高等数学_同济大学第六版--高等数学课件第一章函数与极限

合集下载

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

同济六版高等数学第一章第七节课件

同济六版高等数学第一章第七节课件

无穷大量的定义
如果当x趋于某值时,函数f(x)趋于无穷大,则称f(x) 为无穷大量。
无穷小量与无穷大量的关 系
两者之间存在密切的联系,无穷小量是无穷 大量的极限状态,而无穷大量则是无穷小量 的极限状态。
03
导数的概念与性质
导数的定义与几何意义
导数的定义
导数描述了函数在某一点处的切线斜 率,即函数在该点的变化率。
分部积分法
通过将两个函数的乘积进行不定积分, 将其中一个函数作为u,另一个函数
作为v',然后进行不定积分。
换元积分法
通过引入新的变量替换原函数中的自 变量,将不定积分转化为容易计算的
形式。
积分的应用
求面积
不定积分可以用来计算平面曲线下方的面积。
求长度
不定积分可以用来计算曲线在某个区间上的 长度。
物理应用
于这个值时的极限为A。
极限的性质
包括唯一性、有界性、局部 保号性等。这些性质对于理
解和应用极限非常重要。
极限的计算
包括直接代入法、因式分解 法、等价无穷小替换法等, 这些方法可以帮助我们计算 函数的极限。
无穷小量与无穷大量
无穷小量的定义
如果当x趋于某值时,函数f(x)趋于0,则称f(x) 为无穷小量。
同济六版高等数学第 一章第七节课件
目录
CONTENTS
• 引言 • 函数与极限 • 导数的概念与性质 • 导数的应用 • 不定积分 • 定积分 • 总结与回顾
01
引言
本章概述
01
本章主要介绍极限的概念、性质及其在数学分析中的基础地位。
02
通过本章学习,学生将了解极限在研究函数、导数、积分等数
学概念中的作用。

《高等数学》电子课件(同济第六版)01第一章第1节函数

《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。

《高等数学》电子课件(同济第六版)01第一章 第1节 函数

《高等数学》电子课件(同济第六版)01第一章 第1节 函数

2.函数的单调性:
x1,x2I, 当 x1 x2时,
若 f(x1)f(x2),称f (x)为I上的单调增加函数; 若 f(x1)f(x2),称f (x)为I上的单调减少函数;
如 yx,yx3 单增
yx2?
精选课件ppt
21
3.函数的奇偶性:
设 D关于原, 对 点 于 对 xD 称 , 有
f(x)f(x)
o
x
精选课件ppt
27
(2)单值函数的反 一函 定数 是不 单值函数
如y : x2
反函数x: y. (3)若y f(x)单调增(减),
其反函数也单调增(减 )。
精选课件ppt
28
六、基本初等函数
1.幂函数
yx (是常)数
y
y x2
yx
1
y x (1,1)
o1
x
y 1 x
精选课件ppt
29
2.指数函数 yax (a0,a1) y e x
(1)子集; ( 2)集合相等; (3)空集;
精选课件ppt
2
( 4)集合运算: 如A B {xx A 且 x B }
AB{xxA 或x者 B }
3、常用数的集合:
N----自然数集
Z----整数集
Q----有理数集
数集间的关系:
R----实数集
N Z ,Z Q ,Q R .
精选课件ppt
第一节 映射与函数
一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
精选课件ppt
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性}质

同济大学(高等数学)_第一章_函数极限

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续第一章 函数、极限与连续高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识.第1节 集合与函数1.1 集合1.1.1 集合讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素.通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素.如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ∉,读作“a 不属于A ”.一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ.集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成A ={1,2,3,4,5};第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为{}P x x M 具有性质|=.例如,集合A 是不等式022<--x x 的解集,就可以表示为{}02|2<--=x x x A .由实数组成的集合,称为数集,初等数学中常见的数集有:(1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即{} ,,,3,2,1,0n N =;(2)所有正整数组成的集合称为正整数集,记作+N ,即{} ,,,3,2,1n N =+;(3)全体整数组成的集合称为整数集,记作Z ,即{} ,,,3,2,1,0,1,2,3,,,n n Z ----=;(4)全体有理数组成的集合称为有理数集,记作Q ,即⎭⎬⎫⎩⎨⎧∈∈=+互质与且q p N q Z p q p Q ,,;(5)全体实数组成的集合称为实数集,记作R .1.1.2 区间与邻域在初等数学中,常见的在数集是区间.设R b a ∈,,且b a <,则 (1)开区间 {}b x a x b a <<=|),(;(2)半开半闭区间 {}b x a x b a <≤=|),[,{}b x a x b a ≤<=|],(; (3)闭区间 {}b x a x b a ≤≤=|],[;(4)无穷区间 {}a x x a ≥=+∞|),[, {}a x x a >=+∞|),(,{}b x x b ≤=-∞|],(, {}b x x b <=-∞|),(,{}R x x ∈=+∞-∞|),(.以上四类统称为区间,其中(1)-(4)称为有限区间,(5)-(8)称为无限区间.在数轴上可以表示为(图1-1):(1) (2)(3) (4)(5) (6)(7) (8)图 1-1在微积分的概念中,有时需要考虑由某点0x 附近的所有点组成的集合,为此引入邻域的概念.定义1 设δ为某个正数,称开区间),(00δδ+-x x 为点0x 的δ邻域,简称为点0x 的邻域,记作),(0δx U ,即{}δδδ+<<-=0000|),(x x x x x U {}δ<-=|||0x x x .在此,点0x 称为邻域的中心,δ称为邻域的半径,图形表示为(图1-2):图1-2另外,点0x 的邻域去掉中心0x 后,称为点0x 的去心邻域,记作),(0δx U o,即{}δδ<-<=||0|),(00x x x x U o,图形表示为(图1-3):图1-3其中),(00x x δ-称为点0x 的左邻域,),(00δ+x x 称为点0x 的右邻域. 1.2函数的概念1.2.1函数的定义定义2 设x 、y 是两个变量,D 是给定的数集,如果对于每个D x ∈,通过对应法则f ,有唯一确定的y 与之对应,则称y 为是x 的函数,记作)(x f y =.其中x 为自变量,y为因变量,D 为定义域,函数值)(x f 的全体成为函数f 的值域,记作f R ,即{}D x x f y y R f ∈==),(|.函数的记号是可以任意选取的, 除了用f 外, 还可用“g ”、“F ”、“ϕ”等表示. 但在同一问题中, 不同的函数应选用不同的记号.函数的两要素:函数的定义域和对应关系为确定函数的两要素.例1 求函数211x xy --=的定义域. 解x1的定义区间满足:0≠x ;21x -的定义区间满足:012≥-x ,解得11≤≤-x .这两个函数定义区间的公共部分是1001≤<<≤-x x 或.所以,所求函数定义域为]1,0()0,1[ -.例2 判断下列各组函数是否相同. (1)x x f lg 2)(=,2lg )(x x g =; (2)334)(x x x f -=,31)(-=x x x g ; (3)x x f =)(,2)(x x g =.解 (1)x x f lg 2)(=的定义域为0>x ,2lg )(x x g =的定义域为0≠x .两个函数定义域不同,所以)(x f 和)(x g 不相同.(2))(x f 和)(x g 的定义域为一切实数.334)(x x x f -=)(13x g x x =-=,所以)(x f 和)(x g 是相同函数.(3)x x f =)(,x x x g ==2)(,故两者对应关系不一致,所以)(x f 和)(x g 不相同.函数的表示法有表格法、图形法、解析法(公式法)三种.常用的是图形法和公式法两种.在此不再多做说明.函数举例:例3 函数⎪⎩⎪⎨⎧>=<-==0,10,00,1sgn x x x x y ,函数为符号函数,定义域为R ,值域{}1,0,1-. 如图1-4:图1-4例4 函数[]x y =,此函数为取整函数,定义域为R , 设x 为任意实数, y 不超过x 的最大整数,值域Z . 如图1-5:图1-5特别指出的是,在高等数学中还出现另一类函数关系,一个自变量x 通过对于法则f 有确定的y 值与之对应,但这个y 值不总是唯一.这个对应法则并不符合函数的定义,习惯上我们称这样的对应法则确定了一个多值函数.1.2.2 函数的性质设函数)(x f y =,定义域为D ,D I ⊂. (1)函数的有界性定义3 若存在常数0>M ,使得对每一个I x ∈,有M x f ≤)(,则称函数)(x f 在I 上有界.若对任意0>M ,总存在I x ∈0,使M x f >)(0,则称函数)(x f 在I 上无界.如图1-6:图1-6例如 函数 x x f sin )(=在),(+∞-∞上是有界的:1sin ≤x .函数 xx f 1)(=在)1,0(内无上界,在)2,1(内有界.(2)函数的单调性设函数)(x f y =在区间I 上有定义, 1x 及2x 为区间I 上任意两点, 且21x x <.如果恒有)()(21x f x f <, 则称)(x f 在I 上是单调增加的;如果恒有)()(21x f x f >, 则称)(x f 在I 上是单调递减的.单调增加和单调减少的函数统称为单调函数(图1-7).图1-7(3)函数的奇偶性设函数)(x f y =的定义域D 关于原点对称.如果在D 上有)()(x f x f =-, 则称)(x f为偶函数;如果在D 上有)()(x f x f -=-, 则称)(x f 为奇函数.例如,函数2)(x x f =,由于)()()(22x f x x x f ==-=-,所以2)(x x f =是偶函数;又如函数3)(x x f =,由于)()()(33x f x x x f -=-=-=-,所以3)(x x f =是奇函数.如图1-8:图1-8从函数图形上看,偶函数的图形关于y 轴对称,奇函数的图形关于原点对称.(4)函数的周期性设函数)(x f y =的定义域为D . 如果存在一个不为零的数l ,使得对于任一D x ∈有()D l x ∈±, 且())(x f l x f =±, 则称)(x f 为周期函数, l 称为)(x f 的周期.如果在函数)(x f 的所有正周期中存在一个最小的正数,则我们称这个正数为)(x f 的最小正周期.我们通常说的周期是指最小正周期.例如,函数x y sin =和x y cos =是周期为π2的周期函数,函数x y tan =和x y cot =是周期为π的周期函数.在此,需要指出的是某些周期函数不一定存在最小正周期.例如,常量函数C x f =)(,对任意实数l ,都有)()(x f l x f =+,故任意实数都是其周期,但它没有最小正周期.又如,狄里克雷函数⎩⎨⎧∈∈=cQ x Qx x D ,0,1)(, 当c Q x ∈时,对任意有理数l ,cQ l x ∈+,必有)()(x D l x D =+,故任意有理数都是其周期,但它没有最小正周期.1.3 反函数在初等数学中的函数定义中,若函数)(:D f D f →为单射,若存在:1-f D D f →)(,称此对应法则1-f为f 的反函数.习惯上,D x x f y ∈=),(的反函数记作)(),(1D f x x f y ∈=-.例如,指数函数),(,+∞-∞∈=x e y x的反函数为),0(,ln +∞∈=x x y ,图像为(图1-9)图1-9反函数的性质:(1)函数)(x f y = 单调递增(减),其反函数)(1x f y -=存在,且也单调递增(减).(2)函数)(x f y =与其反函数)(1x fy -=的图形关于直线x y =对称.下面介绍几个常见的三角函数的反函数:正弦函数x y sin =的反函数x y arcsin =,正切函数x y tan =的反函数x y arctan =.反正弦函数x y arcsin =的定义域是]1,1[-,值域是⎥⎦⎤⎢⎣⎡-2,2ππ;反正切函数x y arctan =的定义域是),(+∞-∞,值域是⎪⎭⎫⎝⎛-2,2ππ,如图1-10:9图1-101.4复合函数定义4 设函数f D u u f y ∈=),(,函数f g g D R D x x g u ⊂∈=值域,),(,则()()g D x x g f y x g f y ∈==),()( 或称为由)(),(x g u u f y ==复合而成的复合函数,其中u 为中间变量.注:函数g 与函数f 构成复合函数g f 的条件是f g D R ⊂,否则不能构成复合函数.例如,函数]1,1[arcsin -∈=u u y ,,R x x u ∈+=,22.在形式上可以构成复合函数()2arcsin 2+=x y .但是22+=x u 的值域为]1,1[),2[-⊄+∞,故()2arcsin 2+=x y 没有意义.在后面的微积分的学习中,也要掌握复合函数的分解,复合函数的分解原则: 从外向里,层层分解,直至最内层函数是基本初等函数或基本初等函数的四则运算.例5 对函数xa y sin =分解.解 xa y sin =由u a y =,x u sin =复合而成.例6 对函数)12(sin 2+=x y 分解.解 )12(sin 2+=x y 由2u y =,v u sin =,12+=x v 复合而成.1.5初等函数在初等数学中我们已经接触过下面各类函数: 常数函数:C y =(C 为常数);幂函数:)0(≠=ααx y ;指数函数:)10(≠>=a a a y x且;对数函数:)10(log ≠>=a a x y a 且;三角函数:x y x y x y x y x y x y csc ,sec ,cot ,tan ,cos ,sin ======; 反三角函数:x arc y x y x y x y cot ,arctan ,arccos ,arcsin ====.这六种函数统称为基本初等函数.定义5 由基本初等函数经过有限次的四则运算和有限次的复合步骤所构成的并用一个式子表示的函数,称为初等函数.例如,x e y sin =,)12sin(+=x y ,2cot xy =等都是初等函数.需要指出的是,在高等数学中遇到的函数一般都是初等函数,但是分段函数不是初等函数,因为分段函数一般都有几个解析式来表示.但是有的分段函数通过形式的转化,可以用一个式子表示,就是初等函数.例如,函数⎩⎨⎧≥<-=0,0,x x x x y , 可表示为2x y =.习题 1-11.求下列函数的定义域.(1)21x y -=; (2)2411x xy -++=; (3)2ln 2x x y -=; (4)43arcsin -=x y ;(5)452+-=x y ; (6)2)3ln(--=x x y .2.下列各题中,函数)(x f 和)(x g 是否相同,为什么?(1)2lg )(x x f =,x x g lg 2)(=; (2)x x f =)(,2)(x x g =;(3)x x f =)(,xe x g ln )(=; (4)x xf =)(,)sin(arcsin )(x xg =.3.已知)(x f 的定义域为]1,0[,求下列函数的定义域.(1))(2x f ; (2))(tan x f ; (3))0)(()(>-++a a x f a x f . 4.设()5312++=+x x x f ,求)(x f ,)1(-x f .5.判断下列函数的奇偶性.(1)x x y tan sin ⋅=; (2)()1lg 2++=x x y ;(3)2x x e e y -+=; (4))1(3+=x x y ;(5)⎩⎨⎧>+≤-=0,10,1x x x x y .6.设下列考虑的函数都是定义在区间)0)(,(>-l l l 上的,证明: (1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数和奇函数的乘积是奇函数.7.下列函数中哪些是周期函数?如果是,确定其周期.(1))1sin(+=x y ; (2)x y 2cos =;(3)x y πsin 1+=; (4)x y 2cos =.8.求下列函数的反函数.(1)31-=x y ; (2))2lg(1++=x y ;(3)x x e e y +=1; (4)),(2sin2ππ-∈=x xy ;(5)⎪⎩⎪⎨⎧>≤≤<=4,241,1,2x x x x x y x .9.下列函数是有哪些函数复合而成的.(1))13sin(+=x y ; (2))21(cos 3x y +=;(3)))1ln(arcsin(+=x y ; (4)2sin x e y =.10.设2)(x x f =,x x ln )(=ϕ,求())(x f ϕ,())(x f f ,())(x f ϕ.第2节 极限极限在高等数学中占有重要地位,微积分思想的构架就是用极限定义的. 本节主要研究数列极限、函数极限的概念以及极限的有关性质等内容.2.1 数列的极限2.1.1 数列的概念定义1 若按照一定的法则,有第一个数1a ,第二个数a 2,…,依次排列下去,使得任何一个正整数n 对应着一个确定的数n a ,那么,我们称这列有次序的数a 1,a 2,…,a n ,…为数列.数列中的每一个数叫做数列的项。

高等数学同济大学第六版1-01-函数课件

高等数学同济大学第六版1-01-函数课件

x cos y
y arccos x
反正弦函数 y arcsin x
证明 x 1,1 , arcsin x arccos x
y arcsin x

2
记 arcsin x [ , ], 2 2 arccos x [0, ],
x [1,1], y arcsin x [
0, x a H ( x) 1, x a
1
o a x
Heaviside 是一位英国的电子工程师,他 用 Heaviside 函数来描述事物由量变到质 变的一个过程与状态。
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
Байду номын сангаас
2 x 1, f ( x) 2 x 1,

, ] cos 2 2
1 sin 2 1 x 2 ,
sin 1 cos 2 1 x 2 , x 2 1 x 2 1,
反余弦函数 y arccos x
sin( ) sin cos cos sin
函 数
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。 微积分的研究是以极限的思想为基 本思想,以极限的方法为基本方法—— 极限是基本工具。 但根本上,微积分这一学说的诞生 的基础是——笛卡儿的解析几何。
2 2
y x2 1
x0 x0
y 2x 1
函数的几何特性
1.函数的有界性:

第六版高等数学同济版教材

第六版高等数学同济版教材

第六版高等数学同济版教材第一章函数与极限函数是数学中的一种基本概念,描述了一种输入和输出之间的关系。

在高等数学中,函数的概念被广泛应用于各个分支领域,如微积分、线性代数等。

本章将介绍函数的定义、性质以及与极限的关系。

1.1 函数的定义函数是一种映射关系,将一个集合的元素映射到另一个集合。

在数学中,常用符号表示函数,如f(x),其中x为自变量,f(x)为对应的函数值。

函数的定义包括定义域、值域和对应关系。

1.2 函数的性质函数具有多个性质,如奇偶性、周期性、单调性等。

奇偶性指函数关于原点的对称性,周期性指函数在一定区间内重复出现的性质,单调性指函数随自变量变化的方向性。

1.3 极限的概念极限是函数与自变量趋于某个值时的特殊性质。

在同济版教材中,极限的定义包括数列极限和函数极限。

数列极限是指数列中的数值随着序号的增加逐渐接近某个值,函数极限是指函数在某个点附近的取值逐渐趋近于某个值。

第二章一元函数微分学一元函数微分学是高等数学中的重要分支,涵盖了函数的导数与微分以及相关应用。

本章将介绍导数的定义、运算法则以及一些典型函数的导数计算方法。

2.1 导数的定义导数描述了函数在某一点附近的变化率,可以理解为函数曲线在该点处的切线斜率。

导数的定义包括了函数的极限和斜率的概念,可以通过极限计算得到。

2.2 导数的运算法则导数具有多个运算法则,如和差法则、乘法法则、链式法则等。

这些法则用于简化函数导数的计算步骤,提高计算效率。

2.3 典型函数的导数计算一些常见函数的导数计算方法被广泛应用于微分学中。

如幂函数、指数函数、对数函数等,它们的导数计算方法需要掌握并灵活运用。

第三章函数的应用函数的应用十分广泛,可以用于解决实际问题、描述自然现象以及进行科学建模等。

本章将介绍一些常见的函数应用领域,并探讨如何将数学理论与实际问题相结合。

3.1 函数建模函数建模是将实际问题转化为数学模型的过程,通过构建适当的函数关系,描述问题的规律和特征。

【同济第六版高数】第01章函数与极限教案与习题讲解(2)

【同济第六版高数】第01章函数与极限教案与习题讲解(2)

第一章 函数与极限§1. 2 数列的极限一个实际问题:如可用渐近的方程法求圆的面积?设有一圆, 首先作内接正四边形, 它的面积记为A 1;再作内接正八边形, 它的面积记为A 2;再作内接正十六边形, 它的面积记为A 3;如此下去, 每次边数加倍, 一般把内接正8×2n -1边形的面积记为A n . 这样就得到一系列内接正多边形的面积:A 1, A 2, A 3, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , A n , ⋅ ⋅ ⋅设想n 无限增大(记为n →∞, 读作n 趋于穷大), 即内接正多边形的边数无限增加, 在这个过程中, 内接正多边形无限接近于圆, 同时A n 也无限接近于某一确定的数值, 这个确定的数值就理解为圆的面积. 这个确定的数值在数学上称为上面有次序的数(数列) A 1, A 2, A 3, ⋅ ⋅ ⋅ , A n , ⋅ ⋅ ⋅当n →∞时的极限.数列的概念:如果按照某一法则, 使得对任何一个正整数n 有一个确定的数x n , 则得到一列有次序的数x 1, x 2, x 3, ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅这一列有次序的数就叫做数列, 记为{x n }, 其中第n 项x n 叫做数列的一般项. 数列的例子:{1+n n }: 21, 32, 43, ⋅ ⋅ ⋅ , 1+n n ⋅ ⋅ ⋅; {2n }: 2, 4, 8, ⋅ ⋅ ⋅ , 2n , ⋅ ⋅ ⋅;{n 21}: 21, 41, 81, ⋅ ⋅ ⋅ , n 21, ⋅ ⋅ ⋅ ; {(-1)n +1}: 1, -1, 1, ⋅ ⋅ ⋅ , (-1)n +1, ⋅ ⋅ ⋅ ;{n n n 1)1(--+}: 2, 21, 34, ⋅ ⋅ ⋅ , n n n 1)1(--+, ⋅ ⋅ ⋅ . 它们的一般项依次为1+n n , 2n , n 21, (-1)n +1, n n n 1)1(--+. 数列的几何意义:数列{x n }可以看作数轴上的一个动点, 它依次取数轴上的点x 1, x 2, x 3, ⋅ ⋅ ⋅ , x n , ⋅ ⋅ ⋅.数列与函数:数列{x n }可以看作自变量为正整数n 的函数:x n =f (n ),它的定义域是全体正整数.数列的极限:数列的极限的通俗定义:对于数列{x n }, 如果当n 无限增大时, 数列的一般项x n 无限地接近于某一确定的数值a , 则称常数a 是数列{x n }的极限, 或称数列{x n }收敛a . 记为a x n n =∞→lim . 如果数列没有极限, 就说数列是发散的.例如11lim =+∞→n n n ,021lim =∞→n n , 1)1(lim 1=-+-∞→nn n n ; 而{2n}, { (-1)n +1}, 是发散的.对无限接近的刻划:x n 无限接近于a 等价于|x n -a |无限接近于0,极限的精确定义:定义 如果数列{x n }与常a 有下列关系:对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切x n , 不等式|x n -a |<ε都成立, 则称常数a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为a x n n =∞→lim 或x n →a (n →∞). 如果数列没有极限, 就说数列是发散的.数列极限的几何解释: 例题:例1. 证明1)1(lim 1=-+-∞→nn n n . 分析: |x n -1|=nn n n 1|1)1(|1=--+-. 对于∀ε >0, 要使|x n -1|<ε , 只要ε<n 1, 即ε1>n . 证明: 因为∀ε >0, ∃]1[ε=N ∈N +, 当n >N 时, 有 |x n -1|=ε<=--+-n n n n 1|1)1(|1, 所以1)1(lim 1=-+-∞→nn n n . 例2. 证明0)1()1(lim2=+-∞→n n n . 分析: |x n -0||0)1()1(|2-+-=n n 11)1(12+<+=n n . 对于∀ε >0, 要使|x n -0|<ε , 只要ε<+11n , 即11->εn . 证明: 因为∀ε >0, ∃]11[-=εN ∈N +, 当n >N 时, 有 |x n -0|=ε<+<+=-+-11)1(1|0)1()1(|22n n n n , 所以0)1()1(lim 2=+-∞→n n n . 例3. 设|q |<1, 证明等比数列1, q , q 2, ⋅ ⋅ ⋅ , q n -1, ⋅ ⋅ ⋅的极限是0.分析: 对于任意给定的ε >0, 要使|x n -0|=| q n -1-0|=|q | n -1<ε ,只要n >log |q |ε +1就可以了, 故可取N =[log |q |ε +1]。

高等数学(同济第六版)课件 第一章 3.函数的极限(一)

高等数学(同济第六版)课件  第一章  3.函数的极限(一)

且a >b, (或a<b)
则正数X, 当x<-X时, 都有f(x) >b . (或f(x)<b) 当x>X时, 当|x|>X时,
(4) 充要条件:
lim lim lim f ( x ) A x f ( x ) A且 x f ( x ) A.
x
证: " " 0, X 1 0, 当x>X1 时,成立 f ( x ) A .
得 | x x0 |
x0
当 | x x0 | x0 时,才能使x>0, 取 min{ x0 , x0 } 当 0 x x0 时, 成立 | x x0 |
lim x
x x0
x0
" "定义
x x0
lim f ( x ) A
2 x2 x 1 3 lim x 1 x 1 2 x2 x 1 3 | 2 | x 1 | ( x 1) 0, | x 1 2 x2 x 1 3 | 当x与1多么接近时? | x 1 | x 1 | 2
2 x2 x 1 0, 当 0 | x 1 | 时, 成立 | 3 | 2 x 1
lim f ( x ) 0, 则 lim f ( x ) g( x ) 0
x x
1 x (7) 重要极限:lim (1 ) e x x
特点:(1)1 型 (2)底数减1等于指数的倒数 。
例2 求下列极限
2 x3 3 x2 5 (1) lim 3 2 x 7 x 4 x 1
二、 自变量趋向有限值时函数的极限 若当x无限接近于x0时,函数f(x)无限接近于常数A, 称常数A为当x趋于x0时,函数f(x)的极限。 记作 lim f ( x ) A

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)

《高等数学》(同济六版)教学课件★第1章.函数与极限(2)
跳跃间断点
左右极限都存在
第二类间断点
无穷间断点
振荡间断点
左右极限至少有一个不存在
在点
间断的类型
在点
连续的等价形式
思考与练习
1. 讨论函数
x = 2 是第二类无穷间断点 .
间断点的类型.
2. 设

提示:
3. P65 题 3 , *8

连续函数.
答案: x = 1 是第一类可去间断点 ,
P65 题*8 提示:
显然
正根 .
二、 连续与间断
一、 函数
三、 极限
习题课
函数与极限
第一章
一、 函数
1. 概念
定义:
定义域
值域
图形:
( 一般为曲线 )

函数为特殊的映射:
其中
2. 特性
有界性 ,
单调性 ,
奇偶性 ,
周期性
3. 反函数
设函数
为单射,
反函数为其逆映射
4. 复合函数
给定函数链
则复合函数为
作业 P65 4 ; 5
备用题 确定函数
间断点的类型.
解: 间断点
为无穷间断点;

为跳跃间断点.
一、连续函数的运算法则
第九节
二、初等函数的连续性
连续函数的运算与
初等函数的连续性
第一章
定理2. 连续单调递增函数的反函数也连续单调递增.
在其定义域内连续
一、连续函数的运算法则
, 使



内连续,
存在, 则
必在
内有界.
上连续 , 且恒为正 ,
例5. 设

高等数学第六版上下册(同济大学出版社)课件

高等数学第六版上下册(同济大学出版社)课件
具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点

高等数学同济大学第六版1-02-数列的极限课件共52页文档

高等数学同济大学第六版1-02-数列的极限课件共52页文档
只有(至 有多 限 N 个 只 )个 落有 在 . 其外
数列收敛的表述——用逻辑符号:
lim
n
xn
a
0,N 0,n N , xn a .
one of all, for every,
exist.
[ ' e p s i l n ]G r e e k a l p h a b e t : E
{(1)n1}
14 n(1)n1
n (1)n1
2, , ,,
,; {
}
23
n
n
2, 22,L, 22L2,L
注意: 数列对应着数轴上一个点列.可看作一动
点在数轴上依次取 x1,x2,,xn,.
x3 x1 x2 x4 xn
问 当 n无限增大时, x n 是否无限接近于某一 题 确定的数值?如果是,如何确定?
例1 证l明 im n(1)n11. n n

xn
1
n(1)n1 n
11, n
任给0,要xn1,只要n1,或n1,
所以, 取N1,则当nN时,就有n(1)n11
n
n(1)n1 n
1n 1N 1 11
,即limn(1)n1
n
n
1.
用定义证数列极限存在时,关键是对任意给定
的 0, 寻找N.
例2 证li明 q m n0 ,其q 中 1 . n
(1 )(2 )
6n
n
过剩近
似(橘色
n i1
1 n
i n
2
12
22 L n3
n2
加蓝色 n ( n 1 ) ( 2 n 1 ) 1 1
1
部分)
6n3
(1 )(2 )

高等数学(同济第六版)课件第一章.绪论、第1节

高等数学(同济第六版)课件第一章.绪论、第1节

莱 布 尼 茨
莱布尼茨是一个博才多学的学者,1684 年,他发表了现在世界上认为是最早的微 积分文献,这篇文章有一个很长而且很古 怪的名字《一种求极大极小和切线的新方 法,它也适用于分式和无理量,以及这种 新方法的奇妙类型的计算》。就是这样一 片说理也颇含糊的文章,却有划时代的意 义。他以含有现代的微分符号和基本微分 法则。1686年,莱布尼茨发表了第一篇积 分学的文献。他是历史上最伟大的符号学 者之一,他所创设的微积分符号,远远优 于牛顿的符号,这对微积分的发展有极大 的影响。现在我们使用的微积分通用符号 就是当时莱布尼茨精心选用的.
微分与积分是分析中的两种基本的极限过程。 这两种过程的一些特殊的情况,甚至在古代就已经
有人考虑过(在阿基米德工作中达到高峰),而在
十六世纪和十七世纪 ,更是越来越受到人们的重
视。然而,微积分的系统发展是在十七世纪才开始
的,通常认为是牛顿和莱布尼茨两位伟大的科学先 驱的创造。这一系统发展的关键在于认识到:过去 一直分别研究的微分和积分这两个过程,实际上是 彼此互逆的联系着。
第三类问题
求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45 角
发射炮弹时,射程最大。
研究行星运动也涉及最大最小值问题。
第三类问题
困难在于:原有的初等计算方法已不适于解决研 究中出现的问题。但新的方法尚无眉目。
第四类问题
求曲线的长度、曲线所围成的面积、曲面所围成 的体积、物体的重心。
高等数学 以微积分为主要内容的学科
微积分的发展历程
微积分的创立 ——变量的数学
初等数学时代(17世纪前) —— 常量的数学
• 算术
• 初等几何 • 初等代数
初等数学时代 —— 算术

同济大学高等数学第六版上第一章第五节-极限运算法则PPT课件

同济大学高等数学第六版上第一章第五节-极限运算法则PPT课件
x l x 0 i f ( m x ) a 0 ( x l x 0 i x ) n m a 1 ( x l x 0 i x ) n m 1 a n a 0 x 0 n a 1 x 0 )),且 Q (x0)0, 则有
f ( x ) A ,g ( x ) B .其 0 , 中 0 .
由无穷小运算法则,得
-
15
[ f ( x ) g ( x ) ( ] A B )0.(1)成立.
[f( x ) g ( x ) ] ( A B ) (A )B ( ) AB
(A B ) 0.
(2)成立.
limf([x)n ][lim f(x)n ].
⑤定理的条件: limf(x),limg(x) 存在
商的情形还须加上分母的极限不为0
⑥定理简言之即是:和、差、积、商的极限 等于极限的和、差、积、商
⑦定理中极限号下面没有指明极限过程,是指对 任何一个过程都成立
-
18
五、求极限方法举例
例1 求lx im 2x2x33x15.
定义 1 如果对于任意给定的正数 (不论它多么小),
总存在正数 ( 或正数X ), 使得对于适合不等式
0 x x0 (或 x X )的一切x ,对应的函数值
f (x)都满足不等式 f (x) ,
那末 称函数f (x) 当x x0(或x )时为无穷小,
记作 lim f (x) 0 (或lim f (x) 0).
xx0
x
例如,
lim six n0, 函s数 ix n是x当 0时的无 . 穷 x 0
-
2
lim1 0, x x
函数 1是当 x时的无. 穷小 x
lim(1)n 0, n n
数{列 (1)n}是n 当 时的无 . n

高等数学(同济第六版)课件 第一章 2.数列的极限

高等数学(同济第六版)课件  第一章  2.数列的极限

得: n g ( ) 取 N [ g ( )]
n 1 ( lim 用定义证明: 1) n 2 n 1 2 1 n (2) lim 2 sin 0 n n 3
lim xn a
n
0,
自然数N
lim 一般地:若数列{yn}有界, xn 0 n

结(二)
3.数列极限的性质: (1)唯一性 (2)有界性 (3)不等式性质 (4)有界数列与无穷小量的乘积还是无穷小量
4.常用的结论:
( lim C C 1)
n
(其中C为常数)
1 (2) lim p 0, (其中p为大于零的常数) n n
(3) q n 0, 其中 q 1. lim
重要极限Ⅱ
(e 2.71828)
例4 求下列极限
1 n (1) lim(1 ) n n 2 1 ( n 2 ) 2 lim(1 ) n n 2
1 n 2 (1 ) n 2 lim n 1 2 (1 ) n 2
1 n 2 lim(1 ) e n n 2 e 1 2 1 lim(1 ) n n 2
1 n ( 2) lim(1 ) n n n1 n n n 1 lim( ) lim( ) n n n 1 n n n lim ( ) n n 1 1 1 1 n 1 n 1 1 lim(1 ) lim(1 ) lim(1 ) n n n n1 n1 n1 1 e
n sin n! (4) lim 2 n n 1
n 1 3 n 4 ( 3) lim( ) n n
6n n (5) lim n ( n cos ) n 7 5 2

同济大学高等数学ppt第一章

同济大学高等数学ppt第一章
同济大学高等数 学ppt第一章
contents
目录
• 第一章绪论 • 第一章极限论 • 第一章连续论 • 第一章导数论 • 第一章微分论 • 第一章不定积分论
01
CATALOGUE
第一章绪论
高等数学的研究对象
变量与函数
级数与广义积分 空间解析几何与向量代数
极限理论 微积分学
高等数学的发展历程
线性性质
不定积分具有线性性质,即对于 任意常数C1,C2,有 (C1+C2)*f(x)=C1*f1(x)+C2*f2( x)。
积分常数
不定积分的结果是一个函数,其 常数项为0。
区间可加性
如果在区间(a,b)上有f(x)=f(x), 则在(a,b)上,f(x)的积分等于f(x) 在(a,b)上定积分的值。
不定积分的计算方法
直接积分法
利用不定积分的定义和性质,将 已知函数进行恒等变形,从而得 到其原函数。
换元积分法
通过引入新的变量,将已知函数 进行换元,从而将复杂函数分解 为简单函数的组合,以便于计算 。
分部积分法
通过将两个函数乘积的导数与其 中一个函数求导再与另一个函数 乘积进行交换,从而得到两个函 数的积的不定积分的一种方法。
利用微分的近似性,我们可以对一些复杂的 函数进行近似计算,从而简化计算过程。例 如,当我们需要计算一个复杂函数的值时, 我们可以先找到这个函数在某一点的微分, 然后用这个微分来近似计算函数的值。
微分在近似计算中的应用
在实际的科学研究和工程设计中,经常会遇 到一些复杂的数学问题,如求解方程、优化 问题等。在这些情况下,利用微分进行近似 计算可以提供一种有效的解决问题的方法。
02
微分的近似性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

o a x b { x a x b} 称为闭区间, 记作 [a, b] o
2013-8-12
a
函数与极限
b
x
4
{ x a x b} { x a x b}
称为半开区间, 记作 [a , b) 称为半开区间, 记作 (a , b] 有限区间
[a ,) { x a x }
(通常说周期函数的周期是指其最小正周期).

3l 2

l 2
l 2
函数与极限
3l 2
2013-8-12
25
四、反函数
y
反函数y ( x )
Q ( b, a )
o
直接函数y f ( x ) P (a , b)
x
直接函数与反函数的图形关于直线 y x对称.
2013-8-12
函数与极限
26
U (a ) { x a x a }.
a a a 点a的去心的邻域, 记作U 0 (a ).
U (a ) { x 0 x a }.
2013-8-12 函数与极限
x
6
4.常量与变量: 在某过程中数值保持不变的量称为常量,
而数值变化的量称为变量.
注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
2013-8-12
函数与极限
7
a a0 a a a 0 运算性质: ab a b ;
5.绝对值:
( a 0)
a a ; b b
绝对值不等式:
1.幂函数 y x
y
y x2
1
(1,1)
(是常数)
y x
y x
o
1 y x
2013-8-12 函数与极限
1
x
34
x 2.指数函数 y a
(a 0, a 1)
y ex
o
x
-1
x sgn x x
2013-8-12
函数与极限
12
(2) 取整函数 y=[x]
[x]表示不超过 x 的最大整数 4 3 2 1 o
y
-4 -3 -2 -1
1 2 3 4 5 x -1 -2 -3 -4
阶梯曲线
2013-8-12
函数与极限
13
(3) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
a M,
a M,
有限集
A {a1 , a2 ,, an }
M { x x所具有的特征} 无限集
若x A, 则必x B, 就说A是B的子集. 记作 A B.
2013-8-12 函数与极限 2
30
二、证明 y lg x 在( 0, ) 上的单调性. 三、证明任一定义在区间( a , a ) ( a 0 ) 上的函数可表 示成一个奇函数与一个偶函数之和. 四、设 f ( x ) 是以 2 为周期的函数, x 2 ,1 x 0 且 f ( x) ,试在( , ) 上绘出 0, 0 x 1 f ( x ) 的图形. 五、证明:两个偶函数的乘积是偶函数,两个奇函数的 乘积是偶函数,偶函数与奇函数的乘积是奇函数. ax b 六、证明函数 y 的反函数是其本身. cx a e x ex 七、求 f ( x ) x 的反函数,并指出其定义域. x e e
不含任何元素的集合称为空集. (记作 )
例如, { x x R, x 1 0}
2
规定 空集为任何集合的子集.
2013-8-12 函数与极限 3
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a, b R, 且a b.
{ x a x b} 称为开区间, 记作 (a, b)
o -M X 无界
x
20
2.函数的单调性:
设函数 f ( x )的定义域为 , 区间I D, D 如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调增加的;
y
y f (x)
f ( x2 )
函数与极限
2013-8-12
17
当 t (,) 时, U 0.
U U (t )是一个分段函数 , 其表达式为
U
E
( , E) 2
( ,0)
o
2E t, t [ 0, ] 2 2E U (t ) ( t ), t ( , ] 2 0, t ( ,)
函数的两要素: 定义域与对应法则.
(
x
D
对应法则f
x0 )
f ( x0 )
自变量
(
W
y
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x 2 1 例如, y 1 x2
2013-8-12
D : [1,1] D : ( 1,1)
函数与极限 10
如果自变量在定 y 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 W y 数叫做单值函数,否 则叫与多值函数.
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念
函数的特性 有界性,单调性,奇偶性,周期性. 反函数
2013-8-12
函数与极限
27
思考题
1 2 设 x 0 ,函数值 f ( ) x 1 x , x 求函数 y f ( x ) ( x 0) 的解析表达式.
2013-8-12 函数与极限
2
t
18
1 0 x1 设f ( x ) , 求函数 f ( x 3)的定义域. 2 1 x 2

例2
1 0 x1 f ( x) 2 1 x 2 1 0 x31 f ( x 3) 2 1 x 3 2 1 3 x 2 2 2 x 1
2013-8-12 函数与极限 31
练习题答案
2 2 , 5( t 2 1) 2 ; 2、1,1; 2 2 t ( t 1) 3、(4,6); 4. (0, 2 ] . 1 x , ( 1,1) . 七、 y ln 1 x
一、1、5t
2013-8-12
函数与极限
32
一、基本初等函数
式子来表示的函数,称为分段函数.
例如,
2 x 1, f ( x) 2 x 1,
y x2 1
x0 x0
y 2x 1
2013-8-12
函数与极限
16
例1 脉冲发生器产生一个单三角脉冲,其波形如图 所示,写出电压U与时间 t ( t 0)的函数关系式.
U 解 当 t [0, ] 时, ( , E) 2 2 E E 2E U t t; ( ,0) t o 2 2 当 t ( , ] 时, 单三角脉冲信号的电压 2 E0 2E U 0 ( t ), 即 U (t ) 2
y
1
• o 无理数点 有理数点
x
2013-8-12
函数与极限
14
(4) 取最值函数
y max{ f ( x ), g( x )}
y
f ( x) g( x )
y min{ f ( x ), g( x )}
y
f ( x) g( x )
o
x
o
x
2013-8-12
函数与极限
15
在自变量的不同变化范围中, 对应法则用不同的
1 5 2 1、若 f 2t ,则 f ( t ) __________ , t t f ( t 2 1) __________ . 1, x 3 2、若( t ) , sin x , x 3 则( ) =_________,( ) =_________. 6 3
2013-8-12
函数与极限
28
思考题解答
1 设 u x
1 1 1 1 u2 则 f u 1 2 , u u u
1 1 x 故 f ( x) . ( x 0) x
2
2013-8-12
函数与极限
29
练 习 题
一、填空题:
3、不等式 x 5 1 的区间表示法是_________. x U ( 0, ) y U ( 0, 2 ) 2 4、设 y x ,要使 时, , __________. 函数与极限 2013-8-12 须
a b a b a b.
x a ( a 0) x a ( a 0)
2013-8-12
a x a;
x a 或 x a;
函数与极限 8
二、函数概念
D 定义 设x 和y 是两个变量, 是一个给定的数集,
如果对于每个数 x D , 变量 y 按照一定法则总有
f ( x1 )
o
I
2013-8-12 函数与极限
x
21
设函数 f ( x )的定义域为 , 区间I D, D
如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 (2) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调减少的 ;
相关文档
最新文档