高等代数第六章自测题

合集下载

习题答案(第六章)

习题答案(第六章)

1、R n 中分量满足下列条件的全体向量1(,,)n x x 的集合,是否构成R n的子空间?①10n x x ++= ;②120n x x x ⋅⋅⋅= ;③2211n x x ++= 。

解:①是,设(){}111,,|0nnV x x x x=++= ,显然V 1≠∅,1,,,a b F V ξη∀∈∀∈,设1212(,,),(,,)x x y y ξη== ,则()()()1111,,,,,,n n n n a b a x x b y y ax by ax by ξη+=+=++ ,而 1111()()()()000n n n n ax by ax by a x x b y y a b ++++=+++++=+=所以1a b V ξη+∈,所以V 1是R n 的子空间;②不是,取(1,0,,0),(0,1,,1)αβ== ,则(){}11,,,|0nnV x x x xαβ∈=⋅⋅= ,但(1,1,,1)V αβ+=∉ ,所以V 不是R n 的子空间;③不是,取(1,0,,0),(0,1,0,,0)αβ== ,则(){}2211,,,|1nn V x x xx αβ∈=++= ,但(1,1,0,,0)V αβ+=∉ ,所以V 不是R n 的子空间。

2、子集{}1|,,V X AX XB A B n ==为已知的阶矩阵是否是()n M F 的子集?解:是()n M F 的子集;证:显然1V ≠∅,1,,,X Y V a b F ∀∈∈,有()()A aX bY aAX bAY aXB bYB aX bY B +=+=+=+,所以1aX bY V +∈,所以1V 是()n M F 的子集。

3、设12(1,0,1,0),(1,1,2,0)αα==-,求含12,αα的R 4的一组基。

解:因为101010101010112001100010⎛⎫⎛⎫⎛⎫→→⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭, 取34(0,0,1,0),(0,0,0,1)αα==,所以{}1234,,,αααα为R 4的一组基。

高等代数(北大版)第6章习题参考答案

高等代数(北大版)第6章习题参考答案

第六章线性空间.设M N ,证明:M N M , M N N。

1证任取M , 由 M N ,得N , 所以M N , 即证 M N M 。

又因M N M , 故M NM 。

再证第二式,任取M或N , 但 M N , 因此无论哪一种情形,都有N , 此即。

但N M N , 所以 M N N 。

2.证明 M ( NL ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。

证x M (N L), 则x M 且 x NL. 在后一情形,于是x M N或 x M L.所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。

反之,若x (M N ) ( M L) ,则 x M N或x M L. 在前一情形, x M , x N , 因此x N L. 故得 x M ( N L ), 在后一情形,因而x M , x L, x N L ,得x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。

若x M (NL),则xM ,x N L 。

在前一情形 X x M N,且 X ML,因而 x( MN)( M L)。

在后一情形, xN ,x 因而x M N ,且X M,即 X ( M N)(M L)所以L, L(M N)(M L) M (N L)故M (NL) =()(M L)M N即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量乘法;3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法;5)全体实数的二元数列,对于下面定义的运算:( a1,b1)( a b ( a1a2,b1b2a1 a2)(kk 1) 2k。

高数A上第六章测验题答案

高数A上第六章测验题答案

第六章 定积分应用 测验题
1、设平面图形A 由22
2x y x +≤与y x ≥所确定,
求图形A 绕直线x =2旋转一周所得旋转体的体积。

2、一个高为l 的柱形贮油罐,底面是长轴2a 、短轴为2b 的椭圆。

现将贮油罐平放,当油罐中油面高度为32
b 时, 计算油的质量(长度单位为m ,质量单位为kg ,油的密度为为常量ρ,单位为kg/m3)。

3、已知星形线33cos (0)sin x a t a y a t
⎧=⎪>⎨=⎪⎩, 求(1)它所围成的面积;(238
a π) (2)它的弧长;(6a ) (3)它绕x 轴旋转而成的旋转体的体积及表面积。

(332105a π)
4、边长为a 和b 的矩形薄板,与液面成α角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b ,液体的密度为ρ,试求薄板每面所受的压力。

答案:1(2sin )2
gab h b ρα+
5、设有一长度为l 、线密度为μ的均匀细直棒,在棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力。

答案:取y 轴通过细直棒,
1(y x F Gm F a μ==
6、以每秒a 的流量往半径为R 的半球形水池内注水。

(1)求在池中水深h (0<h <R )时水面上升的速度; (2)若再将满池水全部抽出,至少需做功多少? ( ; )
2(2)dh a dt Rh h π=-44R π。

(完整版)第六章线性空间练习题参考答案

(完整版)第六章线性空间练习题参考答案

第六章线性空间练习题参考答案一、填空题0 0 01.已知V a b c 0 a,b,c R 是R1 2的一个子空间,则维(V)3 30 c b 00 0 0 0 0 0 0 0 03V 的一组基是1 0 0 , 1 0 0 , 0 1 0 .0 0 0 0 1 0 0 1 0在P4中,若 1 (1, 2,0,1),1,1), 4 (0,1, k,1)线性无2 (1,1,1, 1),3 (1, k,关,则k的取值范围是k 3(以1, 2, 3, 4为行或者列构成的行列式不为零)3•已知a是数域P中的一个固定的数,而W {(a,x1,L ,x n) x i P,i 1,2,L ,n}是P n+1的一个子空间,贝U a = 0 ,而维(W)=巴4. 维数公式为dimV i dimV2 dim(V i V2) dim(V i I V2).5•设1, 2, 3是线性空间V的一组基,X i 1 X2 2 X3 3,则由基1, 2, 30 0 1到基2, 3, 1的过渡矩阵T = 1 0 0,而在基3, 2, 1下的坐标是0 1 00 1 1 (X3,X2,X1)由基1, 2, 3到基2 3, 3 1, 1 2的过渡矩阵为T二10 1. 阵全体构成数域P上凹卫维线性空间,数域P上n级对交矩阵全体构成数域1 1 06 •数域P上n级对称矩阵全体构成数域P上如B维线性空间,数域P上2n级反对称矩阵全体构成数域P上晋维线性空间,数域P上n级上三角矩2P上n维线性空间,数域P上n级数量矩阵全体构成数域P上_1_维线性空间.二、判断题1•设V P n n,则W {A A P nn,A 0}是V的子空间.错•行列式为零的两个方阵的和的行列式未必为零,因此W中矩阵关于矩阵的加法运算不封闭,不能成为子空间.)2. 已知V {(a bi,c di) a, b, c, d R}为R上的线性空间,且维(V)= 2.错.是子空间,但是是4维的,其基为(1,0),( i,0),(0,1),(0, i).A3. 设A,B P n n,V是X 0的解空间,V1是AX = 0的解空间,V2是B(A + B)X = 0 的解空间,则V V1 I V2 .正确• Vj V2中的向量既满足AX = 0,又满足(A + B)X = 0,因此也满足ABX = 0,即满足X 0,即为V中的向量.反之,V中的向量既在V中,又B在V2中,即为yi V2中的向量.因此V V1 I V2 .4. 设线性空间V的子空间W中每个向量可由W中的线性无关的向量组1, 2丄,s线性表出,则维(W) = S.正确.根据定理1.5. 设W是线性空间V的子空间,如果, V,但W且W,则必有W.错误.可能W.如取,为一对互为负向量,则0 W.6. W {(x1,x2,x3) R3|X3 0}是R3的子空间.正确. 基为( 1,0,0),(0,1,0),维数为 2.7. W {( x1,x2, x3) R3 | x21} 是R3的子空间.错误.不包含零向量8. W {( x1,x2,x3)R3 |x1x2X3}是R3的子空间正确.基为(1,1,1),维数为 1.9. W {( x1,x2,x3)R3 |x1 x2X3}是R3的子空间正确. 基为( 1 , 1 ,0),( 1 ,0 ,-1),维数为 2.、计算题1.求所有与A可交换的矩阵组成的P n n的子空间C(A)的维数与一组基,其中100A 0 2 0 .003解:设矩阵B (b j )3 3与A可交换,即有AB BA.即1 0 0 b11 b12 b13 b11 b12 b13 1 0 00 2 0 b21 b22 b23 b21 b22 b23 0 20 0 3 b31b32 b33 b31 b32b33 0 0 3b11 b12 b13 b11 2b12 3b132b21 2b222b23 b212b223b23 .3b31 3b32 3b33b312b32 3b33所以有ib ij b ij j ,(i j)b ij 0,i, j 1,2,3. 当i j时,b ij 0 ,因此b11 0 0C(A) 0b22 00 0 b33 维数为3,基为E11 , E22 ,E33 .2•在线性空间P4中,求由基1, 2, 3, 4到基1, 2, 3, 4的过渡矩阵,并求(1,4,2,3)在基1, 2, 3, 4下的坐标,其中1 (1,0,0,0),2 (4,1,0,0),3 ( 3,2,1,0),4 (2, 3,2,1)1 (1,1,8, 3),2 (0, 3,7, 2),3 (1,1,6, 2),4 (1,4, 1, 1)解:令过渡矩阵为T ,则有1 0 1 1 1 4 3 21 3 1 4 0 12 3T8 7 6 1 0 0 1 23 2 2 1 0 0 0 1因此1 4 32 1 1 0 1 1 23 7 9 80 1 2 3 1 3 1 4 6 3 3 1T0 0 1 2 8 7 6 1 2 3 2 10 0 0 1 3 2 2 1 3 2 2 1令1 1 4 32 X14 0 1 2 3 X22 0 0 1 2 X33 0 0 0 1 X4X1 1 4 3 2 1 1 1 4 11 36 1 101X2 0 1 2 3 4 0 1 2 7 4 21X3 0 0 1 2 2 0 0 1 2 2 4X4 0 0 0 1 3 0 0 0 1 3 3(1, 4,2,3) 在基1,2 ! , 3 ,4下的勺坐标为(- 101,2 1,-4四、证明题1.V为定义在实数域上的函数构成的线性空间,令W { f(x) f (x) V, f(x) f( x)},W { f(x) f (x) V, f(x) f( x)}证明:W i 、W 2皆为V 的子空间,且V W 1 W 2.证明:W i 、W 2分别为偶函数全体及奇函数全体构成的集合,显然 W i 、W 2均为非空的.由奇偶函数的性质可得 W i 、W 2皆为V 的子空间.以 V W 1 W 2.2.设W 是P n 的一个非零子空间,若对于 W 的每一个向量(a i ,a 2丄,a n )来 说,或者a i a 2 L a n 0,或者每一个i 都不等于零,证明:维(W) = 1.证明:由W 是P n 的一个非零子空间,可得 W 中含有非零向量设(a i ,a 2,L ,a n ),(^也丄,g)是W 中的任二个非零向量,由题意可得每一个 a i ,b i 都不等于零.考虑向量由题设条件有b i a 2 a i b 2 L b i a n a i b n 0 ,即有色 更 L 空.即W 中的b i b 2 b n 任二个非零向量均成比例,因此维(W)二i.f(x) V,f(x)f(x) f( x) 2 f(x) f( X)2而 f (x)f( x) W 1 f(x) f(x)2 ' 2W 2,因此VW 1 W 2.又 W 1 I W 2{0}.所b |a ib i (a i ,a 2丄,a n )印⑴庄丄,b n ) (0,呃 a4,L ,b i a na ib n ) W。

高数(AT)第六章自测试卷

高数(AT)第六章自测试卷

高等数学(A 下)第六章自测试卷一、 单项选择题1、0)(=+'y x p y 的通解为( )A x ce y =B x ce y -=C ⎰=-dx x p ce y )(D ⎰=dx x p c y )(2、032=-'-''y y y 有两个不等实根1-与3,则通解为( )A c x y ++-=3B c x y +-=13C xx e c e c y 321+=- D xe c c y 221= 3、0322=+'+''y y y 有二共轭复根i 52121±-,则两无关特解( ) A x y 21±= B x y 521±= C i y 521±= D x e y x e y xx 25sin ,25cos 2121--==4、22x y y y =+'-''的一个特解是( )A 0=yB 1=yC 642++=x x yD x y =5、x Ae qy y p y α=+'+''的特解形式( )A x K e Bx y α=B Ax y =C 2Ax y =D K Bx y =6、已知x y x y 3sin 2,3sin 21==是09=+''y y 的特解,则2211y c y c y +=是() A 通解 B 特解 C 一般解 D 全不对7、物体作直线运动,,2)(,0)0(t t v s ==则)(t s 为( )A 23tB 22tC c t +2D 2t8、y x e y -='2,则通解为( )A c x y +=21B c e e x y +=221C x y e e 221= D x y 2=9、设21,y y 是齐次方程两特解,则2211y c y c y += ( )A 是通解B 是特解C 是解D 全不对10、0=-'y y 且1)0(=y 的解为( 难 A)A x e y =B x ce y =C 0=yD 1=y11、过(1,2)点,xy 1='的曲线方程是 ( ) A 2ln +=x y B c x y +=ln C x y ln = D 2=y12、常数变易法是把常数C 变为 ( )A x eB x cosC x lnD 待定函数)(x c13、02=+'-''y y y 的特征根是 ( )A 1±B 1,2C 重根1D 0,114、)(2)(t v mg t v m -='是 ( )A 线性的B 非齐次的C 一阶的D 都不全面二、 填空题1、22e x y y =+'是__________________微分方程。

高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。

高等数学第六章习题及答案

高等数学第六章习题及答案

微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。

高等代数第六章9第六章课堂练习题太原理工大学

高等代数第六章9第六章课堂练习题太原理工大学

2) L(1 , 2 ) L( 1 , 2 ) L(1 , 2 , 1 , 2 )
对以 1 , 2 , 1 , 2 为列向量的矩阵A作初等行变换
返回 上页 下页
1 2 A 1 0 1 0 0 0
1 1 1 1 1 0 1 0
2 1 0 1 2 2 1 2
从而
V1=V2.
证毕.
返回
上页
下页
五.在R2×2中证明向量组
1 2 3 1 4 3 2 4 3 4 , 4 2 , 2 1 , 1 3 线性相关. 证明 由 1 2 3 1 4 3 2 k1 3 4 k2 4 2 k3 2 1 k4 1 k1 3 k 2 4 k 3 2 k 4 0 即有 2 k1 k 2 3 k 3 4 k 4 0 3 k1 4 k 2 2 k 3 k 4 0 4k1 2k 2 1k 3 3k 4 0

x1 x1 x1 x 2 x1 2 x 2
解得x2=-2x1,令x1 =k,得所求向量为
x= k(1, -2)T.
返回
上页
下页
1 1 2 2 , 七.已知 A , W X AX XA , X R 0 1 证明W是R2×2的子空间;求W的基与维数;写出W 中矩阵的一般形式.
第六章 课堂练习题
返回 上页 下页
一.单项选择题
1. 下列各向量集合不构成线性空间的是( D ).
V x x1 , x2 , , xn x1 x2 xn 0, xi R
2 2 2
(A)

高等代数第六章——线性空间测试题2004年11月

高等代数第六章——线性空间测试题2004年11月

高等代数第六章——线性空间测试题一、填空题(1) 已知R 3的两组基Ⅰ)1,0,0(),0,1,0(),0,0,1(321===ααα; Ⅱ)0,1,1(),1,1,0(),1,0,1(321===βββ那么由Ⅱ到Ⅰ的过渡矩阵为 。

(2)在22⨯P 中,已知⎪⎪⎭⎫ ⎝⎛=11111A ,⎪⎪⎭⎫ ⎝⎛=01112A ,⎪⎪⎭⎫ ⎝⎛=00113A ,⎪⎪⎭⎫ ⎝⎛=00014A 是22⨯P 的基,那么,⎪⎪⎭⎫ ⎝⎛=4321A 在该基下的坐标为 。

(3)设1W 是方程组04321=+++x x x x 解空间,2W 是方程组⎩⎨⎧=+-+=-++0043214321x x x x x x x x 那么1W ∩2W 是方程组 的解空间。

(4)设()()()()()()3,2,1,1,1,0,1,0,1,0,1,121L W L W == ()=+21dim W W 。

(5)设1W 、2W 都是V 的子空间,且1W +2W 为直和,那么()=⋂21dim W W 。

二、判断题:(1)一个线性方程组的全体解向量必做成一个线性空间。

( )(2)实数域R 上的全体n 几级可逆矩阵做成n n P ⨯的子空间。

( )(3)齐次线性方程组的解空间的维数等于自由未知数的个数。

( )(4)线性空间V 中任意两个子空间的并集仍是V 的子空间。

( )(5)在子空间的和1W +2W 中,如果),(0221121w w ∈∈+=αααα,且这种表示形式唯一,那么1W +2W 为直和。

( )三、在22⨯P 中,,1111⎪⎪⎭⎫ ⎝⎛=a G ,111,11132⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a G a G ⎪⎪⎭⎫ ⎝⎛=a G 1114当a 为何值时,4321,,,G G G G 线性相关?当a 为何值时,4321,,,G G G G 线性无关?四、设}{P a a a x a x a a x P o o ∈++=212213,,|][(1)证明1,1,12--x x 是3][x P 的基,并求由该基到基1,,2x x 的过渡矩阵。

高等数学第六章 定积分应用试题及答案

高等数学第六章 定积分应用试题及答案

第六章 一元函数定积分的应用一、微元法(元素法)实际问题中可化为定积分来计算的待求量A ,一般总可按“分割、近似求和、取极限”这三个步骤导出它的积分表达式。

但为了简捷实用起见,常常采用微元法(又称元素法)。

微元法的关键就在于寻找待求量A 的微小增量(部分量)能近似表达为x ∆的线性形式,()x x f A ∆≈∆而且当0→∆x 时,()()x x x f A ∆=∆-∆0,亦即()dx x f dA =,其中()x f 为[]b a ,上的某一个连续函数。

量dA 称为待求量的微元素。

然后把()dx x f 在[]b a ,上积分,即待求量⎰=badx x f A )(。

这就是微元法。

在采用微元法时,必须注意如下几点:(1)选好坐标系,这关系到计算简繁问题。

(2)待求量A 具有以区间的可加性,即A =∑∆A ;(3)取好微元x x f d )(,经常应用“以匀代变”“以直代曲”的思想决定A ∆的线性主部,这关系到结果正确与否的问题。

定积分的几何应用一、平面图形的面积 1.直角坐标的情形求)(1x y ϕ=与)(2x y ϕ=与所围图形的面积方法(1)以x 为积分变量由)(1x ϕ)(2x ϕ=解出两个常数值a x =,b x =,面积元素dA =dx x x )]()([12ϕϕ-,面积A =x x x bad )]()([12ϕϕ-⎰,(b x a ≤≤)。

方法(2) 以y 为积分变量由)(1x y ϕ=、)(2x y ϕ=解出x 的两个表达式)(1y x ϕ=,)(2y x ϕ=,再根据)(1y ϕ)(2y ϕ=解出y 的两个常数值c y =,d y =,面积元素dA =dy y y )]()([12ϕϕ-,面积A =y y y dc d )]()([12ϕϕ-⎰,(d y c ≤≤)。

以x 还是y 为积分变量,要视具体情况分析,总之要让计算最简单。

(1)X — 型平面图形的面积 (2) Y — 型平面图形⎰-=badx x g x f S )()( ⎰-=dcdy y g y f S )()(2.参数方程情形求)(x f y =、a x =、b x =以及x 轴所围图形的面积(b a x f <≥,0)(),如果曲边)(x f y =的方程为参数方程为⎩⎨⎧==)()(t y t x φϕ,则其面积dx y A ba ⎰==dt t t )(')(ϕφβα⎰,其中)(),(βϕαϕ==b a3.极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=围成的曲边扇形。

高等代数单元自测题6

高等代数单元自测题6

高等代数单元自测题(第六章)姓名___________学号____________一. 选择题(20分)1. 把复数C 看作R 上的线性空间,这个空间的维数是( )A 、一维B 、二维C 、三维D 、四维2.设线性空间V 的向量组p βββ ,2,1可由向量组q ααα ,,21线性表出,则1β,,2βp β, 线性相关的充分条件是( )A .p>q B.p=q C.p<q D. 互素3.设有的两个子空间(){},02,,3213211=+-=x x x x x x V (){},023,0,,321213212=+-=+=x x x x x x x x V 则子空间21V V ⋂的维数为( )A.一维B.二维C.三维D.零维4.设有3P 的两个子空间( )(){}(){},02,02,,,02,,312132123213211=+=+==-+=x x x x x x x V x x x x x x V则子空间21V V +的维数为( )A.一维B.二维C.三维D.零维5.线性空间[]3x P 的向量()256x x x f +-=在基1,()21,1--x x 下的坐标是( )A.(6,5,1)B.(1,-5,6)C.(1,-3,2)D.(2,-3,1)6. XOY 平面上向量的集合,对于通常的向量加法,数量乘法定义为k αα= 则它是( )A. Q 上的线性空间B. R 上的线性空间C. C 上的线性空间D. 不构成线性空间二. 判断题:(20分)1.设M,N 是两个集合,如果,N M N M ⋃=⋂,那么M=N.2.设V 是n 维线性空间,V n ∈ααα ,,21且V 中的任一向量均可由nααα ,,21线性表出,则n ααα ,,21是V 的一组基3.设21,V V 是线性空间V 的两个子空间,那么21V V ⋃也是V 的子空间。

4.设4321,,αααα是空间V 的一组线性无关向量,则()()().,,,,43214321ααααααααL L L +=5.设21,V V 是有限维线性空间V 的两个子空间,且维(V )=维()1V +维()2V ,则21V V ⊕(⊕表示直和)。

高等代数第六章自测题

高等代数第六章自测题

高等代数第六章自测题第六章线性空间自测题一、填空题(20分)1、若n ααα,,,21Λ就是线性空间V 的一个基,则满足条件(1)n ααα,,,21Λ就是 ;(2)对V 中任意向量β, 、2、数域P 上的线性空间V 的非空子集W 就是V 的子空间的充要条件为、3、已知12,W W 为线性空间V 的子空间, 12W W +为直与的充要条件为、4、设V 与W 就是数域P 上两个线性空间,V 到W 的一个同构映射f 满足如下三个条件:(1)f 就是V 到W 的 ;(2)对V ∈?βα,,有 ;(3)对,V k P α?∈∈,有、5、向量空间V 的基12,n αααL ,,到基11,,,n n ααα-L ,的过渡矩阵为_______ 、6、复数域C 作为实数域R 上的向量空间,则dim =C _____,它的一个基为__ __、复数域C 作为复数域C 上的向量空间,则dim =C __ __,它的一个基为__ _ _、二、选择题(10分)1、若21,W W 均为线性空间V 的子空间,则下列等式成立的就是( )(A)21211)(W W W W W I I =+; (B)21211)(W W W W W +=+I ;(C)1211)(W W W W =+I ; (D)2211)(W W W W =+I2、按通常矩阵的加法与数乘运算,下列集合不构成P 上线性空间的就是:( ) (A){}1n n W A P A A ?'=∈=; (B){}2()0n nW A P tr A ?=∈=; (C){}30n n W A P A ?=∈=; (D){}4n n W A P A A ?'=∈=-、 3、数域P 上线性空间V 的维数为V r n ∈ααα,,,,21Λ,且任意V 中向量可由n ααα,,,21Λ线性表出,则下列结论成立的就是:( )(A)n r =; (B)n r ≤; (C)n r <; (D)n r >4、设1324[],[]W P x W P x ==则=+)dim(21W W ( ) (A)2; (B)3; (C)4; (D)55、设线性空间{}R a a a a W ∈=)3,2,(,则W 的基为:( )(A))3,2,1(; (B)),,(a a a ; (C))3,2,(a a a ;(D))3,0,0()0,2,0()0,0,1(三、(10分) 在线性空间4P 中求由线性方程组:=+-+=-+-=+-+0111353033304523432143214321x x x x x x x x x x x x 所确定的4P 的子空间W 的基与维数、四、(15分)设3R 中的两个基分别为()1101α=,()2010α=,()3122α=, ()()()123100,110,111βββ===、(1)求由基321321,,,,βββααα到基的过渡矩阵、(2)已知向量α在基321,,ααα下的坐标为()130,求α在基321,,βββ下的坐标、五、(15分) 设12(1,2,1,0),(1,1,1,1),αα==-1(2,1,0,1),β=- 2(1,1,3,7)β=,),(),,(212211ββααL W L W ==,求)dim (21W W +及)dim (21W W I 、六、(15分) 设n n A P ?∈:1)证明:全体与A 可交换的矩阵组成n n P ?的一子空间,记作()C A ;2)当A =E 时,求()C A ;3)当10000200000A n =L L L L L L L L 时,求()C A 的维数与一组基、七、(15分)已知n n P ?的两个子空间{}1n n V A P A A ?'=∈=,{}2n n V A P A A ?'=∈=-, 证明:12n n P V V ?=⊕.答案:一、1、线性无关,β可以由n ααα,,,21Λ线性表示2、对V 的加法与数乘封闭 3、 12{}W W o ?=或12dim()0W W ?= 4、线性映射,()()()f f f αβαβ+=+,()()f k kf αα= 5、 111N6、 dim =C 2,它的一个基为1,i ; dim =C 2,它的一个基为1、二.C C B C A三、解:由32543254325431330387018735131103870000---?--→--→---12534101920183701837300000000--??→-→-,W 的维数为2, 一组基为()()''1218310,29701ξξ=-=-、四、解:(1)由()()()123123123101=012=A 102αααεεεεεε??,()()()123123123111=011=001B βββεεεεεε??,()()1123123=A B βββααα-∴,过渡矩阵1110111*********1=012011212011231102001101001110A B ---??=-=---、(2) ()112312311=(,,)3=300B A ααααβββ-坐标为111101*********=0110123110320001102010201B A ------=-= ? ? ? ?五、解:由()12121121110321110117=1103022201170115ααββ--→-----101410000117010000412001000020001--→→,12dim 2,dim 2W W ==,12dim()=4W W +,12dim()=0W W I六、证明 1)设与A 可交换的矩阵的集合记为()C A 、显然()O C A ∈, ,()B D C A ?∈,()()A B D AB AD BA DA B D A +=+=+=+,故()B D C A +∈、若k 就是一数,()B C A ?∈,可得()()()()A kB k AB k BA kB A ===,故()kB C A ∈、所以()C A 构成n n P ?的子空间。

高等数学 线性代数 习题答案第六章

高等数学 线性代数 习题答案第六章

第六章习题6-11. 利用定积分定义计算由抛物线y =x 2+1,直线x =a ,x =b 及x 轴所围成的图形的面积. 解 因y =x 2+1在[a,b ]上连续,所以x 2+1在[a,b ]上可积,从而可特殊地将[a,b ]n 等分,并取2,,()()1Δi i i b a b a b a a i x f a i n n nξξ---=+==++, 于是21122221222()[()1]1()[()2()1]111(1)1()[()(1)(21)2()]62Δ nni i i i ni b a b a f x a i n ni i b a a b a a b a n n n n n b a na b a n n n b a a n n n nξ===--=++=-+-+-++=-+-⋅⋅+++-⋅⋅+⋅∑∑∑ 故面积 22211(1)l i m ()()[()()1]3d Δnbi i a n i S x x f x b a a b a a b a ξ→∞==+==-+-+-+∑⎰ 331()()3b a b a =-+- 2. 利用定积分的几何意义求定积分: (1)12d x x ⎰;(2)x ⎰(a >0).解 (1)根据定然积分的几何意义知, 12d x x ⎰表示由直线y =2x ,x =0,x =1及x 轴所围的三角形的面积,而此三角形面积为1,所以12d x x ⎰=1.(2)根据定积分的几何意义知,0x ⎰表示由曲线0,y x x a ===及x轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014πx a =⎰.3. 根据定积分的性质,比较积分值的大小: (1)12d x x ⎰与13d x x ⎰; (2)1e d xx ⎰与1(1)d x x +⎰.解 (1)∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230d d x x x x >⎰⎰.(2)令()1,()1e e x xf x x f x '=--=-,因01x ≤≤,所以()0f x '>,从而()(0)0f x f ≥=,说明1e xx ≥+,又ex1+x .所以11(1)e d d xx x x >+⎰⎰.4. 估计下列各积分值的范围:(1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d x x x -⎰.解 (1)在区间[1,4]上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰, 即 4216(1)51d x x ≤+≤⎰.(2)令()arctan f x x x =,则2()arctan 1x f x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值m f ==,所以2arctan 93ππd x x =≤≤=即2arctan 93ππd x x ≤≤. (3)令2()e x f x -=,则2()2e x f x x -'=-,令()0f x '=得驻点x =0,又(0)1f =,2()()e a f a f a -=-=,a >0时, 21e a -<,故()f x 在[-a,a ]上的最大值M =1,最小值 2e a m -=,所以2222e e d aa x aa x a ---≤≤⎰.(4)令2()ex xf x -=,则2()(21)e xxf x x -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2e ef f -==,从而()f x 在[0,2]上的最大值2e M =,最小值14e m -=,所以 212242ee d e x x x --≤≤⎰,而2222ed e d x xx x x x --=-⎰⎰,故 21024222e ed ex xx ---≤≤-⎰.习题6-21. 求下列导数:(1)20d d x t x ⎰; (2) 53ln 2d e d d x t t t x -⎰; (3) cos 2sin cos()d xxt t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22dsin d d x t t x tπ⎰ (x >0). 解220(1)()d d x t x x'⋅=⎰5353ln 2(2)d e d e d x tx t t x x --=⎰cos cos sin 222sin 00cos sin 220022222(3)cos()cos()cos()cos()cos()cos(cos )(cos )cos(sin )(sin )cos(cos )sin cos(sin )cos cos(sin )sin πd πd πd πd πd πππππx x xx xx t t t t t t t t t tx x x x x x x x x x ''⎡⎤⎡⎤=-⎣⎦⎣⎦''⎡⎤⎡⎤=-⎣⎦⎣⎦''=⋅-⋅=--=-⎰⎰⎰⎰⎰22cos(sin )cos (sin cos )cos(sin )ππx x x x x =-2222sin sin sin (4)cos sin sin cos .ππd d d d d d d d d d xx t t x t t xt x x x t x x x x x x x x x⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭--=-=⎰⎰ 2. 求下列极限:(1) 02arctan d limxx t t x →⎰; (2) 2020sin 3d lim e d x xx tt t t t→-⎰⎰; (3)()22220e d lime d xt xx t t t t→⎰⎰.解 ()022000021a r c t a n a r c t a n a r c t a n11(1)l i m l i ml i m l i m 222d d x xx x xxt t t t x x x xx →→→→'⎡⎤--⎣⎦+====-'⎰⎰ 2220030003300222200sin 3sin 3sin 32(2)lim lim lim 2sin 3sin 3lim lim 663d d e e d e d e e x x x x x x x t x t x xx x t t t t x x x t t t t x x x x-→→→--→→'⎡⎤⋅⎢⎥⎣⎦=='⎡⎤⎣⎦=⋅=⋅⋅=⎰⎰⎰⎰()()[]222222222222222200002000022000200022(3)lim lim lim lim 222lim lim lim 2122e d e d e d e e d e e e d e d e d e e e e xxx x t t t x tx x x x x x x t x t x t x x x x x x x t t t t x x t tt t t x x x x →→→→→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦'⎡⎤⎣⎦====+'+⋅⎰⎰⎰⎰⎰⎰⎰ 3. 求由方程e d cos d 0yxtt t t +=⎰⎰所确定的隐函数y =y (x )的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-. 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 当x 为何值时,I (x )=2e d xt t t -⎰有极值?解 2()e x I x x -'=,令()0I x '=得驻点0x =,又22()(12),(0)10e x I x x I -''''=-=>, 所以当x =0时,I (x )有极小值,且极小值为I (0)=0.5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩ (4) {}222max 1,d x x -⎰.解433322233222(1)(43)(8333x x ⎛⎫==-=- ⎪⎝⎭⎰201222221101(2)()()()d d d d x x x x x x x x x x x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22220022(3)()sin 1cos 82ππππππππd d d xf x x x x x x x =+=+=+-⎰⎰⎰(4)由于22221()max{1,}11112x x f x x x x x ⎧-≤<-⎪==-≤<⎨⎪≤≤⎩,于是 21121212223312122111120max{1,}333d d 1d d x x x x x x x x x x -------=++=++=⎰⎰⎰⎰ 6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u tx →⎡⎤⎢⎥⎣⎦-⎰⎰.解 []222222222222()()()()limlim lim lim (2)2(2)2(2)(2)d d d d d d x xx x t t x x x x t f u u t f u u f u u f u u x x x x →→→→''⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦===--''-⎡⎤-⎣⎦⎰⎰⎰⎰⎰⎰ 22()113lim lim ()(2)2222x x f x f x f →→-==-=-=-.习题6-31. 计算下列积分: (1)3sin()d x x πππ+3⎰; (2) 32d (115)xx 1-+⎰;(3)1x -⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos d u u ππ6⎰;(6)2e 1⎰;(7)1;(8)x ;(9)ln 3ln 2d e ex xx--⎰; (10) 322d 2xx x +-⎰;(11)21x ⎰;(12) 22x ππ-⎰.解 333(1)sin()d sin()d()[cos()]x x x x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+= 12332221d 1d(511)151(2)(511)(115)5(511)10512x x x x x 11---+==-=+++⎰⎰1111(3)4)14x x--=-==⎰⎰2334220011(4)sin cos d cos dcos cos44ϕϕϕϕϕϕπππ=-==-⎰⎰22222π2π61cos211(5)cos d d d cos2d22241πππ1sin226264uu u u u u uuππππππππ6666+==+⎛⎫=+=-⎪⎝⎭⎰⎰⎰⎰222e e11(6)1)===⎰⎰(7)令x=tan t,则d x=sec2t d t,当x=1时,π4t=;当x=,π3t=,于是ππ33π21π44cos1dsin sinttt t==-=⎰(8)令x t,则d dx t t=,当x=0时,t=0;当x=,π2t=,于是πππ222200π12cos d(1cos2)d(sin2)22x t t t t t t==+==+⎰⎰.(9)令e x t=,则1ln,d dx t x tt==,当ln2x=时,2t=;当ln3x=时,3t=,于是3ln3332ln2222d d1113111d ln lne e12222111x xx t ttt t t t--⎛⎫====-⎪---++⎝⎭⎰⎰⎰.3 333222222d d11111(10)()d ln19231232()241211(ln ln)ln2ln53543x x xxx x x x xx-==-=+--+++-=-=-⎰⎰⎰(11)t=,则65,d6dx t x t t==,当x=1时,t=1;当x=2,t于是2111611d6()d1x t tt t t t==-++⎰6(ln ln(7ln26ln(1t t=-+=-220202(12)d sin )d sin d x x x x x x x x xπ-π-π-==-+=-⎰⎰⎰33022202224cos cos 333x x ππ-=-= 2. 利用被积函数的奇偶性计算下列积分值:(1)ln(aa x x -+⎰(a 为正常数);(2) 325425sin d 21x xx x x -++⎰; (3) 4224cos d θθππ-⎰.解((1)()l n f x x =+是奇函数.(ln 0d aax x -∴=+⎰.3242sin (2)()21x xf x x x =++ 是奇函数.325425sin 021d x x x x x -∴=++⎰4(3)()cos f θθ= 是偶函数.4422222022202020222004cos 24cos 2(1cos )2(12cos 2cos 2)312(2cos 2cos 4)22(34cos 2cos 4)1332sin 2sin 442ππππππππππd d d d d d θθθθθθθθθθθθθθθθθθ-∴==+=++=++=++=++=⎰⎰⎰⎰⎰⎰π3. 证明下列等式: (1)23211()d ()d 2aa x f x x xf x x =⎰⎰ (a 为正整数);(2)证明:11221d d 11xx x x x x =++⎰⎰ (x >0);(3) 设f (x )是定义在(-∞,+∞)上的周期为T 的连续函数,则对任意a ∈[-∞,+∞),有()d ()d a TTaf x x f x x +=⎰⎰.证 (1)令x 2=t ,则d x x t ==,当x =0时,t =0;当x =a 时,t =a 2, 于是2223200011()()()()22d d d aa a a x f x x t t tf t t xf x x ===⎰⎰⎰⎰即2321()()2d d aa x f x x xf x x =⎰⎰.(2)令1x t=则21d d x t t -=,1111111222231111111111111d d d d d t xx t tx t t t x x t t x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰ 即 1122111d d xx x x x x =++⎰⎰. (3)由于()d ()d ()d a TT a Taaf x x f x x f x x ++=+⎰⎰⎰,而()d ()d ()d ()d ()d ()d ,令 a TaaaaTTaf x x x t T f t T t f t tf x x f x x f x x +=++===-⎰⎰⎰⎰⎰⎰故有()d ()d a TTaf x x f x x +=⎰⎰.4. 若f (t )是连续函数且为奇函数,证明0()d xf t t ⎰是偶函数;若f (t )是连续函数且为偶函数,证明()d xf t t ⎰是奇函数.证 令0()()d xF x f t t =⎰.若f (t )为奇函数,则f (-t )=- f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x -==---==⎰⎰⎰,所以0()()d xF x f t t =⎰是偶函数.若f (t )为偶函数,则f (-t )=f (t ),从而()()()()()d d d xxxF x f t tt u f u u f u u F x --==---=-=-⎰⎰⎰,所以0()()d xF x f t t =⎰是奇函数.5. 设f (x )在(-∞,+∞)内连续,且F (x )= 0(2)()d xx -t f t t ⎰,试证:若f (x )单调不减,则F (x )单调不增.证 000()()()2()()2()d d d x x xF x f t t xf x xf x x f t t tf t x '⎡⎤'==+--⎣⎦⎰⎰⎰()()()()[()()]d xf t t xf x f x xf x x f f x ξξ=-=-=-⎰,其中ξ在x 与0之间.当x >0时,x >ξ,由f (x )单调不减有()()0f f x ξ-≤,即()0F x '≤;当x <0时,ξ> x ,由f (x )单调不减有()()0f f x ξ-≥,即()0F x '≤;综上所述知F (x )单调不增.习题6-41. 利用分部积分公式证明:()()()d ()d d xxuf u x u u f x x u -=⎰⎰⎰.证 令0()()d uF u f x x =⎰则()()F u F u '=,则(())()()()d d d d xu x xx f x x u f u u uF u uF u u '==-⎰⎰⎰⎰()()()()()()()()()()d d d d d d d d x x xx x x xxxF x uf u u x f x x uf u ux f u u uf u u xf u u uf u u x u f u u=-=-=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰即等式成立.2. 计算下列定积分: (1)10e d x x x -⎰; (2)e1ln d x x x ⎰;(3)41x ⎰; (4) 324d sin xx x ππ⎰; (5) 220e cos d x x x π⎰; (6)221log d x x x ⎰;(7)π20(sin )d x x x ⎰; (8)e1sin(ln )d x x ⎰;(9)230e d x x ; (10)1201lnd 1xx x x+-⎰.解 (1)1111ed de ee d xxx x x x x x x ----=-=-+⎰⎰⎰111012e e e e e 1ex----=--=--+=-.e e e 22222ee 11111111111(2)ln d ln d ln d e (e 1)222244x x x x x x x x x x ==-=-=+⎰⎰⎰444441111(3)2ln 28ln 28ln 24x x x x ==-=-=-⎰⎰⎰33332444434(4)d dcot cot cot d sin π131πln πlnsin 4224xx x x x x x xx x ππππππππππ=-=-+⎛=+=+- ⎝⎰⎰⎰22222222000π2π222220π220(5)e cos d e dsin e sin 2e sin d e 2e dcos e 2e cos 4e cos d e 24e cos d xxxx xxx x x x x xx xx x x x x xππππππππ==-=+=+-=--⎰⎰⎰⎰⎰⎰故2π201e cos d (e 2)5x x x π=-⎰.()2222222111111(6)log d ln d ln d 2ln 22ln 2133(4ln 2)22ln 224ln 2x x x x x x x x x ==-=-=-⎰⎰⎰πππ2232π000033ππ2π0003ππ0033π01111(7)(sin )d (1cos 2)d (dsin2)2232π1π1(sin 22sin2d )dcos26464π1(cos 2cos d )64ππ1ππsin 264864x x x x x x x x x x x x x x x xx x x x x =-=-=--=-=--=-+=-⎰⎰⎰⎰⎰⎰ e ee111ee 11e1(8)sin(ln )d sin(ln )cos(ln )d esin1cos(ln )sin(ln )d esin1ecos11sin(ln )d x x x x x xx x x x x x=-=--=-+-⎰⎰⎰⎰故e11sin(ln )d (esin1ecos11)2x x =-+⎰. 222222322000011(9)e d de e e d 22111ln 2ln 2e ln 2222x x x x x x x x x x ==-=-=-=-1112122222220000111222200012011111(10)ln d ln d ln d 121211111111ln 3(1)d ln 3()d 818211111131ln 3ln ln 3822281x x x x x x x x x x x x x x x x x x x x x +++==+----=++=++---+-=++=-+⎰⎰⎰⎰⎰3. 已知f (2)= 12,f ′(2)=0,2()d 1f x x =⎰,求220()d x f x x ''⎰.解222222200()d d ()()2()d x f x x x f x x f x xf x x '''''==-⎰⎰⎰222004(2)2d ()2()2()d 14(2)21420.2f x f x xf x f x xf '=-=-+=-+⨯=-⨯+=⎰⎰习题6-51. 求由下列曲线所围成的平面图形的面积:(1) y =e x 与直线x =0及y =e; (2) y =x 3与y =2x ;(3) y =x 2,4y =x 3; (4) y =x 2与直线y =x 及y =2x ; (5) y =1x,x 轴与直线y =x 及x =2; (6) y =(x -1)(x -2)与x 轴; (7) y =e x ,y =e -x 与直线x =1; (8) y =ln x ,y 轴与直线y =ln a ,y =ln b , (0)a b <<. 解 (1)可求得y =e x 与y =e 的交点坐标(1,e), y =e x 与x =0的交点为(0,1),它们所围成的图形如图6-1中阴影部分,其面积eee111d ln d (ln )1S x y y y y y y ===-=⎰⎰图6-1 图6-2(2)解方程组32y x y x ⎧=⎨=⎩得0,0x x x y y y ⎧⎧===⎧⎪⎪⎨⎨⎨==-=⎩⎪⎪⎩⎩即三次抛物线3y x =和直线2y x =的交点坐标分别为(0,0),(-,它们所围成的图形的面积3342240112)d )d ()(244S x x x x x x x x x x =-+-=-+-=⎰.(3)解方程234y xy x⎧=⎪⎨=⎪⎩得两曲线的交点为(0,0),(4,16),所求面积为 4233440011116()d ()43163S x x x x x =-=-=⎰.图6-3 图6-4(4)可求得2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); y =x 与y =2x 的交点为(0,0),它们所围图形如图6-4中阴影所示,其面积为:121122012231201(2)d (2)d d (2)d 117()236S x x x x x x x x x x xx x x =-+-=+-=+-=⎰⎰⎰⎰(5) 1y x =与y x =的交点为(1,1),1y x=,x 轴与直线x =1,及x =2所围成的图形如图6-5阴影所示,其面积:2121201111d d ln ln 222x S x x x xx =+=+=+⎰⎰.图6-5 图6-6(6) 231(1)(2)()24y x x x =--=--,顶点坐标为31(,)24-,与x 轴所围成的图形如图6-6中阴影所示,由231()24y x =--得32x =所求面积143021433d 2222112364S y y y --⎡⎤⎛⎛=-=⎢⎥ ⎝⎝⎣⎦⎛⎫=⋅=+ ⎪⎝⎭⎰⎰(7)可求得曲线e x y =与e x y -=的交点(0,1),曲线e x y =,e x y -=与x =1所围成的图形如图6-7阴影所示,其面积:10)() 2.101(e e d e e e ex x x x S x --=-=+=+-⎰图6-7 图6-8(8)曲线ln ,y x y =轴与直线ln ,ln y a y b ==所围成的图形如图6-8阴影所示,其面积:ln ln ln ln ln ln .d e d e bby yb aaaS x y y b a ====-⎰⎰2. 求由下列曲线围成的平面图形绕指定轴旋转而成的旋转体的体积:(1) y =e x ,x =0,y =0,x =1,绕y 轴; (2) y =x 3,x =2,x 轴,分别绕x 轴与y 轴; (3) y =x 2,x =y 2,绕y 轴; (4) y 2=2px ,y =0,x =a (p >0,a >0),绕x 轴; (5) (x -2)2+y 2≤1,绕y 轴.解 (1)如图6-9所求旋转体的体积为矩形OABD ,与曲边梯形CBD 绕y 轴旋转所成的几何体体积之差,可求得y =e x 与x =1的交点为(1,e), y =e x 与y 轴的交点为(0,1),所以,所求旋转体的体积.222111(ln )(ln )2(ln )22(1)2(ln )e ee 11ee1πe πd πe πd πe πe ππe e π.d y V y y y y y y y y y ⎡⎤=⋅⋅-=--⎣⎦⎡⎤=-+=-+=-⎣⎦⎰⎰⎰7222620128(2)7ππd πd π7x x V y x x x ===⋅=⎰⎰25882283336428323255πππd ππd ππy V x y y y y =⨯⨯-=-=-⋅⋅=⎰⎰.图6-9 图6-10(3)解方程组22y xx y ⎧=⎪⎨=⎪⎩得交点(0,0),(1,1),所求旋转体的体积 25114100031025πd πd ππx x x V x x x x ⎛⎫=-=⋅=- ⎪⎝⎭⎰⎰.图6-11 图6-122230(4)2πd πd ππa aa x V y x px x p x pa ===⋅=⎰⎰.(5)所求旋转体的体积是由右半圆2x =2x =x 轴旋转生成的旋转体的体积之差,即((122122281641d πππy V y y y π-⎡⎤=-+-⎢⎥⎣⎦===⎰⎰⎰图6-133. 已知曲线y =(a >0)与y(x 0,y 0)处有公共切线,求:(1) 常数a 及切点(x 0,y 0);(2) 两曲线与x 轴围成的平面图形的面积S .解 (1)由题意有点00(,)x y 在已知曲线上,且在点00(,)x y 处两函数的导数相等.即有0000x x y y ==⎧=⎪⎪==即00012y y x ⎧=⎪⎪=⎨= 解得20011e ex y a ⎧=⎪⎪=⎨⎪=⎪⎩. (2)由(1)知两曲线的交点为2(,1)e ,又在区间(0,1)上,曲线y =y =方,它们与x 轴所围成的平面图形的面积12223122001111()6223d e e e e e y y S y y y ⎛⎫===-⎡⎤-- ⎪⎣⎦⎝⎭⎰. (由y ==得2()x ey =,由y =得2e yx =). 4. 设2()lim1e nx n x f x x →∞=+-,试求曲线y =f (x ),直线y =12x 及x =1所围图形的面积.解 220()lim 101nxn x x f x x x e x x →∞≥⎧⎪==⎨+-<⎪+⎩解方程2121y x xy x ⎧=⎪⎪⎨⎪=⎪+⎩得交点为11,2⎛⎫-- ⎪⎝⎭,且易知当(1,0)x ∈-时,12y x =位于21xy x=+的上方.所围图形如阴影部分所示,其面积 02221111111111ln 2ln(1)22422142d x S x x x x x --⎛⎫⎡⎤=+⨯⨯=+=--+ ⎪⎢⎥+⎣⎦⎝⎭⎰. 5. 一抛物线y =ax 2+bx +c 通过点(0,0)、(1,2)两点,且a <0,试确定a ,b ,c 的值,使抛物线与x 轴所围图形的面积最小.解 由抛物线过(0,0),(1,2)点,有c =0,a+b =2,又由抛物线方程2y ax bx =+得与x轴的两交点为(0,0), ,0b a ⎛⎫-⎪⎝⎭,抛物线与x 轴所围图形的面积.2220()6d b ab S ax bx x a-=+=⎰,由2a b +=得2b a =-,代入上式有32(2)6a S a -=, 23(2)(4)6a a S a--+'=,令0S '=得2a =或4a =-, 由已知0a <得4a =-,从而26b a =-=, 所以4,6,0a b c =-==.6. 已知某产品产量的变化率是时间t (单位:月)的函数f (t )=2t +5,t ≥0,问:第一个5月和第二个5月的总产量各是多少?解 设产品产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50.d d Q f t t t t t t ==+=+=⎰⎰ 第2个5月的总产量为10252055()(25)(5)100.d d tQ f t t t t t t ==+=+=⎰⎰ 7. 某厂生产某产品Q (百台)的总成本C (万元)的变化率为C ′(Q )=2(设固定成本为零),总收入R (万元)的变化率为产量Q (百台)的函数R ′(Q )=7-2Q .问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=, Q =2.5百台时,总利润最大,此时的总成本2.5 2.52.50()225d d C C Q Q Q Q'====⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5百台时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26d d C C Q Q Q '===⎰⎰,总收入3323000()(72)(7)12d d R R Q Q Q Q Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.25-6=0.25万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.8. 某项目的投资成本为100万元,在10年中每年可获收益25万元,年利率为5%,试求这10年中该投资的纯收入的现值. 解 投资后T 年中总收入的现值(1)e rt ay r-=-,由题意知 25,5%0.05,10.a r T ====所以0.051025(1)196.730.05e y -⨯=-= 纯收入的现值为196.73-100=96.73.即这10年中该投资的纯收入的现值为96.73万元.习题6-61. 判断下列广义积分的敛散性,若收敛,则求其值: (1)41d xx +∞⎰; (2)1+∞⎰; (3)0e d ax x +∞-⎰ (a >0); (4)0cos d x x +∞⎰;(5)0e sin d xx x +∞⎰; (6)2d 22xx x +∞-∞++⎰;(7)21⎰; (8)10ln d x x ⎰;(9)e1⎰(10)22d (1)xx -⎰; (11)1⎰解 (1)1431d 1133x x x +∞+∞=-=⎰,此广义积分收敛.(2)1+∞==+∞⎰,此广义积分发散. (3)111e d e ax axx aa+∞--+∞=-=⎰,此广义积分收敛. (4)1cos d sin lim sin sin 0lim sin x x x x xx x +∞+∞→+∞→+∞==-=⎰不存在,所以,此广义积分发散.00(5)e sin d e d cos e cos e cos d e cos e dsin e cos e sin e sin d 11e sin d (e sin e cos )e (sin cos )22e sin d lim e sin d lim x x x x x x x x x x x x x b x x b b x x x x x x x x x x x xx x x x x x x x x x +∞→+∞→=-=-+=-+=-+-∴=-=-∴==⎰⎰⎰⎰⎰⎰⎰⎰ 01e (sin cos )211 lim e (sin cos )22x b b b x x b b +∞→+∞⎧⎫⎡⎤-⎨⎬⎢⎥⎣⎦⎩⎭⎡⎤=-+⎢⎥⎣⎦不存在,此广义积分发散.22d d(1)(6)arctan(1)π22(1)1xx x x x x +∞+∞+∞-∞-∞-∞+==+=++++⎰⎰,收敛.23222110013202(7)lim lim (1)3222lim 2,.2333收敛x x εεεεεε++++→→+→⎡==-+⎢⎣⎛==-- ⎝⎰⎰111011eee1111222220100(8)ln d ln d ln 1 ln d lim ln d lim (ln 1)1,.π(9)arcsin(ln ),.211d d d (10)lim (1)(1)(1)收敛收敛x x x x x x x x x x x x x x x x εεσεεεεεεεεεεεε+++→→-+→=-=--∴==--=-===⎛⎫+= ⎪---⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰120100112 lim lim ,211xxεεεεε++-+→→⎛⎫⎛⎫===+∞+- ⎪ ⎪--⎝⎭⎝⎭此广义积分发散.)211-00001(11)lim lim 2lim 1,1εεεεε+++-→→→==-=-=⎰⎰此广义积分收敛. 2. 当k 为何值时,广义积分+2d (ln )kxx x ∞⎰收敛?当k 为何值时,这广义积分发散?又当k 为何值时,这广义积分取得最小值? 解 当k =1时,++222d dln ln(ln )ln ln x x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211d (ln )(1)(ln 2)(ln )dln (ln)11kk kk k x x k x x x kk -∞∞--+∞⎧>⎪-==⎨-⎪+∞<⎩⎰⎰所以,当k >1时,此广义积分收敛,当k ≤1时,此广义积分发散.记1()(1)(ln 2),k f k k -=-11()(ln 2)(1)(ln 2)lnln 2k k f k k --'=+-.令()0f k '=得11ln ln 2k =-. 又 1()(ln 2)lnln 2[2(1)lnln 2]k f k k -''=+-,且 1ln ln 21(1)(ln 2)ln ln 20ln ln 2f -''-=<, 故()f k 在11ln ln 2k =-有极大值,而()f k 只有一个驻点,所以当11ln ln 2k =-时()f k 取得最大值,因而11ln ln 2k =-时,这个广义积分取得最小值.3. 利用递推公式计算反常积分+0e d n x n I x x ∞-=⎰.解 ++110de e e d n x n xn x n n I x x n x x nI ∞∞----+∞-=-=-+=⎰⎰又 +10de e e 1x x xI x x ∞---+∞+∞=-=--=⎰故 121(1)(1)2!n n n I nI n n I n n I n --==-=-= 4. 已知+0sin d =2x x x ∞π⎰,求 (1)+0sin cos d x xx x∞⎰; (2) 2+2sin d xx x ∞⎰. 解 (1)+++000sin cos sin 21sin πd d 2d .224令x x x t x x x t t x x t ∞∞∞===⎰⎰⎰2+++220+20sin 1sin 2sin cos (2)d sin d()d sin cos π2d 2x x x xx x x x x xx x x x x ∞∞∞+∞∞=-=-+==⎰⎰⎰⎰5. 求120(1)d n n I x x =-⎰(n 0,1,2,…).解 设x =sin t ,则d x =cosd t ,π2120cos d n n I t t +=⎰而 ππ2200(21)!!π2(2)!!2sin d cos d (2)!!21(21)!!n n k n kk x x x x k n k k -⎧⋅=⎪⎪==⎨⎪=+⎪+⎩⎰⎰所以 π221220(2)!!(!)cosd 2 (0,1,2,)(21)!!(21)!n nn n n I t t n n n +====++⎰.6. 用Γ函数表示下列积分:(1)e d nx x +∞-⎰ (n >0); (2)101(ln )d x x α⎰ (α>-1); (3) 0e d nm x x x +∞-⎰1(>0)m n +; (4)220e d n x x x +∞-⎰ (12n >-). 解 (1)令nx t =,则1111,d d nn x t x t t n-==,于是1111+++001111ed e d e d ()nx tt n nx t t t t n n n n --∞∞∞---=⋅==Γ⎰⎰⎰.(2)令1lnt x =,则e ,d e d .t t x x t --==- 于是 10+(1)1001(ln )d e d e d (1).a a t a t x t t t t a x∞-+--+∞=-==Γ+⎰⎰⎰ (3)令nx t =,则1111,d d nnx t x t t n-==, 于是1111+++001111ed ()e d e d ()nm m x m tt n n n m x x t t t t t n n n n+-∞∞∞---+=⋅⋅=⋅=Γ⎰⎰⎰.(4)令2x t =,则x x t ==,于是21+++2220011+201ed e e d 2111e d ()222n n x ntt n t x x t t tt t n ∞∞∞----⎛⎫-+∞ ⎪-⎝⎭=⋅===Γ+⎰⎰⎰⎰。

第六章 高数习题详细解答

第六章 高数习题详细解答

习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ).由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: AM =MC ,BM =MD ,∴AD =AM +MD =MC +BM =BC与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点? 解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为,到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-=222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB的模、方向余弦和方向角.解:因为(1,1)AB =- , 所以2AB =,11cos ,cos 22αβγ===-,从而 π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1) BC 与CA 及其模;(2) BC 的方向余弦、方向角;(3)与 BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=-- {}{}12,00,011,0,1,CA =---=--故==BC CA (2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===. (3)与 BC 同向的单位向量为:oa=⎧⎫=⎨⎬⎩⎭BC BC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b 的夹角余弦.解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j k a b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b - 解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直.2) [()()]⋅-⋅⋅ a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α, 22cos ==β,21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量. 解:=⨯=xy z xyzij kc a b a a a b b b 324112=--i j k =105+j k,||= c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=- ,三角形ABC 的面积为,22516121521||21222=++=⨯=A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为:21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+yx 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面;(3)122=-yx 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成 (2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成 (3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222az x ay x解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在出三种不同形式的方程).yOz 平面内以坐标原点为圆心的单位圆的方程(任写解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点. 解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程 (1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t ty t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+3222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,04522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影2220y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程. 解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥-0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++cz b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a == 化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l =-.10 、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ==∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x .(2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz t y tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1).又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面; (4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为: 0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为 ,试证:点0M 到直线L 的距离为d =.证:设0M M与L 的夹角为θ,一方面由于0sin d M M θ= ;另一方面,00sin M M s M M s θ⨯= ,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB就是飞机相对于地面的速度.840cos 840sin 420,3266OA i j j AB j ππ=⋅+⋅=+=所以, 2452,856.45OB j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a bbc ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.图6-1 空所流动与飞机飞行速度的关系二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2= a,b ,则=⨯b a 2 ,=⋅b a 0 ;解 =⨯b a b a sin() a,bπ2=2,=⋅b a b a cos() a,bπ2=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a ,所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj i n 452131113121--=--=⨯=P P P P ,又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C AB 4,5-=-=,于是所求平面方程为 0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C '=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p+--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z yx z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与x O y 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b , ()6π=a,b,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b.2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求 ()a,b. 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,ba b a b , ()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪= 由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i kj i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kj i b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y x z ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M = 在π上,所以0MM ⊥ n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为 1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1) 在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2) 420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(1=解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s , 得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .。

高数(A)第六章自测解答

高数(A)第六章自测解答
1 y = (π − 1 − cos x ) x
8、 4 、
d x dx − 20 + 25 x = 0 2 dt dt
2
二阶常系数齐次线性型 解 微分方程的特征方程为 4r2−20r+25=0 + = 即(2x−5)2=0, − , 其根为 r1 = r2 = 5 2
5 t 2
故微分方程的通解为

⋅A
0
x
u
du = −
x
dx
两边积分得 u=− =−4ln x+C . =− +
y 将 u= x
代入上式得方程的通解
y=− =−4xln x+Cx. =− + . 由于A(1, 1)在曲线上 , 在曲线上, 由于A(1, 1)在曲线上, 即y(1)=1, 因而C=1, 从则所求方程为 = , 因而C= , = y=− =−4xln x+x. =− + .
二、填空题
2、y = c1e x + c 2 xe x 3、 y ∗ = Bxe x 1、一阶线性 ; 、 、 、 4、求特解 、 5、确定任意常数的 、
∗ x
6、通 解 、
、 7、最高导数的阶数 8、y 、
= e(A cos 2 x + B sin 2 x)
9、 y ∗ = x (C cos x + D sin x ) 、 10、y = e
cos y = 2 (e x +1) 4
π
C= 2 4
所以特解. 所以特解.

e x + 1 = 2 2 cos y
删:3、(y2−3x2)dy+2xydx=0, y|x=0=1; 、 + = , = ; 齐次方程型,求特解. 齐次方程型,求特解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 线性空间 自测题
一、填空题(20分)
1、若n ααα,,,21 就是线性空间V 的一个基,则满足条件(1)n ααα,,,21 就是 ;
(2)对V 中任意向量β, 、
2、数域P 上的线性空间V 的非空子集W 就是V 的子空间的充要条件为 、
3、已知12,W W 为线性空间V 的子空间, 12W W +为直与的充要条件为 、
4、设V 与W 就是数域P 上两个线性空间,V 到W 的一个同构映射f 满足如下三个条件:
(1)f 就是V 到W 的 ;
(2)对V ∈∀βα,,有 ;
(3)对,V k P α∀∈∈,有 、
5、向量空间V 的基12,n ααα,,到基11,,
,n n ααα-,的过渡矩阵为_______ 、 6、复数域作为实数域上的向量空间,则dim =_____,它的一个基为__ __、 复数域作为复数域上的向量空间,则dim =__ __,它的一个基为__ _ _、
二、选择题(10分)
1、若21,W W 均为线性空间V 的子空间,则下列等式成立的就是( )
(A)21211)(W W W W W =+; (B)21211)(W W W W W +=+ ;
(C)1211)(W W W W =+ ; (D)2211)(W W W W =+
2、按通常矩阵的加法与数乘运算,下列集合不构成P 上线性空间的就是:( ) (A){}1n n W A P A A ⨯'=∈=; (B){}2()0n n
W A P tr A ⨯=∈=; (C){}
30n n W A P A ⨯=∈=; (D){}4n n W A P A A ⨯'=∈=-、 3、数域P 上线性空间V 的维数为V r n ∈ααα,,,,21 ,且任意V 中向量可由n ααα,,,21 线性表出,则下列结论成立的就是:( )
(A)n r =; (B)n r ≤; (C)n r <; (D)n r >
4、设1324[],[]W P x W P x ==则=+)dim
(21W W ( ) (A)2; (B)3; (C)4; (D)5
5、设线性空间{}
R a a a a W ∈=)3,2,(,则W 的基为:( )
(A))3,2,1(; (B)),,(a a a ; (C))3,2,(a a a ;(D))3,0,0()0,2,0()0,0,1(
三、(10分) 在线性空间4P 中求由线性方程组:⎪⎩⎪⎨⎧=+-+=-+-=+-+01113530333045234321
43214321x x x x x x x x x x x x 所确定的4
P 的子空间W 的基与维数、
四、(15分)设3中的两个基分别为()1101α=,()2010α=,()3122α=, ()()()123100,110,111βββ===、
(1)求由基321321,,,,βββααα到基的过渡矩阵、
(2)已知向量α在基321,,ααα下的坐标为()130,求α在基321,,βββ下的坐标、
五、(15分) 设12(1,2,1,0),(1,1,1,1),αα==-1(2,1,0,1),β=- 2(1,1,3,7)β=,),(),,(212211ββααL W L W ==,求)dim (21W W +及)dim (21W W 、
六、(15分) 设n n A P ⨯∈:
1)证明:全体与A 可交换的矩阵组成n n P ⨯的一子空间,记作()C A ;
2)当A =E 时,求()C A ;
3)当1000020000
0A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦时,求()C A 的维数与一组基、 七、(15分)已知n n P ⨯的两个子空间{}1n n V A P A A ⨯'=∈=,{}2n n V A P A A ⨯'=∈=-,
证明:12n n P V V ⨯=⊕.
答案:
一、1、线性无关,β可以由n ααα,,,21 线性表示 2、 对V 的加法与数乘封闭 3、 12{}W W o ⋂=或12dim()0W W ⋂= 4、 线性映
射,()()()f f f αβαβ+=+,()()f k kf αα= 5、 111
⎡⎤⎢
⎥⎢⎥⎢⎥⎢⎥⎣⎦
6、 dim =2,它的一个基为1,i ; dim =2,它的一个基为1、
二.C C B C A
三、 解:由32543254325431330387018735131103870000---⎡

⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥--→--→-⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦
12534101920183701837300000000--⎡⎤
⎡⎤
⎢⎥⎢⎥→-→-⎢⎥⎢
⎥⎢⎥⎢⎥⎣⎦⎣⎦
,W 的维数为2, 一组基为()()'
'1218310,29701ξξ=-=-、
四、 解:(1)由()()()123123123101=012=A 102αααεεεεεε⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦
,
()()()123123123111=011=001B βββεεεεεε⎡⎤
⎢⎥
⎢⎥⎢⎥⎣⎦
,
()()1123123=A B βββααα-∴,
过渡矩阵1
110111*********
1=01201121201123
110200110100111
0A B ---⎡⎤
⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦、
(2) ()112312311=(,,)3=300B A ααααβββ-⎛⎫⎛⎫


⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
坐标为111101*********=0110123110320001102010201B A -----⎛⎫⎡⎤

⎤⎛⎫⎡⎤⎛⎫⎛⎫

⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥-=-= ⎪ ⎪ ⎪ ⎪
⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎝⎭⎣⎦⎝⎭⎝⎭
五、解:由()121211211
10321110117=1103022201170115ααββ-⎡⎤⎡⎤
⎢⎥⎢⎥
-⎢⎥⎢⎥→⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦⎣⎦
10141
00001170
10000412001000020001--⎡⎤⎡⎤
⎢⎥⎢⎥
⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
,
12dim 2,dim 2W W ==,12dim()=4W W +,12dim()=0W W
六、 证明 1)设与A 可交换的矩阵的集合记为()C A 、显然()O C A ∈, ,()B D C A ∀∈,()()A B D AB AD BA DA B D A +=+=+=+,故()B D C A +∈、 若k 就是一数,()B C A ∀∈,可得()()()()A kB k AB k BA kB A ===,故()kB C A ∈、所以()C A 构成n n P ⨯的子空间。

2)当A E =时,()n n C A P ⨯=、
3)设()ij B b =为可与A 交换的矩阵,由第四章习题5知,B 只能就是对角矩阵,故维数为n ;1122,,,nn E E E 为一组基、
七、 证明:显然12+n n V V P ⨯⊂,又''
,22
n n A A A A A P A ⨯+-∀∈=+, 其中'2A A +为对称矩阵,'
2
A A -为反对称矩阵, ''1222A A A A A V V +-∴=+∈+ 故12+n n P V V ⨯⊂,从而12=+n n P V V ⨯、
又因为12A V V ∀∈⋂,'',A A A A ==-, 有A O =、故12{}V V O ⋂=,故12+V V 为直与、 故12n n P V V ⨯=⊕。

相关文档
最新文档