2016届中考数学复习专题1+探索规律问题

合集下载

2016年中考数学规律探索专题

2016年中考数学规律探索专题

2016一轮复习专题 - 规律探索济南2012-2015中考真题回顾:1.(2012•济南14题)如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别有点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )A 、(2,0)B 、(—1,1)C 、(—2,1)D 、(-1,-1)2.(2014•济南14题)现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)3.(2015•济南14题)在平面直角坐标系中有三个点A (1,-1)、B (-1,-1)、C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A 、B 、C 为对称中心重复前面的操作,依次得到P 4、P 5、P 6,……。

.。

则点P 2015的坐标是( )A 。

(0,0)B 。

(0,2) C.(2,-4) D 。

( -4,2)⊙热点一:数字或代数式的猜想1.观察下面一列数,按规律在横线上填写适当的数:1、4、7、10、13……第n 项________.1、4、9、16、25、36……第n 项________. 0、3、8、15、24……第n 项________。

2、5、10、17、26……第n 项________.2、6、12、20、30……第n 项________. 0,1,3,6,10……第n 项________.1,2,4,8,16,32……第n 项________。

2016中考数学专题复习——探索规律问题概述

2016中考数学专题复习——探索规律问题概述

专题探索规律问题☞解读考点☞考点归纳归纳1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.【例1】一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.【例2】有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= (用含字母x和n的代数式表示).归纳3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.【例3】如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.【例4】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014=.归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.【例5】如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.☞2年中考【2015年题组】1.(2015绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.(2015十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.2923.(2015荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)4.(2015包头)观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263考点:1.规律型:数字的变化类;2.综合题.5.(2015重庆市)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.306.(2015泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.(2015重庆市)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.(2015崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A.160 B.161 C.162 D.1639.(2015贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.(2015宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A.231π B.210π C.190π D.171π11.(2015鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.2014 21)(B.2015 21)(C.2015 33)(D.2014 33)(【答案】D.考点:1.正方形的性质;2.规律型;3.综合题.12.(2015庆阳)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n 是正整数)的顶点A2n+1的坐标是( )A .(4n ﹣1B .(2n ﹣1C .(4n+1D .(2n+113.(2015宁德)如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x =上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是( )A .(20142,20142) B .(20152,20152) C .(20142,20152) D .(20152,20142)考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题. 14.(2015河南省)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,﹣1)C .(2015,1)D .(2016,0) 考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.(2015张家界)任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是( )A .46B .45C .44D .43 16.(2015邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .2015πB .3019.5πC .3018πD .3024π 17.(2015威海)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为( )A .92432B .C .9812D .考点:1.正多边形和圆;2.规律型;3.综合题. 18.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题. 19.(2015宁波)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为( )A .201521B .201421C .2015211-D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换(折叠问题);4.规律型;5.综合题. 20.(2015常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7; 8=3+5; 16=3+13=5+11; 10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 (请用文字语言表达). 21.(2015淮安)将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= . 22.(2015雅安)若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.(2015桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.(2015梧州)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.(2015百色)观察下列砌钢管的横截面图:则第n 个图的钢管数是 (用含n 的式子表示)26.(2015北海)如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为P1,P2,P3,…,Pn ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt △T1OP1,Rt △T2P1P2,…,Rt △Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn ﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.(2015南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An与原点的距离不小于20,那么n的最小值是.28.(2015常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为.29.(2015株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12bS a=+-,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.30.(2015内江)填空:()()a b a b-+= ;22()()a b a ab b-++= ;3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥). (3)利用(2)猜想的结论计算:98732222...222-+-+-+.31.(2015南平)定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC ,∠C=36°,BA1平分∠ABC 交AC 于A1. (1)2AB =AA1•A C ;(2)探究:△ABC 是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1) (3)应用:已知AC=a ,作A1B1∥AB 交BC 于B1,B1A2平分∠A1B1C 交AC 于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C 交AC 于A3,作A3B3∥AB 交BC 于B3,…,依此规律操作下去,用含a ,n 的代数式表示An ﹣1An .(n 为大于1的整数,直接回答,不必说明理由)考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型. 33.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由; (2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【2014年题组】1.(2014年南平中考)如图,将1a ,b )表示第a 排第b 列的数,则(8,2)与(2014,2014)表示的两个数的积是( )A .B .C .D . 12.(2014年株洲中考)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A . (66,34) B . (67,33) C . (100,33) D . (99,34) 3.(2014年宜宾中考)如图,将n 个边长都为2的正方形按如图所示摆放,点A1,A2,……An 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n-1 C.n 11()4- D .n1()4考点:1.正方形的性质;2.全等三角形的判定与性质. 4.(2014年崇左中考)如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A ……的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1) 5.(2014年百色中考)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n 个等式为 .6.(2014年衡阳中考) 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .【答案】2014.7.(2014年抚顺中考)如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,……,如此继续,可以依次得到点O4,O5,……,On和点E4,E5,……,En.则OnEn=AC.(用含n的代数式表示)考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.(2014年资阳中考)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.(2014年宜宾中考)在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L的值.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S 的值.考点:1.规律型:图形的变化类;2.二元一次方程组的应用.10.(2014年凉山中考)实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗?如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+(n﹣2)+(n﹣1)+n,可以发现.2×[1+2+3+……+(n﹣2)+(n﹣1)+n]=[1+2+3+……+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+……3+2+1]把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+……+(n﹣2)+(n﹣1)+n=12n(n+1)这就是说,三角点阵中前n项的点数的和是12n(n+1)下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12n(n+1)整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.☞1年模拟1.(2015届山东省济南市平阴县中考二模)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),…;若点A1的坐标为(a,b),则点A2015的坐标为()A.(-b+1,a+1)B.(-a,-b+2)C.(b-1,-a+1)D.(a,b)2.(2015届山东省潍坊市昌乐县中考一模)如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A.32 B.56 C.60 D.643.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn .下列结论正确的是( )①四边形A4B4C4D4是菱形; ②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为; ④四边形AnBnCnDn 面积为.A .①②③B .②③④C .①③④D .①②③④4.(2015届广东省深圳市龙华新区中考二模)如图,已知直线y=-12x+2与x 轴交于点B ,与y 轴交于点A .过线段AB 的中点A1做A1B1⊥x 轴于点B1,过线段A1B 的中点A2作A2B2⊥x 轴于点B2,过线段A2B 的中点A3作A3B3⊥x 轴于点B3…,以此类推,则△AnBnBn-1的面积为( )A .112n -B .12nC .114n -D .14n5.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.(2015届北京市平谷区中考二模)在平面直角坐标系中,点A ,B ,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.(2015届北京市门头沟区中考二模)在平面直角坐标系xOy中,矩形OABC如图放置,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2次碰到矩形的边时,点P的坐标为;当点P第6次碰到矩形的边时,点P的坐标为;当点P第2015次碰到矩形的边时,点P的坐标为____________.【答案】(7,4),(0,3),(1,4).8.(2015届安徽省安庆市中考二模)一组按规律排列的式子:,,,,…则第n个式子是(n为正整数).9.(2015届山东省威海市乳山市中考一模)在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,-x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为(a,b),对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.(2015届山东省日照市中考模拟)如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B (2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.(2)若按(1)题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.(2015届广东省佛山市初中毕业班综合测试)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.(2015届湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.(2015届广东省佛山市初中毕业班综合测试))若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.(1)分别求出a2,a3,a4的值;(2)求a1+a2+a3+…+a2160的值.。

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

重点专题突破专题一 规律探索与归纳推理中考重难点突破数式规律数式规律类问题通常是先给出一组数或式子,要求通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.常见数列 规律❶2,4,6,8,10,12,… 2n (从2开始的连续偶数) ❷1,3,5,7,9,11,… 2n -1(从1开始的连续奇数)❸1,4,9,16,25,36,… n 2(正整数平方) ❹2,4,8,16,32,64,… 2n (2的整数次幂) ❺-1,1,-1,1,-1,1,…(-1)n (奇负偶正)❻1,-1, 1,-1, 1,-1,… (-1)n +1或(-1)n -1(奇正偶负)【例1】(2021·铜仁中考)观察下列各项:112 ,214 ,318 ,4116 ,…,则第n 项是__n +12n __.【解析】根据已知可得出规律:第一项:112 =1+121 ,第二项:214 =2+122 ,第三项:318 =3+123 ,…,从而可以得出第n 项.本题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键. 【例2】(2020·百色一模)观察下列等式:1-12 =12 ,2-25 =85 ,3-310 =2710 ,4-417 =6417,…,根据你发现的规律,则第20个等式为 __20-20401 =8 000401__ .【解析】根据题意可知,这列等式的左边的被减数是从1开始的连续整数,减数是一个分数,并且分子和被减数相同,分母是被减数的平方加1;右边也是一个分数,分子是被减数的立方,分母和减数的分母相同,由此可写出第20个等式为:20-20202+1 =203202+1 ,最后化简即可.1.按一定规律排列的单项式:a ,-2a ,4a ,-8a ,16a ,-32a ,…,则第n 个单项式是( A )A .(-2)n -1a B .(-2)n aC .2n -1a D .2n a 2.(2020·百色二模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数:1,1,2,3,5,8,…,则这列数的第8个数是__21__.3.观察下面由※组成的图案和算式,解答问题:1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, ……猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=__(n +2)2__.图形规律图形规律类问题主要涉及图形的组成、分拆等过程,解答此类问题时,要将后一个图形与前一个图形进行比较,明确哪部分发生了变化,哪部分没有发生变化,分析其联系和区别,有时需要多画出几个图形进行观察,有时规律是循环性的,在归纳时要运用对应思想和数形结合思想.【例3】观察下列砌钢管的横截面图:则第n 个图的钢管数是__32 n 2+32 n __(用含n 的式子表示).【解析】本题可先依次列出n =1,2,3,…时的钢管数,再根据规律依次类推,可得出第n 个图的钢管数.第1个图的钢管数为1+2=3=3×1; 第2个图的钢管数为2+3+4=9=3×(1+2); 第3个图的钢管数为3+4+5+6=18=3×(1+2+3);第4个图的钢管数为4+5+6+7+8=30=3×(1+2+3+4);……依次类推,第n 个图的钢管数为3×(1+2+3+4+…+n )=32 n 2+32n .4.(源于沪科七上P83)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n )和芍药的数量规律,那么当n =11时,芍药的数量为( B )A .84株B .88株C .92株D .121株 5.(2021·遂宁中考)下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第__20__个图形共有210个小球.6.下图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n 个图案中有m 个涂有阴影的小正方形,那么m 与n 的函数关系式为__m =4n +1__.与坐标有关的规律与坐标有关的规律类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比照,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.【例4】如图,直线l 为y =3 x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x轴于点A 3……按此作法进行下去,则点A n 的坐标为(__2n -1,0__).【解析】∵直线l 为y =3 x ,点A 1(1,0),A 1B 1⊥x 轴,∴当x =1时,y =3 ,即B 1(1,3 ).∴tan ∠A 1OB 1=3 .∴∠A 1OB 1=60°,∠A 1B 1O =30°.∴OB 1=2OA 1=2.∵以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2,∴A 2(2,0).同理可得A 3(4,0),A 4(8,0),…,∴A n (2n -1,0).7.如图,在平面直角坐标系中,A (-1,1),B (-1,-2),C (3,-2),D (3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A →B →C →D →A 循环爬行,问第2 021 s 瓢虫所在点的坐标是( A )A .(3,1)B .(-1,-2)C .(1,-2)D .(3,-2)8.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =-13 x +4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2 022=__942 021 __.中考数学专题过关1.如图,第1个图形中有1个正方形,按照如图所示的方式连接对边中点得到第2个图形,图中共有5个正方形;连接第2个图形中右下角正方形的对边中点得到第3个图形,图中共有9个正方形;按照同样的规律得到第4个图形、第5个图形……,则第7个图形中共有正方形( B )A .21个B .25个C .29个D .32个2.如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为( B )A .⎝⎛⎭⎫1 200,125 B .(600,0)C .⎝⎛⎭⎫600,125 D .(1 200,0)3.(2021·百色一模)有一列有序数对:(1,2),(4,5),(9,10),(16,17),…,按此规律,第11对有序数对为 __(121,122)____.4.观察下列一组数:-23 ,69 ,-1227 ,2081 ,-30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是__(-1)n ·n (n +1)3n__.5. (2021·眉山中考)观察下列等式:x 1=1+112+122 =32 =1+11×2 ;x 2=1+122+132 =76 =1+12×3 ;x 3=1+132+142 =1312 =1+13×4;……根据以上规律,计算x 1+x 2+x 3+…+x 2 020-2 021=__-12 021__.6.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律摆下去,第n 个图案有__(3n +1)__个三角形(用含n 的代数式表示).7.(2021·扬州中考)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为__1__275__.。

2016中招数学规律试题

2016中招数学规律试题

2016中招数学探索规律试题1.2016•聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).1题图3题图2. .在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,随意S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是_____________________.3.(2016•德州)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x 轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为__________________.4.(2016.重庆) 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.855. (2016.重庆)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()A .43B .45C .51D .536. (2016•临夏州)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n+1=______________.7. (2016·广东)如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A 的对应点A 1落在直线y=x 上,再将△A 1BO 1绕点A 1顺时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y=x 上,依次进行下去…,若点A 的坐标是(0,1),点B 的坐标是(,1),则点A 8的横坐标是_____________.7题图9题图8. (2016•安顺)观察下列砌钢管的横截面图:则第n 个图的钢管数是___________________(用含n 的式子表示)9. (2016.河南)如图,已知菱形OABC 的顶点是O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转450,则第60秒时,菱形的对角线交点D 的坐标为( ) A.(1,-1) B.(-1,-1) C.0) D.(0,10. (2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为_________11. (2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x 轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为_______________11题图12题图12如图,直线l:y=-4x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为..13. (2016•常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B (﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是____________________14. (2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为_____________15. (2016•滨州)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2016个式子为_______________________________答案1解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).2.【解答】解:设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1)①,将①×m得:mS=m+m2+m3+m4+…+m2017②,由②﹣①得:mS﹣S=m2017﹣1,即S=,∴1+m+m2+m3+m4+…+m2016=(m≠0且m≠1).故答案为:(m≠0且m≠1).3.【解答】解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009).4【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.5.【解答】解:设图形n中星星的颗数是a n(n为自然是),观察,发现规律:a1=2,a2=6=a1+3+1,a3=11=a2+4+1,a4=17=a3+5+1,…,∴a n=2+.令n=8,则a8=2+=51.故选C.6.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:(n+1)2.7.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6..8【解答】解:第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.9.【解析】:本题考查了中点坐标的求法及旋转的知识,每秒旋转450,8秒旋转一周,60秒÷8=7周余4秒,正好又转1800,由第一象限转到第三象限,前后是中心对称,点D坐标是(1,1),所求坐标是(-1,-1),故选B。

2016中考数学规律探究问题专题复习学案

2016中考数学规律探究问题专题复习学案

2016中考数学规律探究问题专题复习学案规律探究问题【题型特征】规律探究性问题的特点是问题的结论不是直接给出,而是通过对问题的观察、分析、归纳、概括、演算、判断等一系列的探究活动,才能得到问题的结论.这类问题,因其独特的规律性和探究性,对分析问题、解决问题的能力具有很高的要求.在近几年全国各地的中考试题中,不仅频频出现规律探究题,而且“花样百出”.常见的类型有:(1)数式规律型;(2)图形变化规律型;(3)坐标变化规律型;(4)数形结合规律型等.【解题策略】解决规律探究性问题常常利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律(符合一定的经验与事实的数学结论),然后验证或应用这一规律解题即可.解答时对分析问题、解决问题能力具有很高的要求.(1)数式规律型:数式规律涉及数的变化规律和式的变化规律,式变化规律往往包含数的变化规律.数的变化规律问题是按一定的规律排列的数之间的相互关系或大小变化规律的问题,主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式为主要内容;式的变化规律通常给定一些代数式,等式或者不等式,猜想其中蕴含的规律,一般解法是先写出代数式的基本结构,然后通过横比(比较同一等式中的不同数量关系)或纵比(比较不同等式间相同位置的数量关系),找出各部分的特征,写出符合条件的格式.(2)图形变化规律型:图形变化型问题涉及图形排列规律和变化蕴含的规律.主要是观察图形变化过程中的特点,分析其联系和区别,用相应的算式由特殊到一般描述其中的规律.这需要有敏锐的观察能力和计算能力.(3)坐标变化规律型:此类题型主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本类问题的关键.(4)数形结合规律型:这类问题主要考查学生综合运用代数知识和几何知识的能力,解决这类问题要求学生不仅要有很好的“数感”,还要有很强的“图形”意识.类型一数式规律型【技法梳理】对于数式规律型问题,关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律回到问题中去解决问题.举一反三(2015山东菏泽)下面是一个某种规律排列的数阵:1 第1行2 第2行2 3 2 第3行4 3 2 第4行……根据数阵的规律,第n(n是整数,且n≥3)行从左到右数第n-2个数是(用含n的代数式表示).2. (2015山东临沂)请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+xn)的结果是( ).A. 1-xn+1B. 1+xn+1C. 1-xnD. 1+xn【小结】此类问题考查的知识点是单项式的知识.找代数式的变化规律,一般是由特殊到一般,得出一般规律.比如典例观察单项式的规律,把一个单项式分解成数字因数和字母因式的积,分别找出单项式的系数和次数的规律也是解决此类问题的关键.类型二图形变化规律型典例2 (2015四川内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.【解析】根据图象规律得出每6个数为一周期,用2015先减2再除以6,根据余数来决定第2015个图形.因为(2015-2)÷6=335……2,故第2015个图形与第2个图象相同,故答案是正方形.【全解】正方形【技法梳理】本题是一道找图形循环排列规律的题目.这类题首先应找出哪些部分发生了变化,是按照什么规律变化的,解题时对观察能力和归纳总结能力有一定要求.举一反三(2015湖北天门)将相同的矩形卡片,按如图方式摆放在一个直角上,每个矩形卡片长为2,宽为1,依此类推,摆放2015个时,实线部分长为.(1)(2)(3)(第3题)4. (2015珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…,则OA4的长度为.(第4题)5. (2015湖北十堰)根据如图中箭头的指向规律,从2013到2015再到2015,箭头的方向是以下图示中的( ). (第5题)【小结】 (1)图形循环类问题,只要找到所求值在第几个循环,便可找出答案,一般难度不大;(2)图形的变化规律计算问题,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.类型三坐标变化规律型典例3 (2015广东梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n 次碰到矩形的边时的点为Pn,则点P3的坐标是;点P2 014的坐标是.【解析】如图,经过6次反弹后动点回到出发点(0,3), 当点P第3次碰到矩形的边时,点P的坐标为(8,3), ∵2015÷6=335……4,∴当点P第2015次碰到矩形的边时为第336个循环组的第4次反弹.点P的坐标为(5,0).故答案为(8,3),(5,0).【全解】 (8,3) (5,0)【技法梳理】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2015除以6,根据商和余数的情况确定所对应的点的坐标即可.举一反三(2015湖北荆门)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是( ).(第6题)(2015山东潍坊)如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为( ).(第7题)A. (-2012,2)B. (-2012,-2)(-2013,-2)D. (-2013,2)【小结】此类题型主要考查点的坐标变化规律,解决此类问题的关键是从点的变化中发现横坐标、纵坐标的变化规律.类型四数形结合规律型典例4 (2015山东泰安)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…….若点 ,B(0,4),则点B2015的横坐标为.故答案为10070.【全解】10070【技法梳理】首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.举一反三(2015四川内江)如图,已知A1,A2,A3,…,An,An+1是x轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1,A2,A3,…,An,An+1作x轴的垂线交直线y=2x于点B1,B2,B3,…,Bn,Bn+1,连接A1B2,B1A2,B2A3,…,AnBn+1,BnAn+1,依次相交于点P1,P2,P3,…,Pn.△A1B1P1,△A2B2P2,△AnBnPn的面积依次记为S1,S2,S3,…,Sn,则Sn为( ).(第8题)(2015山东威海)如图,在平面直角坐标系xOy 中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2015的纵坐标为( ).(第9题)【小结】此类题主要考查坐标的变化规律.解决此类问题的关键是利用数形结合的思想发现运动的规律.综合其用勾股定理等知识点解出相应的问题.类型一(2015山东烟台)将一组数, ,3,2 , ,…,3 ,按下面的方式进行排列:2 , ;2 ,3 , ;……若2 的位置记为(1,4),2 的位置记为(2,3),则这组数中最大的有理数的位置记为( ).A. (5,2)B. (5,3)(6,2)D. (6,5)2. (2015湖北咸宁)观察分析下列数据:0,- , ,-3,2 ,- ,3 ,…,根据数据排列的规律得到第16个数据应是.(结果需化简)(2015贵州铜仁)一列数:0,-1,3,-6,10,-15,21,…,按此规律第n个数为(2015甘肃白银)观察下列各式:2+23=32+23+33=62+23+33+43=102,……猜想13+23+33+…+103=.类型二(2015湖北武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点…按此规律第5个图中共有点的个数是( ).(第5题)A. 31BD(2015湖南娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由个▲组成.(第6题)7. (2015广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.…(第7题)类型三(2015湖南邵阳)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动次后该点到原点的距离不小于41. (第8题)9. (2015甘肃天水)如图,一段抛物线y=-x(x-1)(0≤x≤1)记为m1,它与x轴交点为O,A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为( ). (第9题)类型四10. (2015四川遂宁)已知:如图,在△ABC中,点A1,B1,C1分别是BC,AC,AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△AnBnCn的周长为.(第10题)(2015江苏淮安)如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.12. (2015广东佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少? 参考答案【真题精讲】2. A 解析:(1-x)(1+x)=1-x2,(1-x)(1+x+x2)=1+x+x2-x-x2-x3=1 -x3,…,依此类推(1-x)(1+x+x2+…+xn)=1-xn+方法一:由图形可得出:摆放一个矩形实线长为3,摆放2个矩形实线长为5,摆放3个矩形实线长为8, 摆放4个矩形实线长为10,摆放5个矩形实线长为即第偶数个矩形实线部分在前一个的基础上加2, 第奇数个矩形实线部分在前一个的基础上加3,∵摆放2015个时,相等于在第1个的基础上加1007个2,1006个3,∴摆放2015个时,实线部分长为3+10072+10063=50故答案为50方法二:第①个图实线部分长第②个图实线部分长 3+2,第③个图实线部分长 3+2+3,第④个图实线部分长 3+2+3+2,第⑤个图实线部分长 3+2+3+2+3,第⑥个图实线部分长 3+2+3+2+3+2,……从上述规律可以看到,对于第n个图形,当n为奇数时,第n个图形实线部分长度为4. 8 解析:∵△OAA1为等腰直角三角形,OA∴AA1=OA=1,OA1= OA∵△OA1A2为等腰直角三角形, ∴A1A2=OA1= ,OA2= OA1=2.∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3= OA2=2 .∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2 ,OA4= OA故答案为D 解析:由图可知,每4个数为一个循环组依次循环,2013÷4=503……1,∴2013是第504个循环组的第2个数.∴从2013到2015再到2015,箭头的方向是 .故选D.7. A 解析:∵正方形ABCD,点A(1,3),B(1,1),C(3,1),∴M的坐标变为(2,2).∴根据题意得,第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2015次变换后的点M的对应点的坐标为(2-2015,2),即(-2012,2).故答案为AD 解析:本题根据一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出图形面积变化规律是解题关键.根据图象上点的坐标性质得出点B1,B2,B3,…,Bn,Bn+1各点坐标,进而利用相似三角形的判定与性质得出S1,S2,S3,…,Sn,进而得出答案D 解析:∵∠A2OC2=30°,OA1=OC2=3,【课后精练】 2. -2 解析:本题的规律为:从1开始,连续n个数的立方和=(1+2+3+…+n)2B 6. 3n+ 解析:本题考查图形的变化规律.由图可以看出:第一个图形中5个正三角形,第二个图形中53+2=17个正三角形,第三个图形中173+2=53个正三角形,由此得出第四个图形中533+2=161个正三角形,第五个图形中1613+2=485个正三角形28 9. (9.5,-0.25)12. (1)已知:在△ABC中,D,E分别是边AB,AC的中点, 证明:如图,延长DE至F,使EF=DE,(第12题)∵E是AC的中点,∴A在△ADE和△CFE中,∴△ADE≌△CFE(SAS).∴AD=CF(全等三角形对应边相等),∠A=∠ECF(全等三角形对应角相等).∴AD∥CF.∵点D是AB的中点,∴AD=BD.∴BD=CF且BD∥CF.∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形).∴DF∥BC且DF=BC(平行四边形的对边平行且相等)。

中考数学复习材料 题型一 规律探索题(针对演练)

中考数学复习材料  题型一   规律探索题(针对演练)

目录题型一规律探索题 (2)类型一探索图形累加规律 (2)类型二探索图形循环规律 (13)拓展类型数式规律 (16)题型一规律探索题类型一探索图形累加规律针对演练1. (2016荆州改编)下列图形是将黑白两种颜色的菱形纸片按一定的规律排列组成,第1个图形有4张白色纸片,第2个图形有7张白色纸片,第3个图形有10张白色纸片,…,依此规律,则第12个图形中白色纸片的个数为()第1题图A. 34B. 37C. 42D. 462. (2016重庆八中初三(下)第三次月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第⑧个图案用火柴棒的根数为()第2题图A. 33B.32C. 31D. 303. (2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是()第3题图A.32B. 29C. 28D. 264. (2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()第4题图A. 22B. 24C. 26D. 285. 如图,下列图形是由边长为2的等边三角形按照一定规律排列而成,第①个图形的周长为6,第②个图形的周长为8,第③个图形的周长为10,第④个图形的周长为12,按照这样的规律来摆放,则第⑧个图形的周长为()第5题图A. 18B. 19C. 20D. 216. (2016天水改编)将一些相同的“○”按如图所示的规律依次摆放,其中图①中“○”的个数为5个,图②中“○”的个数为7个,图③中“○”的个数为11个,图④中“○”的个数为17个,…,若图○,n)中有245个“○”,则n =()第6题图A. 10B. 12C. 14D. 167. (2016重庆外国语学校二诊)下列图案均是用长度相同的小木棒按一定的规律拼搭而成,拼搭第(1)个图案需4根小木棒,拼搭第(2)个图案需10根小木棒,…,依此规律,拼搭第(6)个图案需小木棒的根数是()第7题图A. 53B. 54C. 55D. 568. (2016重庆江津中学初三下半期考试)用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第⑬个图案需要的黑色五角星的个数是()第8题图A. 18B. 19C. 21D. 229. (2016重庆十一中一诊)下列图形是将正三角形按一定规律排列,则第④个图形中所有正三角形的个数有()第9题图A. 160B. 161C. 162D. 16310. (2016重庆巴蜀一诊)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm2,第②个图形的面积为18 cm2,第③个图形的面积为36 cm2,…,那么第⑥个图形的面积为()第10题图A. 84 cm2B. 90 cm2C. 126 cm2D. 168 cm211. (2016重庆西大附中第九次月考)下列图形都是用同样大小的♥按一定规律组成的,则第(8)个图形中♥共有()第11题图A. 80个B. 73个C. 64个D. 72个12. (2016重庆一中三模)如图所示,图①中含“〇”的矩形有1个,图②“〇”的矩形有7个,图③中含“〇”的矩形有17个,按此规律,图⑥中含“〇”的矩形个数为()A. 70B. 71C. 72D. 7313. (2016大渡口区诊断性检测)如图是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要棋子的枚数为()第13题图A. 115B. 122C. 127D. 13914. (2016重庆一中二模)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心小圆圈的个数为()第14题图A. 61B. 63C. 76D. 7815. (2016重庆巴蜀中学保送生考试)如图,各图都由同样大小的图形①按一定规律组成,其中第①个图形中共有一个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑥个图形中完整菱形的个数为()第15题图A. 60B. 61C. 62D. 6316. (2016重庆一中第一次定时作业)已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B、O、D重合),并与A、C连接,如图①,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合),如图②,则三角形个数为24个;若在线段BD上任意取三点(不与点B、O、D重合),如图③,则三角形个数为35个;…;以此规律,则图⑤中三角形的个数为()第16题图A. 48B. 56C. 61D. 6317. (2016徐州)如图,每个图案都由大小相同的正方形组成.按照此规律,第n 个图案中这样的正方形的总个数可用含n的代数式表示为________.第17题图18. (2016安顺改编)观察下列砌钢管的横截面图:第18题图则第5个图形中钢管数为________个.19. 如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图案中花盆的个数为6个,第2个图案中花盆的个数为12个,第3个图案中花盆的个数为20个,…,则第8个图案中花盆的个数为________.第19题图20. (2016龙岩改编)用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图①几何体表面积为6,图②几何体表面积为18,则图④中所示几何体的表面积为________.第20题图答案类型一探索图形累加规律1. B【解析】每个图形中白色纸片的个数依次是4,7,10,13,….那么,第n个图形中白色纸片的个数为3n+1,∴第12个图形中白色纸片的个数为3×12+1=37.2.A【解析】∵图①用了5根火柴,即5=5+4×0;图②用了9根火柴,即9=5+4×1;图③用了13根火柴,即13=5+4×2;…;以此规律,第○n个图形中,火柴的根数为5+4(n-1),故第⑧个图案用火柴棒的根数为5+4×(8-1)=33.3.B【解析】图①有2+3×0=2个黑色正方形;图②有2+3×1=5个黑色正方形;图③有2+3×2=8个黑色正方形;图④有2+3×3=11个黑色正方形,…,按照这个规律,图○n有2+3(n-1)个黑色正方形,故图⑩一共有2+3×9=29个黑色正方形.4.C【解析】第一个图形中有2个三角形:6×1-4=2;第二个图形中有8个三角形:6×2-4=8;第三个图形中有14个三角形:6×3-4=14;…;第n个图形中三角形的个数为:6n-4,故第五个图形中三角形的个数为:6×5-4=26.5. C【解析】第①个图形的周长为6+0×2=6,第②个图形的周长为6+1×2=8,第③个图形的周长为6+2×2=10,第④个图形的周长为6+3×2=12,…,依此规律,可知第○n个图形的周长为6+(n-1)×2,所以第⑧个图形的周长为6+7×2=20.6. D【解析】图①中有1×(1-1)+5=5个“○”,图②中有2×(2-1)+5=7个“○”,图③中有3×(3-1)+5=11个“○”,图④中有4×(4-1)+5=17个“○”,…,据此得出:图○n中有n(n-1)+5个“○”,则可得方程n(n-1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).7. B 【解析】观察图形可知,每个图案都是由横排小木棒和纵排小木棒搭建而成,且横排和纵排数相同,其中第(1)个图案有2横排,每排有1个小木棒;第(2)个图案有3横排,每排的小木棒个数分别为2,2,1;第(3)个图案有4横排,每排的小木棒个数分别为3,3,2,1;第(4)个图案有5横排,每排的小木棒个数分别为4,4,3,2,1,…;由此可推测第(n )个图案共有n +1横排,每排木棒个数分别为n ,n ,n -1,n -2,…,2,1,故第(6)个图案共有7横排,每排的小木棒个数分别为6,6,5,4,3,2,1,共有27根,则对应的纵排也有27根小木棒,则搭建第(6)个图案共需要小木棒54根.8. C 【解析】观察图形可以发现图①中黑色五角星的个数为1+2=3,图②中黑色五角星个数为1+2+1=4,图③中黑色五角星个数为1+2+1+2=6,图④中黑色五角星个数为1+2+1+2+1=7,图⑤中黑色五角星个数为1+2+1+2+1+2=9,…,则图○n 中,当n 为奇数时,黑色五角星个数为2)1(3+n ,当n 为偶数时,黑色五角星个数为123+n ,∴第⑬个图案需要的黑色五角星的个数为3×(13+1)2=21个. 9. B 【解析】第①个图形中正三角形的个数为:1+4,第②个图形中正三角形的个数为:1+4+3×4,第③个图形中正三角形的个数为:1+4+3×4+9×4,…,第○n 个图形中正三角形的个数为:1+4+3×4+9×4+…+3n -1×4,∴第④个图形中正三角形的个数为1+4+3×4+9×4+34-1×4=1+4+12+36+108=161.10. C 【解析】∵所有的小矩形都是大小相同的,第①个图形是由2个小矩形组成,面积为6,∴每个小矩形的面积是3,∵第①个图形中有2个小矩形,第②个图形中有6个小矩形,第③个图形中有12个小矩形,12=2+4+6=2×(1+2+3),第④个图形中有20个小矩形,20=2+4+6+8=2×(1+2+3+4),则第○n个图形中有2×(1+2+…+n)个小矩形,故第⑥个图形中小矩形的个数为2×(1+2+3+4+5+6)=42个,则其面积为42×3=126 cm2.11. A【解析】第(1)个图形中♥的个数为3=22-1;第(2)个图形中♥的个数为8=32-1;第(3)个图形中♥的个数为15=42-1;第(4)个图形中♥的个数为24=52-1;…,于是,第(n)个图形中♥的个数为(n+1)2-1,所以第(8)个图形中♥的个数为92-1=80(个),故选A.12.B【解析】图①中含“○”的矩形有1=2×12-1个,图②中含“○”的矩形有7=2×22-1个,图③中含“○”的矩形有17=2×32-1个,…,按此规律,则图○n中含“○”的矩形个数为2n2-1,所以图⑥中含“○”的矩形有2×62-1=71个,故选B.13. C【解析】由题意可知,摆第1个图案需要7=1+6枚棋子,摆第2个图案需要19=1+6+6×2枚棋子,摆第3个图案需要37=1+6+6×2+6×3枚棋子,…,则摆第n个图案需要1+6+6×2+6×3+…+6n=3n(n+1)+1枚棋子,所以摆第6个图案需要:3×6×(6+1)+1=127枚棋子,故选C.14. A【解析】∵第①个图形中空心小圆圈个数为:4×1-3+1×0=1个;第②个图形中空心小圆圈个数为:4×2-4+2×1=6个;第③个图形中空心小圆圈个数为:4×3-5+3×2=13个;…,依此规律,第○n个图形中空心小圆圈个数为:4n-(n+2)+n(n-1),∴第⑦个图形中空心小圆圈个数为:4×7-9+7×6=61个.15.B【解析】∵第①个图形中菱形个数为02+12=1个;第②个图形中菱形个数为12+22=5个;第③个图形中菱形个数为22+32=13个;第④个图形中菱形个数为32+42=25个,…,依此规律第○n个图形中菱形个数为(n-1)2+n2个,∴第⑥个图形中菱形个数为52+62=61个.16. D【解析】在图①中,线段BD上共有4个点,所得三角形的个数共15个,15=16-1=42-1;图②中,线段BD上共5个点,所得三角形的个数共24个,24=25-1=52-1;图③中,线段BD上共6个点,所得三角形的个数共35个,35=36-1=62-1,…,由此可猜想,图○n中,线段BD上共有n +3个点,所得三角形的个数为(n+3)2-1,∴图⑤中三角形的个数为(5+3)2-1=63.17. n(n+1)【解析】由题图知,第1、2、3个图案对应的小正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的小正方形的个数为n(n+1).18. 45【解析】根据题意,可得序号 1 2 3 4钢管数 3 9 18 30找规律3×1 3×3=3×(1+2)3×6=3×(1+2+3)3×10=3×(1+2+3+4)综上可知,第5个图形中钢管数为3×(1+2+3+4+5)=3×15=45个.19. 90【解析】观察可得,第1个图案:正三角形每条边上有3个花盆,共计32-3个花盆;第2个图案:正四边形每条边上有4个花盆,共计42-4个花盆;第3个图案:正五边形每条边上有5个花盆,共计52-5个花盆;…;由此可知第n个图案:正(n+2)边形每条边上有(n+2)个花盆,共计(n+2)2-(n +2)个花盆,则第8个图案中花盆的个数为(8+2)2-(8+2)=90.20. 60【解析】图①几何体的表面积为:6=6×1;图②几何体的表面积为:18=6×(1+2);图③几何体的表面积为:6×(1+2+3)=36.由此规律得,图④几何体的表面积为:6×(1+2+3+4)=60.类型二探索图形循环规律针对演练1. 如图所示,两个全等的等边三角形的边长为1 m,一个微型机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动,行走2017 m 停下,则这个微型机器人停在()第1题图A. A点B. B点C. C点D. E点2.(2016重庆八中强化训练一)将正六边形ABCDEF的各边按如图所示延长,从射线F A开始,分别在各射线上标记点O1,O2,O3,…,按此规律,则点O2016所在射线是()第2题图A. ABB. DEC. BCD. EF3. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2017个梅花图案中,共有________个“”图案.第3题图4. 有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.第4题图5.如图,在平面直角坐标系中,已知点A(1, 1),B(-1, 1),C(-1, -2),D (1, -2),把一根长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在矩形ABCD的边上,则细线的另一端落在________线段上第5题图答案类型二探索图形循环规律1. B【解析】∵两个全等的等边三角形的边长为1 m,∴机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动一圈,即为6 m,∵2017÷6=336……1,即正好行走了336圈多1米,到第二个点,∴行走2017 m 停下,则这个微型机器人停在B点.2. C【解析】观察图形可知12个点依次排列在射线F A、CD、AB、DE、BC、EF、CD、F A、DE、AB、EF、BC上,依此规律循环,又因2016÷12=168,则点O2016在第12条射线BC上,故选C.3. 505【解析】观察题图可知,“”图案方向依次向上、向右、向下、向左,每四个图案为一个循环周期.∵2017÷4=504……1,∴前2017个梅花图案中,共有505个“”图案.4. 3【解析】观察可知,点数3与点数4相对,点数2与点数5相对,且循环周期为4. ∵2014÷4=503……2,∴滚动2014次后与第二次相同,∴骰子朝下一面的点数为3.5.CD【解析】∵矩形四个顶点的坐标分别为:A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=CD=2,BC=AD=3,∴矩形的周长为2+3+2+3=10,则循环一周所需的单位长度是10,∵2016÷10=201……6,∴细线的另一端落在绕矩形第202圈的第6个单位长度的位置,即是点C与点D的中间位置,即在线段CD上.拓展类型数式规律针对演练1. (2016张家界)观察下列等式:71=7,72=42+92=97,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72016的末位数字是() A. 9 B. 7 C. 6 D. 02. (2016丹东)观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.3. (2016贵港)已知a1=tt-1,a2=11-a1,a3=11-a2,…,a n+1=11-a n(n为正整数,且t≠0,1),则a2016=________(用含有t的代数式表示).4. (2016泉州)指出下列各图形中数的规律,依此,a的值为________.第4题图5. (2016南宁)观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2016在第________层.答案拓展类型 数式规律1. D 【解析】根据题意,7的幂的最终结果的末位数字是以7,9,3,1为循环,其和结果的末位数字是0,因为2016÷4=504,所以71+72+73+…+72016的末位数字是0.2. -12211 【解析】∵-2=-12+11,52=22+12,-103=-32+13,174=42+14,-265=-52+15,…,∴第11个数据是:-112+111=-12211. 3. t 1【解析】∵a 1=1-t t ,a 2=111--t t =1-t ,a 3=t +-111=t 1,a 4=t 111-=1-t t ,…,∴每3个一次循环,∵2016÷3=672,∴a 2016的值为t1. 4. 226 【解析】观察可得:2=1×0+2,10=2×3+4,26=4×5+6,50=6×7+8,…,可以得到规律:右下角三角形中的数字等于左下角三角形中的数字与正上方三角形中数字的积加上中间三角形中的数字,故a =14×15+16=226.5. 44 【解析】根据题中给出的式子,观察得出规律,第一层第一个数为12,第2层第一个数为22,第3层第一个数为32,…,∵442=1936,452=2025,且442<2016<452,∴2016位于第44层.。

重庆2016中考数学专题提升(1)规律探索题

重庆2016中考数学专题提升(1)规律探索题

中考数学专题提升(1)——规律探索题类型一:探索图形排列规律1. (2015崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有( )第1题图A. 160B. 161C. 162D. 1632. (2015绵阳)将一些相同的“O”按如图所示的规律依次摆放,观察每个“龟图”中的“O”的个数,若第n个“龟图”中有245个“O”,则n=( )第2题图A. 14B. 15C. 16D. 173. (2013重庆A卷)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为 2 cm2,第(2)个图形的面积为8 cm2,第(3)个图形的面积为18 cm2,…,则第(10)个图形的面积为( )第3题图A. 196 cm2B. 200 cm2C. 216 cm2D. 256 cm24. 如图①是一块瓷砖的图案,用这种瓷砖铺设地面,如果铺成一个如图②的图案,其中完整的圆共有5个,如果铺设成如图③的图案,其中完整的圆共有13个,如果铺成如图④的图案,其中完整的圆共有25个,以此规律下去,第10个图中,完整的圆共有( )第4题图A. 100个B. 101个C. 181个D. 221个5. 如图,某同学在沙滩上用石子摆小房子,观察图形的变化规律,写出第⑨个小房子用的石子总数为( )第5题图A. 155B. 147C. 145D. 1466. 下列图形都是由面积为1的正方形按一定的规律组成,其中,第①个图形中面积为1的正方形有9个,第②个图形中面积为1的正方形有14个,…,按此规律,则第⑦个图形中面积为1的正方形的个数为( )第6题图A. 22B. 30C. 39D. 507. (2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是( )第7题图A. 32B. 29C. 28D. 268. (2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( )第8题图A. 22B. 24C. 26D. 289. 用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第13个图案需要的黑色五角星的个数是( )第9题图A. 20B. 21C. 22D. 2310. 如图,下列是由边长为2的等边三角形按照一定规律排列而成,第一个图形的周长为6,第二个图形的周长为8,将若干个等边三角形按照这样的规律来摆放,则第8个图形的周长为( )第10题图A. 18B. 19C. 20D. 2111. 观察下列一组图形,其中图①中共有6个小黑点,图②中共有16个小黑点,图③中共有31个小黑点,…,按此规律,图⑤中小黑点的个数是( )第11题图A. 46B. 51C. 61D. 7612. (2015内江)如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒(用含n的代数式表示).第12题图13. (2015昆明)用火柴棒按如图所示的方式摆大小不同的“H”,依此规律,摆出第9个“H”需用火柴棒根.第13题图14. (2015深圳)观察下列图形,它们是按照一定规律排列的,依照此规律,第五个图有个太阳.第14题图15. (2015三明)观察下列图形的构成规律,依照此规律,第10个图形中共有个“●”.第15题图16. (2015山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…,依此规律,第n个图案有个三角形(用含n的代数式表示).第16题图17. (2015莆田)谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基这样制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小正三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图①中的阴影三角形面积为1,则图⑤中的所有阴影三角形的面积之和是.第17题图18. (2015随州)观察下列图形规律:当n= 时,图形中“●”的个数和“△”的个数相等.第18题图19、(重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,其中第②个图形中一共有9个小圆圈,其中第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为()图4① ② ③ A. 21 B. 24 C. 27 D. 3020.如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有 根小棒.21.(桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,……,按此规律,第n 行有 个点.22. (梧州)如图,是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.①② ③ ④23、 (2015湖南娄底,)下列数据是按一定规律排列的,则第7行的第一个数为_______________. 第一行 1第二行 2 3 第三行 4 5 6 第四行 7 8 9 10 …… 24.(淮安)将连续正整数按如下规律排列: 第1列 第2列 第3列 第4列 第5列第1行1 2 3 4 第2行8 7 6 5 第3行9 10 11 12 第4行16 15 14 13 第5行17 18 19 20 ……… 若正整数565位于第a 行,第b 列,则b a = 。

从2016年全国中考题看规律类问题从何入手

从2016年全国中考题看规律类问题从何入手

2016年11月从2016年全国中考题看规律类问题从何入手筅江苏省海安县墩头镇吉庆初中邰群燕新一轮课程改革提出了课程“核心素养”的概念,而 “把数学的概念、思想、方法、思维运用于客观事物是提 升数学学科素养的有效途径从中考试题的评价功能 来看,规律类问题呈现明显的上升趋势,从数学知识与 能力的综合考查层面显得丰富多彩.但是,从教学资源 开发的角度来看,如果从此类问题的基础上综合探究, 就可以找到解决此类问题的有效途径和突破方向.笔者 认为,规律类问题的探究过程有助于培养学生用数学头 脑思考、处理实际问题的意识和能力,有助于学生从中 感悟数学在自然科学中的应用价值.从这个角度来看, 此类问题的异军突起也就不奇怪了,这正是使得数学探 究活动体现了学科素养的融合,能让学生从中感悟“大 自然是数学化的”,“数学是仰望宇宙的透镜”,进而促进 学生的数学学科素养的发展.下面笔者就从2016年中考 题切人,具体谈一下规律类问题的解题突破方向和如何 人手解决.一、注意观察,找到规律,实现直接突破例1 (2016年四川)如图1,将一张等边三角形纸片沿中位线剪成4个小三 角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三图1角形,共得到7个小三角形,称为第二次操作;再将其中 一个三角形按同样方式再剪成4个小三角形,共得到10 个小三角形,称为第三次操作;…根据以上操作,若要得 到100个小三角形,则需要操作的次数是().A .25B .33C .34D .50解析:由题意可知,第一次操作后,三角形共有4个; 第二次操作后,三角形共有4+3=7(个);第三次操作后, 三角形共有4+3+3=10(个);…由此可得第n 次操作后,三 角形共有4+3(n -1)=3n +1 (个).当3n +1 = 100时,解得n = 33,故答案选B .变式:(2016年湖南)“数学是将科学现象升华到科 学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设 碳原子的数目为(n 为正整数),则它们的化学式都可以 用下列哪个式子来表示().A .Cn H 2n +2B .Cn H 2nC .Cn H 2n -2D .Cn Hn +3解析:设碳原子的数目为(n 为正整数)时,氢原子 的数目为6[…,观察可知:3+2,…,即可得a =2n +2.所以碳原子的数目为(n 为正整 数)时,它的化学式为C …H …+2.故答案选A .二、数列寻找通项,排列找到方法例2 (2016年山东滨州)观察下列式子:lx 3+l =22;7x 9+l =82;25x 27+l =262;79x 81 + l =802;…可猜想第 2016个式子为______.解析:观察等式两边的数的特点,第n 个等式可以表 示为(3n -2)x 3n +1=(3n -1)2,用n 表示其规律,当n =2016时, (32016-2)x 32016+1=(32016-1 )2.变式1:(2016年山东枣庄)一列数〜免冲,…满足条件:免=士,a n = -— ( n > 2,且n 为整数),则0^6=____.2 1-0-1解析:根据题意可知〇1=丄,—1 =2,〇3= 1 =241-2-1,04=^^=丄,……由此可得这组数据3个一循环,1 -( -1) 22016+3=672,所以咖6是第672个循环中的第3个数,即°2016=-1.变式2: (2016年湖北)观察下列等式:第1个等式% =--1 =姨1-1,第2个等式〇2 =1+姨21 =姨3-姨"2,第3个等式兩=1—=2-姨2+V T V T +2姨3,第4个等式〇4= — 1 = V 5 -2.2+v t按上述规律,回答以下问题:90 十教,?初中版2016年11月(1)请写出第个等式a…=_____;(2 ^+免+兩十…+a…=_____.中考与课标是相结合的,课标关注学生学习的思维 与发展.在解决数列类问题的时候,教师也应该多关注 这种“无形”的变化过程中的“有形”结构,让学生在动手 排列的过程中能够有所收获.三、几何类问题寻找几何特征,循序渐进解决例3 (2016年山东)用大小相等的小正方形按一定规律拼成如图2所示的图形,则第n个图形中小正方形的 个数是().第1个图形A.2n+1图2B.n2-1C.n2+2nD.5n-2解析:这一问题,通过几何图形的观察,很容易得到 平方减1的结论.变式(2016年湖南)如图3所示,各三角形中的三个 数之间均具有相同的规律,根据此规律,最后一个三角 形中y与n之间的关系是().图3A.y=2n+1B.y=2n+nC.y=2n+1+nD.y=2n+n+1四、数学史类问题需要多阅读,从史料中寻找答案例4 (2016年北京)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简 史,如:中央四位“9 99 12 20”标示澳门回归日期,最后 一行中间两位“3 50”标示澳门面积,……,同时它也是 十阶幻方,其每行10个数之和、每列10个数之和、每条对 角线10个数之和均相等,则这个和为____.解析:1~100 的总和为(1+ 100)x100+2=5050,一共有 10行,且每行10个数之和均相等,所以每行10个数之和 为5050+10=505,故答案为505.变式1:(2016年北京)下面是“经过已知直线外一点 作这条直线的垂线”的尺规作图过程:已知直线1和1外一点P(如图4).求作:直线1的垂线,使它经过点P.作法:如图5.(1)在直线1上任取两点A,B;⑵分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点 Q(3)作直线PQ.所以直线PQ就是所求的垂线,如图6.请 回答:该作图的依据是_________________________.图4 图5 图6解析:到线段两个端点的距离相等的点在线段的垂 直平分线上(A、B都在线段PQ的垂直平分线上).变式2:(2016年山东德州)如图7,在平面直角坐标系中,函数y=2x和y=-x的图像分别为直线&,I2,过点(1,0)作x轴的垂线交12于点A i,过点A轴的垂线交12于点A2,过点义2作x轴的垂线交12于点A3,过点A3作y轴的垂线交12于点A4,…,依次进行下 图7去,则点A跚的坐标为_____.解析:观察,发现规律:A1(1,2),A2(-2,2),A3(-2, -4),A4(4,-4),A5(4,8),…,所以A2n+1((-2)% 2x(-2)n)(n 为自然数).因为2017=1008x2+1,所以义跚的坐标为((-2)1008,2(-2)1008)=(21008,21009).故答案为(21008,21009).中考数学融人数学史的考查方式灵活多样,有时候 是讲故事,而更多的时候采取数学史料的方式进行考 查.为了更好地解决此类问题,教师应该鼓励学生对数 学发生、发展的历史史迹,对自己感兴趣的历史事件和 人物,写一些历史研究的小论文,进行交流和传播.这样 做的目的是帮助学生弄清楚数学的概念、数学思想的发 展过程,使学生对数学面貌有整体的把握和了解,这也 是中考考查的真正价值所在.五、结束语除以上一些基本解决问题的方法以外,面对规律类 问题还需要明确以下三点:(1)知其然,也知其所以然. 也就是从宏观上认识初中数学知识的发生与发展,对数 学概念、思想方法知其然也知其所以然;(2)接地气,让 数学活起来.如果细究规律类问题我们很容易发现,数 学活动往往镶嵌在历史或者生活实际之中,都是“有用”的知识,这样的知识才是真正有趣的;(3)助思维,促进 数学思考.中考问题的出线与命制,一个首要的任务就 是考查学生的思维活动和数学能力,因此让学生了解数 学的原始思考及来龙去脉,在真实的思考中获得对数学 的真正理解成为了一种最完美的考查方式.@初中版十教,?91。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
D1M
AD1
1
同理:△A1MD2∽△A2D2D3,
A1M A1D 2 .2 ∴ A 2 D 2 A 2 D3
设A2C2=x,则
解得x=3.
3 2. x2 x
9 27 81 同理可求 A 3C3 ,A 4 C4 ,A 5C5 , , 2 4 8 n 1 由此规律可得 A n Cn 3 . 2n 2 8 8 3 3 ∴ A9 C9 . 即正方形A9C9C10D10的边长是 . 7 7 2 8 2 3 【答案】 7 2
一、数列规律
这类问题通常是先给出一组数,通过观察、归纳这组
数的共性规律,写出一个一般性的结论.解决这类题目的关
键是找出题目中的规律,分清不变量和变化量,寻求变化
部分与序号间的关系.
【分析】观察不难发现,被开方数是从1开始的连续自然数, 每一行的数据的个数是从2开始的连续偶数,求出n-1行的数 据的个数,再加上n-2得到所求数的被开方数,然后写出算术 平方根即可.
102016
-2520
三、图形规律 这类题目通常是给出一组图形的排列(或通过操作得到 一系列的图形),探求图形的变化规律,以图形为载体考查 图形所蕴含的数量关系.解决此类问题时应先观察图形的变化 趋势,是增加还是减少,然后从第一个图形进行分析,运用
从特殊到一般的探索方式,分析归纳找出增加或减少的变化
(2014·安徽)观察下列关于自然数的等式: 32-4×12=5 52-4×22=9 72-4×32=13 ① ② ③

根据上述规律解决下列问题: (1)完成第四个等式:92-4×( )2=( );
(2)写出你猜想的第n个等式(用含n的式子表示),并验证其 正确性.
【分析】由①②③三个等式可得,被减数是从3开始连续奇
1 2 3 4 5 1.(2015·广东东莞)观察下列一组数: , , , , , , 3 5 7 9 11 10 根据这组数的排列规律,可推出第10个数是_______. 21
2.(2015·甘肃武威)古希腊数学家把数1,3,6,10,15, 21,„,叫作三角形数,其中1是第1个三角形数,3是第2个三 角形数,6是第3个三角形,„,依此类推,那么第9个三角
2 2a 2 x a 2 a 2,
1 x (a 2 1) . 2 x为整数点, a 2 3, M ( , 3) . 2 3
M3(a3,a3)是抛物线
2 x 2 x 2 2a 3 x a 3 a 3, 2 2a 3 x a 3 a 3,
2 2 y3 (x a 3) a 3 x 2 2a 3 x a 3 a 3顶点,
9.(2014·泰安)如图,在平面直角坐标系中,将△ABO绕点A
顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点
B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置, 点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置, 点A2在x轴上,以此进行下去„.若点A( 5 ,0),B(0,4), 则点B2 10 080 016的横坐标为________.
2 得x2=(x-a1)2+a1,即 2a1x a1 a1,
1 x (a1 1) . 2
∵x为整数点,∴a1=1, ∴M1 (1,1).
M2(a2,a2)是抛物线y2=(x-a2)2+a2=x2-2a2x+a22+a2顶点, 抛物线y=x2与y2相交于A2,
x 2 x 2 2a 2 x a 2 2 a 2,
【分析】设AD10与A1C1的交点为M,构造相似三角形 △AD1M∽△D2A1M,从而求得 A1M 2 ,然后利用△A1MD2 ∽△A2D2D3,从而求得A2C2的长,„,以此类推,求得
3
A9C9的长.
【解答】设AD10与A1C1的交点为M. ∵四边形都是正方形, ∴AD1∥A1D2, ∴△AD1M∽△D2A1M, ∴ A1M D2 A1 2 . 又∵A1D1=A1C1-AB=2-1=1, ∴ A1M 2 .
规律,并用含有字母的代数式进行表示,最后用代入法求出
特殊情况下的数值.
(2015·贵州安顺)如图所示是一组有规律的图案,
第1个图案由4个基础图形组成,第2个图案由7个基础图形 组成,„,第n(n是正整数)个图案中的基础图形个数为 ______(用含n的式子表示).
【解答】观察图形可知, 第1个图案共有基础图形3×1+1=4个; 第2个图案共有基础图形3×2+1=7个; 第3个图案共有基础图形3×3+1=10个; „ 则第n个图案共有基础图形3×n+1=3n+1个. 【答案】3n+1
【解答】前(n-1)行的数据的个数为2+4+6+„+2(n-1)= n(n-1), 所以,第n(n是整数,且n≥3)行从左到右数第n-2个数的被 开方数是n(n-1)+n-2=n2-2, 所以,第n(n是整数,且n≥3)行从左到右数第n-2个数是
n 2 2.
【答案】 n 2 2
【点评】本题考查了算术平方根,观察数据排列规律,确 定出前(n-1)行的数据的个数是解题的关键.
3
形数是___________ ,2 016是第____ 45 63 个三角形数.
3.(2015·江苏淮安)将连续正整数按如下规律排列:
若正整数565位于第a行,第b列,则a+b=_______. 147
二、数式规律
这类问题一般是先给出一组数式,通过观察、分析,归
纳出这组数式的共性,写出一个具有一般性的表达式.解答这 类问题,要认真分析所给数式的共同点,根据共同点归纳出 具有这些共同点的一般式,再代入已知数式验证其正确性.
如图,抛物线y=x2在第一象限内经过的整数点(横坐 标、纵坐标都为整数的点)依次为A1,A2,A3„An,„.将抛 物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足 下列条件: ①抛物线的顶点M1,M2,M3,„Mn,„都在直线L:y=x上; ②抛物线依次经过点A1,A2,A3„An,„.
数的平方,减数是从1开始连续自然数的平方的4倍,计算
的结果是被减数的底数的2倍减1,由此规律得出答案即可.
【解答】(1)32-4×12=5

52-4×22=9
72-4×32=13 „ 所以第四个等式:92-4×42=17.


(2)第n个等式为:(2n+1)2-4n2=2(2n+1)-1, 左边=(2n+1)2-4n2=4n2+4n+1-4n2=4n+1, 右边=2(2n+1)-1=4n+2-1=4n+1. 左边=右边. ∴(2n+1)2-4n2=2(2n+1)-1. 【点评】此题考查数字的变化规律,找出数字之间的运算 规律,利用规律解决问题.
抛物线y=x2与y3相交于A3,
1 x (a 3 1) . 2
∵x为整数点,∴a3=5, ∴M3(5,5), ∴由此规律可得an=n×2-1=2n-1. ∴a2 【答案】(4 031,4 031)
016=2
016×2-1=4 031.
8.(2014·湖北孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2, „按如图的方式放置,点A1,A2,A3,„和点C1,C2,C3,„ 分别在直线y=x+1和x轴上,则点B6的坐标是 (__________. 63,32)
则顶点M2
016的坐标为(________,________).
【分析】根据抛物线y=x2与抛物线yn=(x-an)2+an相交于 An,可发现规律,根据规律,可得答案.
【解答】M1(a1,a1)是抛物线y1=(x-a1)2+a1的顶点,
抛物线y=x2与抛物线y1=(x-a1)2+a1相交于A1,
【点评】此题考查了图形的规律性.解决这类问题首先要从 简单图形入手,抓住随着“编号”或“序号”增加时,后 一个图形与前一个图形相比,在数量上增加(或倍数)情
况的变化,找出数量上的变化规律,从而推出一般性的结
论.
(2015·浙江湖州)已知正方形ABC1D1的边长为1,延 长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到 A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类 推„,若A1C1=2,且点A,D2,D3,„,D10都在同一直线上 ,则正方形A9C9C10D10的边长是________.
专题一 探索规律问题
这类问题是根据给出的具有某种规律的数、式、图形, 或是给出与图形有关的操作变化过程,或某一具体的问题情 境,通过观察、分析,探究所蕴含的本质规律和共同特征, 或者发展变化的趋势,据此探索出一般性的结论.考查学生 的归纳、概括、类比能力. 解决这类问题的一般方法是:“从特殊情形入手——探 索发现规律——猜想结论——验证.”
6.(2014·湖北武汉)观察下列一组图形中点的个数,其中
第1个图中共有4个点,第2个图形中共有10个点,第3个图形
共有19个点,„,按此规律第5个图形中共有点的个数( )
A.31
B.46
C.51
D.66
2n+1
四、点的坐标变化规律 这类问题一般与直角坐标系相联系,结合函数、图形的 变化,进而引起点的坐标变化.解答这类问题,一般要从题目 中或图形运动中寻找变化规律,用变化规律表示点的变化, 进而推导要求的点的坐标.
相关文档
最新文档