人教版高一数学必修二说课稿
人教版高中数学必修2直线的点斜式方程说课稿
人教版高中数学必修2直线的点斜式方程说课稿作为一位杰出的老师,常常要根据教学需要编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。
说课稿应该怎么写呢?以下是小编为大家整理的人教版高中数学必修2 直线的点斜式方程说课稿,仅供参考,大家一起来看看吧。
尊敬的各位评委、各位老师:大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。
下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。
一、教学背景的分析1、教材分析直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。
直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。
“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。
直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。
同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。
2、学情分析我校的生源较差,学生的基础和学习习惯都有待加强。
又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。
另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。
根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3、教学目标(1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;(2)明确点斜式、斜截式方程的.形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程;(3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;(4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。
高中数学人教A版(2019)必修第二册 6.3.1平面向量基本定理说课稿
高中数学人教A版(2019)必修第二册6.3.1平面向量基本定理说课稿一、教材分析本节课选自普通高中课程标准实验教科书人教版必修2第六章《平面向量及其应用》第三节《平面向量基本定理及其坐标表示》第一课时。
本节首先由向量的概念和运算得出平面向量基本定理.平面向量基本定理是平面向量中的重要内容.此定理表明平面内的任一向量可以由同一平面内的两个取定的不共线向量表示,而且表示式是唯一的.因而向量的运算可以归结为两个取定的不共线向量的运算,这为利用向量运算解决问题带来了方便.由此定理还可引出向量的坐标的概念,进而引出向量运算的坐标表示。
1.平面向量基本定理平面向量基本定理告诉我们,同一平面内任一向量都可表示为两个取定的不共线向量的线性组合,这样,如果将平面内向量的起点放在一起,那么由平面向量基本定理可知,平面内的任意一个点都可以通过取定的两个不共线的向量得到表示。
也就是说,平面内的任意一个点可以由平面内的一个点及两个取定的不共线的向量来表示.这是引进平面向量基本定理的一个原因,下面对其中的思想作一概述.用向量表示几何元素是容易的,并且很直接.选一个定点,那么,任何一个点都可以用一个向量来表示.对于一条直线l,如果我们的兴趣只在于它的方向,那么用一个与l平行的非零向量图片就行了;如果想确定这条直线的位置,则还要在l上任选一点。
这样,一个点A,一个向量图片就在原则上确定了直线l,这是对直线的一种定性刻画。
如果想具体地表示l上的每一个点,我们需要实数k和向量图片的乘法图片.这时,l上的任意一点X都可以通过点A和某个图片来表示(图6-17).希望在“实际”上控制直线l,可以看作是引入图片的一个原因.再来看平面.两条相交直线确定一个平面 a.一个定点,两个不共线的向量便“原则”上确定了平面α,这是对平面的一种定性刻画.但在讨论几何问题时,常常涉及平面α上的某一点X,为了具体地表示它,我们需要引进向量的加法.这时,平面α上的点X就可以表示为(相对于定点A),这样点X 就成为可操作的对象了(图6-18).在解决几何问题时,这种表示能发挥很重要的作用.虽然向量的加法、数乘运算有非常坚实的物理背景,但当我们舍弃了这种背景而只从纯粹数学的角度来看问题的话,上述考虑可使我们看到引进相应的向量运算的理由,这可以使我们更容易接受并喜爱向量运算。
8.3简单几何体的表面积和体积说课稿2023-2024学年高一下学期数学人教A版(2019)必修二
《简单几何体的表面积与体积》说课稿各位老师,大家好:今天我说课的内容是《简单几何体的表面积与体积》。
本节位于必修课程主题三几何与代数对应立体几何初步这一单元。
本节之前从形的角度认识了空间几何体,接下来将从度量的角度进一步认识空间几何体。
下面我将从教材分析、学情分析、教学目标、教学重难点、教学分析、教学评价等六方面加以分析和说明。
一、说教材分析。
1. 内容结构:2.内容分析:本节主要内容是简单几何体的表面积和体积的计算方法,是在前面学习了基本立体图形的分类、概念、结构特征、平面表示的基础上,从度量的角度进一步认识简单几何体.也是研究生产、生活中更复杂形状的物体的表面积和体积的基础。
本节内容包括棱柱、棱锥、棱台的表面积与体积;圆柱、圆锥、圆台、球的表面积与体积.3.育人价值:在实际教学过程中,在对简单几何体的表面积与体积公式的了解与使用公式解决简单的实际问题过程中,提高学生逻辑推理、数学运算、直观想象等素养和空间想象等能力,让学生体会数学来源于生活,激发学习激情。
二、说学情分析。
1.学生在小学、初中阶段已经学习了正方体、长方体、圆柱的表面积和体积以及圆锥体积的计算方法.2.通过之前的学习,学生已经熟悉一些平面图形和空间几何体的互化的思想,尤其是空间几何问题向平面问题的转化。
3.学习圆的面积公式时“分割、近似替代、求和、取极限”这种思想已有体现,现在需要学生进一步体会这种重要思想方法。
三、说教学目标。
目标:1).掌握简单几何体的表面积和体积公式,并能利用这些公式解决简单的实际问题; 简单几何体的表面积和体积 柱体、椎体、台体的表面积和体积 球的表面积和体积(第三课时) 圆柱、圆锥、圆台的表面积和体积(第二课时) 棱柱、棱锥、棱台的表面积和体积(第一课时) 球的体积球的表面积2).柱体、锥体、台体、球的体积公式的推导过程,掌握探究过程中的类比、一般化与特殊化、极限等数学思想方法,并尝试使用这些数学思想方法进行数学学习.目标分析:(1)学生能结合基本立体图形的结构特征掌握简单几何体的表面积和体积公式;能从联系的角度认识柱体、锥体、台体的体积公式的联系。
高中数学必修二《空间向量及其运算》说课稿
高中数学必修二《空间向量及其运算》说课稿一、教学目标1.知识目标:o学生能够理解空间向量的概念及其基本性质。
o学生能够掌握空间向量的加减法、数乘以及点积、叉积的运算规则。
o学生能够运用空间向量解决简单的几何问题。
2.能力目标:o培养学生的空间想象能力和逻辑推理能力。
o提高学生运用向量知识解决实际问题的能力。
o增强学生的数学运算能力和符号表达能力。
3.情感态度价值观目标:o激发学生对数学的兴趣,培养积极探索的学习态度。
o培养学生的合作精神和团队意识。
o引导学生认识到数学在解决实际问题中的重要作用。
二、教学内容-重点内容:o空间向量的定义及表示方法。
o空间向量的加减法、数乘运算。
o空间向量的点积和叉积及其几何意义。
-难点内容:o空间向量的叉积运算及其方向判断。
o运用空间向量解决复杂的几何问题。
三、教学方法-讲授法:用于介绍空间向量的基本概念和性质。
-讨论法:通过小组讨论,加深对向量运算的理解。
-案例分析法:分析典型例题,提高学生的解题能力。
-多媒体教学法:利用PPT、动画等多媒体资源,直观展示空间向量的运算过程。
四、教学资源-教材:高中数学必修二。
-教具:直尺、三角板、量角器。
-多媒体资源:PPT课件、空间向量运算的动画演示。
-实验器材:向量模型(可选)。
五、教学过程六、课堂管理-小组讨论:每组分配一个小组长,负责组织和协调讨论,确保每个成员都能参与。
-课堂纪律:制定课堂规则,如举手发言、尊重他人意见等,维持良好的课堂秩序。
-激励措施:对积极参与讨论、表现优秀的学生给予表扬和奖励,激发学生的积极性。
七、评价与反馈-课堂小测验:每节课后安排小测验,检查学生对所学知识的掌握情况。
-课后作业:布置适量的课后作业,巩固所学知识,提高学生的应用能力。
-期末考试:通过期末考试,全面评估学生的学习效果。
-学生反馈:定期收集学生的反馈意见,了解教学过程中的问题和不足,及时调整教学策略。
八、教学反思-教学经验:总结本节课的教学经验,如哪些教学方法效果显著,哪些环节需要改进。
必修二第三章点到直线的距离公式说课稿
点到直线的距离公式说课稿今天我说课的内容是人教版数学必修(2)第三章“3.3.3点到直线的距离”,主要内容是点到直线的距离公式的推导和公式的简单应用.我将通过教材分析、目标分析、教法学法、教学程序和教学评价五个部分,阐述本课的教学设计.一一、、教教材材与与学学情情分分析析1.地位与作用:本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了高中解析几何的定量计算。
对本节的研究,既是两点间距离公式的继续,又为两条平行直线的距离的推导以及后面直线与圆的位置关系和圆锥曲线的进一步学习,奠定了基础,具有承上启下的重要作用。
2.学情分析:学生已经学习了两点之间的距离公式,具备直线的有关知识,如交点、垂直、三角形、两点间距离公式等。
学生对坐标法解决几何问题有了初步的认识。
我校学生实际是基础扎实、思维活跃,但解题能力特别是抽象思维的能力比较欠缺,所以需要老师循序渐进的引导。
二二、、目目标标分分析析【知识与技能】让学生理解点到直线距离公式的推导过程 ,掌握点到直线距离公式及其简单应用【过程与方法】通过推导公式方法的发现,培养学生观察发现、分析归纳、抽象概括、数学表达等基本数学思维能力;在推导过程中,渗透数形结合、转化化归等数学思想以及特殊与一般的方法.【情感态度价值观】引导学生用联系与转化的观点看问题,体验在探索问题的过程中的受挫感和成功感,培养合作意识和创新精神.【重点】 点到直线距离公式和简单应用.【难点】 点到直线距离公式的推导.三三、、教教法法学学法法数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。
为此我设计如下教法和学法:1.教学方法在“以生为本”理念的指导下,充分体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,构建学生主动的学习活动过程。
高中人教版数学必修二教案
高中人教版数学必修二教案
第一课时:直线与圆的位置关系
一、教学目标:
1. 知识与技能:掌握直线与圆的位置关系,能够解决相关问题。
2. 过程与方法:通过讲解、示范、练习等方式,培养学生的逻辑思维和解题能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的数学思维能力。
二、教学重难点:
1. 重点:直线与圆的位置关系。
2. 难点:如何判断直线与圆的位置关系,如何运用相关知识解决实际问题。
三、教学过程:
1. 导入新知:通过引入一个实际问题,让学生思考直线与圆的位置关系。
2. 教学内容:讲解直线与圆的位置关系的相关概念和判断方法。
3. 案例分析:结合具体案例,让学生运用所学知识解决问题。
4. 小结归纳:总结本节课的重点内容,强化学生的学习效果。
四、课堂练习:
1. 练习题:判断直线与圆的位置关系,并解决相关题目。
2. 作业布置:布置相关练习题,巩固学生的学习成果。
五、教学反思:
本节课通过引入实际问题和案例分析的方式,让学生更加深入理解直线与圆的位置关系,提高他们的解题能力和运用知识的能力。
在今后的教学中,可以多结合实际问题,引导学生灵活运用所学知识解决问题,更好地掌握数学知识。
高中数学必修2《直线和平面平行的判定》说课稿
高中数学必修2《直线和平面平行的判定》说课稿一、教材内容分析教材内容的地位和作用:直线与平面平行的判定是江苏版普通高中课程标准实验教科书《数学》必修2第一章第二节第三部分内容;它在第一章线与线、线与面、面与面的知识结构中起着承上启下的作用,也是今后学习共面向量的基础。
在此之前,学生已学习了空间两直线的位置关系,这为过渡到本节的学习起着铺垫作用。
本节的主要内容有直线和平面的三种位置关系和直线与平面平行的判定两部分。
平行关系是全章的主要内容之一,而直线与平面平行的判定是平行关系的初步。
因此,在立体几何中,占据重要的地位。
作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中让学生首先借助长方体模型和演示实验,直接认识和理解直线和平面平行的理由和条件。
学生在应用观察、猜想等手段探索研究判定定理时,能获得视觉上的愉悦,增强探求的好奇心,激发出潜在的创造力,形成创新意识。
教学重点、难点因为新课标教材重视展现知识发生和发展的过程,因此本节教学重点是两个过程的教学:(1)直线和平面的三种位置关系的发现过程;(2)直线和平面平行关系的判定的形成过程。
通过直观类比、探究发现、观察实验来突出重点。
由于新课标对判定定理的证明没有要求,而要求学生直接通过直观感知、操作确认,认识和理解判定定理;并能运用定理证明一些空间位置关系的简单命题。
因此我把难点定为直线和平面平行的判定定理理解及应用,通过分组讨论、设计练习循序渐进等教学手段来突破难点二、教学目标根据上述教材内容分析,并结合学生的认知水平和思维特点,我将教学目标分为三部分进行说明:1、知识与技能目标(1)通过直观感知、操作确认归纳出直线与平面的三种位置关系;(2)掌握直线和平面平行的判定定理;(3)能较灵活运用判定定理解决有关问题。
2、过程与方法目标(1)通过学生观察实物,培养学生抽象概括能力;(2)通过学生对图形的分析,培养学生空间想象能力3、情感态度与价值观目标(1)通过教学使学生认识到研究直线和平面的位置关系以及直线与平面平行是实际生产的需要,充分体现了理论来源于实践并应用于实践,充分体现了理论联系实际的原则;(2)在师生对数学图形分析的过程中,培养学生积极进行数学交流、乐于探索创新的科学精神。
高中数学说课稿4篇(实用)
高中数学说课稿4篇高中数学说课稿篇1一、教材分析(一)地位与作用《幂函数》选自高一数学新教材必修1第2章第3节。
是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y=x—1三种幂函数。
这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.本节内容之后,将把指数函数,对数函数,幂函数科学的'组织起来,体现充满在整个数学中的组织化,系统化的精神。
让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究.(二)学情分析(1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,已初步形成对数学问题的合作探究能力。
(2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。
(3)学生层次参差不齐,个体差异比较明显。
二、目标分析新课标指出“三维目标”是一个密切联系的有机整体。
(一)教学目标(1)知识与技能①使学生理解幂函数的概念,会画幂函数的图象。
②让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。
(2)过程与方法①让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
②使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观①通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。
②利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。
③培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。
并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。
人教版高一数学必修二说课稿
人教版高一数学必修二说课稿【导语】不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。
不要让寻求之舟停靠在空想的港湾,而应扬起奋斗的风帆,驶向现实生活的大海。
作者高一频道为正在拼搏的你整理了《人教版高一数学必修二说课稿》,期望对你有帮助!【一】一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,教师的教应本着从学生的认知规律动身,以学生活动为主线,在原有知识的基础上,建构新的知识体系。
我将以此为基础对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。
通过分类讨论,通过研究两个具体的指数函数引导学生通过视察图象发觉指数函数的图象规律,从而归纳指数函数的一样性质,经历一个由特别到一样的探究进程。
引导学生探究出指数函数的一样性质,从而对指数函数进行较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩充到实数范畴之后学习的一个重要的基本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的基础。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
另外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,特别体现在细胞*、贷款利率的运算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
三、教学目标分析:根据本节课的内容特点以及学生对抽象的指数函数及其图象缺少感性认识的实际情形,肯定在知道指数函数定义的基础上掌控指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发觉进程。
为此,特制定以下的教学目标:1)知识目标(直接性目标):知道指数函数的定义,掌控指数函数的图像、性质及其简单运用、能根据单调性解决基本的比较大小的问题.2)能力目标(发展性目标):通过教学培养学生视察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力。
8.6.2直线与平面垂直说课稿(第1课时)高一下学期数学人教A版(2019)必修第二册
《8.6.2直线与平面垂直》说课稿大家好!今天我说课的课题是《直线与平面垂直(第一课时)》。
下面我将从以下几个方面对本课题进行阐述:一、说教材《直线与平面垂直》是人教A版必修二教材第8章第6.2节的课题,属于空间与图形邻域的知识。
在此之前,学生们已经学习了直线与平面位置关系,直线与直线垂直的定义与判定,这为过渡到本课题的学习起到了铺垫的作用。
其中,直线与平面垂直是直线与平面相交中的一种特殊情况,它既是线线垂直的拓展,也是学习面面垂直的基础,同时它也为研究线面角、二面角、点到平面的距离、直线到平面的距离、两个平行平面间的距离等内容进行了必要的知识准备。
因此它不仅是连接线线垂直和面面垂直的纽带,也是空间中点、线、面位置关系的核心内容。
线面垂直是空间垂直关系间转化的重心,它在整个教材中起着承上启下的作用。
本课中,重点是直线与平面垂直的判定定理,难点是理解线面垂直及其相关概念、判定定理的猜想与归纳和定理的发现,关键点是理解任意的含义,无限到有限的转化以及两条直线相交垂直的判定。
二、说学情本节课主要学习线面垂直的定义、判定定理及其初步运用。
学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象。
同时,学生已经学习了空间点、直线、平面之间的位置关系、直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构,这为学习者学习直线与平面垂直定义和判定定理等新知识奠定基础。
并且,在前面学习立体几何的基本内容后,已经有了“通过观察、操作等数学活动抽象概括出数学结论”的体会,参与意识、自主探究能力有所提高,对空间概念建立有一定基础。
三、说目标《数学课程标准》指出本节课学习目标是:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题.。
考虑到学生的接受能力和课容量,本节课只要求学生在构建线面垂直定义的基础上探究线面垂直的判定定理,并进行定理的初步运用。
故而确立以下教学目标:1.理解直线与平面垂直的定义及其相关概念,以及判定定理。
说课稿 人教版 数学 高中 必修二 《直线与圆的位置关系》
《直线与圆的位置关系》(第一课时)说课稿尊敬的各位评委老师,大家下午好!我是应聘高中数学的3号考生,今天我抽到的说课题目是《直线与圆的位置关系》。
下面我将从说教材、说学情、说教法、说学法、说教学程序、说板书设计六个方面来开始我的说课。
一、说教材《直线与圆的位置关系》是人教版高中数学必修2第二章第三节的内容。
本节课的内容是直线与圆的位置关系,在此之前,学生已经学习直线与圆的位置关系,直线的方程与圆的方程,为本节课的学习打下了基础,同时,本节课的内容也为今后学习空间直角坐标系做好铺垫,所以,本节课的内容起到承上启下的过度作用。
基于以上对教材地位和作用的分析,确定了本节课的三维教学目标:知识与技能目标:在教师引导下,能将直线、圆的位置关系的实际问题坐标化,进一步培养学生“用数学”的意识;能根据给定直线、圆的方程判断直线、圆的位置关系,通过观察、验证、推理与交流等数学活动,找到判断直线、圆的位置关系的一般方法;能利用直线、圆的位置关系解决有关的简单问题,提升学生的逻辑思维能力和分析问题、解决问题的能力。
过程与方法目标:经历理论与实际的联系,提升数学建模能力,培养运用数形结合与方程的思想解决问题的意识;经历探索判断直线、圆的位置关系的过程,学生参与数学实践;通过多媒体动画演示,培养用运动变化的观点来分析问题、解决问题的能力。
情感态度与价值观目标:学生主动参与用坐标法探求直线、圆的位置关系的过程,学生感受成功的喜悦;通过自主探究、小组合作、讨论,培养团队精神和主动学习的良好习惯。
基于以上对于教材地位和作用的分析,以及设定的三维教学目标,确定了本节课的教学重难点:教学重点是运用坐标法探究直线、圆的位置关系,结合几何图形,将直线与圆的位置关系转化为圆心到直线的距离d与半径r的关系,将圆与圆的位置关系转化为连心线与两圆半径的关系,进一步体会数形结合这一重要数学思想;教学难点是把实际问题转化为数学问题,建立相应的数学模型;对用方程组的解来判断直线、圆的位置关系的方法的理解。
人教版高一数学必修二《直线的倾斜角与斜率》说课稿
人教版高一数学必修二《直线的倾斜角与斜率》说课稿说教材《直线的倾斜角与斜率》是高中数学必修二中的一章,主要讲解了直线的倾斜角和斜率的概念及其应用。
通过学习本章,学生可以进一步认识直线的特性和性质,并掌握计算直线的倾斜角和斜率的方法。
同时,本章也为后续学习坐标系与参数方程打下基础。
教学目标1.了解直线的倾斜角和斜率的概念;2.学会计算直线的倾斜角和斜率;3.掌握直线的倾斜角和斜率的应用;4.培养学生观察、分析和解决问题的能力;教学重点1.直线的倾斜角和斜率的概念;2.计算直线的倾斜角和斜率;教学难点1.直线的倾斜角和斜率的应用;2.解决实际问题的能力;说课内容第一节:直线的斜率本节主要介绍直线的斜率的概念及计算方法。
首先,引入斜率的定义:斜率为直线上两点之间纵坐标的差与横坐标的差的比值。
接着,通过具体的示例,演示斜率的计算过程,并介绍斜率为正、负和零的直线的性质。
最后,带领学生进行练习,巩固对斜率计算的掌握。
第二节:利用斜率判断直线的倾斜角本节主要介绍斜率与直线的倾斜角之间的关系。
首先,根据斜率为正、负和零的直线的性质,引入直线的倾斜角的定义和计算方法。
然后,通过具体的示例,演示如何利用斜率判断直线的倾斜角,并帮助学生理解斜率和倾斜角的几何意义。
最后,进行练习,让学生熟练掌握利用斜率判断直线的倾斜角的方法。
第三节:应用直线的倾斜角和斜率本节主要介绍直线的倾斜角和斜率在实际问题中的应用。
首先,通过具体的问题,引导学生发现直线的倾斜角和斜率在解决实际问题中的重要作用。
然后,介绍直线斜率和函数斜率的关系,并引入切线概念,讨论切线的倾斜角和斜率与函数的导数的关系。
最后,通过实例演示,帮助学生掌握直线的倾斜角和斜率在应用问题中的运用方法。
教学方法本课采用讲授与练习相结合的教学方法。
在讲授过程中,通过示例演示和讲解概念原理,帮助学生理解直线的倾斜角和斜率的概念及计算方法。
在练习环节中,设计一系列的练习题,让学生进行巩固和拓展,提高应用能力。
人教版高中新课标数学必修2《直线的点斜式方程》说课稿
直线的点斜式方程我本节课讲课的内容是人教版高中新课标数学必修 2 第三章第二节第一课时——直线的点斜式方程。
新课标指出,学生是教课的主体。
教师要以学生活动为主线。
在原有知识的基础上,建立新的知识体系。
我将以此为基础从教材地位和内容剖析,教课目的剖析,要点和难点剖析,教法和学法剖析,教课过程剖析这几个方面加以说明。
b5E2RGbCAP一、教材地位和内容剖析从整体来看,直线方程初步表现认识析几何的本质——用代数的知识来研究几何问题。
从会合与对应的角度建立了平面上的直线与二元一次方程的一一对应关系,是学习分析几何的基础。
p1EanqFDPw 从本节来看,直线的点斜式方程是推导其余直线方程的基础,在直线方程中据有重要地位。
二、教课目的剖析1、掌握点斜式和斜截式方程的推导过程,并能依据条件娴熟求出直线的点斜式方程和斜截式方程。
2、初步形成用代数方法解决几何问题的能力,领会数形联合的思想。
3、使学生学会认识事物的特别性与一般性之间的关系。
培育学生勇于发问,擅长研究的思想质量。
三、要点与难点剖析要点:( 1)直线方程点斜式、斜截式方程的推导( 2)由已知条件求直线方程。
难点:直线点斜式方程的推导四、教法与学法剖析1、教法剖析按照“教师的主导作用和学生的主体地位相一致的教课规律”,本节课我采纳“诱思研究教课法”教课。
经过教师点拨,启迪学生自主研究来达到对知识的发现和接受。
DXDiTa9E3d2、学法剖析本节课所面对的是高一年级的学生,这个年纪段的学生思想活跃,求知欲强,但思想习惯还有待教师指引。
本节课从学生原有的知识和能力出发,教师将率领学生创建疑问,经过合作沟通,共同研究,追求解决问题的方法。
RTCrpUDGiT五、教课过程剖析依据新课标的理念,我把整个的教课过程分为六个阶段:1、创建情境2、研究新知3、深入研究4、加强训练5、总结升华6、反应练习1、创建情境直线是点的会合,求直线方程本质上就是求直线上点的坐标所知足的一个等量关系。
直线的两点式方程说课稿
直线的两点式方程说课稿一、教材分析(一)教材前后联系、地位与作用直线的两点式方程是普通高中课程标准实验教科书(人教版)高一年级数学必修2第三章第二节中的内容。
本节课是在学习直线的点斜式方程的基础上,引导学生根据除了已知一个点和斜率求直线方程的方法和途径外探讨已知两点来求直线方程。
在求直线的方程中,直线方程的点斜式是最基本的,而直线方程的斜截式、两点式都是由点斜式推出的。
在推导直线方程的两点式时,根据直线方程的点斜式这一结论,先猜想确定一条直线的条件,再根据已知的两点猜想得到的条件求出直线的方程。
在应用直线两点式方程及截距式方程应注意满足的条件。
(二) 教学目标根据课程标准的要求和学生的实际情况,我确定本节课的教学目标如下:(1) 知识与技能(1)理解直线方程的两点式、截距式的形式特点和适用范围;(2)能正确利用直线的两点式、截距式公式求直线方程。
(3)体会直线的截距式方程的几何意义.(2)过程与方法在已知直角坐标系内确定一条直线的几何要素——直线上的两点的基础上,通过师生探讨,得出直线的斜率,然后根据直线的点斜式方程得出直线的两点式方程;学生通过对比理解“截距”与“距离”的区别。
(3)情感、态度与价值观通过让学生体会直线的点斜式方程与两点式方程的关系,培养学生的知识的互相联系性。
再根据截距的图像性质进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
(三)教学重点与难点根据教学目标的确定,并结合学生的认知水平,我确定本节课的重点和难点如下:重点:直线的两点式方程和截距式方程,两点间的中点公式。
难点:直线的两点式方程和截距式方程的推导及应用。
二、学情分析(1)班学生数学基础比较好,在解题能力特别是抽象思维的能力比较理想。
但本节课对学生的分析能力和分类讨论能力有一定要求,特别是用分类讨论思想来解决问题的能力,学生学习起来可能有一定难度,所以需要老师逐渐的引导。
【人教版】高中数学说课稿 直线与圆的方程的应用 说课稿
直线与圆的方程的应用教材:人教版《普通高中课程标准实验教科书·数学(A版)》必修2.课题:4.2.3直线与圆的方程的应用.一、教材分析(一)教材的地位和作用“直线与圆问题研究”是解析几何研究的一个重要问题之一。
它是学生在学习了圆锥曲线之后的后续内容,又可贯穿于解析几何学习的始终。
所以,通过这部分内容的学习,可以帮助学生更好的理解解析几何的核心问题——圆锥曲线的概念,也能为学好圆锥曲线作好理论和方法上的准备,是解析几何中承上启下的关键内容。
(二)教学目标的确定及依据基于对课程标准、教材的学习与分析和学生学情的分析,制定如下的教学目标和重难点:知识与技能:(1)利用平面直角坐标系解决直线与圆的位置关系,解决一些实际问题;(2)会用“数形结合”的数学思想解决问题.能力目标:让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.情感目标:在利用直线与圆的位置关系探究解决一些实际问题线面垂直性质的研究中,培养自主探索、合作交流的精神和辩证唯物主义观念。
(三)教学重点、难点及关键教学重点:直线与圆的方程的应用,用坐标法解决平面几何.教学难点:用坐标法解决平面几何。
教学关键:类比、转化数学思想的应用。
二、学法指导在本节课的学习时,学生在前面已经学习了直线与方程、圆的方程的相关知识,并初步探索了运用解析法解决平面上一些与直线有关的实际问题。
学生具备了一定的运用解析法解决问题的能力。
观察、概括、总结、归纳、类比、联想是学法指导的重点。
让学生观察、思考后,总结、概括、归纳的知识更有利于学生掌握;为了加深知识理解、掌握和更灵活地运用,运用类比联想去主动的发现问题、解决问题,从而更系统地掌握所学知识,形成新的认知结构和知识网络,让学生真正地体会到在问题解决中学习,在交流中学习。
这样,可以增进热爱数学的情感,应用数学的自信心和形成新的学习动力。
三、教学方法与手段建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用过程中,通过同化和顺应,使自身的认知结构得以转换和发展。
人教版高一数学必修第二册《空间直线、平面的垂直》说课稿
人教版高一数学必修第二册《空间直线、平面的垂直》说课稿一、教材信息•课程名称:高一数学必修第二册•教材版本:人教版•章节名称:空间直线、平面的垂直二、教学目标本节课的教学目标主要包括以下几个方面:1.理解空间直线与平面相垂直的定义;2.掌握判断空间直线与平面相垂直的条件,以及判断两个平面相互垂直的条件;3.运用垂直的概念解决实际问题;4.培养学生的观察能力和逻辑思维能力。
三、教学内容与学情分析本节课主要围绕空间直线与平面的垂直展开教学。
在高中数学教学中,该知识点为必修内容,学生已经学习过空间向量的概念,对空间概念有一定的了解。
因此,学生已有一定的基础,需要进一步巩固与提高。
在学情分析方面,大部分学生对于空间几何的概念了解较少,对于学习观念的建立尚不牢固。
因此,本节课的教学要注重概念的引入和理解。
四、教学重点与难点本节课的教学重点和难点主要集中在以下两个方面:1.判断空间直线与平面相垂直的条件;2.判断两个平面相互垂直的条件。
由于涉及到多个概念与条件的判断,学生可能存在一定的混淆和困惑,需要通过典型例题和思维导图的方式进行讲解和引导。
五、教学方法与手段本节课的教学方法主要采用讲授与讨论相结合的方式。
首先通过概念解释与例题分析讲解空间直线与平面的垂直定义和相关的判断条件。
随后,通过实际问题的讨论和解答,引导学生运用垂直的概念解决实际问题。
在教学手段上,可以利用黑板、教材、多媒体等工具进行讲解与演示。
同时,通过小组讨论和集体讨论的方式,培养学生的合作与交流能力。
六、教学步骤与内容本节课的教学步骤与内容如下:第一步:导入与概念讲解(5分钟)•通过提问和回答的方式,引导学生复习空间向量的相关概念,如平行、共面等,并逐步引入垂直的概念;•结合教材内容,提出空间直线与平面相垂直的定义。
第二步:判断空间直线与平面相垂直的条件(15分钟)•讲解条件一:直线上的一点到平面上的任意一条直线的距离为零,引导学生进行思考,解决直线与平面垂直的条件;•讲解条件二:直线的方向向量与平面的法向量垂直,通过例题与解析,讲解直线与平面垂直的另一种判断条件。
8.1棱柱、棱锥、棱台+说课稿-2023-2024学年高一下学期数学人教A版(2019)必修第二册
《棱柱、棱锥、棱台》说课稿一、说教材分析教材出处:本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版2019)第八章《立体几何初步》中第一节《基本立体图形》第一课时,本节课主要学习棱柱、棱锥、棱台的概念及结构特征。
本节地位:立体几何是研究现实世界中物体的形状、大小与位置关系的数学分支,初中我们已经熟悉了一些基本的平面图形和简单的抽象立体图形,都遵循着从一般到特殊的认知规律,同时本节知识也为后续学习点、线、面的关系打下了基础,起到了承上启下的作用。
素养方法:教材中,用观察方法发现棱柱、棱锥、棱台的结构特征,体现出探究过程的简洁美。
通过平面展开图将空间问题转化为平面问题解决,体现了转化的思想方法,体现数学抽象、逻辑推理、直观想象等数学核心素养。
二、说学情分析知识储备:学生在小学、初中阶段的学习中已经认识了一些简单几何体,这为过渡到本节内容的学习起着铺垫作用。
思维特征:高一下学期学段的学生思维较为活跃,求知欲也较强,但接触空间几何体的结构特征较少,缺少对概念理解能力的经验,将空间问题转化为平面问题的建模能力也有待提高。
应对策略:本节课逻辑思维量较强,对思维的严谨性和逻辑推理能力要求较高。
因此教师要提供针对性的研究素材,并作必要的启发和引导,鼓励学生大胆讨论交流、认真总结,建立学好数学的自信心。
三、说目标分析学科核心素养目标1、通过对实物的观察,归纳认知简单多面体--棱柱、棱锥、棱台的结构特征。
2、运用棱柱、棱锥、棱台的结构特征来判断、描述现实生活中的实物模型,提高学生直观想象、逻辑思维能力。
构建学科单元知识体系,使学生对本节课知识有一个整体认识。
3、学生在探究知识过程中获得成功的体验,培养学生良好学习习惯和严谨的思维方式,培养学生数学抽象、逻辑推理、直观想象等核心素养。
四、说教学重、难点重点:通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征,能运用这些特征描述现实生活中简单物体的结构。
高中数学必修二《直线与方程》说课稿
高中数学必修二《直线与方程》说课稿一、教学目标1.知识目标:o理解和掌握直线的点斜式、两点式、一般式方程及其相互转化。
o能够根据给定条件求出直线的方程,并能利用直线方程解决简单的几何问题。
2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提升学生的数学建模能力。
o提高学生分析问题和解决问题的能力,特别是在处理直线与坐标轴交点、两直线位置关系等问题时。
3.情感态度价值观目标:o激发学生对数学的兴趣,培养学生严谨的学习态度和科学精神。
o通过合作学习,增强学生的团队合作意识,培养学生的沟通能力和责任感。
二、教学内容-重点:直线的三种基本方程(点斜式、两点式、一般式)及其相互转换。
-难点:根据实际问题选择合适的直线方程形式,以及利用直线方程解决实际问题。
三、教学方法-讲授法:用于介绍直线方程的基本概念和理论。
-讨论法:分组讨论直线方程的应用场景,促进学生之间的交流与合作。
-案例分析法:通过具体案例分析,加深学生对直线方程的理解和掌握。
-多媒体教学法:利用PPT、动画等多媒体资源,直观展示直线方程的图形变化,增强教学效果。
四、教学资源-教材:高中数学必修二《直线与方程》章节。
-教具:黑板、粉笔、直尺、圆规。
-多媒体资源:PPT课件、直线方程的动态演示软件、在线教学平台。
-实验器材:无需特定实验器材,但可准备几何画板软件用于辅助作图。
五、教学过程六、课堂管理-小组讨论:每组分配明确的任务,确保每位学生都参与讨论,轮流发言。
-课堂纪律:设定明确的课堂规则,如举手发言、保持安静等,确保课堂秩序。
-激励机制:对积极参与讨论、提出创新见解的学生给予表扬,激发学习动力。
七、评价与反馈-课堂小测验:每节课结束前进行小测验,检查学生对新知识的掌握情况。
-课后作业:布置适量作业,包括基础题和拓展题,以巩固课堂所学。
-期末考试:通过期末考试全面评估学生的学习效果,包括理论知识和应用能力。
-学生反馈:定期收集学生对教学内容、方法的反馈,及时调整教学策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学必修二说课稿(2021最新版)作者:______编写日期:2021年__月__日【一】一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。
我将以此为基础对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。
通过分类讨论,通过研究两个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进行较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩充到实数范围之后学习的一个重要的基本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的基础。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞*、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的基础上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目标:1)知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决基本的比较大小的问题.2)能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力。
3)情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,用联系的观点看问题。
体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。
引导学生发现数学中的对称美、简洁美。
善于探索的思维品质。
学生知识储备:通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构。
学情分析:由于我所教学生数学的理解能力、运算能力、思维能力等方面有一部分是较好的,但整体是水平参差不齐。
高一这个年龄段的学生思维活跃,求知欲强,能够勇于表现自我,展现自我,愿意合作交流。
但在思维习惯上与方法上还有待教师引导。
可能存在的问题与策略:问题1.学生能够从具体的问题中抽象出数学的模型但对于指数函数的定义中底数的取值范围和指数函数形式的判断有困难。
教学策略:类比着二次函数,对于底数的范围的取值,引导学生回顾指数幂中当指数为全体实数时,底数怎样取值才能一直有意义,以问题的形式引发学生思考底数能否取负数、正数、0、1?从而得到底数的范围。
学生对:1)y=-3x2)y=31/x3)y=31+x4)y=(-3)x5)y=3-x=(1/3)x几种形式的函数的判断,加强对指数函数形解析式的理解和辨别:问题2.学生初中阶段就接触过函数,但对于学生而言,指数函数是完全陌生的函数。
学生列表时,数值的选取上可能会少取或是数值的选取不能照顾到全体实数,画图时,又容易受以前学过的函数图像的影响,把指数函数的图像画成已经学过的图像的形象。
教学策略:在列表格时自变量的取值以及如何画出指数函数的图像的问题上,采用启发式教学法,类比学过的函数图形的画法,引导学生画图,画完图后,又利用实物投影仪展示一位同学的图像,由全班同学进行提出意见纠错来补充画图的不足。
另外为了让学生增强识图、用图的能力可以让学生根据观察到的指数函数的图像,来画出底数不同取值范围内的的草图,以便于探究性质。
问题3.函数定义给出后,底数a如何分类讨论的情况学生难以做到,如果处理不好,这对于指数函数质探究时的分类讨论有很重要的意义。
教学策略:在定义中对于底数的取值范围的讨论后,得出了底数a>0且a≠1。
此时,在数轴上把a的范围表示出来,这样学生很容易从数轴上的区间图看出底数分为两类情况进行讨论。
这样为指数函数质探究时的分类讨论埋下了伏笔。
问题4.通过两个具体的特殊的指数函数图像,来探究得出指数函数的性质。
如何使学生能经历从特殊到一般的过程,这种由特殊到一般再到特殊的思想的领会,如何完成?教学策略:教师利用几何画板分别画出了底数大于1的和底数在0到1之间的若干个不同的指数函数的图像,展现不同的底数的变化时图像的不同情况,从而让学生经历由特殊到一般的过程。
问题5.指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,学生可能找不到研究问题的方法和方向.教学策略:在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数。
问题6.学生得到的性质特点可能是杂乱的,如何梳理突出主要的性质?教学策略:在学生识图、用图、合作探究的过程后,利用两个表格的填写,让学生感受由图象特征来得到函数的性质的过程。
表格主要呈现五个方面的性质与特点。
五、教法分析:为充分贯彻新课程理念,使教学过*正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法。
以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,以动手操作、合作交流,自主探究的方式来让学生始终处在教学活动的中心。
六、预期效果分析:1、教学环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的生成和发展过程,使学生对知识的理解逐步深入。
2、简单实例的引入,顺利完成了知识的迁移,从得出指数函数的模型,符合学生认知规律的最近发展区。
3、而作业中完成指数函数性质的探究报告,弥补课堂时间有限探究和展示的局限性,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。
4、在整个教学过程中,由于学生是自觉主动地发现结果,对所学知识应该能够较快接受。
因此,我认为可以达到预定的教学目标。
【二】一、教材的本质、地位与作用对数函数(第二课时)是2006人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.二、教学目标根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:学习目标:1、复习巩固对数函数的图像及性质2、运用对数函数的性质比较两个数的大小能力目标:1、培养学生运用图形解决问题的意识即数形结合能力2、学生运用已学知识,已有经验解决新问题的能力3、探索出方法,有条理阐述自己观点的能力德育目标:培养学生勤于思考、独立思考、合作交流等良好的个性品质三、教材的重点及难点对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。
所以确定本节课重点:运用对数函数图像性质比较两数的大小教学中将在以下2个环节中突出教学重点:1、利用学生预习后的心得交流,资源共享,互补不足2、通过适当的练习,加强对解题方法的掌握及原理的理解另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。
所以确定本节课难点:同真异底的对数比大小教学中会在以下3个方面突破教学难点:1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。
2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。
3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
四、学生学情分析长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。
学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。
五、教法特点新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。
基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。
从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。
本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
六、教学过程分析1、课件展示本节课学习目标设计意图:明确任务,激发兴趣2、温故知新(已填表形式复习对数函数的图像和性质)设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。
3、预习后心得交流1)同底对数比大小2)既不同底数,也不同真数的对数比大小以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。
4、合作探究——同真异底型的对数比大小以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。
二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。
设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。