密云区2019-2020学年第二学期高三第二次阶段性测试数学答案20200602

合集下载

密云区2019-2020学年第二学期高三第二次阶段性测试20200602

密云区2019-2020学年第二学期高三第二次阶段性测试20200602

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A. {0,1} B. 2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D. ln ||y x = 3. 已知x y >,则下列各不等式中一定成立的是 A .22x y >B .11x y>C .11()()33x y >D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8C .4D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为C.D. 6.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=g b a a ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为A .1B .2C .3D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9. 某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为 AB .2C. D.10. 已知函数()f x 的定义域为 ,且满足下列三个条件:①对任意的 ,且 ,都有 ;② ;③是偶函数;若,,(2020)c f =,则 ,, 的大小关系正确的是 A .a b c << B .C .D .第9题图11主视图1俯视图2二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13. 已知n S 是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______. 14. 在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈;④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程. 16.(本小题满分14分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分) 已知函数 .(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围.请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率;(Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案:方案 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银C 1 ABC A 1B 1第16题图D(800,1600] (1600,2400] (2400,3200] (4000,4800] (3200,4000] 消费金额/元 人数卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2 每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立). 以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分)已知椭圆:过点(1,2P ,设它的左、右焦点分别为,,左顶点为,上顶点为,.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程;(Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由. (Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.。

密云区2019-2020学年第二学期高三第二次阶段性测试

密云区2019-2020学年第二学期高三第二次阶段性测试

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是( ) A. {0,1}B. 2{|1}x x =C. 2{|0}x x >D. R2.在下列函数中,定义域为实数集的偶函数为( ) A. sin y x =B. cos y x =C. ||y x x =D.ln ||y x =3.已知x y >,则下列各不等式中一定成立的是( ) A. 22x y >B.11x y> C. 11()()33x y>D.332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =( ) A. 16B. 8C. 4D. 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为( )A.B.C.D.6.已知平面向量a r 和b r ,则“||||b a b =-r rr ”是“1()02b a a -⋅=r r r ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为( )A. 1B. 2C. 3D. 48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0>ω,||ϕπ<.若5182f π⎛⎫= ⎪⎝⎭,08f 11π⎛⎫= ⎪⎝⎭,且()f x 的最小正周期大于2π,则( )A. 13ω=,24ϕ11π=-B. 23ω=,12πϕ= C. 13ω=,724πϕ=D. 23ω=,12ϕ11π=-9.某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为( )B. 2C.D. 10.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x ->- ;②(8)()f x f x += ; ③(4)y f x =+ 是偶函数;若(7),(11)a f b f =-=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A. a b c <<B. b a c <<C. b c a <<D.c b a <<二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2(y mx m =为常数)过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+展开式中,常数项为________.(用数字作答)13.已知n S 是数列{}n a 的前n 项和,且()211n S n n n *=-∈N ,则1a=_________,n S 的最小值为_______.14.在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15.已知集合{}22,,A a a x y x Z y Z ==-∈∈.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A Î; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程.16.如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥.(1)证明:1DC BC ⊥; (2)求二面角11A BD C --的大小.17.已知函数2()cos cos )sin f x x x x x =+- . (Ⅰ)求函数()f x 的单调递增区间和最小正周期;(Ⅱ)若当[0,]2x π∈时,关于x 的不等式()f x m ≥,求实数M 的取值范围. 18.某健身机构统计了去年该机构所有消费者消费金额(单位:元),如下图所示:(1)将去年的消费金额超过3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2 人,求至少有1 位消费者,其去年的消费金额超过4000 元的概率;(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:0,1600内的消费者今年都将会申请办理普通会员,消费金额在预计去年消费金额在(](]3200,4800内的消费者1600,3200内的消费者都将会申请办理银卡会员,消费金额在(]都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励500 元;银卡会员中的“幸运之星”每人奖励600 元;金卡会员中的“幸运之星”每人奖励800 元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有3 个白球、2 个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为2,则可获得200 元奖励金;若摸到红球的总数为3,则可获得300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1 次摸奖游戏;每位银卡会员均可参加2 次摸奖游戏;每位金卡会员均可参加3 次摸奖游戏(每次摸奖的结果相互独立) .以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.19.已知椭圆()2222:10x y C a b a b +=>>过点1,2P ⎛ ⎝⎭,设它的左、右焦点分别为1F 、2F ,左顶点为A ,上顶点为B,且满足12AB F =. (Ⅰ)求椭圆C 标准方程和离心率;(Ⅰ)过点6,05Q ⎛⎫-⎪⎝⎭作不与y 轴垂直直线交椭圆C 于M 、N (异于点A )两点,试判断MAN ∠的大小是否为定值,并说明理由. 20.已知函数()ln f x x a x =-,a R ∈.(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.设n 为正整数,集合A =12{|(,,,)n t t t αα=L ,{0,1}k t ∈,1k =,2,L ,}n .对于集合A 中任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素α,β,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明由.的的的。

2019-2020年高三第二次调研测试 数学 含答案

2019-2020年高三第二次调研测试 数学 含答案

(第4题)2019-2020年高三第二次调研测试 数学 含答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 命题“x ∃∈R ,20x >”的否定是“ ▲ ”.【答案】x ∀∈R ,20x ≤2. 设1i i a b +=+(i 为虚数单位,a ,b ∈R ),则ab 的值为 ▲ .【答案】03. 设集合{}11 0 3 2A =-,,,,{}2 1B x x =≥,则AB = ▲ .【答案】{}1 3-,4. 执行如图所示的伪代码,则输出的结果为 ▲ .【答案】115. 一种水稻试验品种连续5年的平均单位面积产量(单位:t/hm 2) 如下:9.8,9.9,10.1,10,10.2,则该组数据的方差为 ▲ .【答案】0.026. 若函数()π()2sin 3f x x ω=+(0)ω>的图象与x 轴相邻两个交点间的距离为2,则实数ω的值为 ▲ .【答案】π27. 在平面直角坐标系xOy 中,若曲线ln y x =在e x =(e 为自然对数的底数)处的切线与直线 30ax y -+=垂直,则实数a 的值为 ▲ .【答案】e -8. 如图,在长方体1111ABCD A B C D -中,AB =3 cm ,AD =2 cm ,1AA =1 cm ,则三棱锥11B ABD -的体积为 ▲ cm 3.【答案】19. 已知等差数列{}n a 的首项为4,公差为2,前n 项和为n S .AA 1 不CB 1不C 1不D 1不D不(第8题)BDC(第12题)AA BCDMNQ(第15题)若544k k S a +-=(k *∈N ),则k 的值为 ▲ .【答案】710.设32()4(3)f x x mx m x n =++-+(m n ∈R ,)是R 上的单调增函数,则m 的值为 ▲ .【答案】611.在平行四边形ABCD 中,AC AD AC BD ⋅=⋅3=,则线段AC 的长为 ▲ .12.如图,在△ABC 中,3AB =,2AC =,4BC =,点D 在边BC 上,BAD ∠=45°,则tan CAD ∠的值为 ▲ .13.设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg lg 4lg lg z zx y+的最小值为 ▲ . 【答案】9814.在平面直角坐标系xOy 中,圆1C :22(1)(6)25x y ++-=,圆2C :222(17)(30)x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA AB =,则半径r 的取值范围是 ▲ . 【答案】[]5 55,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,BAD ∠=90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证://CD 平面MNQ ; (2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以//MQ CD , …… 2分又CD ⊄平面MNQ ,MQ ⊂平面MNQ , 故//CD 平面M. …… 6分(2)因为M ,N 分别为棱AD ,BD 的中点,所以//MN AB ,又90BAD ∠=°,故MN AD ⊥. …… 8分因为平面BAD ⊥平面CAD ,平面BAD平面CAD AD =, 且MN ⊂平面ABD ,所以MN ⊥平面ACD . …… 11分又MN ⊂平面MNQ ,平面MNQ ⊥平面CAD . …… 14分(注:若使用真命题“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面”证明“MN ⊥平面ACD ”,扣1分.)16.(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下:(1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率; (2)测试成绩为“优”的3名男生记为1a ,2a ,3a ,2名女生记为1b ,2b .现从这5人中任选2人参加学校的某项体育比赛. ① 写出所有等可能的基本事件; ② 求参赛学生中恰有1名女生的概率.解:(1)记“测试成绩为良或中”为事件A ,“测试成绩为良”为事件1A ,“测试成绩为中”为事件2A ,事件1A ,2A 是互斥的. …… 2分由已知,有121923()()5050P A P A ==,. ……4分因为当事件1A ,2A 之一发生时,事件A 发生, 所以由互斥事件的概率公式,得1212192321()()()()P A P A A P A P A =+=+=+=. ……6分(2)① 有10个基本事件:12()a a ,,13()a a ,,11()a b ,,12()a b ,,23()a a ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,,12()b b ,. ……9分② 记“参赛学生中恰好有1名女生”为事件B .在上述等可能的10个基本事件中,事件B 包含了11()a b ,,12()a b ,,21()a b ,,22()a b ,,31()a b ,,32()a b ,. 故所求的概率为63()105P B ==.答:(1)这名学生的测试成绩为“良”或“中”的概率为2125;(2)参赛学生中恰有1名女生的概率为35. ……14分(注:不指明互斥事件扣1分;不记事件扣1分,不重复扣分;不答扣1分.事件B 包含的6种基本事件不枚举、运算结果未化简本次阅卷不扣分.)17.(本小题满分14分)在平面直角坐标系xOy 中,已知向量=a (1,0),=b (0,2).设向量=+x a (1cos θ-)b ,k =-y a 1sin θ+b ,其中0πθ<<.(1)若4k =,π6θ=,求x ⋅y 的值;(2)若x //y ,求实数k 的最大值,并求取最大值时θ的值.解:(1)(方法1)当4k =,πθ=时,(12=,x ,=y (44-,), ……2分则⋅=x y (1(4)244⨯-+-⨯=- …… 6分(方法2)依题意,0⋅=a b , …… 2分则⋅=x y (()(22142421⎡⎤+⋅-+=-+⨯⎢⎥⎣⎦a b a b a b(42144=-+⨯⨯=- . …… 6分(2)依题意,()122cos θ=-,x ,()2sin k θ=-,y ,因为x //y ,所以2(22cos )k θ=--,整理得,()1sin cos 1k θθ=-, ……9分令()()sin cos 1f θθθ=-,则()()cos cos 1sin (sin )f θθθθθ'=-+-22c o s c o s 1θθ=-- ()()2cos 1cos 1θθ=+-. …… 11分令()0f θ'=,得1cos θ=-或cos 1θ=,又0πθ<<,故2π3θ=.列表:故当2πθ=时,min ()f θ=,此时实数k取最大值. ……14分(注:第(2)小问中,得到()122cos θ=-,x ,()2sin k θ=-,y ,及k 与θ的等式,各1分.)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222 1 ( 0 )y x a b a b+=>>的左顶点为A ,右焦点为(0)F c ,.00( )P x y ,为椭圆上一点,且PA PF ⊥.(1)若3a =,b 0x 的值; (2)若00x =,求椭圆的离心率;(3)求证:以F 为圆心,FP 为半径的圆与椭圆的 右准线2a x c=相切.解:(1)因为3a =,b =2224c a b =-=,即2c =, 由PA PF ⊥得,0000132y y x x ⋅=-+-,即220006y x x =--+, …… 3分又2200195x y +=,所以2004990x x +-=,解得034x =或03x =-(舍去) . ……5分(2)当00x =时,220y b =, 由PA PF ⊥得,001y y a c⋅=--,即2b a c =,故22a c ac -=, …… 8分(第18题)所以210e e +-=,解得e . ……10分(3)依题意,椭圆右焦点到直线2a x c =的距离为2a c c -,且2200221x y a b+=,① 由PA PF ⊥得,00001y y x a x c⋅=-+-,即2200()y x c a x ca =-+-+, ② 由①②得,()2002()0a b ac x a x c ⎡⎤-⎢⎥++=⎢⎥⎣⎦, 解得()2202a a ac c x c --=-或0x a =-(舍去). ……13分所以PF ==0c a x =-()222a a ac c c a a c --=+⋅2a c c =-, 所以以F 为圆心,FP 为半径的圆与右准线2a x c=相切. …… 16分(注:第(2)小问中,得到椭圆右焦点到直线2a x c =的距离为2a c c-,得1分;直接使用焦半径公式扣1分.)19.(本小题满分16分)设a ∈R ,函数()f x x x a a =--. (1)若()f x 为奇函数,求a 的值;(2)若对任意的[2 3]x ∈,,()0f x ≥恒成立,求a 的取值范围; (3)当4a >时,求函数()()y f f x a =+零点的个数.解:(1)若()f x 为奇函数,则()()f x f x -=-, 令0x =得,(0)(0)f f =-,即(0)0f =,所以0a =,此时()f x x x =为奇函数. …… 4分(2)因为对任意的[2 3]x ∈,,()0f x ≥恒成立,所以min ()0f x ≥. 当0a ≤时,对任意的[2 3]x ∈,,()0f x x x a a =--≥恒成立,所以0a ≤; …… 6分当0a >时,易得22 () x ax a x a f x x ax a x a ⎧-+-<⎪=⎨--⎪⎩,,,≥在(a ⎤-∞⎥⎦,上是单调增函数,在2a a ⎡⎤⎢⎥⎣⎦,上是单调减函数,在[) a +∞,上是单调增函数,当02a <<时,min ()(2)2(2)0f x f a a ==--≥,解得43a ≤,所以43a ≤;当23a ≤≤时,min ()()0f x f a a ==-≥,解得0a ≤,所以a 不存在;当3a >时,{}{}min ()min (2)(3)min 2(2)3(3)0f x f f a a a a =----,=,≥,解得92a ≥,所以92a ≥;综上得,43a ≤或92a ≥. ……10分(3)设[]()()F x f f x a =+, 令()t f x a x x a =+=-则()y f t ==t t a a --,4a >, 第一步,令()0f t =t t a a ⇔-=,所以,当t a <时,20t at a -+=,判别式(4)0a a ∆=->,解得1t ,2t =; 当t a ≥时,由()0f t =得,即()t t a a -=,解得3t =第二步,易得12302a t t a t <<<<<,且24a a <,① 若1x x a t -=,其中2104a t <<, 当x a <时,210x ax t -+=,记21()p x x ax t =-+,因为对称轴2a x a =<,1()0p a t =>,且21140a t ∆=->,所以方程210t at t -+=有2个不同的实根; 当x a ≥时,210x ax t --=,记21()q x x ax t =--,因为对称轴2a x a =<,1()0q a t =-<,且22140a t ∆=+>,所以方程210x ax t --=有1个实根, 从而方程1x x a t -=有3个不同的实根;② 若2x x a t -=,其中2204a t <<, 由①知,方程2x x a t -=有3个不同的实根;③ 若3x x a t -=,当x a >时,230x ax t --=,记23()r x x ax t =--,因为对称轴2a x a =<,3()0r a t =-<,且23340a t ∆=+>,所以方程230x ax t --=有1个实根; 当x a ≤时,230x ax t -+=,记23()s x x ax t =--,因为对称轴2a x a =<,3()0s a t =>,且2334a t ∆=-,2340a t ->⇔324160a a --<, …… 14分记32()416m a a a =--,则()(38)0m a a a '=->,故()m a 为(4 )+∞,上增函数,且(4)160m =-<,(5)90m =>, 所以()0m a =有唯一解,不妨记为0a ,且0(45)a ∈,, 若04a a <<,即30∆<,方程230x ax t -+=有0个实根; 若0a a =,即30∆=,方程230x ax t -+=有1个实根; 若0a a >,即30∆>,方程230x ax t -+=有2个实根,所以,当04a a <<时,方程3x x a t -=有1个实根; 当0a a =时,方程3x x a t -=有2个实根;当0a a >时,方程3x x a t -=有3个实根.综上,当04a a <<时,函数[]()y f f x a =+的零点个数为7; 当0a a =时,函数[]()y f f x a =+的零点个数为8;当0a a >时,函数[]()y f f x a =+的零点个数为9. …… 16分(注:第(1)小问中,求得0a =后不验证()f x 为奇函数,不扣分;第(2)小问中利用分离参数法参照参考答案给分;第(3)小问中使用数形结合,但缺少代数过程的只给结果分.)20.(本小题满分16分)设{}n a 是公差为d 的等差数列,{}n b 是公比为q (1q ≠)的等比数列.记n n n c a b =+. (1)求证:数列{}1n n c c d +--为等比数列; (2)已知数列{}n c 的前4项分别为4,10,19,34. ① 求数列{}n a 和{}n b 的通项公式;② 是否存在元素均为正整数的集合A ={1n ,2n ,…,} k n (4k ≥,k *∈N ),使得数列1n c ,2n c ,…,k n c 为等差数列?证明你的结论. 解:(1)证明:依题意,()()111n n n n n n c c d a b a b d +++--=+-+- ()()11n n n n a a d b b ++=--+-(1)0n b q =-≠, …… 3分从而2111(1)n n n n n n c c d b q q ++++---==,又211(1)0c c d b q --=-≠,所以{}1n n c c d +--是首项为1(1)b q -,公比为q 的等比数列. …… 5分(2)① 法1:由(1)得,等比数列{}1n n c c d +--的前3项为6d -,9d -,15d -, 则()29d -=()()615d d --,解得3d =,从而2q =, …… 7分且11114 3210 a b a b +=⎧⎨++=⎩,,解得11a =,13b =,所以32n a n =-,132n n b -=⋅. …… 10分法2:依题意,得1111211311410219334a b a d b q a d b q a d b q +=⎧⎪++=⎪⎨++=⎪⎪++=⎩,,,, …… 7分消去1a ,得1121132116915d b q b d b q b q d b q b q +-=⎧⎪+-=⎨⎪+-=⎩,,,消去d ,得2111321112326b q b q b b q b q b q ⎧-+=⎪⎨-+=⎪⎩,,消去1b ,得2q =,从而可解得,11a =,13b =,3d =,所以32n a n =-,132n n b -=⋅. ……10分② 假设存在满足题意的集合A ,不妨设l ,m ,p ,r A ∈()l m p r <<<,且l c ,m c ,p c ,r c 成等差数列, 则2m p l c c c =+,因为0l c >,所以2m p c c >, ① 若1p m >+,则2p m +≥,结合①得,112(32)32(32)32m p m p --⎡⎤-+⋅>-+⋅⎣⎦13(2)232m m ++-+⋅≥,化简得,8203m m -<-<, ②因为2m ≥,m *∈N ,不难知20m m ->,这与②矛盾, 所以只能1p m =+,同理,1r p =+,所以m c ,p c ,r c 为数列{}n c 的连续三项,从而122m m m c c c ++=+, 即()11222m m m m m m a b a b a b +++++=+++,故122m m m b b b ++=+,只能1q =,这与1q ≠矛盾,所以假设不成立,从而不存在满足题意的集合A . ……16分(注:第(2)小问②中,在正确解答①的基础上,写出结论“不存在”,就给1分.)南通市2015届高三第二次调研测试数学Ⅱ(附加题)A .[选修4-1:几何证明选讲](本小题满分10分)如图,从圆O 外一点P 引圆的切线PC 及割线PAB ,C 为切点. 求证:AP BC AC CP ⋅=⋅. 证明:因为PC 为圆O 的切线,P(第21 - A 题)所以P∠=, …… 3分又CPA CPB ∠=∠, 故△C∽△BCP , …… 7分所以AC AP BC PC=,即AP BC AC CP ⋅=⋅. …… 10分B .[选修4-2:矩阵与变换](本小题满分10分)设23⎡⎤⎢⎥⎣⎦是矩阵232a ⎡⎤=⎢⎥⎣⎦M 的一个特征向量,求实数a 的值. 解:设23⎡⎤⎢⎥⎣⎦是矩阵M 属于特征值λ的一个特征向量,则232a ⎡⎤⎢⎥⎣⎦23λ⎡⎤=⎢⎥⎣⎦23⎡⎤⎢⎥⎣⎦, …… 5分 故262 123 a λλ+=⎧⎨=⎩,,解得4 1. a λ⎧⎨=⎩=,……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,设直线π3θ=与曲线210cos 40ρρθ-+=相交于A ,B 两点,求线段AB 中点的极坐标.解:(方法1)将直线π3θ=化为普通方程得,y =,将曲线210cos 40ρρθ-+=化为普通方程得,221040x y x +-+=, …… 4分联立221040y x y x ⎧=⎪⎨+-+=⎪⎩,并消去y 得,22520x x -+=,解得112x =,22x =,所以AB 中点的横坐标为12524x x +=,…… 8分化为极坐标为()5π 23,.…… 10分(方法2)联立直线l 与曲线C 的方程组2π310cos 40θρρθ⎧=⎪⎨⎪-+=⎩,,…… 2分消去θ,得2540ρρ-+=,解得11ρ=,24ρ=, …… 6分所以线段AB 中点的极坐标为()12π 23ρρ+,,即()5π 23,. …… 10分(注:将线段AB 中点的极坐标写成()5π 2π ()23k k +∈Z ,的不扣分.)D .[选修4-5:不等式选讲](本小题满分10分)设实数a ,b ,c 满足234a b c ++=,求证:22287a b c ++≥.证明:由柯西不等式,得()()222222123a b c ++++≥()223a b c ++, …… 6分因为234a b c ++=, 故22287a b c ++≥, …… 8分当且仅当a b c ==,即2a =,4b =,6c =时取“=”. ……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在平面直角坐标系xOy 中,点(84)A -,,(2)P t ,(0)t <在抛物线22y px =(0)p >上.(1)求p ,t 的值;(2)过点P 作PM 垂直于x 轴,M 为垂足,直线AM 与抛物线的另一交点为B ,点C 在直线AM 上.若PA ,PB ,PC 的斜率分别为1k ,2k ,3k ,且1232k k k +=,求点C 的坐标.解:(1)将点(84)A -,代入22y px =,得1p =, …… 2分 将点(2)P t ,代入22y x =,得2t =±,因为0t <,所以2t =-. …… 4分(2)依题意,M 的坐标为(20),, 直线AM 的方程为24y x =-+,联立224332y x y x⎧=-+⎪⎨⎪=⎩,并解得B ()112,, …… 6分 所以11k =-,22k =-,代入1232k k k +=得,376k =-, ……8分从而直线PC 的方程为7163y x =-+,(第22题)联立243371y x y x ⎧=-+⎪⎨⎪=-+⎩,并解得C ()82-,. ……10分23.(本小题满分10分)设A ,B 均为非空集合,且A B =∅,AB ={ 123,,,…,}n (n ≥3,n *∈N ).记A ,B 中元素的个数分别为a ,b ,所有满足“a ∈B ,且b A ∈”的集合对(A ,B )的个数为n a . (1)求a 3,a 4的值; (2)求n a .解:(1)当n =3时,AB ={1,2,3},且AB =∅,若a =1,b =2,则1B ∈,2A ∈,共01C 种;若a =2,b =1,则2B ∈,1A ∈,共11C 种, 所a 3=01C 11+ C 2=;当n =4时,A B ={1,2,3,4},且A B =∅,若a =1,b =3,则1B ∈,3A ∈,共02C 种; 若a =2,b =2,则2B ∈,2A ∈,这与AB =∅矛盾;若a =3,b =1,则3B ∈,1A ∈,共22C 种, 所以a 4=02C 22+ C 2=. …… 4分(2)当n 为偶数时,A B ={1,2,3,…,n },且A B =∅,若a =1,b 1n =-,则1B ∈,1n -A ∈,共02C n -(考虑A )种; 若a =2,b 2n =-,则2B ∈,2n -A ∈,共12C n -(考虑A )种; ……(()2π π3,f θ'f θ若a =12n -,b 12n =+,则12n -B ∈,12n +A ∈,共222C nn --(考虑A )种; 若a =2n ,b 2n =,则2n B ∈,2n A ∈,这与AB =∅矛盾;若a 1n =+,b 1n =-,则1n +B ∈,1n -A ∈,共2C nn -(考虑A )种; ……若a =1n -,b 1=,则1n -B ∈,1A ∈,共(考虑A )22C n n --种,所以a n =02C n -+12Cn -+…+222C n n --+22Cn n -+…+122222C2Cn n n n n -----=-; ……8分当n 为奇数时,同理得,a n =02C n -+12C n -+…+222C 2n n n ---=, 综上得,12222C 2 .n n n n n n a n ----⎧⎪-=⎨⎪⎩,为偶数,,为奇数 …… 10分。

数学高三二模2019-2020试卷密云区(含答案)

数学高三二模2019-2020试卷密云区(含答案)

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A. {0,1} B. 2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D. ln ||y x =3. 已知x y >,则下列各不等式中一定成立的是A .22x y >B .11x y> C .11()()33x y >D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8 C .4 D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为C. D.6.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=b a a ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为A .1B .2C .3D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9. 某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为A .2B .2C .22D .2310. 已知函数()f x 的定义域为 ,且满足下列三个条件:①对任意的 ,且,都有;② ;③ 是偶函数;若,,(2020)c f =,则 ,, 的大小关系正确的是 A .a b c << B .C .D .二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13. 已知n S 是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______.14. 在ABC 中,三边长分别为4a =,5b =,6c =,则ABC 的最大内角的余弦值为_________,ABC 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程.16.(本小题满分14分)C 1 A 1 B 1如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分)已知函数 .(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围.请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率;(Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案:方案 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2 每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分)(800,1600] 40 30 20 10 0[0,800](1600,2400] (2400,3200] (4000,4800](3200,4000] 820253584消费金额/元人数已知椭圆:过点P ,设它的左、右焦点分别为,,左顶点为,上顶点为.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断 的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++.(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷参考答案 2020.6一、选择题:共10小题,每小题4分,共40分.题号 1 2 3 4 5 6 7 8 9 10 答案ABDBACCBDD二、填空题:共5小题,每小题5分,共25分.11.1(,0)4- 12.20 13.10-;30- 14.18;157415. ①②④. 备注:(1)若小题有两问,第一问3分,第二问2分;(2)第15题答案为①②④之一,3分;为①②④之二,4分;为①②④,5分;其它答案0分.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,侧面11ACC A 为矩形.因为112AC BC AA ==,D 是棱1AA 的中点,所以ADC ∆和11A DC ∆均为等腰直角三角形.所以o1145ADC A DC ∠=∠=. 因此o190C DC ∠=,即1C D DC ⊥. 因为1DC BD ⊥,BDDC D =,所以1DC ⊥平面BCD . 因为BC ⊂平面BCD ,所以1DC BC ⊥.(Ⅱ)解:因为1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC AC ⊥,1CC BC ⊥. 又因为1DC BC ⊥,111CC DC C =,所以BC ⊥平面11ACC A .因为AC ⊂平面11ACC A ,所以BC AC ⊥ 以C 为原点建立空间直角坐标系,如图所示. 不妨设1AC =,则(0,0,0)C ,(1,0,0)A ,(010)B ,,,(101)D ,,,1(102)A ,,,1(0,0,2)C , C 1ABC A 1 B 1第16题图DDCAB C A 1 B 1第16题图zx y所以1(0,0,1)A D =-,1(1,1,2)A B =--,1(1,0,1)C D =-,1(0,1,2)C B =-. 设平面1A BD 的法向量()x y z =,,m ,由1100.A D AB ⎧⋅=⎪⎨⋅=⎪⎩,m m 得020.z x y z -=⎧⎨-+-=⎩,令1x =,则(1,1,0)=m .设平面1C BD 的法向量()x y z =,,n ,由1100.C D C B ⎧⋅=⎪⎨⋅=⎪⎩,n n 得020.x z y z -=⎧⎨-=⎩,令1x =,则(1,2,1)=n .则有cos ,||||⋅<>===⋅m n m n m n因为二面角1A BD C --为锐角, 所以二面角1A BD C --的大小为π6. 17. (本小题满分15分)(Ⅰ)解:因为22(cos cos sin f x x x x x +-2cos 2x x + =π2sin(2)6x +.所以函数()f x 的最小正周期πT =. 因为函数sin y x =的的单调增区间为ππ[2π,2π],22k k k -++∈Z , 所以πππ2π22π,262k x k k -+++∈Z ≤≤, 解得ππππ,36k x k k -++∈Z ≤≤.所以函数数()f x 的的单调增区间为ππ[π,π],36k k k -++∈Z ,(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即max ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π()26f =.所以2m ≤. 若选择②由题意可知,不等式()f x m ≥恒成立,即min ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为π()12f =-.所以1m -≤.18.(本小题满分14分)(Ⅰ)解:记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(3200,4000]内的有8人,在(4000,4800]内的有4人, 消费金额超过3200元的“健身达人”共有 8+4=12(人),从这12人中抽取2人,共有212C 种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C +种不同方法.所以,()P A =11284421219=33C C C C +. (Ⅱ)解:方案1 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=, 按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2 设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为121525C P C ==,所以03012133323281(0)()()()()5555125P C C η==+=, 21233236(200)()()55125P C η===,3033328(300)()()55125P C η===. 所以η的分布列为:数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为2(28602123)76.814131.2ξ=+⨯+⨯⨯=(元),因为由12ξξ>,所以施行方案2投资较少.19.(本小题满分14分)(Ⅰ)解:根据题意得2222222131,4152,6.a b a b c a b c ⎧+=⎪⎪⎪+=⨯⎨⎪⎪=+⎪⎩解得2,1,3.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率3е2=.(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为. 设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得221264(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+,22(2,)AN x y =+. 所以1212(2)(2)AM AN x x y y =+++B AM N Qxy12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0所以AM AN ⊥,即o90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+. 又因为(2,0)A -,所以11(2,)AM x y =+,22(2,)AN x y =+. 所以1212(2)(2)AM AN x x y y =+++12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥,即o90MAN ∠=是定值.20.(本小题满分14分)(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x++--=-->=,. 因为0x >,所以10x +>. (1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >.此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.21.(本小题满分14分)(Ⅰ)解:因为(0,1,1)α=,(0,0,1)β=,所以1(,)[(00|00|)(11|11|)(11|11|)]22M αα=++-+++-+++-=,1(,)[(00|00|)(10|10|)(11|11|)]22M αβ=++-+++-+++-=.(Ⅱ)证明:当4n =时,对于A 中的任意两个不同的元素,αβ,设12341234(,,,)(,,,)x x x x y y y y αβ==,,有12341234(,)(,)M x x x x M y y y y ααββ=+++=+++,.对于任意的,i i x y ,1,2,3,4i =,第 11 页 共 11 页当i i x y ≥时,有11(||)[()]22i i i i i i i i i x y x y x y x y x ++-=++-=, 当i i x y ≤时,有11(||)[()]22i i i i i i i i i x y x y x y x y y ++-=+--=. 即1(||)max{,}2i i i i i i x y x y x y ++-=. 所以,有11223344(,)max{,}max{,}max{,}max{,}M x y x y x y x y αβ=+++. 又因为,{0,1}i i x y ∈,所以max{,}i i i i x y x y ≤+,1,2,3,4i =,当且仅当0i i x y =时等号成立. 所以,11223344max{,}max{,}max{,}max{,}x y x y x y x y +++11223344()()()()x y x y x y x y ≤+++++++ 12341234()()x x x x y y y y =+++++++,即(,)(,)(,)M M M αβααββ≤+,当且仅当0i i x y =(1,2,3,4i =)时等号成立.(Ⅲ)解:由(Ⅱ)问,可证,对于任意的123123(,,,,)(,,,,)n n x x x x y y y y αβ==,,若(,)(,)(,)M M M αβααββ=+,则0i i x y =,1,2,3,,i n =成立. 所以,考虑设012312{(,,,,)|,0}n n A x x x x x x x =====,11231{(,,,,)|1,{0,1},2,3,,}n i A x x x x x x i n ==∈=,对于任意的2,3,,k n =,123123121{(,,,,)|(,,,,),0,1}k n n k k A x x x x x x x x A x x x x -=∈=====.所以01n A A A A =.假设满足条件的集合B 中元素个数不少于2n +, 则至少存在两个元素在某个集合k A (1,2,,1k n =-)中, 不妨设为123123(,,,,)(,,,,)n n x x x x y y y y αβ==,,则1k k x y ==. 与假设矛盾,所以满足条件的集合B 中元素个数不多于1n +. 取0(0,0,0)e =;对于1,2,,1k n =-,取123(,,,,)k n k e x x x x A =∈,且10k n x x +===;n n e A ∈.令01{,,,}n B e e e =,则集合B 满足条件,且元素个数为1n +.故B 是一个满足条件且元素个数最多的集合.。

密云区2019-2020学年第二学期高三第二次阶段性测试答案20200602

密云区2019-2020学年第二学期高三第二次阶段性测试答案20200602

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A. {0,1} B. 2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D. ln ||y x =3. 已知x y >,则下列各不等式中一定成立的是A .22x y >B .11x y> C .11()()33x y >D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8 C .4 D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为 A.52 B.174 C. 32 D. 1546.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=g b a a ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为22,则满足条件的点P 的个数为A .1B .2C .3D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9. 某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为1A .2B .2C .22D .2310. 已知函数()f x 的定义域为 ,且满足下列三个条件:①对任意的 ,且,都有;② ;③ 是偶函数;若,,(2020)c f =,则 ,, 的大小关系正确的是 A .a b c << B .C .D .二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13. 已知n S 是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______.14. 在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程.16.(本小题满分14分)C 1A 1B 1如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分)已知函数 .(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围.请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率;(Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案:方案 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2 每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分) 已知椭圆:过点3(1,)2P ,设它的左、右焦点分别为,,左顶点为,(800,1600] 40 30 20 10 0[0,800](1600,2400] (2400,3200] (4000,4800](3200,4000] 820253584消费金额/元人数上顶点为,且满足.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断 的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效)密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷参考答案 2020.6一、选择题:共10小题,每小题4分,共40分.题号 1 2 3 4 5 6 7 8 9 10 答案ABDBACCBDD二、填空题:共5小题,每小题5分,共25分.11.1(,0)4- 12.20 13.10-;30- 14.18;157415. ①②④. 备注:(1)若小题有两问,第一问3分,第二问2分;(2)第15题答案为①②④之一,3分;为①②④之二,4分;为①②④,5分;其它答案0分.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,侧面11ACC A 为矩形.因为112AC BC AA ==,D 是棱1AA 的中点,所以ADC ∆和11A DC ∆均为等腰直角三角形.所以o1145ADC A DC ∠=∠=. 因此o190C DC ∠=,即1C D DC ⊥. 因为1DC BD ⊥,BD DC D =I , 所以1DC ⊥平面BCD . 因为BC ⊂平面BCD ,所以1DC BC ⊥.(Ⅱ)解:因为1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC AC ⊥,1CC BC ⊥. 又因为1DC BC ⊥,111CC DC C =I , 所以BC ⊥平面11ACC A .因为AC ⊂平面11ACC A ,所以BC AC ⊥ 以C 为原点建立空间直角坐标系,如图所示. 不妨设1AC =,则(0,0,0)C ,(1,0,0)A ,(010)B ,,,(101)D ,,,1(102)A ,,,1(0,0,2)C , 所以1(0,0,1)A D =-u u u u r ,1(1,1,2)A B =--u u u r ,1(1,0,1)C D =-u u u u r ,1(0,1,2)C B =-u u u r. 设平面1A BD 的法向量()x y z =,,m ,由1100.A D AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r,m m 得020.z x y z -=⎧⎨-+-=⎩, 令1x =,则(1,1,0)=m .设平面1C BD 的法向量()x y z =,,n ,由1100.C D C B ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u r ,n n 得020.x z y z -=⎧⎨-=⎩,令1x =,则(1,2,1)=n .则有1112013cos ,.||||226⋅⨯+⨯+⨯<>===⋅⨯m n m n m n因为二面角1A BD C --为锐角,C 1ABC A 1 B 1第16题图DDC 1 AB C A 1 B 1第16题图zxy所以二面角1A BD C --的大小为π6. 17. (本小题满分15分)(Ⅰ)解:因为22()=23sin cos cos sin f x x x x x +-=3sin 2cos 2x x + =π2sin(2)6x +.所以函数()f x 的最小正周期πT =. 因为函数sin y x =的的单调增区间为ππ[2π,2π],22k k k -++∈Z , 所以πππ2π22π,262k x k k -+++∈Z ≤≤, 解得ππππ,36k x k k -++∈Z ≤≤.所以函数数()f x 的的单调增区间为ππ[π,π],36k k k -++∈Z ,(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即max ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π()26f =.所以2m ≤.若选择②由题意可知,不等式()f x m ≥恒成立,即min ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为π()12f =-.所以1m -≤.18.(本小题满分14分)(Ⅰ)解:记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(3200,4000]内的有8人,在(4000,4800]内的有4人, 消费金额超过3200元的“健身达人”共有 8+4=12(人),从这12人中抽取2人,共有212C 种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C +种不同方法.所以,()P A =11284421219=33C C C C +. (Ⅱ)解:方案1 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=, 按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2 设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为121525C P C ==,所以03012133323281(0)()()()()5555125P C C η==+=, 21233236(200)()()55125P C η===, 3033328(300)()()55125P C η===. 所以η的分布列为:数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为2(28602123)76.814131.2ξ=+⨯+⨯⨯=(元),因为由12ξξ>,所以施行方案2投资较少.19.(本小题满分14分)(Ⅰ)解:根据题意得2222222131,4152,6.a b a b c a b c ⎧+=⎪⎪⎪+=⨯⎨⎪⎪=+⎪⎩解得2,1,3.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率3е2=.(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为. 设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得221264(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0 所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. B AM N Qxy显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.20.(本小题满分14分)(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x ++--=-->=,. 因为0x >,所以10x +>. (1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >.此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:x(0,1)a +1a +(1,)a ++∞'()h x − 0 + ()h x↘极小值↗所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.21.(本小题满分14分)(Ⅰ)解:因为(0,1,1)α=,(0,0,1)β=,所以1(,)[(00|00|)(11|11|)(11|11|)]22M αα=++-+++-+++-=,1(,)[(00|00|)(10|10|)(11|11|)]22M αβ=++-+++-+++-=.(Ⅱ)证明:当4n =时,对于A 中的任意两个不同的元素,αβ,设12341234(,,,)(,,,)x x x x y y y y αβ==,,有12341234(,)(,)M x x x x M y y y y ααββ=+++=+++,.对于任意的,i i x y ,1,2,3,4i =,当i i x y ≥时,有11(||)[()]22i i i i i i i i i x y x y x y x y x ++-=++-=, 当i i x y ≤时,有11(||)[()]22i i i i i i i i i x y x y x y x y y ++-=+--=. 即1(||)max{,}2i i i i i i x y x y x y ++-=. 所以,有11223344(,)max{,}max{,}max{,}max{,}M x y x y x y x y αβ=+++. 又因为,{0,1}i i x y ∈,所以max{,}i i i i x y x y ≤+,1,2,3,4i =,当且仅当0i i x y =时等号成立. 所以,11223344max{,}max{,}max{,}max{,}x y x y x y x y +++11223344()()()()x y x y x y x y ≤+++++++ 12341234()()x x x x y y y y =+++++++,即(,)(,)(,)M M M αβααββ≤+,当且仅当0i i x y =(1,2,3,4i =)时等号成立.(Ⅲ)解:由(Ⅱ)问,可证,对于任意的123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,若(,)(,)(,)M M M αβααββ=+,则0i i x y =,1,2,3,,i n =L 成立. 所以,考虑设012312{(,,,,)|,0}n n A x x x x x x x =====L L , 11231{(,,,,)|1,{0,1},2,3,,}n i A x x x x x x i n ==∈=L L ,对于任意的2,3,,k n =L ,123123121{(,,,,)|(,,,,),0,1}k n n k k A x x x x x x x x A x x x x -=∈=====L L L .所以01n A A A A =U UL U .高三数学试题参考答案 第11页共11页 假设满足条件的集合B 中元素个数不少于2n +, 则至少存在两个元素在某个集合k A (1,2,,1k n =-L )中,不妨设为123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,则1k k x y ==. 与假设矛盾,所以满足条件的集合B 中元素个数不多于1n +. 取0(0,0,0)e =L ;对于1,2,,1k n =-L ,取123(,,,,)k n k e x x x x A =∈L ,且10k n x x +===L ;n n e A ∈. 令01{,,,}n B e e e =L ,则集合B 满足条件,且元素个数为1n +.故B 是一个满足条件且元素个数最多的集合.。

北京市密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷及评分标准20200602

北京市密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷及评分标准20200602

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A.{0,1} B.2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D.ln ||y x =3.已知x y >,则下列各不等式中一定成立的是A .22x y >B .11x y> C .11()()33x y > D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8 C .4 D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为6.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=g b a a ”的 A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为2,则满足条件的点P 的个数为 A .1B .2C .3D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9.某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为 AB .2 C. D.10.已知函数()f x 的定义域为,且满足下列三个条件: ①对任意的,且,都有;②;③是偶函数;若,,(2020)c f =,则,,的大小关系正确的是 A .a b c <<B .C .D .二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13.已知n S是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______.14. 在ABC V 中,三边长分别为4a =,5b =,6c =,则ABC V 的最大内角的余弦值为_________,ABC V 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.第9题图11主视图1俯视图2三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程. 16.(本小题满分14分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥.(Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分)已知函数.(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围. 请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率; (Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案: 方案按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员C 1 A BC A 1B 1第16题图D(800,1600] (1600,2400] (2400,3200] (4000,4800](3200,4000] 消费金额/元人数均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分)已知椭圆:过点P ,设它的左、右焦点分别为,,左顶点为,上顶点为.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由.(Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=L L .对于集合A 中的任意元素12(,,,)n x x x α=L 和12(,,,)n y y y β=L ,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++L .(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效)密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷参考答案 2020.6一、选择题:共10小题,每小题4分,共40分.二、填空题:共5小题,每小题5分,共25分.11.1(,0)4- 12.20 13.10-;30- 14.18 15. ①②④. 备注:(1)若小题有两问,第一问3分,第二问2分;(2)第15题答案为①②④之一,3分;为①②④之二,4分;为①②④,5分;其它答案0分.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,侧面11ACC A 为矩形.因为112AC BC AA ==,D 是棱1AA 的中点,所以ADC ∆和11A DC ∆均为等腰直角三角形.所以o1145ADC A DC ∠=∠=.因此o190C DC ∠=,即1C D DC ⊥.因为1DC BD ⊥,BD DC D =I , 所以1DC ⊥平面BCD . 因为BC ⊂平面BCD ,所以1DC BC ⊥.(Ⅱ)解:因为1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC AC ⊥,1CC BC ⊥. 又因为1DC BC ⊥,111CC DC C =I , 所以BC ⊥平面11ACC A .因为AC ⊂平面11ACC A ,所以BC AC ⊥ 以C 为原点建立空间直角坐标系,如图所示. 不妨设1AC =,则(0,0,0)C ,(1,0,0)A ,(010)B ,,,(101)D ,,,1(102)A ,,,1(0,0,2)C , C 1ABC A 1 B 1所以1(0,0,1)A D =-u u u u r ,1(1,1,2)A B =--u u u r ,1(1,0,1)C D =-u u u u r ,1(0,1,2)C B =-u u u r . 设平面1A BD 的法向量()x y z =,,m ,由1100.A D AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r,m m 得020.z x y z -=⎧⎨-+-=⎩, 令1x =,则(1,1,0)=m .设平面1C BD 的法向量()x y z =,,n ,由1100.C D C B ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r ,n n 得020.x z y z -=⎧⎨-=⎩,令1x =,则(1,2,1)=n .则有cos ,||||⋅<>===⋅m n m n m n因为二面角1A BD C --为锐角, 所以二面角1A BD C --的大小为π6. 17. (本小题满分15分)(Ⅰ)解:因为22(cos cos sin f x x x x x +-2cos 2x x + =π2sin(2)6x +.所以函数()f x 的最小正周期πT =. 因为函数sin y x =的的单调增区间为ππ[2π,2π],22k k k -++∈Z , 所以πππ2π22π,262k x k k -+++∈Z ≤≤, 解得ππππ,36k x k k -++∈Z ≤≤.所以函数数()f x 的的单调增区间为ππ[π,π],36k k k -++∈Z ,(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即max ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π()26f =.所以2m ≤.若选择②由题意可知,不等式()f x m ≥恒成立,即min ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为π()12f =-.所以1m -≤.18.(本小题满分14分)(Ⅰ)解:记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(3200,4000]内的有8人,在(4000,4800]内的有4人,消费金额超过3200元的“健身达人”共有 8+4=12(人),从这12人中抽取2人,共有212C 种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C +种不同方法.所以,()P A =11284421219=33C C C C +. (Ⅱ)解:方案1 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=, 按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2 设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为121525C P C ==,所以03012133323281(0)()()()()5555125P C C η==+=, 21233236(200)()()55125P C η===, 3033328(300)()()55125P C η===. 所以η的分布列为:数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为2(28602123)76.814131.2ξ=+⨯+⨯⨯=(元),因为由12ξξ>,所以施行方案2投资较少.19.(本小题满分14分)(Ⅰ)解:根据题意得22222131,42,6.a b c a b c ⎧+=⎪⎪=⨯⎪=+⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率е=(Ⅱ)解:方法一因为直线不与轴垂直,所以直线设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得2212(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0所以AM AN ⊥u u u u r u u u r,即o 90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o 90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.20.(本小题满分14分)(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x++--=-->=,. 因为0x >,所以10x +>. (1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >.此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.21.(本小题满分14分)(Ⅰ)解:因为(0,1,1)α=,(0,0,1)β=,所以1(,)[(00|00|)(11|11|)(11|11|)]22M αα=++-+++-+++-=,1(,)[(00|00|)(10|10|)(11|11|)]22M αβ=++-+++-+++-=.(Ⅱ)证明:当4n =时,对于A 中的任意两个不同的元素,αβ,设12341234(,,,)(,,,)x x x x y y y y αβ==,,有12341234(,)(,)M x x x x M y y y y ααββ=+++=+++,.对于任意的,i i x y ,1,2,3,4i =,高三数学第二次阶段性测试试题第11页共11页当i i x y ≥时,有11(||)[()]22i i i i i i i i i x y x y x y x y x ++-=++-=, 当i i x y ≤时,有11(||)[()]22i i i i i i i i i x y x y x y x y y ++-=+--=. 即1(||)max{,}2i i i i i i x y x y x y ++-=. 所以,有11223344(,)max{,}max{,}max{,}max{,}M x y x y x y x y αβ=+++. 又因为,{0,1}i i x y ∈,所以max{,}i i i i x y x y ≤+,1,2,3,4i =,当且仅当0i i x y =时等号成立. 所以,11223344max{,}max{,}max{,}max{,}x y x y x y x y +++11223344()()()()x y x y x y x y ≤+++++++ 12341234()()x x x x y y y y =+++++++,即(,)(,)(,)M M M αβααββ≤+,当且仅当0i i x y =(1,2,3,4i =)时等号成立.(Ⅲ)解:由(Ⅱ)问,可证,对于任意的123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,若(,)(,)(,)M M M αβααββ=+,则0i i x y =,1,2,3,,i n =L 成立. 所以,考虑设012312{(,,,,)|,0}n n A x x x x x x x =====L L , 11231{(,,,,)|1,{0,1},2,3,,}n i A x x x x x x i n ==∈=L L ,对于任意的2,3,,k n =L ,123123121{(,,,,)|(,,,,),0,1}k n n k k A x x x x x x x x A x x x x -=∈=====L L L .所以01n A A A A =U UL U .假设满足条件的集合B 中元素个数不少于2n +, 则至少存在两个元素在某个集合k A (1,2,,1k n =-L )中, 不妨设为123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,则1k k x y ==. 与假设矛盾,所以满足条件的集合B 中元素个数不多于1n +. 取0(0,0,0)e =L ;对于1,2,,1k n =-L ,取123(,,,,)k n k e x x x x A =∈L ,且10k n x x +===L ;n n e A ∈. 令01{,,,}n B e e e =L ,则集合B 满足条件,且元素个数为1n +.故B 是一个满足条件且元素个数最多的集合.。

北京市密云县2019-2020学年中考二诊数学试题含解析

北京市密云县2019-2020学年中考二诊数学试题含解析

北京市密云县2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是()A.44°B.53°C.72°D.54°2.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,12C.1,13D.1,233.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值为()A.34-B.34C.43D.43-4.函数22ayx--=(a为常数)的图像上有三点17()2y-,,21()2y-,,33()2y,,则函数值123,,y y y的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y15.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-46.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)7.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()A .17B .27C .37 D .478.如图,一次函数1y ax b =+和反比例函数2k y x =的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >9.如图是由5个相同的正方体搭成的几何体,其左视图是( )A .B .C .D .10.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是( )A .B .C .D .11.下列各式:①33;②177;2682;2432;其中错误的有( ). A .3个 B .2个 C .1个 D .0个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.14.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.15.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m 的值是______.16.计算:2﹣1+()22-=_____.17.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则¶AB的长为_____.18.若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|+22b bc c-++3|a﹣b|=_____.2三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.20.(6分)先化简,再求值:2121111a a a a -⎛⎫-÷ ⎪+-+⎝⎭,其中31a =+ 21.(6分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。

2020年北京密云县高三二模数学试卷

2020年北京密云县高三二模数学试卷

; 的大小.
17. 已知函数

( 1 ) 求函数 的单调递增区间和最小正周期;
( 2 ) 若当
时,关于 的不等式
,求实数 的取值范围.
请选择①和②中的一个条件,补全问题( ),并求解.其中,①有解;②恒成立.
注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.
18. 某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:
,且
,都有




是偶函数;



A.
B.
,则 , , 的大小关系正确的是( ).
2
C. D.
二、填空题(本大题共5小题,每小题5分,共25分)
11. 抛物线
( 为常数)过点
,则抛物线的焦点坐标为

12. 在
的展开式中,常数项为
.(用数字作答)
13. 已知 是数列


的前 项和,且
,则
, 的最小值
解析:
∵抛物线
过点



解得

∴抛物线
的焦点坐标为

12.
8
解析:
的二项展开式的通项公式为


,得 ,故
的二项展开式中常数项为

13.
;
解析:
∵ 是数列 的前 项和


时,


∴当
或 时, 有最小值,
, 所以
, 的最小值为 .
14. ;
解析:

的内角分别为 , , ,



北京市密云县2019-2020学年中考第二次质量检测数学试题含解析

北京市密云县2019-2020学年中考第二次质量检测数学试题含解析

北京市密云县2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( )A .平均数B .中位数C .众数D .方差2.如图,在平面直角坐标系xOy 中,点A (1,0),B (2,0),正六边形ABCDEF 沿x 轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF 滚动2017次时,点F 的坐标是( )A .(2017,0)B .(2017,12)C .(2018,3)D .(2018,0)3.一元二次方程x 2+kx ﹣3=0的一个根是x=1,则另一个根是( )A .3B .﹣1C .﹣3D .﹣24.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .极差C .中位数D .平均数5.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >46.如图,O 为直线 AB 上一点,OE 平分∠BOC ,OD ⊥OE 于点 O ,若∠BOC=80°,则∠AOD 的度数是( )A.70°B.50°C.40°D.35°7.下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2 C.a2÷a2=0 D.(a2)3=a68.下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x29.如图,在正八边形ABCDEFGH中,连接AC,AE,则AEAC的值是()A.1 B.2C.2 D.310.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A.中位数不变,方差不变B.中位数变大,方差不变C.中位数变小,方差变小D.中位数不变,方差变小11.如图是反比例函数kyx=(k为常数,k≠0)的图象,则一次函数y kx k=-的图象大致是()A.B.C.D.12.在平面直角坐标系中,将点P (﹣4,2)绕原点O 顺时针旋转90°,则其对应点Q 的坐标为( ) A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:32a4ab-=.14.已知36,则x2y+xy2的值为____.15.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.16.已知,则=_______.17.因式分解:x 2﹣10x+24=_____.18.ABC V 与DEF V 是位似图形,且对应面积比为4:9,则ABC V 与DEF V 的位似比为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.20.(6分)如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (3,1)在反比例函数y =k x的图象上. (1)求反比例函数y =k x 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =12S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.21.(6分)如图1,在平面直角坐标系中,一次函数y =﹣1x+8的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.22.(8分)如图,已知在△ABC中,AB=AC=5,cosB=45,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.23.(8分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(10分)解方程(2x+1)2=3(2x+1)25.(10分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=33,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=33,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.26.(12分)(1)计算:20(2)(3)12sin 60π︒-++-; (2)化简:2121()a a a a a--÷-. 27.(12分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2F滚动7次时的横坐标为8,纵坐F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,点F滚动7次时的横坐标为8,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018∴点F滚动2107次时的坐标为(2018),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.3.C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.4.C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.5.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.B【解析】分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数. 详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC.7.D. 【解析】试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算8.A【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选A.9.B【解析】【分析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故AEAC=2.故选:B.【点睛】本题考查了正多边形的性质,正确作出辅助线是关键.10.D【解析】【分析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.【详解】∵原数据的中位数是=3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;∵新数据的中位数为3,平均数为=3,∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;所以新数据与原数据相比中位数不变,方差变小,故选:D.【点睛】本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.11.B【解析】根据图示知,反比例函数kyx的图象位于第一、三象限,∴k>0,∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx−k的图象经过第一、三、四象限;故选:B.12.A【解析】【分析】首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q 点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵{PMO ONQMPO NOQ PO OQ∠=∠∠=∠= ,∴△PMO ≌△ONQ ,∴PM=ON ,OM=QN ,∵P 点坐标为(﹣4,2),∴Q 点坐标为(2,4),故选A .【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()a a 2b a 2b +-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可:()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-. 14.【解析】分析:因式分解,把已知整体代入求解.详解:x 2y+xy 2=xy(x+y)==.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.15.1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.16.3【解析】 【分析】 依据可设a=3k,b=2k ,代入化简即可.【详解】 ∵,∴可设a=3k,b=2k , ∴=3故答案为3. 【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项. 17.(x ﹣4)(x ﹣6) 【解析】 【分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可. 【详解】x 2﹣10x+24= x 2﹣10x+(-4)×(-6)=(x ﹣4)(x ﹣6) 【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键. 18.2:1 【解析】 【分析】由相似三角形的面积比等于相似比的平方,即可求得ABC V 与DEF V 的位似比. 【详解】解ABC V 与DEF V 是位似图形,且对应面积比为4:9,ABC V 与DEF V 的相似比为2:1,故答案为:2:1. 【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82 123;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):1020300 ﹣﹣ 102030 10 10 ﹣﹣ 30 40 20 20 30 ﹣﹣ 50 30304050﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果, 因此P(不低于30元)=812=23; 考点:列表法与树状图法. 【详解】 请在此输入详解! 20.(1)y 3;(1)(﹣3,0)或(3,0) 【解析】 【分析】(1)把A 的坐标代入反比例函数的表达式,即可求出答案;(1)求出∠A =60°,∠B =30°,求出线段OA 和OB ,求出△AOB 的面积,根据已知S △AOP 12=S △AOB ,求出OP 长,即可求出答案. 【详解】(1)把A 31)代入反比例函数y k x =得:k =133⨯=y 3= (1)∵A 31),OA ⊥AB ,AB ⊥x 轴于C ,∴OC 3=AC =1,OA 22AC OC +=1.∵tanA 3OCAC==A =60°. ∵OA ⊥OB ,∴∠AOB =90°,∴∠B =30°,∴OB =1OC =3∴S△AOB12=OA•OB12=⨯1×1323=.∵S△AOP12=S△AOB,∴12⨯OP×AC1232=⨯.∵AC=1,∴OP=13,∴点P的坐标为(﹣13,0)或(13,0).【点睛】本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出△AOB的面积是解答此题的关键.21.(1)2,3,5(1)①AD=5;②P(0,1)或(0,2).【解析】【分析】(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【详解】解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,∴A(3,0),C(0,2),∴OA=3,OC=2.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=2,BC=OA=3.在Rt△ABC中,根据勾股定理得,22AB BC+5.故答案为2,3,5(1)选A.①由(1)知,BC=3,AB=2,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=2﹣AD,根据勾股定理得,CD1=BC1+BD1,即:AD1=16+(2﹣AD)1,∴AD=5;②由①知,D(3,5),设P(0,y).∵A(3,0),∴AP1=16+y1,DP1=16+(y﹣5)1.∵△APD为等腰三角形,∴分三种情况讨论:Ⅰ、AP=AD,∴16+y1=15,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,∴16+y1=16+(y﹣5)1,∴y=52,∴P(0,52);Ⅲ、AD=DP,15=16+(y﹣5)1,∴y=1或2,∴P(0,1)或(0,2).综上所述:P(0,3)或(0,﹣3)或P(0,52)或P(0,1)或(0,2).选B.①由A①知,AD=5,由折叠知,AE=12DE⊥AC于E.在Rt△ADE中,;②∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°.∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0);如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴AN OAOA AC=, ∴445AN =, ∴AN=455, 过点N 作NH ⊥OA , ∴NH ∥OA , ∴△ANH ∽△ACO , ∴AN NH AHAC OC OA==, ∴4558445NH AH ==, ∴NH=85,AH=45,∴OH=165,∴N (16855,),而点P 1与点O 关于AC 对称, ∴P 1(321655,), 同理:点B 关于AC 的对称点P 1, 同上的方法得,P 1(﹣122455,). 综上所述:满足条件的点P 的坐标为:(0,0),(321655,),(﹣122455,).【点睛】本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC ,解(1)的关键是利用分类讨论的思想解决问题. 22.(1)12(2)y=21212255x x -+(0<x <5)(3)3532或12532 【解析】试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=45求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;(2)先证明△BPD∽△BAC,得到BPDSV=21225x,再根据APDBPDS APS BPVV=,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB=BHAB,∵cosB=45,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=12×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴2BPDBACS PBS AB⎛⎫= ⎪⎝⎭VV,即2125BPDS x⎛⎫= ⎪⎝⎭V,解得BPDSV=21225x,∴APDBPDS APS BPVV=,∴251225y xx x-=,解得y=21212255x x-+(0<x<5);(3)∠APD<90°,过C作CE⊥AB交BA延长线于E,可得cos∠CAE=725,①当∠ADP=90°时,cos∠APD=cos∠CAE=725,即7525x x =- , 解得x=3532;②当∠PAD=90°时,5725x x -= , 解得x=12532,综上所述,PB=3532或12532. 【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键. 23.(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32. 【解析】 【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论; (2)先确定出B (1,4m ),D (1,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论. 【详解】 (1)①如图1,4m =Q ,∴反比例函数为4y x=, 当4x =时,1y =,()4,1B ∴,当2y =时,42x∴=, 2x ∴=,()2,2A ∴,设直线AB 的解析式为y kx b =+,∴ 2241k b k b +=⎧⎨+=⎩,∴ 123k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为132y x =-+; ②四边形ABCD 是菱形, 理由如下:如图2,由①知,()4,1B ,//BD y Q 轴,()4,5D ∴,Q 点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =,48433PA ∴=-=,208433PC =-=,PA PC ∴=, PB PD =Q ,∴四边形ABCD 为平行四边形,BD AC ⊥Q ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n n y x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫⎪⎝⎭,4,8m n P +⎛⎫∴ ⎪⎝⎭,8(m A m n ∴+,)8m n +,8(n C m n +,)8m n+ AC BD =Q ,∴8844n m n mm n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键. 24.x 1=-12,x 2=1 【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可. 试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x 1=﹣12,x 2=1. 点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.25.(1)75;(2) 【解析】 【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA 可得出△BOD ∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ADB ,由等角对等边可得出(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=43,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴13 OD OBOA OC==.又∵AO=33,∴OD=13AO=3,∴AD=AO+OD=43.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=43.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BO EO BE DO AO DA==.∵BO:OD=1:3,∴13 EO BEAO DA==.∵3,∴3∴3∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC ,∴AB=2BE .在Rt △AEB 中,BE 2+AE 2=AB 2,即(2+BE 2=(2BE )2,解得:BE=4,∴AB=AC=8,AD=1.在Rt △CAD 中,AC 2+AD 2=CD 2,即82+12=CD 2,解得:【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.26.(1)(2)11a a +-. 【解析】【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())022π12sin60︒-+-+-=4+1+|1﹣=4+1+|11(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭=()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+-- =a 1a 1+-. 【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.27.(1)y =-12(x -3)2+5(2)5 【解析】【分析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式;(2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-,∴此抛物线的表达式为21(3) 5.2y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,∴B(5,3).令x =0,211(3)522y x =--+=,则1(0)2C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=⨯-⨯-= ⎪⎝⎭ 【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.。

密云区2020届高三二模数学试题及答案

密云区2020届高三二模数学试题及答案

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷 2020.6一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|0}M x x =∈R ≥,N M ⊆,则在下列集合中符合条件的集合N 可能是 A. {0,1} B. 2{|1}x x = C. 2{|0}x x > D. R2.在下列函数中,定义域为实数集的偶函数为A.sin y x =B.cos y x =C.||y x x =D. ln ||y x =3. 已知x y >,则下列各不等式中一定成立的是A .22x y >B .11x y>C .11()()33x y >D .332x y -+>4.已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16 B .8 C .4 D . 25.已知双曲线221(0)x y a a-=>的一条渐近线方程为20x y +=,则其离心率为C. D.6.已知平面向量和a b ,则“||||=-b a b ”是“1()02-=b a a ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知圆22:(1)2C x y +-=,若点P 在圆C 上,并且点P 到直线y x =的距离为,则满足条件的点P 的个数为 A .1 B .2 C .3 D .48.设函数1()sin()2f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若51()82f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .13ω=,24ϕ11π=-B .23ω=,12ϕπ= C .13ω=,24ϕ7π= D .23ω=,12ϕ11π=-9. 某三棱锥的三视图如图所示,则该三棱锥中最长的棱长为 A .2 B .2C .22D .2310. 已知函数()f x 的定义域为 ,且满足下列三个条件:①对任意的 ,且,都有;② ;③ 是偶函数;若,,(2020)c f =,则 ,, 的大小关系正确的是 A .a b c << B .C .D .二、填空题:本大题共5小题,每小题5分,共25分.11.抛物线2()y mx m =为常数过点(1,1)-,则抛物线的焦点坐标为_______.12.在61()x x+的展开式中,常数项为_______.(用数字作答).13. 已知n S 是数列{n a }的前n 项和,且211(*)n S n n n =-∈N ,则1a =_________,n S 的最小值为_______.14. 在ABC 中,三边长分别为4a =,5b =,6c =,则ABC 的最大内角的余弦值为_________,ABC 的面积为_______.15. 已知集合22{,,A a a x y x y ==-∈∈Z Z}.给出如下四个结论: ①2A ∉,且3A ∈;②如果{|21,}B b b m m ==-∈N*,那么B A ⊆;③如果{|22,}C c c n n ==+∈N*,那么对于c C ∀∈,则有c A ∈; ④如果1a A ∈,2a A ∈,那么12a a A ∈. 其中,正确结论的序号是__________.第9题图3111主视图1俯视图2三、解答题: 本大题共6小题,共85分.解答应写出文字说明, 演算步骤或证明过程. 16.(本小题满分14分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥.(Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.17.(本小题满分15分)已知函数 .(Ⅰ)求函数的单调递增区间和最小正周期;(Ⅱ)若当π[0,]2x ∈时,关于x 的不等式()f x m ≥_______,求实数的取值范围.请选择①和②中的一个条件,补全问题(Ⅱ),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.18.(本小题满分14分)某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:(Ⅰ)将去年的消费金额超过3200元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取2人,求至少有1位消费者,其去年的消费金额超过4000元的概率; (Ⅱ)针对这些消费者,该健身机构今年欲实施入会制.规定:消费金额为2000元、2700元和3200元的消费者分别为普通会员、银卡会员和金卡会员.预计去年消费金额在(0,1600]、(1600,3200]、(3200,4800]内的消费者今年都将会分别申请办理普通会员、银卡会员和金卡会员.消费者在申请办理会员时,需一次性预先缴清相应等级的消费金额.该健身机构在今年年底将针对这些消费者举办消费返利活动,预设有如下两种方案: 方案 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励.其中,普通会员、银卡会员和金卡会员中的“幸运之星”每人分别奖励500元、600元和元.方案2 每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位普通会员均可参加1次摸奖游戏;每位银卡会员C 1 A BC A 1B 1第16题图D(800,1600] 40 30 20 10 0(1600,2400] (2400,3200] (4000,4800](3200,4000] 820253584消费金额/元人数均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.19.(本小题满分14分)已知椭圆:过点P ,设它的左、右焦点分别为,,左顶点为,上顶点为.(Ⅰ)求椭圆C 的标准方程和离心率;(Ⅱ)过点6(,0)5Q -作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由.20.(本小题满分14分)已知函数()ln ,f x x a x a =-∈R .(Ⅰ)当1a =时,求曲线()f x 在1x =处的切线方程; (Ⅱ)设函数1()()ah x f x x+=+,试判断函数()h x 是否存在最小值,若存在,求出最小值,若不存在,请说明理由. (Ⅲ)当0x >时,写出ln x x 与2x x -的大小关系.21.(本小题满分14分)设n 为正整数,集合A =12{|(,,,),{0,1},1,2,,}n k t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记111122221(,)[(||)(||)(||)]2n n n n M x y x y x y x y x y x y αβ=+-++-+++-+++.(Ⅰ)当n =3时,若(0,1,1)α=,(0,0,1)β=,求(,)M αα和(,)M αβ的值; (Ⅱ)当4n =时,对于A 中的任意两个不同的元素,αβ,证明:(,)(,)(,)M M M αβααββ+≤.(Ⅲ)给定不小于2的正整数n ,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,(,)(,)(,)M M M αβααββ=+.写出一个集合B ,使其元素个数最多,并说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效)密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷参考答案 2020.6一、选择题:共10小题,每小题4分,共40分.题号 1 2 3 4 5 6 7 8 9 10 答案ABDBACCBDD二、填空题:共5小题,每小题5分,共25分.11.1(,0)4- 12.20 13.10-;30- 14.18;157415. ①②④. 备注:(1)若小题有两问,第一问3分,第二问2分;(2)第15题答案为①②④之一,3分;为①②④之二,4分;为①②④,5分;其它答案0分.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,侧面11ACC A 为矩形.因为112AC BC AA ==,D 是棱1AA 的中点,所以ADC ∆和11A DC ∆均为等腰直角三角形.所以o1145ADC A DC ∠=∠=. 因此o190C DC ∠=,即1C D DC ⊥. 因为1DC BD ⊥,BDDC D =,所以1DC ⊥平面BCD . 因为BC ⊂平面BCD ,所以1DC BC ⊥.(Ⅱ)解:因为1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC AC ⊥,1CC BC ⊥. 又因为1DC BC ⊥,111CC DC C =,所以BC ⊥平面11ACC A .因为AC ⊂平面11ACC A ,所以BC AC ⊥ 以C 为原点建立空间直角坐标系,如图所示. 不妨设1AC =,则(0,0,0)C ,(1,0,0)A ,(010)B ,,,(101)D ,,,1(102)A ,,,1(0,0,2)C , C 1ABC A 1 B 1第16题图DDC 1AB C A 1 B 1第16题图zx y所以1(0,0,1)A D =-,1(1,1,2)A B =--,1(1,0,1)C D =-,1(0,1,2)C B =-. 设平面1A BD 的法向量()x y z =,,m ,由1100.A D AB ⎧⋅=⎪⎨⋅=⎪⎩,m m 得020.z x y z -=⎧⎨-+-=⎩,令1x =,则(1,1,0)=m .设平面1C BD 的法向量()x y z =,,n ,由1100.C D C B ⎧⋅=⎪⎨⋅=⎪⎩,n n 得020.x z y z -=⎧⎨-=⎩,令1x =,则(1,2,1)=n .则有cos ,||||⋅<>===⋅m n m n m n因为二面角1A BD C --为锐角, 所以二面角1A BD C --的大小为π6. 17. (本小题满分15分)(Ⅰ)解:因为22(cos cos sin f x x x x x +-2cos 2x x + =π2sin(2)6x +.所以函数()f x 的最小正周期πT =. 因为函数sin y x =的的单调增区间为ππ[2π,2π],22k k k -++∈Z , 所以πππ2π22π,262k x k k -+++∈Z ≤≤, 解得ππππ,36k x k k -++∈Z ≤≤.所以函数数()f x 的的单调增区间为ππ[π,π],36k k k -++∈Z ,(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即max ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π()26f =.所以2m ≤.若选择②由题意可知,不等式()f x m ≥恒成立,即min ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为π()12f =-.所以1m -≤.18.(本小题满分14分)(Ⅰ)解:记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(3200,4000]内的有8人,在(4000,4800]内的有4人,消费金额超过3200元的“健身达人”共有 8+4=12(人),从这12人中抽取2人,共有212C 种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C +种不同方法.所以,()P A =11284421219=33C C C C +. (Ⅱ)解:方案1 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=, 按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2 设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为121525C P C ==,所以03012133323281(0)()()()()5555125P C C η==+=, 21233236(200)()()55125P C η===,3033328(300)()()55125P C η===.所以η的分布列为:数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为2(28602123)76.814131.2ξ=+⨯+⨯⨯=(元),因为由12ξξ>,所以施行方案2投资较少.19.(本小题满分14分)(Ⅰ)解:根据题意得2222222131,4152,6.a b a b c a b c ⎧+=⎪⎪⎪+=⨯⎨⎪⎪=+⎪⎩解得2,1,3.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率3е2=.(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为. 设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得221264(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+,22(2,)AN x y =+. 所以1212(2)(2)AM AN x x y y =+++B AM N Qxy12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0所以AM AN ⊥,即o90MAN ∠=是定值.方法二(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+.又因为(2,0)A -,所以11(2,)AM x y =+,22(2,)AN x y =+. 所以1212(2)(2)AM AN x x y y =+++12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥,即o90MAN ∠=是定值.20.(本小题满分14分)(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x++--=-->=,. 因为0x >,所以10x +>. (1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >.此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.21.(本小题满分14分)(Ⅰ)解:因为(0,1,1)α=,(0,0,1)β=,所以1(,)[(00|00|)(11|11|)(11|11|)]22M αα=++-+++-+++-=,1(,)[(00|00|)(10|10|)(11|11|)]22M αβ=++-+++-+++-=.(Ⅱ)证明:当4n =时,对于A 中的任意两个不同的元素,αβ,设12341234(,,,)(,,,)x x x x y y y y αβ==,,有12341234(,)(,)M x x x x M y y y y ααββ=+++=+++,.对于任意的,i i x y ,1,2,3,4i =,高三数学第二次阶段性测试试题 第11页共11页当i i x y ≥时,有11(||)[()]22i i i i i i i i i x y x y x y x y x ++-=++-=, 当i i x y ≤时,有11(||)[()]22i i i i i i i i i x y x y x y x y y ++-=+--=. 即1(||)max{,}2i i i i i i x y x y x y ++-=. 所以,有11223344(,)max{,}max{,}max{,}max{,}M x y x y x y x y αβ=+++. 又因为,{0,1}i i x y ∈,所以max{,}i i i i x y x y ≤+,1,2,3,4i =,当且仅当0i i x y =时等号成立. 所以,11223344max{,}max{,}max{,}max{,}x y x y x y x y +++11223344()()()()x y x y x y x y ≤+++++++ 12341234()()x x x x y y y y =+++++++,即(,)(,)(,)M M M αβααββ≤+,当且仅当0i i x y =(1,2,3,4i =)时等号成立.(Ⅲ)解:由(Ⅱ)问,可证,对于任意的123123(,,,,)(,,,,)n n x x x x y y y y αβ==,,若(,)(,)(,)M M M αβααββ=+,则0i i x y =,1,2,3,,i n =成立. 所以,考虑设012312{(,,,,)|,0}n n A x x x x x x x =====,11231{(,,,,)|1,{0,1},2,3,,}n i A x x x x x x i n ==∈=,对于任意的2,3,,k n =,123123121{(,,,,)|(,,,,),0,1}k n n k k A x x x x x x x x A x x x x -=∈=====.所以01n A A A A =.假设满足条件的集合B 中元素个数不少于2n +, 则至少存在两个元素在某个集合k A (1,2,,1k n =-)中, 不妨设为123123(,,,,)(,,,,)n n x x x x y y y y αβ==,,则1k k x y ==. 与假设矛盾,所以满足条件的集合B 中元素个数不多于1n +. 取0(0,0,0)e =;对于1,2,,1k n =-,取123(,,,,)k n k e x x x x A =∈,且10k n x x +===;n n e A ∈.令01{,,,}n B e e e =,则集合B 满足条件,且元素个数为1n +.故B 是一个满足条件且元素个数最多的集合.。

2019-2020年高三第二次调研考试数学理试题 含答案

2019-2020年高三第二次调研考试数学理试题 含答案

2019-2020年高三第二次调研考试数学理试题 含答案数学试题(理科)第Ⅰ卷 选择题(共60分)一.选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上。

1. 已知R ,函数的定义域为,,则下列结论正确的是( )A .B .C .D .2.已知f(x)=sin(x +π2),g(x)=cos(x -π2),则下列结论中不正确的是( ) A .函数的最小正周期为πB .函数的最大值为12C .函数的图象关于点(π4,0)成中心对称 D .将函数f(x)的图象向右平移π2个单位后得到函数g(x)的图象 3.下列函数在其定义域上既是奇函数又是减函数的是( )A .B . C. D .4.知0<a <b <1<c ,,,,则m ,n ,r 的大小关系是( )A .n <m <rB .m <r <nC .r <m <nD .m <n <r5、已知平面向量、满足,,则( )A .B .C .D .36. 已知函数且f (a )=-3,则f (6-a )等于( )A .B .C .D .7、已知,若将它的图象向右平移个单位,得到函数的图象,则函数图象的一条对称轴的方程为( )A. B. C. D.8. 函数的大致图像是( )9.在三角形中,已知,,是边上靠近点的四等分点,点是边上 靠近点点的三等分点,则=( )A .B .C .D .10. 若,则( )A .B .C .D .11.已知{a n }为等差数列,公差为d ,且0<d<1,,,则数列{a n }的公差为d 的值为( )A .B .C .D . 12.设函数的定义域为R , , 当时,, 则函数在区间上的所有零点的和为( )A.7B. 6C.3D.2第Ⅱ卷 非选择题(共90分)二.填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置。

13.设f(x)是定义在R 上的周期为2的偶函数,当x ∈上单调递增,求实数c 的取值范围.19.(本小题满分12分)函数()4cos()sin 2cos(2)6f x x x x p w w w p =--+,其中ω>0. (1)求函数y =f(x)的值域;(II)若f(x)的最小正周期为π,求f(x)在区间上的增区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

密云区2019-2020学年第二学期高三第二次阶段性测试数学试卷参考答案 2020.6一、选择题:共10小题,每小题4分,共40分.题号 1 2 3 4 5 6 7 8 9 10 答案ABDBACCBDD二、填空题:共5小题,每小题5分,共25分.11.1(,0)4- 12.20 13.10-;30- 14.18;157415. ①②④. 备注:(1)若小题有两问,第一问3分,第二问2分;(2)第15题答案为①②④之一,3分;为①②④之二,4分;为①②④,5分;其它答案0分.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分14分)(Ⅰ)证明:在直三棱柱111ABC A B C -中,侧面11ACC A 为矩形.因为112AC BC AA ==,D 是棱1AA 的中点,所以ADC ∆和11A DC ∆均为等腰直角三角形.所以o1145ADC A DC ∠=∠=.因此o190C DC ∠=,即1C D DC ⊥.因为1DC BD ⊥,BD DC D =I , 所以1DC ⊥平面BCD . 因为BC ⊂平面BCD ,所以1DC BC ⊥.(Ⅱ)解:因为1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC ,所以1CC AC ⊥,1CC BC ⊥. 又因为1DC BC ⊥,111CC DC C =I , 所以BC ⊥平面11ACC A .因为AC ⊂平面11ACC A ,所以BC AC ⊥ 以C 为原点建立空间直角坐标系,如图所示. 不妨设1AC =,则(0,0,0)C ,(1,0,0)A ,(010)B ,,,(101)D ,,,1(102)A ,,,1(0,0,2)C , 所以1(0,0,1)A D =-u u u u r ,1(1,1,2)A B =--u u u r ,1(1,0,1)C D =-u u u u r ,1(0,1,2)C B =-u u u r. C 1ABC A 1 B 1第16题图DDC 1AB C A 1 B 1第16题图zx y设平面1A BD 的法向量()x y z =,,m ,由1100.A D AB ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r,m m 得020.z x y z -=⎧⎨-+-=⎩, 令1x =,则(1,1,0)=m .设平面1C BD 的法向量()x y z =,,n ,由1100.C D C B ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r ,n n 得020.x z y z -=⎧⎨-=⎩,令1x =,则(1,2,1)=n .则有1112013cos ,.||||226⋅⨯+⨯+⨯<>===⋅⨯m n m n m n因为二面角1A BD C --为锐角, 所以二面角1A BD C --的大小为π6. 17. (本小题满分15分)(Ⅰ)解:因为22()=23sin cos cos sin f x x x x x +-=3sin 2cos 2x x + =π2sin(2)6x +.所以函数()f x 的最小正周期πT =. 因为函数sin y x =的的单调增区间为ππ[2π,2π],22k k k -++∈Z , 所以πππ2π22π,262k x k k -+++∈Z ≤≤, 解得ππππ,36k x k k -++∈Z ≤≤.所以函数数()f x 的的单调增区间为ππ[π,π],36k k k -++∈Z ,(Ⅱ)解:若选择①由题意可知,不等式()f x m ≥有解,即max ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π()26f =.所以2m ≤.若选择②由题意可知,不等式()f x m ≥恒成立,即min ()m f x ≤.因为π[0,]2x ∈,所以ππ7π2666x +≤≤. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为π()12f =-.所以1m -≤.18.(本小题满分14分)(Ⅰ)解:记“在抽取的2人中至少有1位消费者在去年的消费超过4000元”为事件A.由图可知,去年消费金额在(3200,4000]内的有8人,在(4000,4800]内的有4人, 消费金额超过3200元的“健身达人”共有 8+4=12(人),从这12人中抽取2人,共有212C 种不同方法,其中抽取的2人中至少含有1位消费者在去年的消费超过4000元,共有112844C C C +种不同方法.所以,()P A =11284421219=33C C C C +. (Ⅱ)解:方案1 按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”,则“幸运之星”中的普通会员、银卡会员、金卡会员的人数分别为820257100+⨯=,25352515100+⨯=,12253100⨯=, 按照方案1奖励的总金额为1750015600380014900ξ=⨯+⨯+⨯=(元).方案2 设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,200,300.由题意,每摸球1次,摸到红球的概率为121525C P C ==,所以03012133323281(0)()()()()5555125P C C η==+=, 21233236(200)()()55125P C η===, 3033328(300)()()55125P C η===.所以η的分布列为:数学期望为81368020030076.8125125125E η=⨯+⨯+⨯=(元), 按照方案2奖励的总金额为2(28602123)76.814131.2ξ=+⨯+⨯⨯=(元),因为由12ξξ>,所以施行方案2投资较少.19.(本小题满分14分)(Ⅰ)解:根据题意得2222222131,4152,6.a b a b c a b c ⎧+=⎪⎪⎪+=⨯⎨⎪⎪=+⎪⎩解得2,1,3.a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=,离心率3е2=.(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为. 设直线的方程为:65x ty =-, 联立方程226,51.4x ty x y ⎧=-⎪⎪⎨⎪+=⎪⎩化简得221264(4)0525t y ty +--=.显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则122125(4)t y y t +=+,1226425(4)y y t =-+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122121222266(2)(2)55416(1)()5256441216(1)()25(4)55(4)25ty tx y y t y y t y y t t t t t =-+-++=++++=+⨯-+⨯+++=0 所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.方法二B AM N Qxy(1)当直线垂直于x 轴时 解得M 与N 的坐标为64(,)55-±.由点(2,0)A -,易证o90MAN ∠=. (2)当直线斜率存在时设直线的方程为:6(),0.5y k x k =+≠,联立方程226(),51.4y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩化简得2222484(3625)(14)0525k k x k x -+++=. 显然点6(,0)5Q -在椭圆C 的内部,所以0∆>.设11(,)M x y ,22(,)N x y ,则2122485(14)k x x k +=-+,21224(3625)25(14)k x x k -=+. 又因为(2,0)A -,所以11(2,)AM x y =+u u u u r ,22(2,)AN x y =+u u u r.所以1212(2)(2)AM AN x x y y =+++u u u u r u u u rg12122221212222222266(2)(2)()()55636(1)(2)()45254(3625)64836(1)(2)425(14)55(14)25x x k x k x k k x x k x x k k k k k k k =+++++=++++++--=+⨯++⨯++++=0所以AM AN ⊥u u u u r u u u r ,即o90MAN ∠=是定值.20.(本小题满分14分)(Ⅰ)解:当1a =时,()ln ,0f x x x x =->,所以1'()1,0f x x x=->,因此'(1)0k f ==. 又因为(1)1f =,所以切点为(1,1).所以切线方程为1y =.(Ⅱ)解:1()ln 0ah x x a x x a x+=-+>∈R ,,. 所以221(1)(1)'()10a a x x a h x x x x x++--=-->=,. 因为0x >,所以10x +>. (1)当10a +≤,即a ≤-1时因为0x >,所以(1)0x a -+>,故'()0h x >.此时函数()h x 在(0,)+∞上单调递增.所以函数()h x 不存在最小值. (2)当10a +>,即a >-1时令'()0h x =,因为0x >,所以1x a =+.()h x 与'()h x 在(0,)+∞上的变化情况如下:x(0,1)a +1a +(1,)a ++∞'()h x − 0 + ()h x↘极小值↗所以当1x a =+时,()h x 有极小值,也是最小值,并且min ()(1)2ln(1)h x h a a a a =+=+-+. 综上所述,当a ≤-1时,函数()h x 不存在最小值;当1a >-时,函数()h x 有最小值2ln(1)a a a +-+.(Ⅲ)解:当0x >时,2ln x x x x -≤.21.(本小题满分14分)(Ⅰ)解:因为(0,1,1)α=,(0,0,1)β=,所以1(,)[(00|00|)(11|11|)(11|11|)]22M αα=++-+++-+++-=,1(,)[(00|00|)(10|10|)(11|11|)]22M αβ=++-+++-+++-=.(Ⅱ)证明:当4n =时,对于A 中的任意两个不同的元素,αβ,设12341234(,,,)(,,,)x x x x y y y y αβ==,,有12341234(,)(,)M x x x x M y y y y ααββ=+++=+++,.对于任意的,i i x y ,1,2,3,4i =,当i i x y ≥时,有11(||)[()]22i i i i i i i i i x y x y x y x y x ++-=++-=, 当i i x y ≤时,有11(||)[()]22i i i i i i i i i x y x y x y x y y ++-=+--=. 即1(||)max{,}2i i i i i i x y x y x y ++-=. 所以,有11223344(,)max{,}max{,}max{,}max{,}M x y x y x y x y αβ=+++. 又因为,{0,1}i i x y ∈,所以max{,}i i i i x y x y ≤+,1,2,3,4i =,当且仅当0i i x y =时等号成立. 所以,11223344max{,}max{,}max{,}max{,}x y x y x y x y +++11223344()()()()x y x y x y x y ≤+++++++ 12341234()()x x x x y y y y =+++++++,即(,)(,)(,)M M M αβααββ≤+,当且仅当0i i x y =(1,2,3,4i =)时等号成立.(Ⅲ)解:由(Ⅱ)问,可证,对于任意的123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,若(,)(,)(,)M M M αβααββ=+,则0i i x y =,1,2,3,,i n =L 成立. 所以,考虑设012312{(,,,,)|,0}n n A x x x x x x x =====L L , 11231{(,,,,)|1,{0,1},2,3,,}n i A x x x x x x i n ==∈=L L ,对于任意的2,3,,k n =L ,123123121{(,,,,)|(,,,,),0,1}k n n k k A x x x x x x x x A x x x x -=∈=====L L L .所以01n A A A A =U UL U .假设满足条件的集合B 中元素个数不少于2n +, 则至少存在两个元素在某个集合k A (1,2,,1k n =-L )中, 不妨设为123123(,,,,)(,,,,)n n x x x x y y y y αβ==L L ,,则1k k x y ==. 与假设矛盾,所以满足条件的集合B 中元素个数不多于1n +. 取0(0,0,0)e =L ;对于1,2,,1k n =-L ,取123(,,,,)k n k e x x x x A =∈L ,且10k n x x +===L ;n n e A ∈. 令01{,,,}n B e e e =L ,则集合B 满足条件,且元素个数为1n +.故B 是一个满足条件且元素个数最多的集合.。

相关文档
最新文档