成人高考高起专数学真题模拟及答案

合集下载

成考大专数学试题及答案

成考大专数学试题及答案

成考大专数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,哪一个是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = log(x)答案:B2. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr答案:B3. 已知a > 0,b < 0,且|a| > |b|,则a + b:A. 一定大于0B. 一定小于0C. 可能大于0D. 可能小于0答案:A4. 以下哪个选项不是三角函数?A. sin(x)B. cos(x)C. tan(x)D. log(x)答案:D5. 已知f(x) = x^2 - 4x + 4,求f(2)的值:A. 0B. 4C. 8D. -4答案:A6. 直线的斜率公式是:A. m = (y2 - y1) / (x2 - x1)B. m = (x2 - y2) / (y1 - x1)C. m = (x1 - x2) / (y2 - y1)D. m = (y1 - y2) / (x1 + x2)答案:A7. 以下哪个选项是指数函数?A. y = 2^xB. y = log(x)C. y = x^2D. y = √x答案:A8. 已知等差数列的首项为a,公差为d,第n项的通项公式是:A. an = a + (n - 1)dB. an = a + ndC. an = a - (n - 1)dD. an = a - nd答案:A9. 以下哪个选项是几何级数的通项公式?A. an = a * r^(n-1)B. an = a * n^2C. an = a * (1 + r)^nD. an = a * (1 - r)^n答案:A10. 已知函数f(x) = 3x - 2,求f(-1)的值:A. -5B. -3C. -1D. 1答案:A二、填空题(每题2分,共10分)1. 圆的周长公式是C = 2πr,其中r是______。

成考大专数学试题及答案

成考大专数学试题及答案

成考大专数学试题及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. \(\frac{1}{2}\)D. \(\infty\)答案:B3. 已知 \(\int_{0}^{1} x^2 dx = \frac{1}{3}\),则\(\int_{0}^{1} x dx\) 的值是多少?A. \(\frac{1}{2}\)B. \(\frac{1}{3}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A4. 求方程 \(2x^2 - 5x + 3 = 0\) 的根的个数。

A. 0B. 1C. 2D. 3答案:C5. 已知 \(\log_2 3 = 1.58496\),计算 \(\log_2 9\) 的值。

A. 3B. 2C. 1.58496D. 4答案:A6. 函数 \(y = \frac{1}{x}\) 的图像在第一象限的斜率是多少?A. 正B. 负C. 零D. 不存在答案:A7. 集合 \(A = \{1, 2, 3\}\) 和 \(B = \{2, 3, 4\}\) 的交集是什么?A. \(\{1, 2, 3\}\)B. \(\{2, 3\}\)C. \(\{1, 3, 4\}\)D. \(\{4\}\)答案:B8. 已知 \(\sin(\alpha) = \frac{1}{2}\),求 \(\cos(2\alpha)\) 的值。

A. \(\frac{1}{4}\)B. \(\frac{1}{2}\)C. \(\frac{3}{4}\)D. \(\frac{1}{8}\)答案:C9. 求 \(\sqrt{49}\) 的值。

2025年成人高考成考(高起专)数学(文科)试卷及答案指导

2025年成人高考成考(高起专)数学(文科)试卷及答案指导

2025年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设f(x) = (x - 2)^2 - 3,求函数f(x)的对称轴方程。

A. x = 2B. y = 2C. x = 3D. y = 12、已知函数(f(x)=x2−3x+2),则该函数的最小值为:A. -1/4B. 1/4C. -5/4D. 5/43、在下列各数中,不是有理数的是()A、-2.5B、0.3333…(无限循环小数)C、√4D、π4、若集合A={x | -2 ≤ x < 3},集合B={x | x > 1},则A∩B等于()。

A、{-2, -1, 0, 1}B、{x | 1 < x < 3}C、{x | -2 ≤ x < 1}D、{x | x > -2}5、若函数(f(x)=x 2−4x−2)在(x=2)处有定义,则(f(2))的值为:A. 2B. 4C. 无定义D. 16、已知函数(f(x)=x2−3x+2),若(f(a)=0),则(a)的值为?A. 1B. 2C. 1 或 2D. 无解7、下列函数中,定义域为全体实数的函数是()A.(f(x)=√x2−4)B.(g(x)=1x2−1)C.(ℎ(x)=ln(x+2))D.(k(x)=√xx)8、若集合 A = {x | x^2 - 3x + 2 = 0},集合 B = {x | 2x - 4 = 0},则 A ∩B = ( )A. {1}B. {2}C. {1, 2}D. ∅9、已知圆的方程为(x2+y2=16),点(A)的坐标为((4,0)),点(B)的坐标为((0,4))。

则直线(AB)的方程是:A.(x+y=8)B.(x−y=8)C.(x+y=0)D.(x−y=0)10、已知函数(f(x)=x2−4x+3),则该函数图像与(x)轴的交点坐标为:A. (1,0), (3,0)B. (-1,0), (3,0)C. (1,0), (-3,0)D. (-1,0), (-3,0)11、若函数f(x)=x3−3x+2在x=1处的切线斜率为:A. 0B. 3C. -3D. 612、如果函数f(x)=2x2−3x+1,则f′(x)为()。

成人高考高起专数学模拟试卷及答案(一)

成人高考高起专数学模拟试卷及答案(一)

成人高考高起专数学模拟试卷及答案(一)一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.1.函数⎪⎭⎫ ⎝⎛+=43sin πx y 的最小正周期是(C ). A.π2;B.3π;C.32π;D.23π.2.函数xy 8=的反函数是(C ). A.)0(log 32>=x x y ;B.xy -=8;C.)0(log 312>=x x y ;D.)0(8>-=x y x .3.设⎪⎩⎪⎨⎧=-,,10,17为偶数当为奇数,当n n nx n 则(D ) A.0lim =∞→n n x ;B.710lim -∞→=n n x ;C.⎩⎨⎧=-∞→.,10,0lim 7为偶数为奇数,n n x nn D.n n x ∞→lim 不存在.4.()=-→x f x x 0lim ()x f x x +→0lim 是()x f x x 0lim →存在的(C )A.充分条件但非必要条件;B.必要条件但非充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.5.若x 是无穷小,下面说法错误的是(C )A.2x 是无穷小; B.x 2是无穷小; C.000.0-x 是无穷小; D.x -是无穷小.6.下列极限中,值为1的是(C )A.x x x sin .2lim π∞→ B.x xx sin .2lim 0π→ C.xx x sin .2lim2ππ→ D.x x x sin .2lim ππ→7.=⎪⎭⎫⎝⎛-→x x x x x sin 11sin lim 0(A )A.1-B.1C.0D.不存在解:01sin lim 0=→x x x ;1sin .1lim 0=→x x x ,所以.110sin 11sin lim 0-=-=⎪⎭⎫ ⎝⎛-→x x x x x8.设函数()x f 具有2012阶导数,且()()x x f =2010,则()()=x f 2012(C ) A.x 21B.xC.24x x- D.2332x9.设()()x g x f =',则()=x f dx d2sin (D )A.()x x g sin 2()()x f x e e f .B.()x x g 2sinC.()x g 2sinD.()x x g 2sin .sin 2解:()=x f dx d 2sin ()()''x x f 22sin sin ()()⎥⎦⎤⎢⎣⎡''=x x x f sin .sin 2sin 2()[]x x x f cos .sin 2sin 2'=()x x f 2sin sin 2'=()x x g 2sin sin 2=.10.设xx y sin 21-=,则=dy dx (D )A.y cos 21-B.x cos 21-C.y cos 22-D.x cos 22-解:因为xdx dy cos 211-=,所以=dy dx .cos 22cos 21111x x dx dy -=-=11.曲线⎩⎨⎧==,cos ,2sin t x t y ,在4π=t 处的法线方程为(A ) A .22=x B .1=y C .1+=x y D .1-=x y 12.点()1,0是曲线c bx ax y ++=23的拐点,则有(B )A .1,3,1=-==c b aB .1,0,==c b a 为任意值C .1,=c b a 为任意值,D .为任c b a ,0,1==13.函数()22xe x xf -=的极值点的个数是(C )A .1B .2C .3D .414.若()x f 在点a x =的邻域内有定义,且除去点a x =外恒有()()()4>--a x a f x f ,则以下结论正确是(D )A .()x f 在点a 的邻域内单调增加B .()x f 在点a 的邻域内单调减少C .()a f 为函数()x f 的极大值D .()a f 为函数()x f 的极小值15.曲线()4ln 4>+=k k x y 与x x y 4ln 4+=的交点个数为(D )A .1B .2C .3D .4 解:设()k x x x x f --+=ln 4ln 44,()+∞∈,0x .① 则()()1ln 44ln 4433-+=-+='x x x x x x x f .②令()0='x f ,得驻点1=x .因为当()1,0∈x 时,()0<'x f ,故()x f 在(]1,0∈x 单调减少;而当()+∞∈,1x 时,()0>'x f 故()x f 在[)+∞∈,1x 单调增加.所以()k f -=41为最小值.又()()()[]+∞=-+-=++→→k x x x x f x x 44ln ln lim lim 3,()01144ln ln 1lim 1lim 43334=-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+∞→+∞→x k xx x x x x x x f x x ,故()()()[]+∞=-+-=+∞→+∞→k x x x x f x x 44ln ln lim lim 3.综合上述分析可画出()x f y =的草图,易知交点个数为2.16.设()t t f cos ln =,则()()='⎰dt t f t f t (A )A .C t t t +-sin cosB .C t t t +-cos sin C .()C t t t ++sin cosD .C t t +sin17.=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∞→n n n n n n 22212111ln lim (B ) A .⎰212ln xdxB .⎰21ln 2xdxC.()⎰+211ln2dx x D .()⎰+2121ln dx x解:n n n n n n 22212111ln lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∞→ n n n n n n 1.1ln )21ln()11ln(lim 2⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛++++++=∞→=+=∑=∞→n n i ni n 1.)1ln(lim 21()⎰+101ln 2dx x (令x t +=1)⎰=21ln 2tdt ⎰=21ln 2xdx18.已知()312x dt t f x =⎰,则()=⎰dx x f 12(C )A .1B .2 C.3 D .4 19.设dx e a x ⎰=102,()dxe b x ⎰-=112,则(C )A .b a >B .b a <C .b a =D .无法比较20.已知2sin 0π=⎰+∞dx x x ,则=⎰+∞02sin dx x x(B )A .0B .2πC .4πD .π解:========+∞=⎰x t dx x x 22sin 0⎰+∞021.2sin dt t t ==⎰+∞0sin dt t t 22sin 0π=⎰+∞dx x x .21.)ln(3y x e z xy ++=,则()=|2,1dz (B ) A .()()dy dx e ++12B .()()dy e dx e 11222+++ C .dx e 2 D .2e22.设21,y y 为一阶线性非齐次微分方程的()()x Q y x P y =+'的两个特解,若μλ,使21y y μλ+为该方程的解;21y y μλ-为该方程对应齐次方程的解,则通解为(A )A .21,21==μλ B .21,21-=-=μλ C .31,32==μλ D .32,32==μλ解:因为21,y y 为方程()()x Q y x P y =+'①的解,故有()()x Q y x P y =+'11②及()()x Q y x P y =+'22③由于21y y μλ+为①的解,所以将21y y μλ+代入①,得 ()()++'11y x P y λ()()()x Q y x P y =+'22μ④再将②、③代如④立得()()()x Q x Q =+μλ,于是有1=+μλ.⑤又因为21y y μλ-齐次方程()0=+'y x P y 的解,同理可得0=-μλ.⑥⑤、⑥联立可解得21,21==μλ.23.平面0623=+-+z y x 和直线⎪⎩⎪⎨⎧+=-=-=tz t y t x 21,33,1的位置关系是(C )A 平行B .直线在平面内C .垂直D .相交不垂直24.设函数()y x f z ,=的全微分为ydy xdx dz +=则点()0,0(D )A .不是()y x f ,的连续点B .不是()y x f ,的极值点C .是()y x f ,的极大值点D .是()y x f ,的极小值点解:由ydy xdx dz +=.可得yy zx x z =∂∂=∂∂,.令⎪⎪⎩⎪⎪⎨⎧==∂∂==∂∂,0,0y y zx x z可得唯一驻点()0,0.又122=∂∂=x z A ,02=∂∂∂=y x z B ,122=∂∂=y z C .则02>-=∆B AC ,且0>A ,所以()0,0是()y x f ,的极小值点.25.设区域(){}0,0,4|,22≥≥≤+=y x y x y x D ,()x f 为D 上的正值连续函数,b a ,为常数,则()()()()=++⎰⎰dxdy y f x f yf b x f a D(D )A .ab πB .ab π21C .()b a +πD .()b a +π21解:对于题设条件中含有抽象函数或备选项为抽象函数形式结果以及“数值型”结果的选者题,用赋值法求解往往能收到奇效,其思想是:一般情况下正确,那么特殊情况下也必然正确.重积分或曲线积分中含抽象函数时,通常利用对称性、轮换对称性等综合手段加以解决. 本题中,取()1=x f ,立得()()()()=++⎰⎰dxdy y f x f y f b x f a D =+=+⎰⎰π41.22b a dxdy b a D()b a +π2126.二元函数()()224,y x y x y x f ---=,则()2,2-(A )A . 是极大值点B .是极小值点C .是驻点但非极值点D .不是驻点27.设()y x f ,为连续函数,二次积分()dyy x f dx x⎰⎰2020,写成另外一种次序的二次积分是(B )A .()dxy x f dyxx⎰⎰202,B .()dxy x f dy yy ⎰⎰2022, C .()dx y x f dy y⎰⎰20,D .()dx y x f dy yy ⎰⎰0222,28.设(){}y y x y x D 2|,22≤+=,,()y x f ,在D 上连续,则()=⎰⎰dxdyxy f D( D )()()dy y x f dx A xx ⎰⎰----111122,;()()dyy x f dy B yy ⎰⎰-10202,2;()()d r r f d C ⎰⎰πθθθθ0si n202cos sin ;()()d r r rf d D ⎰⎰πθθθθ0si n 202cos sin .29.下列级数条件收敛的是(B )A .∑∞=14sin n n n α(α是常数) B .()∑∞=-1311n n n C .()∑∞=+-1311n n n nD .∑∞=++111n n n30.已知()()()x f y x Q y x P y =+'+''的三个特解:xx e y e y x y 2321,,===,则该方程的通解为().()()()x x e x C e x C A 221-+-;()xx e e C x C B 221++; ()()()x e x C x e C C x x +-+-221;()x x e C e C x D 221++.解:根据二阶常系数线性微分方程解的性质知,x e x -及xe x 2-均是对应的齐次方程的解,故齐次通解为()()x x e x C x e C Y 221-+-=;所以原非齐次方程的通解是()().221x e x C x e C y x x +-+-=选().C二、填空题(每空2分,共20分)31.极限=⎪⎭⎫ ⎝⎛-∞→x x x 1sin 2lim 22.2- 解:=⎪⎭⎫ ⎝⎛-∞→x x x 1sin 2lim 22211sin2lim22-=-∞→x x x .32.()[]40sin sin sin sin lim x x x x x-→=61. 解:()[]40sin sin sin sin lim x x x x x -→()[]40sin sin sin lim x x x x x -=→()30sin sin sin lim x x x x -=→()203cos .sin cos cos lim x x x x x -=→()203sin cos 1.cos lim x x x x -=→()203sin cos 1lim x xx -=→613sin 21lim 220==→x xx . 33.设23232-+-=x x x y ,则()()=18y .231!889⎪⎭⎫ ⎝⎛-解:()()()()1121221212112232323----+=--+=-+-=-+-=x x x x x x x x x x y .()[]()[]'--'+=--11122x x y ()()()()2.1212122-----+-=x x ;()()[]()()[]'---'+-=''--2.1212122x x y ()()()()()()2332.1221221------+--=x x ;归纳可得()()()()()()()()()88982.128212821-------+---=x x y所以()()()()()()()().231!82.8213.821189898⎪⎭⎫ ⎝⎛-=-------=- y34.设()x y y =是由12=-⎰+-dt e x yx t ①所确定的函数,则==|x dxdy1-e .解:①关于x 求导并注意到()x y y =,得()112=⎪⎭⎫ ⎝⎛+-+-dx dy e y x .②当0=x 时,由①式求得1=y .将0=x ,1=y 代入②可算得1|0-==e dx dyx .35.设()x y y =.如果11.-=⎰⎰dx y dx y ①,()10=y ,且当+∞→x 时,0→y ,则=y .x e -解:由①式得⎰⎰-=ydxdx y11②②关于x 求导并注意到()x y y =,得()yydx y.112⎰=即()22y dx y =⎰故y dx y ±=⎰,即dx dy y ±=③③分离变量,且两边积分得x Ce y =或xCe y -=④又根据条件()10=y 及+∞→x 时,0→y ,得.xe y -=36.=+⎰dx x x 811531.27029 解:=+⎰dx x x 8101531()dx x d x x 881083181+⎰(令8x t =)dt t t 318110+=⎰(令t u 31+=,即()1312-=u t )()27029353611361|21352212=⎥⎦⎤⎢⎣⎡-=-=⎰u u du u u .37.设()y x z z ,=是由方程2222=+++z y x zxy ①所确定的隐函数,则()='-|1,0,1y z 2-. 解法一:令().2,,222-+++=z y x zxy z y x F则222z y x xyzF x +++=';222z y x yxz F y +++=';.222z y x zxy F z +++='故222222z y x xy z y x yxz F F z z y y ++++++-=''-='.所以,().2|1,0,1='-y z解法二:①两边全微分,得()().022221222=+++++++zdz ydy xdx zy x xydz xzdy yzdx即()().0222=+++++++zdz ydy xdx xydz xzdy yzdx z y x ②将)1,0,1(-代入②得 ()().02=-+-dz dx dy即.2dy dx dz -=所以()1|1,0,1='-x z ,().2|1,0,1-='-y z38.设L 为从点()0,0O 到点()0,1A 再到点()1,1B 的折线,则()=--⎰ydx y x xdy L 221. 解:()=--⎰ydx y x xdy L22()+--⎰ydx y x xdy OA22()ydx y x xdy AB⎰--22()⎰⎰=+--=11221.10.0dy dx x .39.微分方程0=+'+''y y y 的通解为.23sin 23cos 212⎪⎪⎭⎫⎝⎛+=-x C x C e y x解:(一)0=+'+''y y y 对应的特征方程为:012=++r r ,其特征根为i r 2321±-= (二)通解为:.23sin 23cos 212⎪⎪⎭⎫⎝⎛+=-x C x C e y x40.幂级数()nn n x n 124202-+∑∞=①的收敛域为().2,2- 解:(一)记12-=x t ,则级数①化为nn n t n ∑∞=+0242.②记422+=n a nn , ,2,1=n().224412lim lim 2211=+⨯++==+∞→+∞→n n n nn n n n a a ρ所以,级数②的收敛半径是.211==ρR又当21-=t 时,级数②化为()∑∞=+-0241n nn 收敛;又当21=t 时,级数②化为∑∞=+0241n n 也收敛.所以级数②的收敛域是⎥⎦⎤⎢⎣⎡-∈21,21t . (二)由⎥⎦⎤⎢⎣⎡-∈-21,2112x 解得⎥⎦⎤⎢⎣⎡∈43,41x ,故原级数的收敛域为.43,41⎥⎦⎤⎢⎣⎡ (1)如果()122<=x x ρ,即2||<x 时,则∑∞=-1122n nn x 收敛; (2)(1)如果()122<=x x ρ,即2|>x 时,则∑∞=-1122n nn x 发散,所以,.2=R(3)又在端点2±=x 处∑∞=±⇒1121n 发散.所以,收敛域为()2,2-三、计算题(每小题5分,共45分)41.已知()5132sin 1ln lim 0=-⎪⎭⎫ ⎝⎛+→x x x x f ①,求()20lim x x f x →.解:由①式得()=-⎪⎭⎫ ⎝⎛+=→132sin 1ln lim 50x x x x f ()=-→12sinlim 3ln 0x x e x x f ()3ln 2lim 0x x x f x → ().lim 3ln 2120x x f x →=②由②式即可算得().3ln 10lim 20=→x xf x42.设函数()x y y =由参数方程()⎪⎩⎪⎨⎧+==⎰20)1ln(,t du u y t x x 确定,其中()t x x =是微分方程02=--xte dt dx 在初始条件0|0==t x 下的特解,求22dx y d .解:(一)微分方程02=--x te dt dx为可分离变量型,可转化为tdt dx e x 2=①①两边积分得C t e tdt dx e x x +=⇒=⎰⎰22②又将初始条件|==t x 代入②,得1=C ,因此()()21ln t t x +=③(二)()()22221ln 1122).1ln(tt t t t t dtdx dt dy dx dy ++=++==(三)dt dxdx dy dt d dx dy dx d dx y d 1.22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= ()()[]=+++=22211.1ln 1t dtt t d ()[])1ln(1122t t +++.43.设函数()2,sin ,222+-=x x y y x f x z ,其中f 具有二阶连续偏导数,求.;22y zx z ∂∂∂∂解: (一)[]x f x y f f x xf x z 2cos 2.23212'+'+'+=∂∂(二)[]x ff x y z sin 212'+'-=∂∂,所以()[]()[]{}x f f x x f f x y z sin 1sin sin 122211211222''+-''+''+-''-=∂∂44.计算反常积分()()⎰+∞++0321dxx x解:()()111112l n 2323233x d x d x d x d x c x x x x xx x +⎛⎫=-=-=+ ⎪+++++++⎝⎭⎰⎰⎰⎰所以()()002112222l n l i m l n l n l i m l n l n 32333331|x x x x x d x x x x x x +∞+∞→+∞→+∞+++==-=-+++++⎰23l n 1l n l n .32=-=45.求曲线..0,6:222⎩⎨⎧=++=++Γz y x z y x 在点()1,2,1-的切线. 解:方程组两边关于x 求导,得:..01,0222⎪⎪⎩⎪⎪⎨⎧=++=++dx dz dx dy dxdz z dx dy y x ①将点()1,2,1-代入(1),得:..01,0242||||1111⎪⎪⎩⎪⎪⎨⎧=++=+-====x x x x dx dz dx dy dx dz dx dy 解之,有:.1,0||11-====x x dx dz dx dy所以,切线向量为:{}1,0,1-= 故曲线在点()1,2,1-的切线为:.110211--=+=-z y x46.设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q=,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l故有x Qy P ∂∂=∂∂即()()x f x x f x '+=34化简,得()()241xx f x x f =+'(1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x ex f dx xdx x1214[]()c dx x x c e x e xx +=+=⎰⎰-3ln 2ln 414 ().1134x c x c x x +=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=47.求幂级数()11!1-∞=∑+n n x n n的和函数.解:(一)记()!1+=n na n , ,2,1=n ,则21limlim 21=++==∞→+∞→nn n a an nn n ρ,故收敛半径为+∞=R .收敛域为()+∞∞-,. (二)记()(),!111-∞=∑+=n n x n n x s+∞<<∞-x .则()()11!1-∞=∑+=n n x n n x s ()()11!111-∞=∑+-+=n n x n n 11!1-∞=∑=n n x n ()11!11-∞=∑+-n n x nn n x n x ∑∞==1!11()112!111+∞=∑+-n n x n x n n x n x ∑∞==1!11nn x n x∑∞=-22!11⎥⎦⎤⎢⎣⎡-=∑∞=1!110n n x n x ⎥⎦⎤⎢⎣⎡---∑∞=x x n x n n 1!1102[]11-=xe x []()011122≠+-=---x x e xe x e x xx x .又()()2001lim lim 0x e xe x s s xx x x +-==→→212lim 0==→x x e . 所以⎪⎪⎩⎪⎪⎨⎧=≠--=0,210,1)(2x x x x xe x S x解法二:记()(),!111-∞=∑+=n n x n n x s+∞<<∞-x .()()n n xx n dx x s ∑⎰∞=+=10!11()=+=+∞=∑11!111n n x n x ∑∞=2!1n nn x x()x e x x--=11所以()()()2111x x e e x x x e x s xx x ----='⎪⎪⎭⎫ ⎝⎛--=21x e xe x x +-=.48.计算二重积分Ddxdy e I Dx ,2⎰⎰=是第一象限中由直线x y =和曲线3x y =所围成封闭区域.解:因为二重积分的被积函数()2,xe y xf =,它适宜于“先对y ,后对x ” ,故D 可用不等式表示为⎩⎨⎧≤≤≤≤.10,:3x x y x D 于是 ()dx ex x dy e dx dxdy e I xxx xD x23221310⎰⎰⎰⎰⎰-===dx e x x 21⎰=dx e x x 213⎰-()210221x d e x ⎰=()210221x e d x ⎰-()⎥⎦⎤⎢⎣⎡--=⎰21010210222||2121x d e e x e x x x ()()().121212112121121|102-=-+--=⎥⎦⎤⎢⎣⎡---=e e e e e e e x49.求方程0=-''y y ①的积分曲线,使其在点()0,0处与直线x y =相切.解:方程①的特征方程为012=-r ,解之得1,121=-=r r ,故方程①的通解为x x e C e C y 21+=-.② xx e C e C y 21+-='-③由题意知有()()10,00='=y y .将条件()()10,00='=y y 分别代入②、③有⎩⎨⎧=+-=+1,02121C C C C 解得⎪⎪⎩⎪⎪⎨⎧=-=21,2121C C所以2x x e e y --=.四、应用题(每小题8分,共16分)50.设三角形的边长分别为c b a ,,,其面积为S ,试求该三角形内一点到三边距离之乘积的最大值. 解:任取三角形内一点P ,设其距三边的距离分别为z y x ,,,则有.2212121S cz by ax S cz by ax =++⇒=++问题转化成求xyz V =在02=-++S cz by ax 下的最大值.令()()S cz by ax xyz z y x L 2,,,-+++=λλ,令⎪⎪⎩⎪⎪⎨⎧=-++='=+='=+='=+='.02,0,0,0S cz by ax L c xy L b xz L a yz L z y x λλλλ,解之得:.32,32,32c S z b S y a S x === 故.2783max abc S V =另解:[]().27827231..1333abc S abc S cz by ax abc cz by ax abc xyz V ==⎪⎭⎫ ⎝⎛++≤==上述等式成立当且仅当,cz by ax ==又02=-++S cz by ax ,所以,当且仅当.32,32,32c Sz b S y a S x ===时,等式成立.51.平面图形D 由抛物线x y 22=与该曲线在点⎪⎭⎫ ⎝⎛1,21处的法线围成.试求:(1)D 的面积;(2)D 绕x 轴旋转一周所形成的旋转体的体积.解:(1)方程x y 22=两边关于x 求导得 22='y y ①将1,21==y x 代入①式得1|21='=x y 。

成考数学(文科)成人高考(高起专)试题及解答参考(2024年)

成考数学(文科)成人高考(高起专)试题及解答参考(2024年)

2024年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若等差数列{an}的前三项分别为1,4,7,则该数列的通项公式为:A、an = 3n - 2B、an = 2n + 1C、an = n + 2D、an = 3n + 12、若函数(f(x)=x2−4x+5),则该函数的最小值为()。

A、1B、2C、3D、43、已知某工厂去年生产总值为500万元,今年的生产总值比去年增长20%,则今年的生产总值为:A. 600万元B. 620万元C. 510万元D. 480万元+2x),则函数(f(x))的定义域为:4、已知函数(f(x)=3xA.((−∞,0)∪(0,+∞))B.((−∞,+∞))C.((−∞,0))D.([0,+∞))5、若集合A = {x | x^2 - 3x + 2 = 0},则A中的元素个数为()。

A、0B、1C、2D、36、下列各数中,属于正实数的是()A、-πB、0C、1D、-57、在下列各数中,不是有理数的是:)A、(34B、(−√5)C、(0.25)D、(1.5)8、已知集合A={1, 2, 3},B={3, 4, 5},则A∩B=()。

A. {1, 2, 3, 4, 5}B. {3}C. {1, 2, 4, 5}D. {0}9、在下列各对数运算中,正确的是()A、log2(4) + log2(6) = 2 + log2(2)B、log2(8) - log2(4) = 2 - 1 / log2(8)C、log2(16) / log2(2) = 4- log2(2)D、log2(32) * log2(4) = 5 * 210、下列函数中,在定义域内是奇函数的是()A.(f(x)=x2+1)B.(f(x)=x3−x)C.(f(x)=2x+3)D.(f(x)=|x|)11、已知集合A = {x | -2 < x < 3},集合B = {x | x < 1 或 x > 4},则A∩B 等于()。

成考数学(文科)成人高考(高起专)试题及解答参考(2025年)

成考数学(文科)成人高考(高起专)试题及解答参考(2025年)

2025年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数f(x)=x2−4x+5在x=2处取得极值,则该极值为:()A.−1B.0C.1D.32、若函数f(x) = x^3 - 3x^2 + 4x在区间[1,2]上连续,且f’(x) = 3x^2 - 6x + 4,则f(x)在区间[1,2]上的极值点为:A. 1B. 1.5C. 2D. 无极值点3、在下列各数中,既是质数又是合数的是()A、4B、6C、9D、154、在下列各数中,最小的负整数是()A、-1.5B、-3C、-2D、-2.35、若函数(f(x)=x2−4x+3)的图像与(x)轴交于点(A)和(B),则(AB)的长度是:A. 2B. 3C. 4D. 56、在下列各数中,绝对值最小的是:A、-2B、0C、2D、-37、下列函数中,在其定义域内连续的函数是())A.(f(x)=xxB.(g(x)=√x2)C.(ℎ(x)=|x|))D.(k(x)=1x8、在下列各数中,既是整数又是无理数的是()A、√4B、πC、0.25D、-1/29、下列各数中,有理数是:A、√2B、πC、−3√5D、3210、已知函数(f(x)=2x3−3x2+4),求函数的极值点。

A.(x=−1)B.(x=1)C.(x=0)D.(x=2)11、若函数f(x)=lnx的图像上一点A(x0,lnx0),那么该点的切线斜率为:A.1B.1x0C.1x0−1D.1x0+112、在下列各数中,哪个数是无限循环小数?A、0.333…B、0.444…C、0.666…D、0.777…二、填空题(本大题有3小题,每小题7分,共21分)1、若函数(f(x)=√2x+3−x)的定义域为(A),则(A)的取值范围是______ 。

2、若函数(f(x)=2x3−3x2+2)在(x=1)处的切线斜率为 4,则(f′(1))的值为______ 。

成人高考数学试题(历年成考数学试题答案与解答提示)

成人高考数学试题(历年成考数学试题答案与解答提示)

成人高考数学试题第一部分:试题答案与解答提示1. 简单计算题请计算下列各式的结果:(1)3 + 5 × 2 8 ÷ 4 = ?(2)(9 3)² + 4 × 6 ÷ 2 = ?(3)√(16 × 25) = ?解答提示:对于简单计算题,我们需要掌握基本的算术运算规则,如加减乘除、乘方、开方等。

在解题过程中,要注意运算顺序,遵循先乘除后加减的原则。

2. 代数式计算题请计算下列各式的结果:(1)若 a = 3,b = 4,求 2a 3b 的值。

(2)若 x = 2,y = 3,求(x² y²) ÷ (x + y) 的值。

(3)若 a = 2,b = 1,求(a + b)² 2ab 的值。

解答提示:对于代数式计算题,我们需要熟练掌握代数式的运算规则,如合并同类项、分配律、平方差公式等。

在解题过程中,要注意代入给定的数值,并按照运算顺序进行计算。

3. 解方程题请解下列方程:(1)2x 5 = 7(2)3x + 4 = 11 2x(3)2x² 5x + 3 = 0解答提示:对于解方程题,我们需要掌握一元一次方程、一元二次方程的求解方法。

在解题过程中,要注意方程的化简、移项、合并同类项等步骤,以及使用求根公式求解一元二次方程。

4. 几何题请计算下列几何问题的答案:(1)若一个正方形的边长为 5 厘米,求其面积。

(2)若一个圆的半径为 4 厘米,求其周长。

(3)若一个三角形的底边长为 6 厘米,高为 8 厘米,求其面积。

解答提示:对于几何题,我们需要掌握基本的几何知识,如正方形、圆、三角形的面积和周长公式。

在解题过程中,要注意代入给定的数值,并按照公式进行计算。

5. 应用题请解决下列应用问题:(1)小华有 10 元钱,购买一支铅笔和一本笔记本后,还剩 2 元。

铅笔的价格是 3 元,笔记本的价格是多少?(2)一辆汽车以每小时 60 公里的速度行驶,从甲地到乙地需要2 小时。

2024年成人高考成考(高起专)数学(文科)试题及答案指导

2024年成人高考成考(高起专)数学(文科)试题及答案指导

2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。

A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。

成考数学(理科)成人高考(高起专)试题与参考答案(2024年)

成考数学(理科)成人高考(高起专)试题与参考答案(2024年)

2024年成人高考成考数学(理科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、()下列哪个数是有理数?A. √2B. πC. -3/4D. e2、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 41D. 533、若二次函数 f(x) = ax^2 + bx + c 在点 (x, f(x)) 和点 (-x, f(-x)) 处的斜率之积等于一个定值 k,则以下结论正确的是:A. a = kB. b = kC. c = kD. a 与 k 的关系不确定4、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 415、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 416、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 417、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 418、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 419、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 4110、函数 y = sin x 与函数y = √x 在第一象限的图象的交点个数为()A. 0个B. 1个C. 无数个D. 不能确定具体数量但一定有交点11、若直线 y = ax 与曲线y = √(x) 在它们的交点处相切,则实数 a 的值为多少?A. 1/2B. 1C. 2D. 无法确定12、函数 f(x) = cos^2 x + sin x 在区间[π/4, π/2] 上的最大值是()A. 根号下(二分之五)B. 二分之根号二C. 二分之一D. 一加根号二二、填空题(本大题有3小题,每小题7分,共21分)1、(10分) 已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是 ______ ,最小值是 ______ 。

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。

成人高考成考(高起专)数学(理科)试卷及解答参考

成人高考成考(高起专)数学(理科)试卷及解答参考

成人高考成考数学(理科)(高起专)模拟试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数(f(x)=x3−3x2+4)的导数(f′(x))等于0,则(f(x))的极值点为:A、(x=0)B、(x=1)C、(x=2)D、(x=−1)2、已知函数f(x)=x 2−4x−2,则函数的定义域为()A.x≠2B.x≠0C.x≠2且x≠0D.x≠0且x≠−23、若函数(f(x)=1x−2+√x+1)在区间([−1,2))上有定义,则函数(f(x))的定义域为:A.([−1,2))B.([−1,2])C.((−1,2))D.((−1,2])4、在下列各数中,正实数 a、b、c 的大小关系是:a = 2^(3/2),b = 3^(2/3),c = 5^(1/4)。

A、a < b < cB、b < a < cC、c < b < aD、a = b = c5、已知函数f(x)=2x3−9x2+12x+1,若函数的图像在(−∞,+∞)上恒过点(a,b),则a和b的值分别为:A.a=2,b=9B.a=3,b=10C.a=1,b=2D.a=0,b=1+2x)在(x=1)处有极值,则此极值点处的导数值为:6、若函数(f(x)=3xA. 1B. -1C. 0D. 3在点x=1处的导数等于多少?7、若函数f(x)=2x−3x+1A、2B、−1C、1D、08、已知函数f(x)=x 3−3x2+4xx2−2x+1,则f(x)的奇偶性为:A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定9、在下列数列中,属于等差数列的是()A、1, 2, 3, 4, 5B、1, 3, 6, 10, 15C、2, 4, 8, 16, 32D、1, 3, 6, 9, 1210、已知函数(f(x)=1x+x2)在区间((−∞,+∞))上的定义域为(D),且函数的值域为(R),则(D)和(R)分别是:A.(D=(−∞,0)∪(0,+∞),R=(−∞,0)∪(0,+∞))B.(D=(−∞,0)∪(0,+∞),R=[0,+∞))C.(D=(−∞,+∞),R=(−∞,+∞))D.(D=(−∞,+∞),R=[0,+∞))11、若函数f(x)=x3−3x2+4x,则函数的对称中心为:A.(1,2)B.(1,1)C.(0,0)D.(−1,−1)12、若函数(f(x)=√x2−4)的定义域为(D f),则(D f)为:A.(x≥2)B.(x≤−2)或(x≥2)C.(x≤−2)或(x≥2)D.(x≥2)或(x≤−2)二、填空题(本大题有3小题,每小题7分,共21分)1、在△ABC中,若sinA=√55,cosB=−√1010,则sinC=____.2、已知直线(l)的方程为(3x−4y+10=0),求直线(l)在 y 轴上的截距。

数学成人高考高起专数学模拟试卷

数学成人高考高起专数学模拟试卷

成人高考高起专数学模拟卷子二一、选择题(每题5分,共15题,75分)1.设集合A={a,b,c,d,e} B={a,b,e},则AUB=( )A {a,b,e }B {c,d}C {a,b,c,d,e}D ϕ2.以下函数为偶函数的是〔 〕Ay=-x B y=xsinx C y=xcosx D y=x 2+x3.条件甲x=2,条件乙:x 2-3x+2=0,则条件甲是条件乙的〔 〕A 充要条件B 必要不充分条件C 充分但不必条件D 既不充分又不必要条件4.到两定点A 〔-1,1〕和B 〔3,5〕距离相等的点的轨迹方程为〔 〕A x+y-4=0B x+y-5=0C x+y+5=0D x-y+2=05.两条平行直线z 1=3x+4y-5=0与Z 2=6x+8y+5=0之间的距离是〔 〕A 2B 3C 12D 326.以椭圆x 216 +y 29 =1上的任意一点〔长轴两端除外〕和两个焦点为顶点的三角形的周长等于〔 〕A 12B 8+27C 13D 187.函数y=1-│x+3│ 的定义域是〔 〕A R B0,+∞ C-4,-2 D(-4,-2)8.抛物线y 2=-4x 上一点P 到焦点的距离为3,则它的横坐标是〔 〕A -4B -3C -2D -19.函数f(x)=sinx+x 3( )A 是偶函数B 是奇函数C 既是奇函数,又是偶函数D 既不是奇函数也不是偶函数 10.12cos 12sin ππ=( )A 14B 12C 3 2D 3 411.掷两枚硬币,两枚的币值面都朝上的概率是〔 〕A 12B 14C 13D 1812.通过点〔3,1〕且与直线x+y=1垂直的直线方程是〔 〕A x-y+2=0B 3x-y-8=0 Cx-3y+2=0 Dx-y-2=013.已知y=loga(2-ax)在[0,1]上是x 的减函数,则a 的取值范围是〔 〕A 19B (1,2)C (0,2)D (2,+ ∞)14.如果向量a=(3,-2),b=(-1,2),则(2a+b)·(a-b)等于〔 〕A 28B 8C 16 D3215.假设从一批有8件正品,2件次品组成的产品中接连抽取2件产品〔第一次抽出的产品不放回去〕,则第一次取得次品且第二次取得正品的概率是〔 〕A 19B 29C 845D 1645二、填空题〔每题5分,共4小题,20分〕16.函数y=(x+1)2+1(x ≤1)的反函数是 117.给定三点A(1,0) B(-1,0) C(1,2)那么通过点A ,并且与直线BC 垂直的直线方程是 118.过曲线y=13 x 3上一点P(2, 83 )的切线方程是119.从球队中随机选出5名队员,其身高分别为〔单位:cm 〕180 188 200 195187,则身高的样本方差为 cm 2三、解答题〔20题10分,21题16分,22题13分,24题16分〕20.设函数y=f(x)为一次函数,已知f(1)=8,f(2)=-1,求f(11)21.a n ]首项为2,公比为3的等比数列,将此数列的每一项取以3为底的对数构成数列[bn ]求〔1〕[bn ]的通项公式 〔2〕[b ]的前多少项和为10log 32+4522.已知锐角三角形ABC 的边长AB=10,BC=8,面积S=32,求AC 的长〔用小数表示,结果保存小数点后两位〕23.在某块地上种植葡萄,假设种50株葡萄藤,每株葡萄藤将产出70kg 葡萄,假设多种1株葡萄藤,每株产量平均下降1kg ,试问在这块地上种多少株葡萄藤才能使产量到达最大值,并求出这个最大值。

成人高考成考(高起本)数学(文科)试题与参考答案

成人高考成考(高起本)数学(文科)试题与参考答案

成人高考成考数学(文科)(高起本)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1.下列哪个数是有理数?A. √2B. πC. -3/4D. e2.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 413、如果一个数的小数点向左移动2位,则这个数缩小了原来的()倍。

A、100B、10C、1/100D、1/104、若函数f(x)满足f(1) = 4, f’(1) = 2, x > 0。

若存在一个常数c,使得对于任意x > 0,都有f(x) ≥ cx^2,则c的最大值是(A、0B、1C、2D、45、一元二次方程的判别式为零时,该方程的实数根的情况是()A. 方程有两个相等的实数根B. 方程没有实数根C. 方程有两个非相等的实数根D. 以上都不正确6.等差数列2, 5, 8, 11, … 的第 20 项是多少?A. 59B. 61C. 65D. 677、直线l过点(1, 3)且与双曲线x 22−y21=1一条渐近线平行,则()。

A. 直线l无斜率B. 直线l的斜率为±√2C. 直线l的斜率为-1或-√2D. 直线l的斜率为±1解析:双曲线x 22−y21=1的渐近线方程为y=±√22x,又直线l过点(1, 3),故当直线l 与渐近线y=√22x 平行时,直线l 的斜率为√22(舍去);当直线l 与渐近线y=-√22x 平行时,直线l 的斜率为-√22;当直线l 与渐近线垂直时,直线l 的斜率不存在。

综上可知:直线l 的斜率为-1或-√2。

选C 。

8、在多项式x 2+2x +1中,x 2+2x 的系数是( )。

A. -1B. 1C. -2D. 29、一个多项式函数的最小项是关于x 的3次幂,则该多项式函数的次数至少是( )次。

A 、4B 、3C 、2D 、110、已知函数 f(x) = ax^3 + bx^2 + cx 在 x=x ₀ 处取得极值,且 f’(x ₀) = 0,则关于函数 f(x) 的极值说法正确的是:A. f(x) 在 x=x ₀ 处一定有极大值或极小值B. 若 f’(x ₀) 是正的或负的,则 f(x) 在 x=x ₀ 处有极大值或极小值C. f(x) 在 x=x ₀ 处没有极值,导数等于零不一定有极值点出现D. 函数是否存在极值与变量 x ₀ 有关,所以需要通过实际代入求解来确定极值的存在性。

成人高考数学试题及答案

成人高考数学试题及答案

成人高考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 函数f(x)=x^2-4x+3的零点个数是()。

A. 0B. 1C. 2D. 3答案:C2. 已知函数f(x)=2x-1,g(x)=x^2-2x+1,求f[g(x)]的表达式是()。

A. 2x^2-5x+3B. 2x^2-3x+1C. 2x^2-4x+1D. 2x^2-6x+3答案:A3. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B=()。

A. {1,2}B. {2,3}C. {1,3}D. {2}答案:D4. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值是()。

A. 9B. 10C. 11D. 12答案:A5. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值是()。

A. 18B. 24C. 54D. 72答案:C6. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,且c=5,b=4,则a的值是()。

A. 3B. 4C. 5D. 6答案:A7. 已知直线l: y=2x+1与圆C: (x-1)^2+(y-2)^2=4相交于点A和B,求弦AB的中点坐标是()。

A. (1,2)B. (2,3)C. (3,4)D. (0,1)答案:A8. 已知函数f(x)=|x|,求f(-2)+f(2)的值是()。

A. 0B. 2C. 4D. 6答案:C9. 已知三角形ABC的三边长分别为a, b, c,且满足a^2+b^2=c^2,求三角形ABC的形状是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B10. 已知向量a=(3,-2),b=(2,1),求向量a与向量b的数量积是()。

A. 4B. 5C. -1D. -4答案:C二、填空题(本大题共5小题,每小题4分,共20分)11. 已知函数f(x)=x^3-3x^2+2,求f'(x)的表达式是:f'(x)=3x^2-6x。

成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)

成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)

2024年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列数中,有理数是()A、√2B、πC、−3.14D、2√32、在下列各数中,哪个数是负数?A、-5B、3C、0D、-2.53、若函数(f(x)=2x3−3x2+4),则(f(1))的值是多少?A. 3B. 5C. 7D. 94、若函数f(x)=x3−3x2+4x−1在x=1处取得极值,则该极值是:A、极大值B、极小值C、拐点D、非极值5、在下列各数中,属于实数集的有:A、√−1B、1C、πD、0.1010010001...6、已知函数f(x) = (x-1)^2 + 2,其图像的对称轴为:A. x = 1B. y = 1C. x = 0D. y = 0+√x+1)的定义域为((−∞,−1]∪(2,+∞)),则函数(f(x))7、已知函数(f(x)=1x−2的值域为:A.((−∞,−2]∪[1,+∞))B.((−∞,−2]∪[2,+∞))C.((−∞,−2]∪[0,+∞))D.((−∞,−2]∪[0,2])8、若函数(f(x)=3x2−4x+5)的图像开口向上,则其对称轴为:)A.(x=23B.(x=−23)C.(x=43)D.(x=−43)9、在下列函数中,f(x) = x^2 - 4x + 4 的图像是一个:A. 圆B. 抛物线C. 直线D. 双曲线10、若函数(f(x)=x3−3x2+4x)的图像在(x)轴上有一个交点,则(f(x))的对称中心为:A.((1,0))B.((2,0))C.((1,2))D.((2,2))11、已知函数(f(x)=2x2−3x+1),则该函数的对称轴为:A.(x=−b2a =−−32×2=34)B.(x=−b2a =−−32×2=34)C.(x=−b2a =−−32×2=34)D.(x=−b2a =−−32×2=34)12、在下列函数中,当x=2时,函数y=3x^2-5x+2的值是()A. 1B. 4C. 7D. 9二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=2x3−3x2+4x−5的图像与直线y=3相切,则该切点的横坐标是________ 。

成人高考高升专数学模拟试卷

成人高考高升专数学模拟试卷

成人高考高升专数学模拟试卷一、选择题(本大题共17小题,每小题5分,共85分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若a < b,则下列不等式一定成立的是()A. a^2 < b^2B. (1)/(a)>(1)/(b)C. a - 3 < b - 3D. -2a<-2b4. 一次函数y = kx + b(k≠0)的图象过点(1,3)和(-1, - 1),则k,b的值分别为()A. k = 2,b = 1B. k=1,b = 2C. k=-2,b = 1D. k = - 1,b = 25. 二次函数y=x^2+2x - 3的对称轴方程是()A. x = - 1B. x = 1C. x = 2D. x=-26. 已知对数函数y = log_ax(a>0,a≠1)的图象过点(4,2),则a的值为()A. √(2)B. 2C. (1)/(2)D. 47. 计算sin(π)/(3)+cos(π)/(3)的值为()A. (√(3)+ 1)/(2)B. (√(3)-1)/(2)C. √(3)+1D. √(3)-18. 在等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 11C. 13D. 159. 等比数列{a_n}中,a_1=2,q = 3,则a_3的值为()A. 18B. 12C. 6D. 210. 函数y = 3sin(2x+(π)/(3))的最小正周期是()A. πB. 2πC. (π)/(2)D. (2π)/(3)11. 已知向量→a=(1,2),→b=(3, - 1),则→a·→b的值为()A. 1B. 5C. -1D. -512. 过点(1,2)且与直线y = 3x+1平行的直线方程为()A. y = 3x - 1B. y=3x+2C. y=-3x+1D. y = - 3x - 113. 圆x^2+y^2=4的圆心坐标和半径分别是()A. (0,0),2B. (0,0),4C. (2,0),2D. (-2,0),214. 从5名男生和3名女生中选3人参加某项活动,其中至少有1名女生的选法有()种。

2024年成人高考高起专《数学(文)》真题及答案(全网首发)

2024年成人高考高起专《数学(文)》真题及答案(全网首发)

2024年成人高考高起专《数学(文)》真题及答案(考生回忆版)第I 卷(选择题,共84分)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 样本数据10,16,20,30的平均数为( ) A. 19 B.20 C.21 D.222.已知集合{1,2,3},{2,3,4,5}A B ==,则AB =( )A.{1,2,3,4,5}B. {2,4,5}C.{1,2}D. {2,3} 3.已知向量(4,8),(1,1)a b ==-,则a b -=( ) A.(3,7)B. (5,9)C. (5,7)D. (3,9)4.下列函数中,在区间(0,)+∞单调递增的是( ) A 5x y -= B.5y x + C.2(5)y x =- D.15log (1)y x =+5. 双曲线2214y x -=的渐近线方程为( ) A.y x =±B.2y x =±C. 3y x =±D.4y x =±6.如果ln ln 0x y >>,那么( ) A.1y x << B.1x y <<C.1x y <<D.1y x <<7. 函数245y x x =++的图像的对称轴是( ) A. 2x =- B. 1x =-C. 0x =D. 1x =8.抛物线212y x =的焦点坐标为( )A.(0,0)B. (3,0)C.(-3,0)D.(1,0) 9.不等式|1|7x -<的解集为( )A.{|100}x x -<<B. {|86}x x -<<C. {|68}x x -<<D. {|69}x x -<<10.已知0,0x y ≥≥且1x y +=则22x y +的最大值是( ) A.1 B.2C.3D.411.曲线4y x=与ln y x =交点的个数为( ) A.3B.2C.1D. 012. 已知{}n a 为等比数列,若31a a >,则( ) A. 21||||a a >B.42a a >C.41||||a a >D. 53a a >第II 卷(非选择题,共65分)二、填空题(本大题共3小题,每小题7分,共21分)13.sin 60= .14.在等差数列{}n a 中,141,8a a ==,则7a = .15.从甲乙丙3名学生中随机选2人,则甲被选中的概率为 . 三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤.) 16.(本小题满分12分)记ABC ∆记的角A ,B ,C 的对边分别为a,b,c,4,5,6a b c ===. (1)证明:ABC ∆是锐角三角形 (2)求ABC ∆的面积17.已知椭圆C :22142x y +=. (1)求椭圆C 的离心率。

成人高考成考(高起专)数学(理科)试题及解答参考

成人高考成考(高起专)数学(理科)试题及解答参考

成人高考成考数学(理科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,是奇函数的是()。

A.y=x2B.y=arctanxC.y=e xD.y=x 3−1x−1,x≠12、若分子是正数的分数与负数相乘,则结果一定()A、是正数B、是负数C、可能为正数,也可能为负数D、不确定3.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 414、已知向量a⃗=(2,−3),b⃗⃗=(5,1), 则2a⃗−b⃗⃗的大小为A.√29B.√13C.√37D.√265.题目:已知圆的方程为 x^2 + y^2 = 9,点 A(-3, 0),则点 A 与圆的位置关系是()A. 在圆内B. 在圆上C. 在圆外D. 无法确定6、若函数f(x)=x2−4x+3,则不等式f(x)<0的解集为A.(1,3)B.(−∞,1)∪(3,+∞)C.(−∞,1]∪[3,+∞)D.(1,+∞)7、若函数y=x^2的图像向上平移2个单位,向右平移1个单位,则平移后的函数解析式为()A、y=x^2+2x+3B、y=x^2+2x+1C、y=x^2+2D、y=(x-1)^2+28、在甲、乙两队拔河比赛中,甲队最大能拉动横绳中间的白带的水平距离为6米。

已知绳的轻质、不可伸长,横绳的重量忽略不计,两队发力使对方过界并保持不动撤力后,白带即回到恰好在界线的不动平衡位置。

问两队发力过界时,白带向哪边过界?最多能拉动白带的最大水平距离是多少米?已知甲队最大拉力为F1=600N,乙队最大拉力F2=320N。

A. 乙队方向,12米B. 甲队方向,5米C. 乙队方向,5米D. 甲队方向,12米9、若一元二次方程ax² + bx + c = 0 的两个根互为倒数,则下列式子一定成立的是()A. a + b + c = 0B. b² = 4acC. a = bD. c = 010、一个正整数,它的各位数字之和为9,这个数可能是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成人高考高起专数学真题及答案
成人高等学校高起点招生全国统一考试
数学
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)
一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()
A.{2,4)
B.(2,4,6)
C.(1,3,5)
D.{1,2,3,4.5,6)
2.函数y=3sin x
4
的最小正周期是( )
A.8π
B.4π
C.2π
D.2π
3.函数y=√x(x−1)的定义城为( )
A.{x|x≥0}
B.{x|x≥1}
C.{x|0≤x≤1}
D.{x|x≤0或x≥1}
4.设a,b,c为实数,且a>b,则( )
A.a-c>b-c
B.|a|>|b|
C.a2>b2
D.ac>bc
5.若π
2<θ<π,且sinθ=1
3
,则cosθ=( )
A.2√2
3B.− 2√2
3
C. − √2
3
D.√2
3
6.函数y=6sinxcosc的最大值为( )
A.1
B.2
C.6
D.3
7.右图是二次函数y=x2+bx+c的部分图像,则( )
A.b>0,c>0
B.b>0,c<0
C.b<0,c>0
D.b<0,c<0 0
8.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )
A.x-y+1=0
B.x+y-5=0
C.x-y-1=0
D.x-
2y+1=0
9.函数y=1
x
是( )
A.奇函数,且在(0,+∞)单调递增
B.偶函数,且在(0,+ ∞)单调递减
C.奇函数,且在(-∞,0)单调递减
D.偶函数,且在(-∞,0)单调递增
10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )
A.60个
B.15个
C.5个
D.10个
11.若lg5=m,则lg2=( )
A.5m
B.1-m
C.2m
D.m+1
12.设f(x+1)=x(x+1),则f(2)= ( )
A.1
B.3
C.2
D.6
13.函数y=2x 的图像与直线x+3=0的交点坐标为
( )
A.(-3,-16)
B.(-3,18)
C.(-3,16)
D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( ) A.1 B.4 C.2 D.√2
15.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )
A.10
B.20
C.16
D.26
16.在等比数列{a n }中,若d 3a 4 =10,则a 1a 6,+a 2a 5=( )
A.100
B.40
C.10
D.20
17.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )
A.14
B.13
C.12
D.34
第Ⅱ卷(非选择题,共65分)
二、填空题(本大题共4小题,每小题4分,共16分)
18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .
19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .
20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.
21.若不等式|ax+1|<2的解集为{x|-2
3<x<1
2
},则
a= .
三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)
22. (本小题满分12分)
设{a n}为等差数列,且a2+a4−2a1=8.
(1)求{a n}的公差d;
(2)若a1=2,求{a n}前8项的和S8.
23.(本小题满分12分)
设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。

24.(本小题满分12分)
如图,AB与半径为1的圆0相切于A 点,AB=3,AB与圆0的弦AC的夹角为50°.求
(1)AC:
(2)△ABC的面积.(精确到0.01) C
B
25. (本小题满分13分)
已知关于x,y的方程x2+y24xsinθ-4ycosθ=0.
(1)证明:无论θ为何值,方程均表示半径为定长的圆;
(2)当θ=π
时,判断该圆与直线y=x的位置关系.
4。

相关文档
最新文档