云南省2018年1月普通高中学业水平考试(数学试卷)

合集下载

云南省2018年1月学业水平考试-物理试卷

云南省2018年1月学业水平考试-物理试卷

云南省2018年1月学业水平考试-物理试卷(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2018年1月云南省普通高中学业水平考试物理试卷选择题(共46分)一、选择题(本题包括10个小题,每小题分,共30分。

在每小题所给的四个选项中,只有一个选项符合题意,选对得3分,选错或不选得分)1.在国际单位制中,物理量的单位由基本单位和导出单位组成。

下列各组物理量的单位中全部属于力学基本单位的是:()A.米(m)、秒(s) B.牛(N,秒(s) C.千克(kg)、米/秒(m/s) D.米(m)、米秒(m/s) 2.为了使高速公路交通有序、安全。

在路旁立了许多交通标志。

如图所示,甲图是限速标志。

表示允许行驶的最大速度是120km/h;乙图是路线指示标志。

表示此处到楚雄还有119km。

上述两个数据的物理意义是:()A.120km/h是平均速度,119km是位移B.120km/h是平均速度,119km是路程C.120km/h是瞬时速度,119km 是位移D.120km/h是瞬时速度,119km 是路程3.两个大小分别是30N 和40N的共点力。

它们的合力大小可能是:()A.5N B.25N C.100N D.120N4.如图所示,物体在F=20N,方向水平向左的拉力作用下,沿水平面向左运动。

已知物体与水平面间的动摩擦因数μ=0.3,物体质量m=5kg,取g=10m/s²。

可知物体所受摩擦力为:()A.15N,水平向左 B.15N,水平向右C.20N,水平向左 D.20N,水平向右5.跳水运动是一项观赏性强,同时对运动员身体和姿态控制要求很高的奥运会比赛项目。

一名选手参加十米跳台比赛,在其下落过程中.下列选项中正确的是:()A.重力势能增加,动能增加 B.重力势能增加,动能减小C .重力势能减小,动能增加D .重力势能减小,动能减小6.下列关于万有引力定律221r m m G F =的说法,正确的是:( ) A .开普勒通过研究行星运动的规律发现了万有引力定律B .牛顿通过地月引力计算首先推算出了引力常量C .万有引力定律中引力常量G 的单位是N·m²/kg²D .研究微观粒子之间的相互作用时万有引力不能忽略7.如图所示,把一个小球放在玻璃漏斗中,晃动漏斗,可以使小球沿光滑的漏斗壁在某一水平面内做匀速圆周运动。

云南省月普通高中学业水平考试数学试卷

云南省月普通高中学业水平考试数学试卷

云南省2018年1月普通高中学业水平考试数学试卷【考试时间:2018年1月17日,上午8:30—10:10,共100分钟】[考生注意]:考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效.选择题(共57分)一、选择题:本大题共19个小题,每小题3分,共57分。

在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂。

1.已知集合{1,2,3}A =,{3,}B m =,若{1,2,3,4}A B =,则A B = ( )A.{1}B. {2}C. {3}D. {4}2. 某几何体的三视图如右图所示,则该几何体可以是 ( )A. 四棱锥B. 四棱住C. 三棱锥D. 三棱柱3.已知1sin(),3α-=-α是第一象限的角,则cos θ=( )4. 函数()1f x =的值域是 ( )5. 运行如图所示的程序框图,如果输入x 的值是2,则输出y 的值是( )6. 已知一个三角形的三边长依次是2,3,4,则这个三角形的最大内角的余弦值为( )7.如图所示,在正方体1111ABCD A B C D -中,异面直线11B D 与CD 所 成角的大小是( )8. 秦九韶是我国南宋时期杰出的数学家,在他的着作《数书九章》 中提出了在多项式求值方面至今仍然是比较先进的计算方法——秦九韶算法。

利用这种算法计算多项式5432()54321f x x x x x x =+++++当0.2x =时的值,需要进行的乘法运算的次数为( )9. 已知,D E 分别是ABC ∆的边,AB AC 的中点,则DE = ( )10.不等式 26x x ≥+的解集为( )11.函数()ln 3f x x x =+-的零点所在的区间是( )12.某市为开展全民健身运动,于2018年元旦举办了一场绕城长跑活动。

已知甲、乙、丙、丁四个单位参加这次长跑活动的人数分别是40人、30人、20人、10人。

现用分层抽样的方法从上述四个单位参加长跑的人员中抽取一个容量为20的样本,了解他们参加长跑活动的体会,则抽到甲、丁两个单位参加长跑活动的人数之和为 ( )13.若sin θθ==,则tan 2θ= ( ) 14. 设实数,x y 满足221x y x y x +≤⎧⎪≤⎨⎪≥-⎩,则2z x y =+的最小值为15.利用计算机随机产生一个一位正整数,则这个数能被3整除的概率为( )16.已知向量(2,)a m =,(1,1)b m =--。

2018年云南高中会考数学真题及答案

2018年云南高中会考数学真题及答案

2018年云南高中会考数学真题及答案(满分100分,考试时间120分钟)参考公式: 圆锥的侧面积公式Rl S π=圆锥侧,其中R 是圆锥的底面半径,l 是圆锥的母线长. 圆锥的体积公式S 31V =圆锥h , 其中S 是圆锥的底面面积,h 是圆锥的高.第Ⅰ卷一、选择题:(共20个小题,每小题3分,共60分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前 的字母按规定要求涂抹在“机读答题卡”第1—20题的相应位置上。

1. 设全集I {0,1,2,3}=,集合{0,1,2}M =,{0,2,3}N =,则=N C M I ( )A .{1}B .{2,3}C .{0,1,2}D .∅2. 在等比数列}{n a 中,,8,1685=-=a a 则=11a ( ) A. 4- B. 4± C. 2- D. 2±3. 下列四个函数中,在区间(0,)+∞上是减函数的是 ( )A .3log y x =B .3xy = C .12y x =D .1y x=4. 若54sin =α,且α为锐角,则αtan 的值等于 ( ) A .53B .53-C .34D .34-5.在ABC ∆中,,4,2,2π=∠==A b a 则=∠B ( )A.3π B. 6π C. 6π或65π D. 3π或32π6. 等差数列{}n a 中,若99=S ,则=+65a a( )A.0B.1C.2D.3俯视图7. 若b a c b a >∈,R 、、,则下列不等式成立的是 ( )A.b a 11< B.22b a > C.1122+>+c bc a D.||||c b c a > 8. 已知二次函数2()(2)1f x x =-+,那么 ( )A .(2)(3)(0)f f f <<B .(0)(2)(3)f f f <<C .(0)(3)(2)f f f <<D .(2)(0)(3)f f f <<9.若函数()35191x x f x x x +≤⎧=⎨-+>⎩,则()f x 的最大值为 ( ) A .9B .8C .7D .610.在下列命题中,正确的是 ( )A .垂直于同一个平面的两个平面互相平行B .垂直于同一个平面的两条直线互相平行C .平行于同一个平面的两条直线互相平行D .平行于同一条直线的两个平面互相平行 11.已知0x >,函数xx y 1+=的最小值是 ( ) A.1 B. 2 C. 3 D.4 12. 随机调查某校50个学生在“六一”儿童节的午餐费,结果如下表:这50( ) A.2.4,56.0 B.2.4,56.0 C.4,6.0 D.4,6.0 13. 下列命题中正确命题个数为 ( )○1⋅=⋅a b b a ○20,,⋅=≠⇒00a b a b = ○3⋅=⋅a b b c 且,,≠≠00a b 则=a c ○4,,,≠≠≠000a b c 则()()⋅⋅=⋅⋅a b c a b c A.0 B.1 C.2 D.314.函数x x y 2cos 2sin =是 ( )A .周期为2π的奇函数 B .周期为2π的偶函数 C .周期为π的奇函数 D .周期为π的偶函数15. 如图,一个空几何体的正视图(或称主视图)与侧视图(或称左视图)为全等的等边三角形,俯视图为一个半径为1的圆,那么这个几何体的全面积为( ) A .π B .3πC .2πD .3π+16.已知y x ,满足⎪⎩⎪⎨⎧≤-+≥≥.022,0,0y x y x 则y x z +=的最大值是 ( )A.1B. 1C. 2D.317.以点(2,-1)为圆心且与直线0543=+-y x 相切的圆的方程为 ( )A.3)1()2(22=++-y xB.3)1()2(22=-++y xC.9)1()2(22=++-y xD.9)1()2(22=-++y x 18. 已知()3,4=a ,()2,1=-b 且()()x +⊥-a b a b ,则x 等于 ( ) A.23 B.232 C.233 D.23419. 要得到函数)42sin(π-=x y 的图象,只要将函数x y 2sin =的图象 ( )A .向左平移4π个单位; B . 向右平移4π个单位;C .向左平移8π个单位; D .向右平移8π个单位。

云南省2020年1月普通高中学业水平考试数学试卷(精校版)

云南省2020年1月普通高中学业水平考试数学试卷(精校版)

机密★考试结束前 【考试时间:2020年1月8日,上午8:30-10:10,共100分钟】 云南省2020年1月普通高中学业水平考试数学 试卷【考生注意】:考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效。

参考公式:如果事件A 、B 互斥,那么P (A U B )= P (A )+ P (B )。

球的表面积公式:24R S π=,体积公式:334R V π=,其中R 表示球的半径。

村体的体积公式:Sh V =,其中S 表示柱体的底面面积,h 表示柱体的高。

锥体的体积公式:Sh V 31=,其中S 表示锥体的底面面积,h 表示锥体的高。

选择题(共57分)一、选择题:本大题共19个小题,每小题3分,共57分。

在每个小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应的位置上填涂。

1.已知集合S={0,1,2},T ={2,3},则S T=( )A.{0,1,2}B.{0,2}C.{0,1,2,3}D.{2}2.在等差数列{n a }中,23=a ,公差3=d ,则=3a ( )A.6B.8C.7D.93.已知两同心圆的半径之比为1 : 3,若在大圆内任取一点M ,则点M 在小圆内的概率为( ) A.31 B.61 C.81 D.91 4.已知向量a =(1,2),b =(-2,0),则b a ⋅的值等于( )A.-4B.-3C.-2D.15.某几何体的三视图如图所示,则该几何体的体积为( )A.πB.π2C.π3D.π46.如果直线01=-+my x 与直线012=++y x 垂直,那么m 的值为( )A. -2B.21C.2D. 21- 7. 000034sin 79cos 34cos 37sin -的值为( ) A. 1 B.23 C.22 D. 21 8.某人在5次上班途中所花的时间(单位:分钟)分别为y x ⋅,10, 11,9。

已知这组数据的平均数为10,则y x +的值为( )A.10B.16C.15D.209.在AABC 中, A 、B 、C 所对的边分别为a 、b 、c ,已知三个内角的度数之比A:B:C= 1:2:3,那么三边长之比a:b:c 等于( ) A.1:2:3 B.2:3:1 C.1:3:2 D. 3:2:1 10.若实数r,y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥,1,0,0y x y x 则y x z +=3的最大值等于( )A. 3B.2C.1D.21 11.某程序框图如图所示,运行后输出S 的值为( )A.10B.11C.14D.1612.函数62ln )(-+=x x x f 的零点位于区间( )A.(1,2)B.(2,3)C. (3,4)D.(4,5)13.如图,在正方体1111D C B A ABCD -中,对角线C A 1与平面ABCD 所成角的正弦值为( ) A. 23 B.22 C.36 D. 33 14. 已知54cos =θ,且θ为第四象限的角,则θtan 的值等于( ) A. 53 B.43- C.53- D. 34- 15.从1,2,3,4这四个数中,任意取两个数,两个数都是偶数的概率是( )A.61 B.41 C.31 D. 2116.函数x x f 2log )(=在区间[2,8]上的值域为( )A.(-∞,1]B.[2,4]C. [1,3]D.[1, +∞)17.函数x x x f cos sin )(+=在区间],0[π上的单调递增区间是( ) A. ]2,0[π B.],2[ππ C.]4,0[π D. ]2,4[ππ 18.已知函数⎩⎨⎧>≤=+.0,log ,0,3)(21x x x x f x 若3)(0>x f ,则0x 的取值范围是( ) A.80>x B.00<x 或80>xC.800<<xD.00<x 或800<<x19.若0,0>>b a ,点P(3,2)在直线4:=+by ax l 上,则ba 32+的最小值为( ) A.29 B.323+ C.34+ D. 6非选择题(共43分)二、填空题:本大题共4个小题,每小题4分,共16分.请把答案写在答题卡相应的位置上.20.昆明市某公司有高层管理人员、中层管理人员、一般员工共1000名,现用分层抽样的方法从公司的员工中抽取80人进行收入状况调查.若该公司有中层管理人员100名,则从中层管理人员中应抽取的人数为 。

云南省2018年1月普通高中学业水平考试(数学试卷)汇编

云南省2018年1月普通高中学业水平考试(数学试卷)汇编


3
2 A.
3
2 B.
3
22 C.
3
22 D.
3
4. 函数 f ( x) x 1的值域是 ( )
A. ( , 1)
B. ( , 1]
C. ( 1, )
D . [ 1,+ )
5. 运行如图所示的程序框图,如果输入 x 的值是 2,
则输出 y 的值是(

A. 0.4 C. 0.6
B. 0. 5 D. 0.7
所在平面外一点, D 是 PB 的中点。 (1). 求证: OD // 平面 PAC ;
(2). 若 PAC 是边长为 6 的正三角形, AB 10 , 且 BC PC ,求三棱锥 B PAC 的体积。
26(本小题满分 8 分)
已知函数 f (x) 3sin(2 x ) 1 3
(1) 求 f ( x) 的最小正周期和最大值;
D . 900
8. 秦九韶是我国南宋时期杰出的数学家,在他的著作《数书九章》 中提出了在多项式求值方面至今仍然是比较先进的计算方法——
秦九韶算法。利用这种算法计算多项式 f (x) 5x5 4x4 3x3 2x2 x 1当 x 0.2 时的值,需
要进行的乘法运算的次数为(

A. 5
B. 6
C. 8
D. 1 0
11.函数 f ( x) ln x x 3 的零点所在的区间是(

A. ( 0 , 1 B. ( 1, 2 C. ( 2 , 3 D. ( 3 , 4
12.某市为开展全民健身运动,于 2018 年元旦举办了一场绕城长跑活动。已知甲、乙、
丙、丁四个单位参加这次长跑活动的人数分别是 40 人、 30 人、 20 人、 10 人。现用分

云南省普通高中学业水平考试数学试卷

云南省普通高中学业水平考试数学试卷

云南省普通高中学业水平考试数学试卷The final edition was revised on December 14th, 2020.云南省2018年1月普通高中学业水平考试数学试卷【考试时间:2018年1月17日,上午8:30—10:10,共100分钟】[考生注意]:考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效.选择题(共57分)一、选择题:本大题共19个小题,每小题3分,共57分。

在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂。

1.已知集合{1,2,3}A =,{3,}B m =,若{1,2,3,4}A B =,则A B = ( )A.{1}B. {2}C. {3}D. {4}2. 某几何体的三视图如右图所示,则该几何体可以是( )A. 四棱锥B. 四棱住C. 三棱锥D. 三棱柱3.已知1sin(),3α-=-α是第一象限的角,则cos θ=( ) 4. 函数()1f x x =-的值域是 ( )5. 运行如图所示的程序框图,如果输入x 的值是2,则输出y 的值是( )6. 已知一个三角形的三边长依次是2,3,4,则这个三角形的最大内角的余弦值为( )7.如图所示,在正方体1111ABCD A B C D -中,异面直线11B D 与CD 所 成角的大小是( )8. 秦九韶是我国南宋时期杰出的数学家,在他的着作《数书九章》 中提出了在多项式求值方面至今仍然是比较先进的计算方法——秦九韶算法。

利用这种算法计算多项式5432()54321f x x x x x x =+++++当0.2x =时的值,需要进行的乘法运算的次数为( )9. 已知,D E 分别是ABC ∆的边,AB AC 的中点,则DE = ( )10.不等式 26x x ≥+的解集为( )11.函数()ln 3f x x x =+-的零点所在的区间是( )12.某市为开展全民健身运动,于2018年元旦举办了一场绕城长跑活动。

2018年云南省高中数学学业水平测试题分类汇编.Word版含答案

2018年云南省高中数学学业水平测试题分类汇编.Word版含答案

2018年云南省高中数学学业水平测试题分类汇编.考点1:集合的交、并、补与元素集合间的关系.1.设集合{},8,6,5,3=A 集合{},8,7,5,=B ,则B A 等于 ( ){}8,5).A ( {}8,6,3).B ( {}8,6,3).C ( {}8,7,6,5,3).D (2.已知全集{},3,2,1=U 集合{},1=M 则全集U 中M 的补集为 ( ) {}1).A ( {}2,1).B ( {}3,1).C ( {}3,2).D (3. 已知集合{},5,3,1=M {},1=N 则下列关系中正确的是 ( ) M N A ∈).( M N B ∉).( M N C =).( M N D ⊂)( 4. 已知全集{},5,4,3,2,1=U 集合{},5,4=M 则=M C U ( ) {}5).A ( {}5,4).B ( {}3,2,1).C ( {}5,4,3,2,1).D (5. 已知集合{},4,3,1=A {},6,4,1=B ,那么B A = ( ) {}5,2).A ( {}6,4,3,1).B ( {}4,1).C ( {}5,3,2).D (6.已知全集R U =,集合{}2|>=x x A ,则=A C U ( ){}1|).≤x x A ( {}1|).<x x B ( {}2|).<x x C ( {}2|).≤x x D ( 7.已知集合{},3,2,1,0=M {},4,3,1=N 那么=N M ( ) {}0).A ( {}1,0).B ( {}3,1).C ( {}4,3,2,1,0).D (8.设集合{},6,5,4,3,2,,1=M 集合{},6,4,2=N 则=N M ( ) {}6,5,4,2).A ({}6,5,4).B ({}6,5,4,3,2,1).C ( {}6,4,2).D (考点2:三视图及其与空间几何体的表面积、体积9.如图所示,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积为( )π3).A ( π4).B ( π5).C ( π6)D (10.有一个几何体的三视图如图所示,这个几何体是一个( ))A (棱台俯视图侧视图正视图俯视图侧视图正视图)C (棱柱 )D (圆台11.有一个几何体的三视图如下图所示,这个几何体是一个( ))A (棱台)B (棱椎 )C (棱柱 )D (圆椎12. 如图所示,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是( ))A (正方体 )B (圆椎 )C (圆柱 )D (半球13.某几何体的正视图与侧视图都是边长为1的正方形,且体积为1,则该几何体的俯视图可以是( )DCBA111111114.已知某几何体的直观图如下图,则该几何体的俯视图为( )DCBA15.一个空间几何体的正视图与侧视图为全等的正三角形,俯视图是一个半径为1的圆,那么这个几何体的体积为( )π32).A ( π2).B (π33).C ( π3)D ( 16.若一几何体的三视图如右图所示,则这个几何体可以是( )俯视图侧视图正视图俯视图侧视图正视图俯视图侧视图正视图侧视图正视图)B (空心圆柱 )C (圆 )D (圆椎考点3:平面向量(向量的加法、减法、数乘运算与坐标表示) 17.在平行四边形ABCD 中,=++CD AC AB ( ))A (AC )B (BD )C (DB )D (AD18. 已知向量a 、b ,b a b a 与,3||,4||==的夹角等060,则)()2(b a b a -⋅+等于( ))A (4- )B (4 )C (2- )D (219.设向量)1,1(01==OB OA ),,(,则向量OB OA ,的夹角为( ))A (o 30 )B (o 45 )C (o 60 )D (o 9020.在ABC ∆中,M 是BC 边上的中点,则向量AM 等于( ))A (AC AB - )B ()(21AC AB - )C (AC AB + )D ()(21AC AB + 21. .设向量)1,1(01==OB OA ),,(,则||AB 等于( ))A (1 )B (2 )C (2 )D (522. 在ABC ∆中,M 是BC 边上的中点,则AC AB +等于( ))A (AM 21)B (AM )C (AM 2 )D (MA 23. 在平行四边形ABCD 中,AC 与BD 交于点M ,则CM AB +=( ))A (MB )B (MB )C (DB )D (BD24. .已知向量)3,2(1,6--==CD AC ),(,则向量=AD ( ))A ()2,4(- )B ()4,8( )C ()4,2(- )D ()4,8(--25.在矩形ABCD 中,=-==||,1||,3||BC BA BC AB 则 ( ))A (2 )B (3 )C (32 )D (426.已知向量a 与b 的夹角为060,且,2||,2||==b a 则b a ⋅=( ))A (2 )B (22 )C (2 )D (2127. 已知向量)(2,1=a ,)1,x b (=,若b a ⊥,则=x . 28.已知向量θθθtan ,),cos ,1(),2,(sin 则且b a b a ⊥=-=的值为( ))A (2 )B (2- )C (21 )D (21- 29.已知AD 是ABC ∆的一条中线,记向量b AC a AB ==,,则向量AD 等于( ))A ()(21b a +- )B ()(21b a + )C ()(21b a - )D ()(21a b -30. 已知向量)(2,1=a ,)1-,x b (=,若b a ⊥,则实数x 的值为( ))A (2- )B (1 )C (1- )D (231如图,在ABC ∆中,M 是BC 边上的中点,若AC AB +=AM λ,则实数λ= .考点4:三角函数的图象变换32.已知函数)7cos(31π+=x y 的图象为C ,为了得到函数)7cos(31π-=x y 的图象只需把C 上的所有的点( ))A (向右平行移动7π个单位长度 )B (向左平行移动7π个单位长度)C (向右平行移动72π个单位长度 )D (向左平行移动72π个单位长度 33.为了得到函数x y 31sin =的图象,只需把函数x y sin =图象上所有的点( ))A (横坐标伸长到原来的3倍,纵坐标不变 )B (横坐标缩小到原来的31倍,纵坐标不变)C (纵坐标伸长到原来的3倍,横坐标不变 )D (纵坐标缩小到原来的31倍,横坐标不变34.要得到函数)3sin π+=x y (的图象,只需将函数x y sin =的图象( ))A (向左平移6π )B (向右平移6π )C (向左平移3π )D (向右平移3π 35. 为了得到函数)(63sin π+=x y 的图象,只需把函数)(6sin π+=x y 图象上所有的点MCBA( ))A (横坐标伸长为原来的3倍,纵坐标不变 )B (横坐标缩短为到原来的31倍,纵坐标不变)C (纵坐标伸长为原来的3倍,横坐标不变 )D (纵坐标缩短到原来的31倍,横坐标不变36.已知函数R x x x y ∈+=,cos sin . (1)求函数)(x f 的最小正周期和最大值;(2)函数)(x f y =的图象可由x y sin =的图象经过怎样的变换得到?考点5:算法之程序框图、算法语言 37.已知一个算法,果是( ))A (7 )B (9 )C (11 )D (1338.当输入的x 值为3时,下边的程序运行的结果等于( ))A (3- )B (3 )C ( )D (39.已知一个算法,其流程图如下图所示,若输入4,3==b a ,则输出的结果是 .x 输出值是 . 其流程图如图,,则输出的结果是( ))A (10 )B (11 )C (8 )D (942. 已知一个算法,其流程图如图,则输出的结果是( ))A (2 )B (5 )C (25 )D (2643. 已知一个算法,其流程图如图,则输出的结果是( )3)A ( )B (1143)C ( )D (17144. 一个算法的程序框图如图,当输入的x 的值为2-时,输出的y 值为( ))A (2- )B (1 )C (5- )D (345.运行右图的程序框图,则输出a 的值是图,若输的值考点6:直线的方程、直线与直线的位置关系47.过点)3,1(-P ,且平行于直线0142=+-y x 的直线方程为)B (0142=+-y x)C (072=+-y x )D (052=--y x48.已知直线的点斜式方程是21-=+x y ,那么此直线的斜率为( ))A (41)B (31 )C (21)D (149.直线01=++y x 的倾斜角是( ))A (1- )B (4π-)C (4π)D (43π 50.斜率为,2-在y 轴的截距为3的直线方程是( ))A (032=++y x )B (032=+-y x )C (03-2=-y x )D (032=-+y x51.直线012=+-y x 与直线)1(21+=-x y 的位置关系是( ))A (平行 )B (垂直 )C (相交但不垂直 )D (重合52.直线l 过点)2,3(且斜率为4-,则直线l 的方程是( ))A (0114=-+y x )B (0144=-+y x )C (054=+-y x )D (0104=-+y x53.经过点)0,3(B ,且与直线052=-+y x 垂直的直线方程是( ))A (062=--y x )B (032=+-y x )C (032=-+y x )D (032=--y x54.已知直线l 过点)7,0(,且与直线24+-=x y 平行,则直线l 的方程为( ))A (74--=x y )B (74-=x y )C (74+-=x y )D (74+=x y考点7:圆的方程55.过点)2,2(-M 以及圆0522=-+x y x 与圆222=+y x 交点的圆的方程是( ))A (02141522=--+x y x )B (02141522=+-+x y x )C (02141522=-++x y x )D (02141522=+++x y x56.圆03222=--+x y x 的圆心坐标及半径为( ))A (20,1-)与( )B (30,1)与( )C (20,1)与( )D (30,1-)与( 57.圆心为点)0,1(,且过点)1,1(-的圆的方程为 . 考点8:直线与圆的位置关系58.已知直线l 过点点)3,4(P ,圆25:22=+y x C ,则直线l 与圆的位置关系是( ))A (相交 )B (相切 )C (相交或相切 )D (相离59. 已知直线l 过点点)1,3(P ,圆4:22=+y x C ,则直线l 与圆C 的位置关系是( ))A (相交 )B (相切 )C (相交或相切 )D (相离60.直线0=-y x 被圆122=+y x 截得的弦长为( ))A (2 )B (1 )C (4 )D (261.下列直线方程中,不是圆522=+y x 的切线方程的是( ))A (032=++y x )B (052=--y x )C (052=+-y x )D (052=+-y x62.已知圆C :02422=+-++a y x y x ,直线03:=--y x l ,点O 为坐标原点. (1)求过圆C 的圆心且与直线l 垂直的直线m 的方程;(2)若直线l 与圆C 相交于点M 、N 两点,且ON OM ⊥,求实数a 的值.:x ε直线1:=x l 与圆C :0222=-+y y x 的位置关系是 .63.已知圆522=+y x 与直线02=--m y x 相交于不同的A 、B 两点,O 为坐标原点. (1)求m 的取值范围;(2)若OB OA ⊥,求实数m 的值.64.已知圆C :012822=+-+y y x 和直线02:=++m y mx l . (1)当m 为何值时,直线l 与圆C 相切,(2)若直线l 与圆C 相交于A 、B 两点,且22||=AB ,求直线l 的方程.考点9:几何概型64.一个长、宽分别为3和1的长方形内接于圆(如下图),质地均匀的粒子落入图中(不计边界),则落在长方形内的概率等于( ))A (π3 )B (3π)C (π43)D (π 65.在如图以O 为中心的正六边形上随机投一粒黄豆,则这粒黄豆落到阴影部分的概率为( ))A (61)B (31)C 21 )D (3266.如图,在边长为2的正方形内有一内切圆,现从正形内任取一点P,则点P 在圆内的概率为( ))A(44π- )B (π4)C (4π)D (πAB AD 31=,67.如图,在ABC ∆中,D 是AB 边上的点,且连接CD .现随机丢一粒豆子在ABC ∆内,则它落在阴影部分的概率是( ))A (41)B (31)C (21 )D (3268.如图,在半径为1的圆中有封闭曲线围城的阴影区域,若在圆中随机撒一粒豆子,它落在阴影区域内的概率为π41,则阴影区域的面积为( ))A (43 )B (41 )C (π41 )D (π4369.如图,向圆内随机掷一粒豆子(豆子的大小忽略不计),则豆子恰好落在圆的内接正方形中的概率是( ))A (π3 )B (π2)C (π4 )D (5π71.已知两个同心圆的半径之比为1:2,若在大圆内任取一点P ,则点P 在小圆内的概率为( )(第66题)(第67题)(第68题))A (21 )B (31 )C (41)D (81考点10:古典概型72.甲、乙等5名同学按任意次序排成一排,甲站中间且乙不站两边的概率为( ))A (201 )B (101 )C (52 )D (54 73.先后抛掷一枚质地均匀的硬币,则两次均正面向上的概率为( ))A (41 )B (21 )C (43 )D (174.同时抛掷两枚质地均匀的硬币,则两枚硬币均正面向上的概率为( ))A (41 )B (21 )C (43 )D (175.三个函数:x y x y x y tan ,sin ,cos ===,从中随机抽出一个函数,则抽出的函数是偶函数的概率为( ) )A (31 )B (0 )C (32 )D (176.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是 .77.将一枚质地均匀的骰子抛掷1次,出现的点数为偶数点的概率为( ))A (1 )B (21 )C (31 )D (6178.有甲、乙、丙、丁4个同学,从中任选2个同学参加某项活动,则所选2人中一定含有甲的概率为 .79.同时掷两枚质地均匀的硬币,则至少有一枚出现正面的概率是( ))A (1 )B (43 )C (21 )D (4180.小王从装有2双不同手套的抽屉里,随机地取出2只,取出的手套都是左手的概率是( ))A (61 )B (52)C (51 )D (31考点11:函数的零点81.函数23)(x x f x -=的零点所在的区间是( ))A ()1,0( )B ()0,1(- )C ()2,1( )D ()1,2(--82.函数1)(-=x x f 的零点是( ))A (0 )B (1- )C ()0,0( )D ()0,1(83.函数1+=x y 的零点是( ))A (0 )B (1 )C ()0,0( )D ()0,1(-84. .函数632)(-+=x x f x 的零点所在的区间是( ))A ()1,0( )B ()2,1( )C ()3,2( )D ()0,1(-85.若函数a x x x f 32)(2++=存在零点,则实数a 的取值范围是( ))A ()31,(-∞ )B (),31(+∞ )C ( ⎝⎛⎥⎦⎤∞-31, )D ()⎢⎣⎡∞+,3186.如果二次函数3)(2+++=m mx x x f 有两个不同的零点,那么实数m 的取值范围是( ))A (),6()2,(+∞⋃--∞ )B ()6,2(- )C ()6,2( )D ([]6,2-87.函数1ln )(-=x x f 的零点所在的区间为( ))A ()3,2( )B ()4,3( )C ()1,0( )D ()2,1(88.下列图象表示的函数能用二分法求零点的是( )考点12:三角函数89.计算:0225sin 的值为( ))A (22 )B (22- )C (23-)D (21- 90.已知函数2)cos (sin 2123x x y --=. (1)求它的最小正周期和最大值; (2)求它的递增区间.90.在ABC ∆中,已知21cos =A ,则=A ( ) )A (030 )B (060 )C (0120 )D (015091.若,2tan =α则α2cos 等于( ))A (53- )B (53 )C (54- )D (5492.计算:000015cos 45cos 15sin 45sin -的值为 . 93.已知函数,1cos sin 2)(-=x x x f (1)求)4(πf 的值及)(x f 的最小正周期;(2)求)(x f 的最大值和最小值.94.下列函数中,以2π为最小正周期的是( ) 2sin)x y A =( )B (x y sin = )C (x y 2sin = )D (x y 4sin = 95.花简=-)sin(x π 96.已知函数x x x f 22sin cos )(-=. (1)求)4(πf 的值及)(x f 的最大值;(2)求)(x f 的递减区间.97. 若3tan =θ,则θ2cos 等于( ))A (54)B (53 )C (54- )D (53-98.已知扇形的圆心角为6π,弧长为32π,则该扇形的面积为 .99.已知)2,0(),cos ,(sin ),1,1(π∈==x x x b a(1)若b a //,求x 的值;(2)若函数b a x f ⋅=)(,当x 为何值时,)(x f 取得最大值,并求出这个最大值..100:已知函数x x f cos )(=,则下列等式正确的是( ))A ()()(x f x f =-π )B ()()(x f x f =+π)C ()()(x f x f =- )D ()()2(x f x f -=-π 101.=0390cos ( ))A (23 )B (22 )C (21 )D (21- 102. 已知函数).62sin(2)(π+=x x f .(1)求函数)(x f 的最小正周期及函数)(x f 取最小值时x 的取值集合;(2)画出函数)(x f 在区间⎥⎦⎤⎢⎣⎡-121112ππ,上的简图.103.=-02025.22sin 5.22cos ( ))A (22 )B (21 )C (22-)D (21- 104.已知α为第二象限的角,53sin =α,则=αtan ( ))A (43 )B (34 )C (34- )D (43- 105.若x x f 3cos )(cos =,那么)70(sin 0f 的值为 ))A (23-)B (23 )C (21- )D (21106.已知α为第二象限的角,54sin =α,则α2sin 的值为 . 107.已知函数.,cos sin )(R x x x x f ∈+= (1)求函数)(x f 的最小正周期和最大值;(2)函数)(x f y =的图象可由x y sin =的图象经过怎样的变换得到? 108.4cos4sinππ的值为( ))A (21)B (22 )C (42 )D (2109.已知函数)221cos(2)(π+=x x f ,则)(x f 是 ( ))A (最小正周期为π4的奇函数)B (最小正周期为π4的偶函数 )C (最小正周期为2π的奇函数)D (最小正周期为2π的奇函数 110.已知0tan <x ,且0cos sin >-x x ,那么角x 是( ))A (第一象限的角 )B (第二象限的角)C (第三象限的角 )D (第四象限的角考点12:解三角形(正弦定理、余弦定理、三角形面积公式)111.在ABC ∆中,B A ∠∠、、C ∠所对的边长分别是53、、7,则C ∠cos 的值为( ))A (3015 )B (3015- )C (42215 )D (70359112.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,若0135=A ,030=B ,2=a ,则b 等于( ))A (1 )B (2 )C (3 )D (2113. 在ABC ∆中,B A ∠∠、、C ∠所对的分别是a 、b 、c ,其中4=a ,3=b ,060=∠C ,则ABC ∆的面积为( ))A (3 )B (33 )C (6 )D (36114. 在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且030=A ,045=B ,3=a ,则b 等于( ))A (2 )B (22 )C (23 )D (24115. 在ABC ∆中,ac c a b 3222=--,则∠B 的大小为( ))A (030 )B (060 )C ( 0120 )D (0150116.在锐角ABC ∆中,内角内角A 、B 、C 的对边分别为a 、b 、c ,若045=C ,54=b ,552sin =B . (1)求c 的值; (2)求A sin 的值117. 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 所对的边,且2=a ,2=b ,045=A ,则角B 等于( ))A (030 )B (060 )C (030或0150 )D (060或0120118. 在ABC ∆中,内角内角A 、B 的对边分别为a 、b ,若060=A ,3=a ,030=B ,则b = . 119. 在ABC ∆中,(1)若三边长a 、b 、c 依次成等差数列,4:3sin :sin =B A ,求角C 的度数; (2)若22)(c a b BC BA --=⋅,求B cos 的值.考点13:线性规划120.已知实数x 、y 满足⎪⎩⎪⎨⎧≥+≥≥3300y x y x ,则y x Z +=的最小值等于( ))A (0 )B (1 )C (2 )D (3121.若实数x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≤≤02-221y x y x ,则y x Z 3+=的最大值等于 .122. 若实数x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥+≤0203y x y x x ,则y x Z -=2的最小值是 .123.已知x 、y 满足条件⎪⎩⎪⎨⎧≥-+≤≤0111y x y x ,则y x Z +=3的最大值为 .124. 若实数x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+02y y x y x ,则目标函数y x Z -=2的最大值是 .125. 已知x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+001y x y x ,则x y Z -=的最大值为( ))A (1 )B (0 )C (1- )D (2-126.两个非负实数x 、y 满足33≤+y x ,则y x Z +=的最小值为 . 考点14:函数(三要数、奇偶性、单调性、基本初等函数及其应用) 127.函数31)(-+=x x x f 的定义域是( ))A ([)+∞-,1 )B ((]1,-∞- )C ([)+∞,3 )D ([]3,1- 128.若函数3)12)(x m x f -=(是冥函数,则=m . 129.关于x 的二次函数m x m mx x f 41)1(2)(2+++=的图象与x 轴没有公共点,则m 的取值范围是 (用区间表示).130.一个圆柱形容器的底部直径是cm 6,高是cm 10,现以每秒s cm /2的速度向容器内注入某种溶液.(1)求容器内的溶液的高度x 关于注入溶液的时间ts 的函数关系; (2)求此函数的定义域和值域.131.设3.055,3.0,1===c b a ,则下列不等式中正确的是( ))A (c b a >> )B (c a b >> )C (b a c >> )D (b c a >>132.已知函数||)(x x f =,则下列说法正确的是( ) )A ()(x f 是奇函数,且在),(∞+0上是增函数 )B ()(x f 是奇函数,且在),(∞+0上是减函数 )C ()(x f 是偶函数,且在),(∞+0上是增函数 )D ()(x f 是偶函数,且在),(∞+0上是减函数 133.函数)10(log )(≠>=a a x x f a 且在区间[]8,2上的最大值为6,则=a . 134.某城市有一条长为km 49的地铁新干线,市政府通过多次价格听证,规定地铁运营公司按以下函数关系收费,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<≤<≤<≤<≤<≤<=)4936(,7)3625(,6)2516(,5)169(,4)94(,3)40(,2x x x x x x y ,其中y 为票价(单位:元),x 为里程(单位:km 元). (1) 某人若乘坐该地铁km 5,该付费多少元?(2) 甲、乙两人乘坐该地铁分别为km 25、km 49,谁在各自的行程内每km 得价格较低?135.已知函数3)(x x f -=,则下列说法中正确的是( ) )A ()(x f 为奇函数,且在),(∞+0上是增函数 )B ()(x f 为奇函数,且在),(∞+0上是减函数 )C ()(x f 为偶函数,且在),(∞+0上是增函数 )D ()(x f 为偶函数,且在),(∞+0上是减函数 136.函数x y x 2log 2+=在区间[]4,1上的最大值是 .137.某商场的一种商品每件进价为10元,据调查知每日销售量m (件)与销售单件x (元)之间的函数关系为,70x m -=7010≤≤x .设该商场日销售这种商品的利润为元)(y . (单件利润=销售单价-进价;日销售利润=单件利润⨯日销售量) (1)求函数)(x f y =的解析式;(2)求该商场销售这种商品的日销售利润的最大值.138.偶函数)(x f 在区间[]1,2--上单调递减,则函数)(x f 在区间[]2,1上( ))A (单点递增,且有最小值)1(f )B (单点递增,且有最大值)1(f )C (单点递减,且有最小值)2(f )D (单点递减,且有最大值)2(f139.函数)3(log )5.0-=x x f (的定义域是 ( ))A ([)+∞,4 )B ((]4,∞-)C (()+∞,3)D ((]4,3140.在直角梯形ABCD 中,DC AB //,BC AB ⊥,且,2,4===CD BC AB 点M 为线段AB 上的一动点,过点M 作直线AB a ⊥.令x AM =,记梯形位于直线a左侧部分的面积)(x f S =.(1)求函数)(x f 的解析式; (2)作出函数)(x f 的图象.141.已知函数2)(+=mx x f ,当[]2,0∈x 时,0)(>x f 都成立,则m 的取值范围是 .142.下列函数中,为偶函数的是 ( ))A (x y lg = )B (2x y = )C (3x y = )D (1+=x y143.函数 x x f )21()(=在区间[]1,2--上的最小值为 .144.已知函数⎩⎨⎧<-≥+=.0),4(,0),4()(x x x x x x x f 则)(x f 的奇偶性为( )aDCBMA)A (奇函数 )B (偶函数 )C (既是奇函数又是偶函数 )D (非奇非偶函数145.已知函数⎩⎨⎧<+-≥-=1,11,1)(x x x x x f .(1)在给定的直角坐标系中作出函数)(x f 的图象;(2)求满足方程4)(=x f 的x 的值.146.54log 5log 3log 232+⋅的值为( ) )A (25 )B (52 )C (2 )D (21147.已知)(x f 是定义在R 上的偶函数,且在区间(]0,∞-上为减函数,则)1(f 、)2(-f 、)3(f 的大小关系是( ))A ()3()2()1(f f f >-> )B ()3()1()2(f f f >>- )C ()2()3()1(-<<f f f )D ()3()2()1(f f f <-<148. 已知函数⎩⎨⎧≥-<=.5),1(,5,2)(x x f x x f x ,那么)6(f 的值为 .149.2016年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y (万元)与总产量x (吨)之间的关系可表示为.902102+-=x x y (1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2016年获得利润的最大值.150.下列函数中,在区间)0(∞+,上为增函数的是( ))A (x⎪⎭⎫⎝⎛31 )B (x y 3log = )C (x y 1= )D (x y cos =151.定义:对于函数)(x f ,在使M x f ≥)(成立的所有常数M 中,我们把M 的最大值叫做函数)(x f 的下确界,例如函数x x x f 4)(2+=的下确界是4-,则函数)0(||2)(2≠+=x x x x g 的下确界是 ( ))A (2- )B (22 )C (2 )D (23-152.已知函数)0,()(≠+=a b a bax xx f 为常数,且满足条件:x x f f ==)(,1)2(有唯一解. (1)求函数)(x f 的解析式; (2))]3([-f f 的值.考点15:数列(等差数列、等比数列及其简单应用)153.已知等比数列{}n a 中, 2,1641=-=a a ,则数列{}n a 的前4项的和4S 等于( ))A (20 )B (20- )C (10 )D (10-154.已知数列{}n a 中,)2(43,1,322121≥-===--n a a a a a n n n . (1)求3a 的值;(2)证明: {}1--n n a a ()2≥n 是等比数列; (3)求数列{}n a 的通项公式.155.已知数列{}n a 满足:)2(14,2111≥+==-n a a a n n . (1)求321a a a ++;(2)令31+=n n a b ,求证数列{}n b 是等比数列;(3)求数列{}n b 的前n 项和n T .156.已知数列{}n a 是公比为实数的等比数列, 且9,151==a a ,则3a 等于( ))A (2 )B (3 )C (4 )D (5157. .已知正项数列{}n a 的前n 项和为n S , 且)()1(41*2N n a S n n ∈+=. (1)求21,a a ;(2)求证:数列{}n b 是等差数列;(3)令19-=n n a b ,问数列{}n b 的前多少项的和最小?最小值是多少?158. 已知递增等比数列{}n a 满足:14432=++a a a 且13+a 是42,a a 的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求使63<n S 成立的正整数n 的最大值.159.已知数列{}n a 的首项12,111+==+nn a a a 又,则这个数列的第四项是( ) )A (711 )B (511 )C (1121 )D (6 160.已知等比数列{}n a 中,16,241==a a . (1)求公比q ;(2)若数列{}n b 为等差数列,且满足332285,1a b a b =-=,求数列{}n b 的通项公式;(3求数列{}n n b a ⋅的前n 项和n T .161.已知等差数列{}n a 中,6,421==a a ,则=4S ( ))A (18 )B (21 )C (28 )D (40162.设等比数列{}n a 的前n 项和为n S ,已知14,231==S a ,若0>n a ,则公比=q . 163. 若等差数列{}n a 中,6,251==a a ,则公差d 等于 ( ))A (3 )B (2 )C (1 )D (0164.已知数列{}n a 中,为常数)m c m ca a a n n ,(,311+==+. (1)当1,1==m c 时,求数列数列{}n a 的通项公式n a ; (2)当1,2-==m c 时,证明:数列数列{}1-n a 为等比数列; (3在(2)的条件下,记n n n n b b b S a b +⋅⋅⋅++=-=21,11,证明:1<n S .165.设等差数列{}n a 前n 项和为n S ,若58215a a a -=+,则=9S ( ))A (18 )B (36 )C (45 )D (60166. 在等比数列{}n a 中,已知0>n a ,,1082=a a 则=5a .考点16:基本不等式(①ab b a 2≥+;②22⎪⎭⎫⎝⎛+≤b a ab )167.若,0<x 则xx 1+的最大值为( ) )A (4- )B (3- )C (2- )D (1-168.已知,0>ab 则baa b +的最小值为( ) )A (1 )B (2 )C (2 )D (22169.若正数a 、b 满足8++=b a ab ,则ab 的取值范围是( ))A (]16,1( )B ()16,4[ )C (]16,4[ )D (),16[+∞考点17:抽样方法、统计、进位制、秦九韶算法、辗转相除法(更相减损术)170.某单位有甲、乙、丙三个部门,分别有职员27人、63人、和81人,现按分层抽样的方法从各部门中抽取组建一个代表队参加上级部门组织的某项活动;其中乙部门抽取7人,则该单位共抽取 人.171.甲、乙两位射击选手10次射击所的成绩,经计算得各自成绩的标准差分别为92.1,29.1==乙甲和S S ,则 成绩稳定.172.化二进制数为十进制数:=)(2101 .173.如图是运动员在某个赛季得分的茎叶图,则该运动员的平均分为 .174.如图是运动员在某个赛季得分的茎叶图,则该运动员得分的中位数是( ))A (2 )B (3 )C (22 )D (23175.已知1)(2345+++++=x x x x x x f ,用秦九韶算法计算)3(f 的值时,首先计算的最内层括号内一次多项式1v 的值是( ))A (1 )B (2 )C (3 )D (4176.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量=n .177.已知一组数据如图所示,则这组数据的中位数是( ) )A (5.27 )B (5.28 )C (27 )D (28178.样本数据:2,4,6,8,10的标准差为( ))A (40 )B (8 )C (102 )D (22179.某学校学生高一年级有600人,高二年级有400人,高三年级有200人,现采用分层抽样的方法从这三个年级中抽取54人,则从高三年级抽取的学生人数为 人. 180.已知某个样本数据的茎叶图如下,则该样本数据的平均数 是 .181.如图是某个学校举行歌唱比赛时七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和去掉一个最低分后,所剩数据的中位数和平均数依次是( ) )A (86,87 )B (85,83 )C (85,88)D (86,82182.把十进制数34化为二进制数位( ))A (101000 )B (100100 )C (100001 )D (100010183.某大学有A 、B 、C 三个不同校区,其中A 校区有4000人,B 校区有3000人,C 校区有2000人,采用分层抽样的方法,从中抽取900人参加一项活动,则A 、B 、C 校区分别抽取( ))A (人人,人200300,400 )B (人人,人250300,350 )C (人人,人350300,250 )D (人人,人400300,200 184.某校有男生450人,女生500人,现用分层抽样的方法从全校学生中抽取一个容量为95的样本,则抽出的男生人数是( ))A (45 )B (50 )C (55 )D (60185.有一个容量为100的样本,其频率分布直方图如图所示.根据样本的频率分布直方图可得,样本数据落在区间]12,10[内的频数是( ))A (9 )B (18)C (27 )D (38186.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队的平均每场进球数为 3.2,全年比赛进球个数的标准差为3;乙队的平均每场进球数为1.8,全年比赛进球个数的标准差为0.3,.下列说法正确的个数为( )①甲队的技术比乙队好 ②乙队发挥比甲队稳定 ③甲队的表现时好时坏)A (0 )B (3 )C (2 )D (1187.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过一定时间后,再从该鱼池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中鱼的数量既不减少,也不增加),则鱼池中大约有鱼( ))A (条120 )B (条1000 )C (条130 )D (条1200188. 把二进制数)(2101化为十进制数位 . 考点18:立体几何(线线、线面、面面关系)189.如图,在正方体1111D C B A ABCD 中,E 、F 分别为1AD 、1CD 的中点.(1)求证:ABCD EF平面//;(2)求两异面直线BD 与1CD 所成角的大小.FED 1C 1B 1A 1DCA190.如图,在长方体1111D C B A ABCD -中,,1==AD AB 21=AA .(1)求证:ABCD C A 平面//11;(2)求1AC 与平面ABCD 所成角的正切值.191.如图所示,在三棱椎ABC P -中,E 、F 分别为AC 、BC 的中点.(1)求证:PAB EF 平面//;(2)若CB CA PB PA ==,,求证:PC AB ⊥.192. 如图,在正方体1111D C B A ABCD -中,E 、F 分别为1DD 、1CC 的中点.(1)求证:1BD AC ⊥;(2)1//BFD AE 平面.193. 如图,在正方体1111D C B A ABCD -中,E 为1DD 的中点.(1)证明:AC BD ⊥1;D 1C 1B 1A 1DCBAFED 1C 1B 1A 1DCAED 1C 1B 1A 1DCP(2)证明:ACE BD 平面//1.194.如图,AB 是ʘO 所在平面外一点,PA 垂直与ʘO 所在的平面,且,10==AB PA 设点C 为ʘO 上异于A 、B 的任意一点. (1)求证:PAC BC 平面⊥;(2)若6=AC ,求三棱锥PAB C -的体积.195.如图,在四棱锥ABCD P -中,底面是正方形,ABCD PD 平面⊥,且AD PD =.(1)求证:CD PA ⊥;(2)求异面直线PA 与BC 所成角的大小.196. 如图,在正方体1111D C B A ABCD -中,E 、F 别为AD 、AB 的中点.(1)求证:11//D CB EF 平面; (2)求证:1111D CB C CAA 平面平面⊥.FED 1C 1B 1A 1D CBA。

云南省2018年7月普通高中学业水平考试(数学试卷)

云南省2018年7月普通高中学业水平考试(数学试卷)


三、解答题:本大题共 4 小题,第 24 题 5 分,第 25 题 6 分,第 26 题 8 分,第 27 题
8 分,共 27 分. 解答应写出文字说明、证明过程或演算步骤.
24.(本小题满分 5 分)已知向量 a (sin 2x,1),b (3,1) ,记函数 f (x) a b, x R 。

数学试卷 第 1 页 (共 5 页)
A. 132 B.66 C.110
D.55
9. 在 ABC 中,a,b, c 分别为角 A,B,C 的对边,若 A 30,b 1.c 2 ,则 a 等于(

A. 1
B. 3 C. 2
D. 7
10.某程序框图如图所示,运行后输入 n 的值为( )
)
A. (1,3)
B. (,1) (3,)
C. (3,1)
D. (,3) (1,)
17. 下表记录了某厂节能降耗技术改造后的产量 x(吨)与相应的耗能 y(千瓦)几组
数据:
x
2
3
5
6
y
1.5
t
4
4.5
数学试卷 第 2 页 (共 5 页)
根据上表数据求出 y 关于 x 的线性回归方程为 yˆ 0.7x 0.2 ,则表中的 t 的值为(

A. 3 B. 2.6 C.2.3 D.2
18.已知 x 0, y 0 ,若 x y 1,则 1 的最小值为(

xy
A. 4
B. 1
C. 2
D. 1
4
2
x , x 1,
19.
已知函数
f (x)
,若
log2 (x 1), x 1

云南省2018年1月普通高中学业水平考通用技术试题含答案精品

云南省2018年1月普通高中学业水平考通用技术试题含答案精品

云南省2018年1月普通高中学业水平考试通用技术试卷一、选择题(本题共20小题。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

每小题3分,共60分)1.经过近 50 年的治理,我国将曾经“黄沙遮天无飞鸟”的塞罕坝从沙漠变成了森林。

2017 年 12 月,联合国向该治理项目颁发了全球最高级别的“地球卫士奖”,以表彰中国对全球环境所作出的贡献。

该案例说明A.技术因人而生,人类能根据自己的需要控制自然B.技术是自然而然产生的,并不是人类的创造C.技术是人类创造的,人类的力量已经超越了自然D.技术是人类为了满足自身的需要和愿望对自然进行的改造2.如图所示是一款智能勺子,勺柄上的液晶屏能够数显重量和温度,便于掌握烹饪时调味品的用量和火候,但由于内置了精密传感器,用后不能水洗。

以下关于该智能勺子的说法,不正确的是A.能够数显重量和温度,体现技术的创新性B.便于掌握烹饪时调味品的用量和火候,体现技术的目的性C.外部有液晶屏,内部有精密传感器,体现技术的综合性D.由于内置了精密传感器,用后不能水洗,体现技术的两面性3.关于科学与技术,下列说法不正确的是A.科学是系统化的自然知识B.科学是理论基础,指引技术发展C.技术的任务是改造世界D.科学与技术是辩证统一的4. 为了更好地预防交通事故,交管部门规定:从 2018 年 1 月 1 日起,所有上路行驶的机动车,车内必须配备反光背心。

从实现合理人机关系的角度分析,该规定主要考虑了A.静态的人与动态的人B.普通人群与特殊人群C.信息交互与人机对话D.人的生理需求与心理需求5.以下关于提高产品“性价比”的说法,正确的是A.在功能不变的前提下提高成本B.在价格不变的前提下增加功能C.在增加功能的同时增加成本D.以上说法都不正确6.通用技术课上,同学们为探究结构横截面形状对结构承重能力的影响,设计了以下试验:取一张同一种规格的纸,通过折叠、曲卷等操作,制作出不同的造型,再放在间隔为 10cm 的两叠书之间,分别测试纸张所能承受的重量。

云南省2018年7月普通高中学业水平考试数学试卷

云南省2018年7月普通高中学业水平考试数学试卷

云南省2019年1月普通高中学业水平考试数学试卷奎香中学高二数学期中试题 班级 姓名参考公试:如果事件,A B 互斥,那么()()()P A B P A P B =+U 。

球的表面积公式:24S R π=,体积公式:343V R π=,其中R 表示球的半径。

柱体的体积公式:V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高。

锥体的体积公式:13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高。

选择题(共57分)一.选择题:本大题共19小题,每小题3分,共57分。

在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置填涂。

1. 已知集合{}{}1,0,1, 0,2A B =-=,则A П B 等于 . A ∅ {}. 0B {}. 1,0C - {}. -1,0,1D2. 在区间[2,1]-内任取一个数,则取到正数的概率为1. 3A 1. 2B 2. 3C . 1D3. 函数1()f x x x =+是A .偶函数 B. 奇函数C. 既是奇函数又是偶函数D. 既不是奇函数也不是偶函数 4. 0sin 210等于.2A . 2B - 1. 2C 1. 2D -5. 下列函数中,在区间(0,)+∞上为增函数的是1. y=()2x A 1. B y x = 3. log C y x = . cos D y x =6. 如果直线10ax y +-=与直线20x y ++=平行,那么a 等于. 1A - . 1B . 2C - . 2D 7. 函数2ln y x x=-的零点所在区间为. (0,1)A . (1,2)B . (2,3)C . (3,4)D8. 设等差数列{}n a 的前n 项和为n S ,10a =,43a =,则11S 等于. 132A . 66B . 110C . 55D9. 在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若060, 1, 2A b c ===,则a 等于. 1A . 3B . 2C . 7D 10.某程序框图如图所示,运行后输出n 的值为 . 2A . 3B . 4C . 5D 11. 将函数sin y x =的图象向左平移5π个单位长度,得到的函数图象解析式为. sin()5A y x π=+ . sin()5B y x π=-. sin 5C y x π=+. sin 5D y x π=-12. 各项都为正的等比数列{}n a 中,11a =,2416a a =, 则公比q 等于. 4A . 4B - . 2C . 2D - 13. 可以将sin 3cos x x -化简为. 2sin()6A x π+ . 2sin()6B x π- . 2sin()3C x π+ . 2sin()3D x π- 14. 已知()2x f x =,则((1))f f -的值为. 4A . 2B 1. 2C 2. 2D 15.如图所示,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的体积是. A π . 2B π . 4C π . 8D π16. 已知3()f x x =,若2()(23)f a f a <+,则a 的取值范围是. (1,3)A - . (,1)(3,)B -∞-+∞U . (3,1)C - . (,3)(1,)D -∞-+∞U 17. 下表记录了某厂节能降耗技术改造后的产量x (吨)与相应的能耗y (千瓦)的几组数据:根据上表数据求出y 关于x 的线性回归方程为$0.70.2y x =+,则表中的t 值为. 3A . 2.6B . 2.3C . 2D18. 已知0, 0x y >>,若1x y +=,则1xy的最小值为 . 4A 1. 4B . 2C 1. 2D19. 已知函数2||, 1()log (1), 1x x f x x x ≤⎧=⎨->⎩,若123()()()f x f x f x ==,123(, , x x x 互不相等),则123+ + x x x 的取值范围是. (0, 1]A . (1, 2]B . (2, 3]C . (1, 3]D非选择题(共43分)二.填空题:本大题共4个小题,每小题4分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省2018年1月普通高中学业水平考试
数学试卷
【考试时间:2018年1月17日,上午8:30—10:10,共100分钟】
[考生注意]:考试用时100分钟,必须在答题卡上指定位置按规定要求作答,答在试卷上一律无效.
选择题(共57分)
一、选择题:本大题共19个小题,每小题3分,共57分。

在每小题给出的四个选项中,只有一项符合题目要求,请在答题卡相应的位置上填涂。

1.已知集合{1,2,3}A =,{3,}B m =,若{1,2,3,4}A B =,则A B = ( )
A.{1}
B. {2}
C. {3}
D. {4}
2. 某几何体的三视图如右图所示,则该几何体可以是 ( )
A. 四棱锥
B. 四棱住
C. 三棱锥
D. 三棱柱
3.已知1sin(),3α-=-α是第一象限的角,则cos θ=( ) 2. 3A 2. 3
B - 22. 3
C 22. 3
D - 4. 函数()1f x x =-的值域是 ( )
. (,1)A -∞- . (,1]B -∞-
. (1,)C -+∞ . [1,+)D -∞
5. 运行如图所示的程序框图,如果输入x 的值是2,
则输出y 的值是( )
. 0.4A . 0.5B
. 0.6C . 0.7D
6. 已知一个三角形的三边长依次是2,3,4,则这个三角形的最大内角的余弦值为( ) 1. 4A - 1. 3B - 1. 4C 1. 3
D 7.如图所示,在正方体1111ABCD A B C D -中,异面直线11B D 与CD 所
成角的大小是( )
0. 30A 0. 45B 0. 60C 0. 90D
8. 秦九韶是我国南宋时期杰出的数学家,在他的著作《数书九章》
中提出了在多项式求值方面至今仍然是比较先进的计算方法——
秦九韶算法。

利用这种算法计算多项式5432()54321f x x x x x x =+++++当0.2x =时的值,需要进行的乘法运算的次数为( )
. 5A . 6B . 8C . 10D
9. 已知,D E 分别是ABC ∆的边,AB AC 的中点,则DE = ( )
11. 22A AB AC + 11. 22B AB AC - 11. 22C AC AB - 11. 22
D A
E AD - 10.不等式 26x x ≥+的解集为( )
. [2,3]A - . [3,2]B - . (,2][3,)C -∞-+∞ . (,3][2,)D -∞-+∞
11.函数()ln 3f x x x =+-的零点所在的区间是( )
. (0,1)A . (1,2)B . (2,3)C . (3,4)D
12.某市为开展全民健身运动,于2018年元旦举办了一场绕城长跑活动。

已知甲、乙、丙、丁四个单位参加这次长跑活动的人数分别是40人、30人、20人、10人。

现用分层抽样的方法从上述四个单位参加长跑的人员中抽取一个容量为20的样本,了解他们参加长跑活动的体会,则抽到甲、丁两个单位参加长跑活动的人数之和为 ( ) . 8A 人 . 10B 人 . 12C 人 . 14D 人
13. 若525sin ,cos 55
θθ==,则tan 2θ= ( ) 4. 3A 3. 4B 4. 5C 5. 4
D 14. 设实数,x y 满足221x y x y x +≤⎧⎪≤⎨⎪≥-⎩
,则2z x y =+的最小值为
. 3A - 1. 2B - . 0C . 2D 15.利用计算机随机产生一个一位正整数,则这个数能被3整除的概率为( )
1. 2A 1. 3
B 1. 4
C 2. 5
D 16.已知向量(2,)a m =,(1,1)b m =--。

若a b ⊥,则||a b -= ( )
. 5A . 7B . 3C . 10D
17. 函数||1()2
x y =的图象只可能是( )
18.在一个半径为R 的圆内有一个长和宽分别为,x y 的圆内接矩形,则这个矩形面积的最大值为( )
2. A R 2. 2B R 2. 3C R 2. 3D R
19. 当实数m 变化时,直线: l y mx =与圆22:68110C x y x y +-+-=的公共点的个数为
( )
A. 0个或1个
B. 1个或2个
C. 0个或1个或2个
D. 2个
非选择题(共43分)
二、 填空题:本大题共4个小题,每小题4分,共16分。

请把答案写在答题卡相应的位置上。

20. 已知函数()y f x =用列表法表示如下表,则[(2)]f f =
x 0
1 2 ()f x
2 0 1
21.在区间[2,2]-上任取一个实数x ,则函数()lg(1)f x x =-有意义的概率是 。

22.某市有1200名中学生参加了去年春季的数学学业水平考试(满分100分),从中随机抽取了100人的考试成绩统计得到右图所示的频率分布直方图,据此可以估计这1200名学生中考试成绩超过80分的人数为 人。

23.已知函数||2()1x f x e x =+-,则使得不等式()(4)f a f a <-成立的实数a 的取值范围是 。

三、解答题:本大题共4小题,第24题5分,第25题6分,第26题8分,第27题8分,共27分. 解答应写出文字说明、证明过程或演算步骤.
24.(本小题满分5分)
已知圆C 的方程为 22(2)(2)9x y -++=。

(1). 写出圆C 的圆心坐标和半径;
(2). 若直线:340l x y m -+=与圆C 相切,求实数m 的值。

.
25(本小题满分6分)
如图所示,AB 是O 的直径,点C 在O 上,P 是O
所在平面外一点,D 是PB 的中点。

(1). 求证://OD PAC 平面;
(2). 若PAC ∆是边长为6的正三角形,10AB =,
且BC PC ⊥,求三棱锥B PAC -的体积。

26(本小题满分8分) 已知函数()3sin(2)13
f x x π
=+- (1) 求()f x 的最小正周期和最大值;
(2) 设1()()2g f θθ=. 若cos θ=,θ是第四象限的角,求()g θ的值。

27(本小题满分9分)
已知数列{}n a 是等差数列,35a =,59a =。

(1).求n a ;
(2). 若数列{}n b 满足*1122, 2, n n b b a b n N +==+∈。

①.设1n n c b =+,求证:数列{}n c 是等比数列; ②.求数列{}n b 的前n 项和n T 。

相关文档
最新文档