 (104)结论 (106)致谢 (107)参考文献 (108)第一章 蜗杆传动的类型和特点蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。
如图1-1所示。
通常两轴交错角为90°,蜗杆为主动件.1.1 蜗杆传动的类型如图1—2所示,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动(图a),环面蜗杆传动(图b ),和锥面蜗杆传动(图c)。
蜗轮蜗杆测绘、设计计算及图纸标注
图 8-16 蜗轮喉圆直径 da2 的测量
图 8-17 蜗杆齿高 h l 的测量
② 用游标卡尺测量蜗杆的齿顶圆直径 da1'
③ 和蜗杆齿根圆直径 df1',并按下式计算:
h1
da1
' 2
df1
'
(4)蜗杆轴向齿距 pz '
测量蜗杆轴向齿距 pz '可以用直尺或游标
卡尺在蜗杆的齿顶圆柱上沿轴向直接测量,如图
(6)蜗杆副中心距a'
蜗杆副中心距的测量对蜗杆传动啮合参数的确定以及对校核所定参数的正确性都是很重要的。
因此,应该仔细测量,力求精确。需要注意的是:只有当根据测绘的几何参数所计算出来的中心距
与实测的中心距 a'相一致时,才能保证蜗杆传动的正确啮合。 测量中心距时,可利用设备原有的蜗杆和蜗轮轴,清洗后重新装配进行测量。测量时,首先要
γ= tg -1 z1ma / (da1-2ma) 8. 确定蜗杆直径系数 q 根据计算公式 q = d1 / ma 或 q = z1 / tgγ计算出 q 值,且应按标准系列选取与其相近的标准数值。 9. 根据计算公式,计算出其它各基本尺寸,如齿根圆直径 df1、df2,齿顶高 ha1、ha2,齿根高 hf1、
m/mm
pz /mm
1
15.870
1.011
15.950
1.058
17.460
1.155
18.850
1.270
19.050
1.411
19.950
1.500
20.640
1.516
21.990
1.588
22.220
1.81422.8002源自23.8102.021
25.130
2.116
蜗轮蜗杆测绘 设计计算及图纸标注
测量这些轴的本身尺寸(D ' 1,D ' 2)与形位公差,以便作为修正测量结果的参考。
常用的测量方法有:
① 用高精度游标卡尺或千分尺,测出两轴外侧
间的距
离 L',如图 8-19 所示,并按下式计算中心距:
a ' L' D '1 D '2 2
② 用内径千分尺测出两轴内侧间的距离 M ' ,
8-20 所示,并按下式计算中心距。
1. 首先对要测绘的蜗轮、蜗杆进行结构和工艺分析。 2. 画出蜗轮、蜗杆的结构草图和必须的参数表,并画出所需标注尺寸的尺寸界线及尺寸线。 3. 数出蜗杆头数 z1 和蜗轮齿数 z2。 4. 测量出蜗杆齿顶圆直径 dal、蜗轮喉径 da2 和蜗轮齿顶外圆直径 dae。 5. 在箱体上测量出中心距 a。 6. 确定蜗杆轴向模数 ma (即涡轮端面模数 mt) 7. 确定蜗杆的导程角γ(蜗轮的螺旋角β),并判定γ及β的方向。 根据计算公式 tgγ= z1ma / d1,因 d1 = da1-2ma 则
Байду номын сангаас
ma
pz
以上四种方法求出的 ma,均应按标准模数系列选取与其相近的标准模数。 如果计算结果与标准的模数不相符,那么这个蜗轮可能是变位的蜗轮,需要进一步确定变位系
数 x2。 (3)压力角 a 国家标准对普通圆柱蜗杆的压力角规定为:阿基米德蜗杆轴向压力角取标准值 aa=20°,法向
直廓蜗杆、渐开线蜗杆、锥面包络蜗杆的法向压力角取标准值αn=20。 (4)蜗杆分度圆直径 d1 为使蜗轮滚刀标准化,蜗杆直径 d1 值必须标准化,测绘时应该注意这一点。具体系列请参看有
26.500
2.500
26.990
蜗轮蜗杆设计
第12章蜗杆传动基本内容:类型、应用、失效形式、材料选择、力的分析、强度计算、效率、润滑和热平衡计算等。
基本要求:掌握蜗杆传动的受力分析及强度计算、了解热平衡原理和计算方法、蜗杆传动的类型、特点等。
学时:课堂教学:3学时。
第一讲§12-1 概述一、特点和应用在大多数情况下,两轴在空间是互相垂直的,轴交角∑=90°。
广泛应用在机床、汽车、仪器、起重运输机械、冶金机械以及其他机械制造部门。
▲结构组成:蜗杆——一般为主动件蜗轮——根据蜗杆与蜗轮的相互位置:——上置蜗杆传动——下置蜗杆传动——旁置蜗杆传动▲特点:1)能得到很大的单级传动比。
2)结构紧凑3)工作平稳、无噪声、冲击振动小。
4)可以实现自锁。
缺点:5)传动效率较低——一般η=0.7~0.9具有自锁性能η≈0.46)需用贵重的减摩材料(如青铜)制造。
材料价格较高。
二、分类▲按蜗杆形状不同可分为三类——圆柱蜗杆传动:——环面蜗杆传动——锥蜗杆传动,见图▲按蜗杆螺旋线方向不同:——左旋蜗杆——右旋蜗杆▲按蜗杆头数不同:——单头蜗杆:主要用于传动比较大的场合,要求自锁的传动必须采用单头蜗杆。
——多头蜗杆:主要用于传动比不大和要求效率较高的场合。
▲对于圆柱蜗杆传动:根据加工时刀具位置的不同,可以分为三种1、阿基米德蜗杆:2、渐开线蜗杆:3、法向直廓蜗杆:§12-2 圆柱蜗杆传动的主要参数和几何尺寸中间平面——通过蜗杆轴线并垂直于蜗轮轴线的平面对于阿基米德圆柱蜗杆传动在中间平面上为齿条与齿轮啮合传动。
一、主要参数模数m、压力角α、蜗杆分度圆直径d1、蜗杆直径系数q、蜗杆导程角γ、螺旋角β。
蜗杆头数Z1、蜗轮齿数Z2、传动比i、齿速比u、中心距a、变位系数x。
1、模数m和压力角α在中间平面上蜗杆的模数——轴向模数mx蜗轮的模数——端面模数mt(因蜗杆的轴向齿距px应与蜗轮端面齿距pt相等,故mx=mt=m为标准模数)蜗杆的压力角——轴向压力角αx蜗轮的压力角——端面压力角αt (αx=αt=20°)2、蜗杆分度圆直径d1,亦称蜗杆中圆直径。
机械设计蜗轮蜗杆
机械设计蜗轮蜗杆蜗轮蜗杆是一种常见的传动装置,常用于机械中的减速装置。
它由蜗轮和蜗杆两部分组成,通过它们之间的啮合作用来实现传动。
蜗轮蜗杆传动具有传动比大、传动平稳、紧凑结构等优点,广泛应用于机械中。
首先介绍蜗杆的设计。
蜗杆是一种旋转的锥面,并且蜗杆的螺旋线与轴线呈一定的螺距,以便与蜗轮进行啮合。
蜗杆的设计中,需要确定螺距和蜗杆的压力角。
螺距决定了蜗杆传动时的速比,一般情况下,蜗杆的螺距越小,速比越大。
压力角则是蜗杆传动的另一个重要参数,它决定了蜗轮蜗杆传动的传动效率。
一般情况下,蜗杆的压力角应该选择在20°~30°之间。
其次是蜗轮的设计。
蜗轮是一个圆柱形的齿轮,蜗轮的齿数一般比蜗杆的螺旋线的圈数少一个。
蜗轮的设计需要确定齿数、齿轮模数和齿形等参数。
齿数决定了蜗轮的啮合角,一般情况下,蜗轮的啮合角应该在15°~25°之间。
齿轮模数则是决定蜗轮齿形的重要参数,一般情况下,模数应该选择在蜗轮齿高的0.3~0.5倍之间。
在蜗轮蜗杆传动的设计中,还需要考虑到蜗轮和蜗杆的材料选择以及传动装置的润滑和冷却等问题。
一般情况下,蜗轮和蜗杆的材料应该选择强度高、硬度大的材料,以保证传动装置的使用寿命。
传动装置的润滑和冷却则可以采用润滑油和冷却水等方式进行。
在实际的机械设计中,蜗轮蜗杆传动常常用于对转速要求较低、扭矩要求较大的场合。
例如,蜗轮蜗杆传动常用于一些矿山、冶金、化工等行业的设备中,用来实现减速装置的功能。
总的来说,蜗轮蜗杆传动是一种常用的传动装置,其优点包括传动比大、传动平稳、紧凑结构等。
在设计过程中需要考虑到蜗杆和蜗轮的参数选择、润滑和冷却等问题,以保证传动装置的性能和使用寿命。
蜗轮蜗杆机械设计课程设计说明书
设计小结
机械设计课程设计是机械设计这门课程中的最后一个环节,也是最考验我们平时学习成果的一个环节。
本次课程设计历时三个星期,在设计的过程中,我收获了很多,学习到了很多平常都没有学习到的知识,同时也体验了一把作为设计人员的酸甜苦辣,获益匪浅。
机械设计课程设计是机械设计课程的一个重要环节,它可以让我们进一步巩固和加深学生所学的理论知识,通过设计把机械设计及其他有关先修课程(如机械制图、理论力学、材料力学、工程材料等)中所获得的理论知识在设计实践中加以综合运用,使理论知识和生产实践密切的结合起来。
而且,本次设计是我们首次进行完整综合的机械设计,它让我树立了正确的设计思想,培养了我对机械工程设计的独立工作能力;让我具有了初步的机构选型与组合和确定传动方案的能力;为我今后的设计工作打了良好的基础。
这次课程设计我设计的是蜗轮蜗杆减速器,由于理论知识的不足,再加上平时没有什么设计经验,一开始的时候有些手忙脚乱的,不知道从何入手。
在刘老师的大力帮助下,终于慢慢的走上了正轨。
在设计的过程中还是遇到了各中困难,由于我设计的是蜗轮蜗杆减速器,参考的资料相对比较少,部分数据查找起来有困难,但还是借助网络的力量查找到了相应的数据。
后来,在轴的设计过程中又遇到了麻烦,还好在刘老师的无私帮助下,顺利解决了蜗轮轴以及蜗杆轴的设计。
现在,课程设计终于接近尾声了,回顾这三周的风风雨雨,自己也是感慨万千。
“世上无难事,只怕有心人”,现在我终于能够理解它的深刻内涵了。
在此,我感谢同学们帮助我一起探讨、解决问题,衷心感谢刘鹄然老师在这三周里为我们付出了这么多,课程设计的成功,有刘老师的一半功劳!再次对刘老师的无私奉献致以最衷心的感谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蜗轮蜗杆传动蜗杆传动是用来传递空间交错轴之间的运动和动力的。
最常用的是轴交角∑=90°的减速传动。
蜗杆传动能得到很大的单级传动比,在传递动力时,传动比一般为5~80,常用15~50;在分度机构中传动比可达300,若只传递运动,传动比可达1000。
蜗轮蜗杆传动工作平稳无噪音。
蜗杆反行程能自锁。
重点学习内容本章中阿基米德蜗杆传动的失效形式、设计参数、受力分析、材料选择、强度计算、传动效率等为重点学习内容。
对热平衡计算、润滑方法、蜗杆蜗轮结构等也应一、蜗杆传动的类型圆柱蜗杆传动环面蜗杆传动锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆(ZA蜗杆)渐开线蜗杆(ZI蜗杆)法向直廓蜗杆(ZN蜗杆)锥面包络蜗杆(ZK蜗杆)与上述各类蜗杆配对的蜗轮齿廓,完全随蜗杆的齿廓而异。
蜗轮一般是在滚齿机上用滚刀或飞刀加工的。
为了保证蜗杆和蜗轮能正确啮合,切削蜗轮的滚刀齿廓,应与蜗杆的齿廓一致;深切时的中心距,也应与蜗杆传动的中心距相同。
圆柱蜗杆传动1、通圆柱蜗杆传动(1)阿基米德蜗杆这种蜗杆,在垂直于蜗杆轴线的平面(即端面)上,齿廓为阿基米德螺旋线,在包含轴线的平面上的齿廓(即轴向齿廓)为直线,其齿形角α0=20°。
它可在车床上用直线刀刃的单刀(当导程角γ≤3°时)或双刀(当γ>3°时)车削加工。
安装刀具时,切削刃的顶面必须通过蜗杆的轴线。
这种蜗杆磨削困难,当导程角较大时加工不便。
(2)渐开线蜗杆渐开线蜗杆(ZI蜗杆)蜗杆齿面为渐开螺旋面,端面齿廓为渐开线。
加工时,车刀刀刃平面与基圆相切。
可以磨削,易保证加工精度。
一般用于蜗杆头数较多,转速较高和较精密的传动。
(3)法向直廓蜗杆这种蜗杆的端面齿廓为延伸渐开线,法面(N-N)齿廓为直线。
ZN蜗杆也是用直线刀刃的单刀或双刀在车床上车削加工。
车削时车刀刀刃平面置于螺旋线的法面上,加工简单,可用砂轮磨削,常用于多头精密蜗杆传动。
(4)锥面包络蜗杆这是一种非线性螺旋曲面蜗杆。
它不能在车床上加工,只能在铣床上铣制并在磨床上磨削。
加工时,盘状铣刀或砂轮放置在蜗杆齿槽的法向面内,除工件作螺旋运动外,刀具同时绕其自身的轴线作回转运动。
这时,铣刀(或砂轮)回转曲面的包络面即为蜗杆的螺旋齿面,在I-I及N-N截面上的齿廓均为曲线。
这种蜗杆便于磨削,蜗杆的精度较高,应用日渐广泛。
2、圆弧圆柱蜗杆图示的圆弧圆柱蜗杆传动和普通圆柱蜗杆传动相似,只是齿廓形状有所区别。
这种蜗杆的螺旋面是用刃边为凸圆弧形的刀具切制的,而蜗轮是用范成法制造的。
在中间平面(即蜗杆轴线和蜗杆副连心线所在的平面)上,蜗杆的齿廓为凹弧,而与之相配的蜗轮的齿廓则为凸弧形。
所以,圆弧圆柱蜗杆传动是一种凹凸弧齿廓相啮合的传动,也是一种线接触的啮合传动。
其主要特点为:效率高,一般可达90%以上;承载能力高,一般可较普通圆柱蜗杆传动高出50%~150%;体积小;质量小;结构紧凑。
这种传动已广泛应用到冶金、矿山、化工、建筑、起重等机械设备的减速机构中。
(二)环面蜗杆环面蜗杆传动的特征是,蜗杆体在轴向的外形是以凹圆弧为母线所形成的旋转曲面,所以把这种蜗杆传动叫做环面蜗杆传动(见下图)。
在这种传动的啮合带内,蜗轮的节圆位于蜗杆的节弧面上,亦即蜗杆的节弧沿蜗轮的节圆包着蜗轮。
在中间平面内,蜗杆和蜗轮都是直线齿廓。
由于同时相啮合的齿对多,而且轮齿的接触线与蜗杆齿运动的方向近似于垂直,这就大大改善了轮齿受力情况和润滑油膜形成的条件,因而承载能力约为阿基米德蜗杆传动的2~4倍,效率一般高达0.85~0.9;但它需要较高的制造和安装精度。
除上述环面蜗杆传动外,还有包络环面蜗杆传动。
这种蜗杆传动分为一次包络和二次包络(双包)环面蜗杆传动两种。
它们的承载能力和效率较上述环面蜗杆传动均有显著的提高。
(三)锥蜗杆锥蜗杆传动也是一种空间交错轴之间的传动,两轴交错角通常为90°。
蜗杆是由在节锥上分布的等导程的螺旋所形成的,故称为锥蜗杆。
而蜗轮在外观上就象一个曲线齿锥齿轮,它是用与锥蜗杆相似的锥滚刀在普通滚齿机上加工而成的,故称为锥蜗轮。
锥蜗杆传动的特点是:同时接触的点数较多,重合度大;传动比范围大(一般为10~360),承载能力和效率较高;侧隙便于控制和调整;能作离合器使用;可节约有色金属;制造安装简便,工艺性好。
但由于结构上的原因传动具有不对称性,因而正、反转时受力不同,承载能力和效率也不同。
二、蜗杆传动的几何参数和尺寸计算在计算蜗杆传动几何尺寸之前,先要选择蜗杆传动的几何参数。
圆柱蜗杆传动的主要几何参数名称符号说明模数m1)m的大小由强度计算确定,并按GB(表2)取标准值2)蜗杆轴向模数m a1=蜗轮端面模数m t2=模数m压力角α1)α的标准值是20°,动力传动允许25°,分度传动允许15°或12°2)ZA蜗杆轴向压力角αa=α;ZA、ZI、ZK蜗杆法向压力角αn=α蜗杆直径系数q 1)是一个将蜗杆分度圆直径d1限制为标准值的参数:q=d1/m,其值见表22)引入该参数是为了限制切制蜗轮时所需要的滚刀数目,提高生产的经济性。
蜗杆头数z1通常取z1=1、2、4、6,头数过多,导程角过大会使加工困难。
蜗轮齿数z2为了保证始终有两对以上齿啮合,通常规定z2>28,以增加传动的平稳性传动比i121)i12=n1/n2=z2/z1=d2/(mz1)=(2a-d1)/(mz1)=(2a/m-q)/z12)减速传动时常用i=15~50,荐用的蜗杆头数与传动比之间的对应值见表1齿数比u u=蜗轮齿数z2/蜗杆头数z1,减速传动时u=i蜗杆导程角γ1)γ多在3°~31°之间。
γ小易自锁,γ大传动效率高,但蜗杆加工困难2)tgγ=z1/q,要求有自锁性能时,γ应小,即应取头数z1=1中心距a a的大小能反映传递功率的大小,标准中心距见表2蜗轮变位系数x21)变位的主要目的是配凑中心距和凑传动比,使之符合标准或推荐值。
2)为保持加工蜗轮时的滚刀尺寸不变,蜗杆是不变位的。
3)当配凑中心距时x2=(a'-a)/m圆柱蜗杆传动的主要几何尺寸的计算公式名称符号普通圆柱蜗杆传动备注中心距a a=0.5m(q+z2)a'=0.5m(q+z2+2x2)(变位)蜗杆分度圆直径d1d1=mq按规定选取蜗杆轴向齿距p a p a=mπ蜗杆导程p z p z=z1p a蜗杆导程角γγ=arctg z1/q是分度圆柱上的导程角顶隙c c=c*m c*=0.2蜗杆齿顶高h a1h a1= h a*m一般h a*=1,短齿,h a* =0.8蜗杆齿根高h f1h f1=(h a*+c*)m蜗杆齿高h1h1=h a1+h f1蜗杆齿顶圆直径d a1d a1=d1+2h a1蜗杆齿根圆直径d f1d f1=d1-2h f1蜗杆螺纹部分长度b1见下表蜗杆轴向齿厚S a1S a1=0.5πm蜗杆法向齿厚S n1S n1=S a1cosγ蜗轮分度圆直径d2d2=m z2蜗轮齿顶高h a2h a2=h a*m h a2=m(h a*+x2)(变位)蜗轮齿根高h f2h f2=m(h a*+c*)h f2=m(h a*-x2+c*)(变位)蜗轮喉圆直径d a2d a2=d2+2h a2蜗轮齿根圆直径d f2d f2=d2-2h f2蜗轮齿宽b2b2≈2m(0.5+))蜗轮齿根圆弧半径R1R1=0.5d a1+c R1=0.5d a1+c蜗轮齿顶圆弧半径R2R2=0.5d f1+c R2=0.5d f1+c蜗轮顶圆直径d e2见下表蜗轮轮缘宽度B见下表蜗轮咽喉母圆半径rg2rg2=a-d a2/2B、de2、b1的计算公式z1B d e2x2b11≤0.75≤+2m0≥(11+0.06)m当变位系数为中间-0.5 ≥(8+0.06)m 值时,b 1取邻近两公式所求值的较大者。
经磨削的蜗杆,按左式所求的长度应再增加下列值:当m <10mm 时,增加25mm;当m =10~16mm 时,增加35~40mm;当m >16mm 时,增加50mm-0.1 ≥(10.5+)m 2≤+1.5m0.5 ≥(11+0.1)m 1.0 ≥(12.5+0.1)m 4 ≤0.67≤+m0 ≥(12.5+0.09)m -0.5≥(9.5+0.09)m-0.1 ≥(10.5+)m0.5 ≥(12.5+0.1)m 1.0≥(13+0.1)m、蜗杆传动的失效形式和设计准则1. 失效形式1)蜗杆传动齿面间的相对滑动速度大,发热量大,故闭式蜗杆传动的主要失效形式是胶合,其次是点蚀和磨损。
开式蜗杆传动的失效形式是磨损和齿根弯曲折断。
2)由于蜗杆是螺旋齿、材质强度又高于蜗轮,所以蜗杆传动的失效经常发生在蜗轮上。
2. 设计准则1)闭式传动:a. 按齿面接触强度条件设计,控制蜗轮齿面的点蚀和胶合b.按齿跟弯曲疲劳强度条件校核,控制轮齿的弯曲折断和磨损c. 进行热平衡计算,控制温升。
2)开式传动: 按齿跟弯曲疲劳强度条件设计,控制轮齿的弯曲折断和磨损蜗杆按照直轴设计,然后进行刚度校核,控制蜗杆轴的弯曲变形。
四、蜗杆蜗轮的材料1.蜗杆蜗轮材料组合:青铜作蜗轮齿圈,而蜗杆钢制并淬硬、磨削。
这种材料组合可获得较强的抗胶合能力和良好的减摩耐磨性。
2.蜗杆常用材料及热处理:碳素钢 用于一般传动 40、45调质(硬度 ≤ 350HBS) 合金钢 用于重要传动 40Cr 表面淬火(40~55HRC)15Cr 、20Cr 渗碳淬火(55~62HRC)3.蜗轮常用材料按相对滑动速度v s 来选取:v s ≤2m/s 灰铸铁 用于低速、轻载或不重要的传动。
v s≤4m/s铝铁青铜抗胶合能力远比锡青铜差,但强度较高,价格便宜;用于速度较低的传动。
v s≤25m/s铸磷锡青铜减摩、耐磨性好,抗胶合能力强,但其强度较低,价格较贵;用于高速或重要传动。
五、蜗杆传动的受力分析蜗杆蜗轮受力图齿面间总作用力法向力Fn(注:齿面间的摩擦力一般忽略不计)分力的名称圆周力Ft轴向力Fa径向力Fr分力的大小==-=-==-=分力的方向Ft1与其作用点的圆周速度方向相反"左右手定则”:蜗杆右旋伸右手(左旋伸左手);四指顺着转向握起;拇指伸直后的指向为Fa1的方向。
Fr1、Fr2由作用点指向各自的轴心分力之间的关系=-=-=-法向力的大小====,为传动比,为传动效率,为蜗杆蜗轮法面压力角;六、蜗杆传动的承载能力计算蜗杆传动的承载能力计算包括蜗轮齿的疲劳强度计算和蜗杆的刚度计算。
本节介绍蜗轮齿的接触疲劳强度和弯曲疲劳强度计算。
1、齿面接触疲劳强度条件蜗轮与蜗杆啮合处的齿面接触应力,与齿轮传动相似,利用赫芝应力公式,考虑蜗杆和蜗轮齿廓特点,可得齿面接触疲劳强度条件式。