行列式的计算PPT教学课件
合集下载
行列式的计算方法(最全版)PTT文档
12 1 3
0 2 3 14 0 2 3 14
160
0 0 8 47 0 0 8 47
0 0 8 37
0 0 0 10
方法3 拆行(列)法
由行列式拆项性质,将已知行列式拆成若干个行列式之和,计算其值,再 得原行列式值,此法称为拆行(列)法。
例3 求解行列式
axby aybz azbx D aybz azbx axby
azbx axby aybz
解 按第一列拆开,再提公因子得
x a ybza zbx y a ybza zbx Day a zbxa xbybz a zbxa xby
z a xbya ybz x a xbya ybz
再把第1个行列式按第3列展开,第2个行列式按第2列展开.最终得
xyz D= ( a 3 b 3 ) y z x
行列式的计算方法
行列式的计算是高等代数中的难点、重 点,特别是高阶行列式的计算,学生在学 习过程中,普遍存在很多困难,难于掌握
计算高阶行列式的方法很多,但具体 到一个题,要针对其特征,选取适当的方 法求解。
方法1 定义法
利用n阶行列式的定义计算行列式,此法适用于0比较多的行列式。
例1 求下列行列式的值
zxy
方法4 降阶法
利用行列式按行按列展开定理将高阶行列式转化为 较低阶行列式求解的方法叫做降阶法.
它可以分为直接降阶法和递推降阶法
直接降阶法用于只需经少量几次降阶就可求得行列 式值的情况。
递推降阶法用于需经多次降阶才能求解,并且较低 阶行列式与原行列式有相同结构的情况。
例4 求解下列行列式:
x y 00 0
Dn anxDn1 ①
把 Dn-1 按同样的方法展开得
线性代数第一章行列式课件
a11
a12
a1n
a11 a12
a1n a11 a12
a1n
ai1 bi1 ai2 bi2
ain bin ai1 ai2
ain bi1 bi2
bin
an1
an2
ann
an1 an2
ann an1 an2
ann
性质5 将行列式的某一行(列)的所有元素同乘以 一个数 k 加到另外一行(列)上,行列式不变,即
a1,n1 a2,n1
a1n a2n
a11 a21
a12 a22
a1,n1 a2,n1
an1,1 0
an1,2 0
an1,n1 0
an1,n 1
a a n1,1
n1,2
an1,n1
其中等号左端的行列式是一个 n 阶行列式;等号右端
的行列式是左端 n 阶行列式的前 n-1 行前 n-1 列的元
素所组成的 n-1 阶行列式,即左端行列式第 n 行第 n
j 1, 2, , n
ann
a1n
(1)i j aij
ai 1,1 ai1,1
ai1, j1 ai1, j1
ai1, j1 ai1, j1
ai1,n ai1,n
an1
an, j1
an, j1
ann
定理4 设
a11 a12
a1n
D a21 a22
a2n
an1 an2
ann
是一个 n 阶行列式, Aij 为 D 的第 i 行第 j 列元素 aij 的代数余子式,则有
1
2
n ( n 1)
(1) 2 12 n
n
二、行列式的基本性质
定义6 设
行列式的定义ppt课件
能取a21 第3列只能取a43 第4列只能取a14 第2列只能取a32 四个元素的乘积为
a21a43a14a32 即a14a21a32a43 其列标排列为4123 它的逆序数为3 是奇排列 所以
D=(-1)3a14a21a32a43=-a14a21a32a43=-1
26
排列的对换
❖对换 在排列中 将任意两个元素对调 其余的元素不动 就得
1
b1
a2a21
a11 b1
x1= —ba—211 —2aa21— x2= —a1a—211 —ab12—
a2
2 2
a2 2
1 a2
1 a2
2
2
4
我们用 a11 a1 a2 2
表示代数和a11a22-a12a21 并称它为二阶行
列式
1 a2
2
行列式中的相关术语
行列式的元素、行、列、行标、列标、主对角线、副对角线
D1=b1a22a33+a12a23b3+a13b2a32-b1a23a32-a12b2a33-a13a22b3 D2=a11b2a33+b1a23a31+a13a21b3-a11a23b3-b1a21a33-a13b2a31 D3=a11a22b3+a12b2a31+b1a21a32-a11b2a32-a12a21b3-b1a22a31
=
7
0
D1
=
12 1
-
2 1
=12-(-2)
=14
D2
=
3 2
12 1
=
3-
24
=
-21
因此
x1
=
D1 D
=
14 7
高等数学线性代数行列式教学ppt(1)
例1 计算下列排列的逆序数.
1) 217986354
解: 2 1 7 9 8 6 3 5 4 01 00 13 4 45
t 5 4 4 3 1 0 0 1 0 18
1.2 行列式的性质
一、行列式的性质 二、利用性质计算行列式
返回
一、行列式的性质
a11
记D
a22
ann
a11
DT
a22
ann
行列式 DT 称为行列式 D 的转置行列式.
性质1 行列式与它的转置行列式相等.
说明 行列式中行与列具有同等的地位,因此行 列式的性质凡是对行成立的对列也同样成立.
a11 a12 a1n 上三角行列式 0 a22 a2n
0 0 ann
a11a22 ann .
性质2 互换行列式的两行(列),行列式变号.
an1 an2
ann an1 an2
a1n bin . ann
性质6 把行列式的第 j 行(列)元素的 k 倍加到第 i 行(列)的对应元素上去,行列式值不变.
1
2 2, 1
2 2r1r2 1
2 2.
34
34 58
二、利用性质计算行列式
计算行列式常用方法:利用运算 ri krj把行列式 化为上三角形行列式,从而算得行列式的值.
a11 a1n
ai1 ain
ai1 Aj1 ain Ajn
,
ai1 ain
第i行
相同
第 j行
当 i j 时,
an1 ann
ai1 Aj1 ai 2 Aj2 ain Ajn 0, (i j).
同理 a1i A1 j a2i A2 j ani Anj 0, (i j).
1) 217986354
解: 2 1 7 9 8 6 3 5 4 01 00 13 4 45
t 5 4 4 3 1 0 0 1 0 18
1.2 行列式的性质
一、行列式的性质 二、利用性质计算行列式
返回
一、行列式的性质
a11
记D
a22
ann
a11
DT
a22
ann
行列式 DT 称为行列式 D 的转置行列式.
性质1 行列式与它的转置行列式相等.
说明 行列式中行与列具有同等的地位,因此行 列式的性质凡是对行成立的对列也同样成立.
a11 a12 a1n 上三角行列式 0 a22 a2n
0 0 ann
a11a22 ann .
性质2 互换行列式的两行(列),行列式变号.
an1 an2
ann an1 an2
a1n bin . ann
性质6 把行列式的第 j 行(列)元素的 k 倍加到第 i 行(列)的对应元素上去,行列式值不变.
1
2 2, 1
2 2r1r2 1
2 2.
34
34 58
二、利用性质计算行列式
计算行列式常用方法:利用运算 ri krj把行列式 化为上三角形行列式,从而算得行列式的值.
a11 a1n
ai1 ain
ai1 Aj1 ain Ajn
,
ai1 ain
第i行
相同
第 j行
当 i j 时,
an1 ann
ai1 Aj1 ai 2 Aj2 ain Ajn 0, (i j).
同理 a1i A1 j a2i A2 j ani Anj 0, (i j).
二章行列式ppt课件
m 1 次相邻对换 a1al bb b1bm aa c1cn
a1alab1bmbc1cn ,
2m 1次相邻对换 a1 albb1 bmac1 cn ,
所以一个排列中的任意两个元素对换,排列改变 奇偶性.
推论1 推论2
偶数次对换不改变排列的奇偶性;奇数次 对换改变排列的奇偶性。
任意一个n 级排列都可以经过一系列对换 变成自然排列,并且所作对换的次数与该 排列有相同的奇偶性.
a31 b3 a33
b1 a12 a13 D1 b2 a22 a23 ,
b3 a32 a33
a11 a12 b1 D3 a21 a22 b2 .
a31 a32 b3
说明: (1)项数:2阶行列式含2项, 3阶行列式含6项, 这恰好就是2!,3!. (2)每项构成: 2阶和3阶行列式的每项分别是位于 不同行不同列的2个和3个元素的乘积. (3)各项符号: 2阶行列式含2项,其中1正1负, 3阶 行列式6项,3正3负.
n( n1)
1 2 a1na2,n1
上面的行列式中,未写出的元素都是0。
an1,2an1
证: 行列式的值为
1 a a 1 j1 2 j2 anjn
j1 jn
若乘积非零,j1j2…jn只能是排列n(n-1)…2 1,
它的逆序数为 (n 1) (n 2) 2 1 n 1 n
2
当a 时b , 经对换后 a的逆序数增加1 , b的逆序数不变; 当a 时b , 经对换后 a的逆序数不变, 的b 逆序数减少1.
因此,一次相邻对换,排列改变奇偶性.
设排列为 a1 alab1 bmbc1 cn 现来对换 a与 b.
a1al a b1bm bb c1cn
m 次相邻对换
行列式的计算方法(共13张PPT)
Day a zbxa xbybz a zbxa xby
z a xbya ybz x a xbya ybz
再把第1个行列式按第3列展开,第2个行列式按第2列展开.最终得
D=
第六页,共13页。
利用行列式按行按列展开定理将高阶行列式转化为较低阶行
列式求解的方法叫做降阶法.
它可法(加边法)
将 代入 中得 将 代入 中得
y 0 0 0
解 首先给第1行分别乘-7,-5,-3,分别加到第2,3,4行上,再交换第2,3两行的位置;给第二行分别乘以2,-3后,分别加到第3,4行上;最后给第3行乘1
x y 0 0 加到第4行即可。
把 Dn-1 按同样的方法展开得
直接降阶法用于只需经少量几次降阶就可求得行列式值 的情况。
递推降阶法用于需经多次降阶才能求解,并且较低阶 行列式与原行列式有相同结构的情况。
第七页,共13页。
求解下列行列式:
x y 00 0
0 x y0 0
D ) 加边法最大的特点就(是1要找每行或每列n 相同的因子,那么升阶之后,就可利用行列式的性质把绝大多数元素化为0, 这样就达到简化计算的效
0 0 8 47
0 0 0 10
第五页,共13页。
由行列式拆项性质,将已知行列式拆成若干个行列式之和,计算其值,再得原 行列式值,此法称为拆行(列)法。
求解行列式
axby aybz azbx D aybz azbx axby
azbx axby aybz
按第一列拆开,再提公因子得
x a ybza zbx y a ybza zbx
y
方法2 化三角形法
再D把=第 210个0行0列!降式阶按第后3的列展两开,个第低2个阶行列行式列按第式2列都展是开.三最角终得形行列式,故原行列式的值为
行列式-课件
(1) b (k1 kp kq kn ) 1k1
bpk p
bqkq
bnkn
(1) a (k1 kp kq kn ) 1k1
aqk p
a pkq
ankn
§ 1.2 行列式的性质与计算
(1) a (k1 kp kq kn ) 1k1
a pkq
aqk p
ankn
(1) (1) (k1
DT =
(1) b b (i1i2 in ) i11 i2 2
i1i2 in
binn
(1) a a (i1i2 in ) 1i1 2i2
i1i2 in
anin D 证毕
注1.4 性质1.1表明,行列式中行与列的地位是对等的,因此,凡是对行 列式的行成立的性质,对行列式的列也同样成立,反之亦然.
bq1 bq2
bpn ,
bqn
其中i p, q时,bij aij ;bpj aqj , bqj a pj .
bn1 bn2
bnn
§ 1.2 行列式的性质与计算
即有
a11 a12
a1n
aq1 aq2
aqn
det(bij )
a p1 a p2
a pn
an1 an2
ann
由行列式的定义有 det(bij )
为了简化行列式的计算,本节首先讨论行列式的性质,然后利用这些 性质给出若干计算行列式的典型方法和计算技巧.
1.2.1 行列式的性质 1.2.2 行列式的计算 *1.2.3 拉普拉斯定理
§ 1.2 行列式的性质与计算
,
1.2.1 行列式的性质
前一节介绍了n阶行列式的定义,并利用定义计算了一些特殊的n阶行列式. 但当n较大时,用定义计算一般的n阶行列式并不容易. 为能简便计算行列式,需 要研究行列式的性质. 首先给出行列式的转置行列式及行列式中元素的余子式和 代数余子式的概念.
行列式计算ppt
1 1 3
det A 1 0 1 , det AT 2 0 2
3 2 2
3 1 2
de tA de tAT
性质1 行列式与它的转置行列式相等.
2 计算行列式detA,detB,指出它们满足什么
关系
1 2 3
1 0 1
det A 1 0 1 det B 1 2 3
3 2 2
3 2 2
det B det A
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
an1
an2
an3 ann
作为结论记住
1234
0421
D 0
0
5
6 a a a a 11 22 33 44 1 4 5 8 160.
0008
000 1 2
2 (2)(1)11110!
000
10
以例子引入行列式性质
1 计算行列式detA,detAT,指出它们满 足什么关系
1 2 3
det A a11 a12
a11 a21
a21 a22
—
a12 a22
+
线性代数-行列式(完整版)ppt课件
设 D
,
31
(1)当为何值时, D 0,
(2)当为何值时 D0.
解 230 0,或 3
2
D
2
31
.
例3 求二阶行列式
a 1 b2
.
(2)三阶行列式
记号
a 11 a 12 a 13 a 21 a 22 a 23 称为三阶行列式. a 31 a 32 a 33
它表示数
a 1a 1 2a 2 3 3a 1a 2 2a 3 3 1a 1a 3 2a 1 32 a 1a 3 2a 2 3 1a 1a 2 2a 1 3 3a 1a 1 2a 3 32
27下三角行列式的值等于其主对角线上. 各元素的乘积 .
同理可得 上三角形行列式
a 11 a 12 a 13 a 1n
0
D 0
a 22 a 23 a 2n
0 a 33 a 3 n a11a22ann
0 0 0 a nn
其中 aii 0 (i1,2,n)
特殊情况 : 对角形行列式
a1n
a21 a22 a2n1 0
0 0 a2n1 a2n
an11 an12 0 an1 0 0
0
0 an12 an1n1 an1n
0 an1 an2 ann1 ann
( 1 ) aaa a N (j1 j2 jn 1 jn ) 1 j12 j2
和式中仅当 j1n ,j2n 1 , ,jn 12 ,jn1时,
a1j1a2j2annj0
D ( 1 ) nN (n (n ( 1n ) 1 ) 3) 2 a 1 n 1 a 2 ,n 1 a n 1
29
(1) 2 12n .
注:
类似可得
a11 a12 a1n1 a1n 0 0 0
,
31
(1)当为何值时, D 0,
(2)当为何值时 D0.
解 230 0,或 3
2
D
2
31
.
例3 求二阶行列式
a 1 b2
.
(2)三阶行列式
记号
a 11 a 12 a 13 a 21 a 22 a 23 称为三阶行列式. a 31 a 32 a 33
它表示数
a 1a 1 2a 2 3 3a 1a 2 2a 3 3 1a 1a 3 2a 1 32 a 1a 3 2a 2 3 1a 1a 2 2a 1 3 3a 1a 1 2a 3 32
27下三角行列式的值等于其主对角线上. 各元素的乘积 .
同理可得 上三角形行列式
a 11 a 12 a 13 a 1n
0
D 0
a 22 a 23 a 2n
0 a 33 a 3 n a11a22ann
0 0 0 a nn
其中 aii 0 (i1,2,n)
特殊情况 : 对角形行列式
a1n
a21 a22 a2n1 0
0 0 a2n1 a2n
an11 an12 0 an1 0 0
0
0 an12 an1n1 an1n
0 an1 an2 ann1 ann
( 1 ) aaa a N (j1 j2 jn 1 jn ) 1 j12 j2
和式中仅当 j1n ,j2n 1 , ,jn 12 ,jn1时,
a1j1a2j2annj0
D ( 1 ) nN (n (n ( 1n ) 1 ) 3) 2 a 1 n 1 a 2 ,n 1 a n 1
29
(1) 2 12n .
注:
类似可得
a11 a12 a1n1 a1n 0 0 0
高中数学《行列式》课件
4 2
1 1
100
4 2
1 1
4 2
1 1
200 6 194
18
性质5 (消法)将行列式的某一行(列)的各 元素乘以常数加到另一行(列)的对 应元素上去,则行列式的值不变,即
a11 a12
a1n
a11
a12
a1n
ai1 ai2 aj1 aj2
ain ai1 ka j1
a jn
a j1
ai2 ka j2 aj2
当 n 1 时, det( A) a11
n
当 n 1 时,det( A) ak1(1)k1 det( A(k,1)) k 1
n
设 An aij 则 det( A) ak1(1)k1 det( A(k,1))
k 1
Aij (1)i j det( A(i, j) ) 为 aij 的代数余子式
40
x (n 1)a a a a
x (n 1)a x a a
解
c1ci (i2,3,,n)
Dn x (n 1)a a x a
x (n 1)a a a x 1 a a a 1 x a a [x (n 1)a] 1 a x a
1 a a x 41
1 a a a 0 xa 0 0
rj r1 ( j:2,3,,n)
[x (n 1)a] 0 0 x a 0
0 0 0 xa
[x (n 1)a](x a)n1
42
例2 计算 n 阶行列式(两道一点)
a1 b1
a2 b2
Dn
an1 bn1
bn
an
解 Dn a1a2 an (1)n1bnb1b2 bn1
a1a2 an (1)n1b1b2 bn1bn
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.5 2020/12/11 行列式的计算
6
阶梯形矩阵 如果矩阵A的任一行从第一个元素起至该行的 第一个非零元素所在的下方全为零;若该行全 为0,则它的下面各行也全为0,则称矩阵A为 阶梯形矩阵.
命题
任意一个矩阵总可以经过一系列初等行变换
化成阶梯形矩阵.
§2.5 2020/12/11 行列式的计算
§2.5 2020/12/11 行列式的计算
5
二、矩阵的初等行变换
定义 数域P上的矩阵的初等行变换是指:
1) 以P中一个非零数k乘矩阵的一行;
k ri
2) 把矩阵的某一行的k倍加到另一行,kP; ri krj
3) 互换矩阵中两行的位置.
ri rj
注意: 矩阵A经初等行变换变成矩阵B,一般地A≠B.
a2n
an1 an2
ann
称为矩阵A的行列式,记作 A 或detA.
§2.5 2020/12/11 行列式的计算
4
矩阵的相等
设矩阵 A ( a i j) s n ,B ( b i j) s n ,如果 a i j b i j,i 1 , 2 ,, s ,j 1 , 2 ,, n
则称矩阵A与B相等,记作 A=B.
也可同时作初等行变换和列变换,有时候这样
A
可使行列式的计算更简便.
§2.5 2020/12/11 行列式的计算
10
PPT教学课件
谢谢观看
Thank You For Watching
§2.5 行列式的计算
11
2
一、矩阵
定义 由sn个数排成 s 行 n 列的表
a11 a12
A
a21
a22
as1 as2
a1n a2n
asn
称为一个 s×n 矩阵, 简记为 A(aij)sn. 数 a i j 称为矩阵A的 i 行 j 列的元素,其中i为行指标, j为列指标.
§2.5 2020/12/11 行列式的计算
7
三、行列式的计算
原理: 任一方阵 A 可经过一系列的初等变换化成
阶梯阵 J ,且 A kJ, k0 .
方法:对行列式 A 中的A作初等行变换Байду номын сангаас把它化为 阶梯阵,从而算得行列式的值.
例1 计算行列式
2 5 1 3 1 9 13 7 3 1 5 5 2 8 7 10
§2.5 2020/12/11 行列式的计算
8
四、矩阵的初等列变换
定义 数域P上的矩阵的初等列变换是指:
1) 以P中一个非零数k乘矩阵的一列;
kci
2) 把矩阵的某一列的k倍加到另一列,kP;ci kcj
3) 互换矩阵中两列的位置.
ci cj
矩阵的初等行变换与初等列变换统称为初等变换.
§2.5 2020/12/11 行列式的计算
9
注意:
计算行列式 A 时,也可对A作初等列变换, 把它化成列阶梯阵,从而算得行列式的值.
3
若矩阵 A ( a i j ) s n , a i j P , i 1 , 2 ,, s , j 1 , 2 ,, n 则说A为数域 P 上的矩阵.
特别地, 当 s=n 时, A(aij)nn称为n级方阵.
由 n 级方阵 A(aij)nn定义的 n 级行列式
a11 a12
a1n
a21 a22
第二章 行列式
§1 引言 §2 排列 §3 n 级行列式
§5 行列式的计算 §6 行列式按行(列)展开 §7 Cramer
§4 n 级行列式的性质 §8 Laplace定理 行列式乘法法则
2020/12/11
1
一、矩阵 二、矩阵的初等行变换 三、行列式的计算 四、矩阵的初等列变换
2020/12/11