高中数学教材结构体系 (1)
新高一数学初升高数学衔接——学法指导
新高一数学初升高数学衔 接——学法指导
高中数学的特点是:注重抽象思维,内容 庞杂、知识难度大。高中教材不再像初中教材那 样贴近生活,生动形象,知识容量也更为紧密。 客观的说,初高中知识之间存在断层,正是由于 这种断层造成很多同学难以在较短时间内适应高 中数学的学习。那么,如何做好初高中数学学习 的衔接过渡,使得同学们对高中数学学习有一个 正确的认识,并迅速适应新的教学模式呢?
比如这样一个实际问题:把一个物体放在天平的一个盘 子上,在另一个盘子上放砝码使天平平衡,称得物体的 质量为a,如果天平制造得不够精确,天平的两臂长短略 有不同(其他因素不计),那么a并非物体的实际质量。 不过我们可以做第二次测量:把物体调换到另外一个盘 子上,此时称得的物体的质量为b,如何合理地表示物体 的质量呢?
(一)高中数学教材分析
高中数学课程分为必修和选修。必修课程由5个模 块(5本书)构成;选修课程有4个系列,其中系 列1、系列2由若干模块构成(系列1两本书、系列 2三本书),系列3、系列4由若干专题组成。内容 涉及初等函数、数列、概率与统计、算法、平面 解析几何、立体几何等等。进入高中,我们首先 学习的是《必修1》模块,我们应先对这一模块有 一个大体的了解。
向理论型抽象思维过渡,最后还需初步形成辩证型思维。
比如在二次函数求最小值问题。
(二)初ห้องสมุดไป่ตู้中数学特点的变化
新版人教版高中数学教材最新目录(1)-新版.pdf
人教版普通高中课程标准实验教科书数学必修一第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用必修二第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式必修三:第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2用样本估计总体阅读与思考生产过程中的质量控制图2.3变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1随机事件的概率阅读与思考天气变化的认识过程3.2古典概型3.3几何概型阅读与思考概率与密码必修四:第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换必修五:第一章解三角形1.1正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业第二章数列2.1数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2双曲线2.3抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1变化率与导数3.2导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3导数在研究函数中的应用信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业第二章推理与证明2.1合情推理与演绎证明阅读与思考科学发现中的推理2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图信息技术应用用Word2002绘制流程图选修2-1:第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3双曲线探究与发现2.4抛物线探究与发现阅读与思考第三章空间向量与立体几何3.1空间向量及其运算阅读与思考向量概念的推广与应用3.2立体几何中的向量方法选修2-2:第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3 第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业选修3-1:第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4:第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1:第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2:第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5:第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7:第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例。
高一数学必修三教材全解
高一数学必修三教材全解一:必修3的主要内容与结构框架。
(1)主要内容。
本书的玉要内容是算法、统计和概率的基础知识和苯本思想,算法思想和统计思想也是货穿高中数学课程的重要的数学思想,(2)内容与误,全l5分为二章,共36课时.具体内容是:第一章算法初步。
12课时;第二章统计,16课时:第三章松率,8课时,二:分单元解读教材第一爷,是算法的初步知识。
1.l教学内军及误时分配在《普通高中课程标准实验教科书数学3必修》A版教材中,《算法初步3一章由三小节构成,配的教师用书中姓议讲授12课时:第一节:法与程序框图算法的概念1误时:程序框图、算法的三种逻辑结构和框图表小3误。
第一节:基术算法语句赋住、输入和输出语句1课时;条件语句l课时:循环语句l课时。
第一节:算法案例算法案例4课时;小结复习1以时。
1.2絮课标对算法的驶求1.2.1识程日标算法模块中,学生的算法学习应达到以下日标;在学牛义务教育阶段初步感受算法思想的基础上,结合对其体数学实例的分析,体验得序框图在解决问题中的作用:通过模仿、操作、探案,学习设计程序框图表达解决问题约过程:学生.能体会算法的基本感想以发算法的宜要件和有效性,发展有条理的思考和表达的能力,提高逻排思维能力。
1.2.2教学日标第一:穿法与程序框图通过对解决具体问题过和与步费的分析(如二元一次方程组求解等问题),体会算法约思想,了解算法的含义。
通过模仿、操作、荣索,经历通过设计程序框图表这解决问题的过程。
在具依问题的锋认过荐中(如三元一次方释细求解等问题),理解程序准图的三种基本逻辑结构顺序结构、条件分支结沟、循环结构。
第二节:恭本算法语句经将具体问题的程序框图转化为程序语句的过程,理解儿种基本算法语句——输入语句、输出语句、赋语句、条件语句、循环语句,进一步体会算法的基木思想:第二节:算法案词通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
1.3在教学中贯彻算法思想对于算法而言,一步一步的程产化按骤,即“算则”州然重要,但这些步骤的依据,即“第理“有着更基本的作用。
高中数学新课标人教A版必修第一二册教材解读〖《一元二次函数、方程和不等式》章整体解读〗
第二章一元二次函数、方程和不等式整章内容解读1.本章的知识结构和研究脉络是怎样的?本章的知识结构如图1所示:学生在初中学习等式的内容时,先学习了用含有未知数的等式(方程)表示问图1题中的相等关系,接着以解方程为目的,学习了等式的一些基本性质,然后研究了两种具体的方程——一元一次方程和一元二次方程的解法和应用.概括起来就是“现实背景—相等关系与等式——等式性质——方程及其解法——应用”.本章在构建不等式内容的结构体系时,采用了与等式类似的顺序:现实背景——不等关系与不等式——关于两个实数大小关系的基本事实——不等式性质——不等式解法、证明——应用.2.依据课标,本章的定位、核心素养、思想方法、育人价值是怎样的?在课标中“一元二次函数、方程和不等式”属于必修主题一“预备知识”.它们的定位是为高中数学课程做好知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.本章是多种数学素养培养的载体,具体可以用下表表示:核心素养载体数学抽象不等关系,基本不等式的应用,一元二次不等式本章蕴含着丰富的数学思想方法,特别是数形结合、分类讨论、函数、数学模型等思想方法.在探索发现重要不等式,在用几何方法解释实数的基本事实、不等式的性质和基本不等式,在研究二次函数与一元二次方程、不等式的解的情况时,都充分应用了数与形结合的方法.在探索或证明不等式的部分性质,在研究一元二次不等式的解的情况时,都充分应用了分类讨论的思想方法.从函数观点看方程和不等式,充分体现了函数思想之下知识之间整体性和联系性,也体现了函数的重要性.基本不等式、一元二次不等式是解决实际问题的数学模型,遇到实际问题,通过识别、转化为基本模型达到解决的目的.通过学习本章内容,可以帮助学生逐渐养成借助直观理解概念,进行逻辑推理的思维习惯,以及把实际问题抽象成数学问题,并按照一定的模型或程序有序求解的分析问题、解决问题的能力.还可以引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习.3.本章知识与其他知识之间有什么联系?怎样把握教学的深度和广度?本章知识与其他知识联系非常密切.首先,学习本章的起点是初中的相关知识.通过类比初中学过的等式和方程,确定本章的整体研究思路.类比等式的性质,学习不等式的性质,理解等式与不等式的共性与差异.通过梳理初中从一元一次函数观点看一元一次方程、一元一次不等式的思想方法,类比得到探索一元二次不等式解法的路径,获得二次函数求解一元二次不等式的程序.第二,本章内容是整个高中数学的基础,在后续的学习中将会经常用到本章所学的知识.一方面,本章所学的具体知识在后续学习中经常会用到,比如,不等式的性质,重要不等式,基本不等式,一元二次不等式的解法,等等.另一方面,本章的研究方法在后续学习中若能主动应用,将有助于提高思维的灵活性,比如,函数对方程、不等式的“整合”作用,从函数观点看方程和不等式中体现出来的数学整体观和联系性,等等.因此,在本章教学中要注重梳理初中的知识,以帮助学生扫清障碍,提升学习效果.4.本章的学习目标有哪些?根据课标,本章的学习目标如下:(1)等式性质与不等式性质梳理等式的性质,理解不等式的概念,掌握不等式的性质.(2)基本不等式掌握基本不等式2a b +≤(a ,b ≥0).结合具体实例,能用基本不等式解决简单的最大值或最小值问题.(3)从函数观点看一元二次方程会结合二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.(4)从函数观点看一元二次不等式①经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.能借助二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.②借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系.5.与2021年课标下的教科书相比,本章内容主要有哪些变化?与按照2021年颁布的课程标准编写的教科书相比,本章的变化如下:(1)位置的变化:2021年课程标准中,不等式的内容在必修数学5中,2021年版课程标准中,不等式的内容安排在必修主题一的“预备知识”中.(2)内容的变化:从知识点看,内容没有变化,但是从内容的处理方式看上有三点改变:第一,注重初高中的衔接,从复习初中内容开始,自然引申出新的内容.第二,注重类比,突出研究一个数学对象的基本路径,比如先复习等式性质的研究方法,再由方法引导,探究不等式的性质;复习一次函数观点看一元一次方程和不等式的方法,在此基础上研究二次函数观点看一元二次方程和不等式的方法.第三,注重函数观点看问题,体现数学知识的整体性和联系性.。
高中数学(各版本教材目录)
高中数学各版本新教材目录体系比较第三章统计案例§1 回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析阅读材料高尔顿与回归§2 独立性检验2.1条件概率与独立事件阅读材料概率与法庭2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用《数学选修4-1 几何证明选讲》第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质《数学选修4-2 矩阵与变换》第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用《数学选修4-4坐标系与参数方程》第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质《数学选修4-5不等式选讲》第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式。
解读《普通高中数学课程标准(2017年版)》
解读《普通高中数学课程标准(2017 年版)》从课程标准的结构来看,2017 版普通高中数学课程标准,新增了学科核心素养、课程结构、学业质量三个重要的部分,同时课程标准还围绕核心素养和教学评价给予了相关案例,帮助高中数学老师在教学实践过程中更好地落实新课程标准。
二、课程性质与基本理念的变与不变(一)课程性质在2017 年课程性质中明确了数学课程的社会功能和教育功能强调了高中数学课程,是义务教育阶段后普通高级中学的主要课程,具有基础性,选择性和发展性,必修课程,面向全体学生构建共同基础,选择性必修课程,选修课程,充分考虑学生的不同成长需求,提供多样性的课程,供学生自主选择,高中数学课程,为学生的可持续发展,和终身学习创造条件。
(二)课程基本理念两版课程标准的核心指导思想均为以学生发展为本,相较于实验版课标着重强调教师注重学生能力发展转变为注重学生核心素养的培养倡导独立思考、自主学习、合作交流的学习模式,并在教育过程中强调重视过程性评价促进学生在不同的学习阶段数学核心素养水平的达成。
三、学科核心素养与课程目标的变与不变(一)学科核心素养与实验版课程标准相对比,可以发现,2017 年课程标准首次提出了数学区别与其它学科的核心素养包括:数学抽象,逻辑推理,数学建模、直观想象,数学运算,数据分析。
并强调数学学科核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现,是在数学学习和应用的过程中逐步形成和发展的。
这些数学核心素养既相互独立,又相互交融,是一个有机整体。
(二)课程目标(1). 由原来是“双基”转变为“四基”与“四能”。
提出通过高中数学课程学习学生进一步学习,以及未来发展所必需的数学基础知识,基本技能,基本思想,基本活动经验提高,从数学角度发现和提出问题的能力,分析和解决问题的能力。
(2). 由提高数学能力转变为发展数学素养在学习数学和应用数学的过程中,学生能发展数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析、等数学学科核心素养。
高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析
高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析2.1等式性质与不等式性质一、本节知识结构框图二、重点、难点重点:不等式的基本性质,等式与不等式的共性与差异.难点:类比等式的基本性质及其蕴含的思想方法,研究不等式的基本性质;等式与不等式的共性与差异.三、教科书编写意图及教学建议在初中,学生学习了用含有未知数的等式(方程)表示问题中的相等关系,为了解方程研究了等式的一些基本性质,本节在初中等式学习的基础上,类比等式的学习内容和方法,展开不等式的研究,首先类比用等式表示相等关系,用不等式表示问题中的不等关系;然后在对等式的基本性质进行梳理,归纳其中蕴含的数学思想方法的基础上,研究不等式的性质,并用不等式的性质证明简单命题,通过本节的学习,掌握不等式的性质,提高对等式和不等式的共性与差异的理解,加深对“代数性质”的认识,提高提出问题和解决问题的能力.1.相等关系与不等关系教科书从现实世界和日常生活中存在的相等关系、不等关系讲起,类比用等式表示相等关系,用问题1的4个例题说明了如何用不等式或不等式组表示实际问题或数学问题中蕴含的不等关系.与用等式表示相等关系类似,用不等式表示不等关系的关键也是确定问题中涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.与用等式表示相等关系不同的是,有时用自然语言表达的不等关系不够明确,例如“不少于”“不低于”“至多”“至少”等,需要先把它们翻译成大于或小于的关系,再用不等式表示.关于问题2,要解决这个问题,需要用不等式表示其中的不等关系,还需要求不等式的解集.而如何解这个不等式呢,教科书提出“与解方程要用等式的性质一样,解不等式要用不等式的性质”,这就引出了对不等式性质的研究.接下来,教科书没有立即开始研究不等式的性质,而是先讨论了确定两个实数大小关系的方法.在初中,学生学过了实数的大小关系是由这两个实数在数轴上的点的位置关系规定的,这可以看成确定实数之间大小关系的几何规则.这个规则尽管直观,但在比较两个实数的大小关系时并不实用,因此这里介绍了一种代数方法——两个实数大小关系的基本事实.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而使实数的运算能够参与到实数的大小比较中,为不等式的论证提供了运算工具,也为研究不等式的性质奠定了基础.在本部分内容的最后,作为对相等关系和不等关系的总结,也为了引出基本不等式,教科书设计了一个探究栏目,让学生在第24届国际数学家大会的会标中发现相等关系和不等关系.这个会标实际上就是“赵爽弦图”——由4个全等的直角三角形围成一个大正方形,中空的部分是一个小正方形,由于大正方形的面积大于4个直角三角形的面积和,即(设直角三角形的两条直角边的长为,()),而当直角三角形变为等腰直角三角形,即时,中空部分缩为一个点,这时有相等关系.这样,就引出了基本不等式的一种变形形式.在上述过程中,学生的困难在于想不到从面积的角度发现不等关系,教学中应加强引导.接下来,教科书利用完全平方公式和两个实数大小关系的基本事实证明了上述不等式,这既体现了数学知识之间的联系,又再一次说明了两个实数大小关系的基本事实在解决不等式问题中的应用价值.2,等式性质与不等式性质教科书类比等式的基本性质,研究了不等式的基本性质及其证明和应用.为了帮助学生从等式的性质及其研究方法中获得启发,去研究不等式的性质,教科书设计了两个问题(教科书第40页的思考栏目和探究栏目).通过这两个问题,让学生在梳理并观察等式的基本性质的基础上认识到,这些性质包括在数学推理和运算中经常用到的“对称性”和“传递性”,还包括解方程所需要的等式对四则运算的不变性,而这两个方面反映了“式的大小关系”的本质属性,这些基本属性为探究不等式的基本性质指明了方向.学生在猜想不等式的基本性质的过程中会发现,不等式的基本性质与等式的基本性质存在差异:就不等式自身的特性而言,不等式不具有“对称性”,而是具有“相反性”,即,;就不等式与四则运算的关系而言,当乘一个负数时,不等号要调换方向,即,.不等式的这种特殊性是由实数的基本性质决定的,在对不等式进行论证时,除了要用到实数大小关系的基本事实,还需要用到关于实数的其他一些基本事实,例如:(1)正数大于0,也大于一切负数;负数小于0,也小于一切正数.(2)正数的相反数是负数,负数的相反数是正数.(3)两个正数的和仍是正数,两个负数的和仍是负数.(4)同号两数相乘,其积为正数;异号两数相乘,其积为负数.利用这些基本事实,可以对猜想出的不等式的基本性质进行证明.在表述不等式的基本性质时,教科书也做了一些改变.不等式的性质3是类比等式的性质3得到的,性质4是类比等式的性质4,5得到的,在表述它们时,教科书把加法和减法合并为“加法”,把乘法和除法合并为“乘法”,这也表明高中数学对运算的认识更趋于一般性.此外,考虑到对于同一个数学对象的多元联系表示,有利于加深学生对它的理解,教科书从不同角度表述了不等式的性质,例如对于性质3和性质4使用了自然语言叙述,对于性质3还用数轴上的实数点展现了不等式包含的动态过程及结果.教学中可以让学生用自然语言或图形语言表述其他不等式的性质.在得到并证明了不等式的基本性质之后,教科书用这些基本性质,推导出了其他一些常用的不等式的性质(性质5~7),这些性质可以作为结论在今后的推理中使用.另外,证明这些性质的过程可以看作不等式的性质在代数证明中的初步应用.证明的关键是利用不等式的基本性质,对给定的不等式进行结构上的变形,例如“不等式两边同加一个数”“不等式两边同乘一个数”等,逐步把给定的不等式变形为要证明的不等式.正确地运用不等式的性质对不等式进行变形对学生来说有一定的难度,教学中可以通过让学生多练习、纠正其典型错误等方式逐步帮助学生掌握正确的方法.在本部分内容的最后,教科书安排了一道例题(例2),向学生示范了应用不等式的性质证明命题的一般思路,这个命题的证明比不等式的性质5~7的证明要复杂一些,因为已知条件与结论之间的联系不够明显,证明中需要对已知不等式做什么变形不太明确,对于这样的问题,教科书在“分析”中给出了证明的一般思路:从结论出发,结合已知条件,寻求使当前命题成立的充分条件,而这个充分条件是容易由已知条件证明的,这实际上是综合运用“综合法”和“分析法”证明命题的思路,但因为教科书没有专门介绍证明方法,所以本例的证明过程采用了学生更熟悉的“综合法”的格式,教师在教学中可以补充一些典型题目,引导学生领会这种“发展条件、转化结论、寻求联系”的证明较复杂命题的一般思路.。
高中数学必修及选修教材学习知识体系结构与框架
第一章集合集合与函数概函数及其定义念概念表示方法:列举法、描述法根本关系:交集、并集、补集、全集、属于根本运算交、并、补元素的概念、个数概念定义域、值域对应关系区间:闭开,半开半闭展示发放:图像法、列表函数的单调性增函数基本性质最大、最小值定义义奇偶性;判断方法减函数a r a s a r s指数与指数幂的运算( a r) s a rs( ab) r a r b r第二章整数指数幂基本初等函数指数函数互为反函数对数函数幂函数指数幂指数函数性质对数与对数运算对数函数及性质定义:有理数指数幂无理数指数幂定义定义域 R性质值域〔 0,+ ∞〕图像过定点〔 0,1〕单调性对数底数真数定义log a ( M N ) log a M log a N运算log a M log a M log a NNlog a M n nlog a M定义定义域图象值域过点〔 1, 0〕性质单调性过〔 1,1 〕性质奇偶性单调性第三章]函数与程函数的应用函数模型及应用定义关系方程的根与函数的零点零点定理二分法定义用二分法求方程的近视根求根步骤几类不同增长的函数模型函数模型的应用实例建立实际问题的函数模型必修二第一章空间几何体锥、柱、台、球的结构特征空间几何体的结构简单组合体的结构特征正视图三视图侧视图俯视图空间几何体的三视图与直观图斜二侧画法直观图平行投影与中心投影锥、柱、台的外表积与体积空间几何体的表面积与体积球的外表积与体积第二章平面:公理1、公理 2、公理3共面相交直线平行直线:点、直线、平面间的位置关系空间点、直线、平面间的位置关系直线、平面平行的判定及性质直线、平面垂直的判定及性质空间中直线与直线的位置公理 4关系异面直线平行平面与平面间的位置关系相交直线在平面空间中直线与内平面的位置关相交系平行直线与平面平行的判定定理平面与平面平行的判定定理直线与平面平行的性质定理平面与平面平行的性质定理直线与平面垂直的判定定理平面与平面垂直的判定定理直线与平面垂直的性质定理平面与平面垂直的性质定理第三章直线与方程倾斜角 0°≤α< 180°直线的倾斜角与斜率斜率 k tanl1 //l2k1k2,b1b2两条直线平行与垂直的判定l 1l2k 1k 21点斜式y y1k(x x1 )截距式 y kx b直线的方程两点式yy1x x1y2y1x2x1一般式 Ax By C0两条直线的交点坐标A1 x B1 y C10A2 x B2 y C20两点间的距离公式|AB|(x x)2(y y)22121直线的交点坐标与距离公式点到直线的距离Ax0 By0CdB 2A 2平行线间的距离第四章圆的标准方程x a 2y b 2r 2圆的一般方程圆的方程y2x 2Dx Ey F0d r l 与 C 相交直线与圆的位置关系d r l 与 C相切圆与方程直线、圆的位置关系直线与圆的方程的应用圆与圆的位置关系概念空间直角坐标系空间两点间的距离公式d r l与 C相离相交 R r d R r内切d Rr外切 d Rr内含 d Rr相离 d Rr辗转相除法与更相减损术必修三算法的概念第一章算法秦久韶算法算法与程序框图顺序结构程序框图条件结构循环结构输入语句、输出语赋值语句初根本算法语句步条件语句、循环语句算法案例第二章随机抽样统用样本估计总体计变量间的相关关系抽签法简单随机抽样随机法系统抽样求极差分层抽样决定组距组数将数据分组用样本频率分布估计总体分布列频率分布表画频率分布直方图用数本的数字特征估众数,中位数,平均数计总体的数字特征标准差变量间的相关关系正相关两个变量的线性相关负相关回归直线第三章概率随机事件的概率随机事件的概率频率意义概率性质必然事件不可能事件任何两个不同事件互斥根本领件特征古典概型任何事件都可表示为根本领件的和概率定义几何概型概率必修四第一章任意角和弧度制任意角弧度制正角负角零角任意角的三角函数三角函数三角函数的图像与性质三角函数:正弦函数,余弦函数,正切函数公式一:终边相同的角同一三角函数值相等周期性同角三角函数关系单调性正弦余弦函数的性质奇偶性正弦余弦函数的图像最大最小值正弦为奇余弦为偶正切函数的性质与图像周期奇偶性单调性三角函数的诱导公式函数y sin x的图像公式二值域公式三公式四公式五公式六振幅周期2初相相位x频率f12三角函数模型的简单应用第二章平面向量的实际背景及根本概念平面向量的线性运算平面向量平面向量的根本定理及坐标表示平面向量的数量积平面向量应用实例向量的物理背景与概念有向线段零向量,单位向量的几何表示向量平行向量相等向量与共线向向量加法三角形法那么量向量加法运算及几何意义向量加法平行四边形法那么向量减法运算及几何r ra a意义r r r向量数乘运算及几a a a何意义rrr ra b a b平面向量根本定理平面向量的正交分解极坐标表示平面向量坐标运算数量积rrrrr r r r o o 共线的坐标表示a b a b cos a0,b0,0180物理背景与定义投影rx , ya坐标表示,模,夹r角x2y2ar rx1x2y1 y2平面几何中的向量cosa br r2222方法 a b x1y1x2y2向量在物理中的应用举例cos cos cos sin sin两角差的余弦公式cos cos cos sin sin 第三章sin sin cos cos sin两角和与差的正弦sin sin cos cos sin 两角和与差的正余弦正切公式弦,余弦和正切公tantan tan 1 tan tan式tantan tan 1tan tan三sin22sin cos角二倍角的正弦余弦恒正切公式2222等cos2 cos sin2cos 1 1 2sin 变换tan 22 tan 1tan2简单的三角恒等变换必修五正弦定理a b c 第一章sin sin 2 Rsin C解三角形222正弦定理和余弦定ab c 2bccos理余弦定理b2a2c22accosc2a2b22ab cosC应用举例第二章数列项数列的概念与简单表示法有穷数列无穷数列定义等差数列数列等差数列的前n 项和等比数列等比数列前n 项和S n等差中项ba c2通项 a a n 1 dn1公差 da n a mn mn a1 a nS n2数列的应用S n na1n n1d2定义公比q n m a na m等比中项 a n2a p a q通项a n a1q n 1na1q1a11q n anqq 11qa11q必修五a b 0a b第三章不等式与不等关系a b0a ba b 0a b一元二次不等式及不其解法等式根本不等式二元一次不等式〔组〕与简单线性规划问题ax2bx c0ax2bx c0ax2bx c0a b 2 ab最大最小值问题一元一次不等式〔组〕与平面区域目标函数线性目标函数线性规划简单的线性规划问题可行解可行域最优解选修 1-1第一章命题及其关系常充分条件和必要条件用逻辑用语简单的逻辑连接词全称量词与存在量词真命题:判断为真的语句命题假命题:判断为假的语句四种命题及其关系原命题逆命题四种命题否命题逆否命题充分条件和必要条件充要条件且或非全称量词x M , p( x)存在量词x M , p( x)含有一个量词的命题的否认x M , p(x)nx i y i nx yb i1n2x i2nxi 1a y bx 选修 1-2回归分析的根本思想及初步应用样本中心第一章统计案例独立性检验的根本思想与初步应用第二章合情推理合情推理与演绎推理推理演绎推理与证明总偏差平方和回归方程y bx a分类变量随机变量 K 2越大,说明两个分类变量,关系越强,反之,越弱。
高中数学知识结构框图(人教版)
高中数学知识结构框图(必修1)第一章集合与函数概念第二章基本初等函数(I)根式n a指数指数函数m分数指数幕a n =>0, m,n^N*, n > 1)*无理数指数幕/r sa a(a )r ,(ab) = a bMs=ars=ar r 定义y = a x(a 0,a = 1)图象:“一撇或一捺” 过点(0,1)•见教材P56* 性质:位于x轴上方,以x轴为渐近线对数函数定义:y = log a x(a 0,a=1)►图象:位于y轴右侧,以y轴为渐近线•见教材P71■>.具体的五个幕函数■■1, 0)rf、*■y — x2y = x/3y = x1■*2y = x2-4y = xV 丿I特征:过点(1,1),上递增;当::0时,*性质:过点图象见P77图2.3—1当〉0时在(0,=)在(0, ■:-)上递减。
学习必备 欢迎下载第三章函数的应用象是连续不断的一条曲线,并且有厂—r*函数零点的存在性” f (a),f(b) vO,那么函数y=f(x)在区间(a,b)内有零点,即存在2 (a,b),使得 f(c)=O,这个c 也就是方程f(x) = 0的根.V __________ ___________ 丿函 数 模 型 及 苴丿、 应如果函数y= f(x)在区间[a,b ]上的图柱谁球三视.图第二章 点、直线、平面之间的位置关系的知识结构框架 表面积数学二 第一章空间几何体的知识结构框架 主间平行关系之凤的转化平面(公理I. M2-公■狸3,聲理41木见崗[芾仃宜顽4' 表面积和体积 主间兀何体 平而与平面的位置关系直线与平面的位置关希 空问亘线,平面位査壬吏线与亘线的位置关 克蚁与克线平行41 ---------------------------------------------Ik克线与辛面平行 ---------------------------------------------平面与平面平行-------------------------------------------------------------------------------------------------------- r ------------------------------------------------------------------------------------------------ P ----------------------------------------------空间垂直黄系之间的转化直蛭与直线垂宜------------ ► 直线与平面垂亘 ----------- ►平面与平面垂直第三章直线与方程的知识结构框架从几何亢观餌代数匕示C建立從线的力桎)我式闯点式从代数丧示到几何“诧(通过力程研龙JL何性质和度量)相交爭f亍(•卜交点)< tii点】I6K曲点和1的距离*hn的砸离\+X冏条単行线闻的坯倉曲叢在线的一屮朽和雜RWX?^ 血的判疋第四章圆与方程的知识结构框架数学三 基本思憩数学四 •荃丰知识I 框图的基丰结枸本章知识结构如下: I 用算法一包想认识数孚性规划 」隍规划问题基他问题本章知识结构如下:。
普通高中数学课程标准新版
普通高中数学课程标准(实验)解读人民教育出版社章建跃zhangjy@一、数学课程的性质、地位和作用二、课程的十大理念•1.构建共同基础,提供发展平台•2.提供多样课程,适应个性选择•3.倡导积极主动、勇于探索的学习方式•4.注重提高学生的数学思维能力•6.与时俱进地认识“双基”•7.强调本质,注意适度形式化•8.体现数学的文化价值•10.建立合理、科学的评价体系三、课程目标•总目标:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
•具体目标:• 1.获得“双基”。
• 2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
• 3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
• 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
• 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
• 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,进一步树立辩证唯物主义和历史唯物主义世界观。
四、课程结构•必修课程5个模块,各36课时•数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数);•数学2:立体几何初步、平面解析几何初步;•数学3:算法初步、统计、概率;•数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换;•数学5:解三角形、数列、不等式。
•必选模块(各36课时)•系列1:文科必选•选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用;•选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
•系列2:理科必选•选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何;•选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入;•选修2-3:计数原理、统计案例、概率。
北京市高中数学课程架构与进度
北京市高中数学课程架构与进度北京市高中数学课程架构与进度一、教材使用北京全市所有区县的数学教材总共分为两套,以中轴线为地理分界线东西各使用一套。
东部区县使用人教A版,如东城、朝阳、通州等。
西部区县使用人教B版,如西城、海淀、石景山、房山,昌平、门头沟、怀柔等。
二、教学进度北京选用了人教A版和人教B版的教材,其中必修1、必修2、必修3、必修4、必修5是文理必学内容,文科选学选修1-1和选修1-2;理科选学选修2-1,选修2-2,选修2-3和选修4-1,选修4-4内容。
高中一年级上学期学习必修1和必修4,下学期学习必修5和必修2;高中二年级文科上学期学习必修3和选修1-1,下学期学习选修1-2之后进入总复习;高中二年级理科上学期学习必修3和选修2-1,下学期学习选修2-2和选修2-3;高中三年级文科继续总复习,理科在上学期快速讲完选修4-1和选修4-4之后进入一轮复习。
注:有的学校理科在高二末就进入了一轮复习,而选修4-1和选修4-4的内容会在复习的过程中穿插着讲。
三、相关考试1、各区的模块考试(难度:易)2、各校的月考(难度:中等,重点校难度高)3、高三春季会考(难度:易)4、每年一月份各区会有综合性的期末考试(难度:易)5、每年的4月份各区会有一模考试(难度:中等)6、每年的5月份各区会有二模考试(难度:中等)7、高考(难度:?)四、课程架构高一:注:人教版新课标的课程紧张,大多数学校在赶进度,具体进度以具体学校为准!高二:文科高二:理科注:高二阶段文科生学习到的知识相比于高一而言较简单,一般从下学期就进入了总复习状态,理科生则需要继续学习很多的内容,到高二学期末或者到高三才会进入总复习阶段。
高三:理科注:有的学校在高三阶段不讲选修4-1、选修4-4,而是直接进入总复习状态。
而在复习的过程中对该内容进行必要的应试性讲解。
高三总复习:高中数学专题分类专题一:集合与简易逻辑该专题较简单,高考一般会出一道小题分值5分左右。
最新新人教版高中数学必修四教材分析(1)
新人教版高中数学必修四教材分析一、教材分析的理论本文分析的内容为新人A教版高中数学(必修四),运用系统理论进行研究,其出发点就是将教材看成是一个系统。
分析系统的要素之间整体与部分的构成关系,以及形成的不同质态的分系统及其排列次序。
进行教材分析,首先从整个数学教育发展到教师个人专业成长,再到课堂教学等方面研究教材分析的意义;然后,按照树立正确教材观、深刻理解课标、分析教材特点、分析教材内容结构、处理教材等步骤研究如何科学分析高中数学教材,其中的案例均来自人教A版高中数学(必修四);最后,结合典例分析的感悟,提出了高中数学教材分析时应坚持的思想性、实践性、整体性及发展性原则,以提升教材分析的效果。
二、数学必修四第三章的教材分析从系统上看作为新课程高中数学非常重要的必修四,它是由“第一章三角函数、第二章平面向量、第三章三角恒等变换”三部分内容组成。
内容层层递进,逐步深入,这对于发展学生的运算和推理能力都有好处。
本章内容以三角恒等变换重点,体会向量方法的作用,并利用单位圆中的三角函数线、三角形中的边角关系等建立的正弦、余弦值的等量关系。
在两角差的余弦公式的推导中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦和正切公式的过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、特殊化、化归等思想方法。
特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导。
教材还对三角变换中的数学思想方法作了明确的总结。
本章还强调了用向量方法推导差角的余弦公式,并用三角函数之间的关系推导和(差)角公式、二倍角公式。
要把重点放在培养学生的推理能力和运算能力上,降低变换的技巧性要求。
教学时应当把握好这种“度”,遵循“标准”所规定的内容和要求,不要随意补充知识点(如半角公式、积化和差与和差化积公式,这些公式只是作为基本训练的素材,结果不要求记忆,更不要求运用)。
新课标高中数学人教A版选择性必修第一二三册教材解读〖第一章空间向量与立体几何编写意图〗
编写意图1.关注内容的联系性和整体性,构建本章的研究框架与必修“平面向量及其应用”一样,本章也是《课程标准(2021年版)》中几何与代数主线的内容.空间向量既是代数研究的对象,也是几何研究的对象,是沟通几何与代数的桥梁.本章的内容安排充分考虑空间向量的这种联系性、突出几何直观与代数运算之间的融合,通过形与数的结合.感情数学知识之间的关联,加强对数学整体性的理解,与平面向量一样,空间向量研究的“暗线”也是向量空间理论.空间向量的概念、速度等为背景,抽象空间向量的概念,定义空间向量的加法、数乘等线性运算,并给出线性运算满足的运算性质,这时空间中的向量所组成的集合就构成了一个实数域上的向量空间,进一步地,如果在这个向量空间里定义“数量积”运算并给出其性质,那么这个向量空间就是一个有度量概念的欧氏向量空间,欧氏空间中空间向量的加法、数乘、数量积等运算建立了空间向量与立体几何中的位置关系与度量问题之间的联系.一般地,在构建一个向量空间后,通常会研究这个向量空间的一般规律.具体到空间向量,就是研究空间向量基本定理、根据空间向量基本定理,这个向量空间可以由三个线性无关的向量生成.这为空间向量的运算化归为数的运算奠定了基础.这样,空间任意一个向量都可以表示成三个不共面向量的线性运算,在用空间向量解决立体几何问题的过程中,这种表示发挥了“基本”作用.从空间向量基本定理出发,选定空间中的任意一个定点O,并给定一个单位正交基底{i..},分别过点O作平行于向量i..的数轴,就可以建立由{O:i,,}确定的空间直角坐标系.在解决立体几何问题时,通过建立空间直角坐标系,可以把空间向量及其运算转化为数及其运算,从而可以将几何问题完全“代数化”,得到用空间向量解决立体几何问题的“坐标法”.立体几何中的向量方法表现为如下的“三步曲”:为了用空间向量解决立体几何问题,首先要把点、直线、平面等组成立体图形的要素用向量表示,使其成为可以运算的对象,将几何问题转化为向量问题;进而利用空间向量的运算,研究空间直线,平面间的平行,垂直等位置关系以及距离、夹角等度量问题;最后再利用向量运算的几何意义,将运算结果“翻译”成相应的几何结论,从而得到几何问题的解决.基于以上分析,教科书构建了“空间向量与立体几何”的如下研究框架:背景一空间向量的概念一空间向量的运算及其性质空间向量基本定理、空间直角坐标系一空间向量及其运算的坐标表示一应用2.类比平面向量研究空间向量的概念及其运算,关注其中维数带来的变化平面向量与空间向量都属于向量,平面向量是二维向量,空间向量是三维向量,两者有密切的联系.空间向量是平面向量的推广,两者除维数不同外,在概念,运算及其几何意义,坐标表示等方面具有一致性;平面向量基本定理与空间向量基本定理在形式上也具有一致性;利用空间向量解决立体几何问题,是利用平面向量解决平面几何问题的发展,主要变化是维数的增加,讨论对象由二维图形变为三维图形,基本方法都是将几何问题用向量形式表示,通过向量的运算,得出相应几何结论.由于平面向量和空间向量具有相同的线性运算性质.在构建空间向量及其线性运算的结构体系时,我们把空间向量及其线性运算的内容进行了集中处理,相关概念和线性运算性质通过类比平面向量的方式呈现.这样.即使教科书在局部范围内整体性更强,也使知识的纵向联系更加紧密.同样,空间向量的坐标运算与平面向量的坐标运算具有类似的运算法则.因此,教科书通过问题“有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示并给出证明吗?”引出空间向量运算的坐标表示,空间向量与平面向量的差异主要由其维数引起,对此教科书也给予了充分关注.例如,在证明空间向量线性运算的结合律时,通过问题“证明结合律时,与证明平面向量的结合律有什么不同?”引导学生思考向量从平面推广到空间时,研究对象维数的变化对运算律的证明带来的影响,这样处理,也使学生在平面向量的基础上进一步深入理解空间向量.3.关注空间向量与立体几何知识间的联系空间向量体系的建立需要立体几何的基本知识,反过来,立体几何中的问题可以用向量方法解决.因此,我们说空间向量与立体几何间有着天然的联系.“空间向量与立体几何”属于“几何与代数”内容主线,课程标准设计这条主线的一个基点是:让学生知道如何用代数运算解决几何问题,这是现代数学的重要研究手法.例如,教科书在定义共面向量时,通过画出向量与平面平行的立体图形帮助学生建立概念;在研究如何确定点的坐标和向量的坐标时,注意引导学生借助几何直观进行研究,并根据直线和平面垂直的判定定理解释其中的道理,等等这些安排都凸显教科书在构建向量体系时对立体几何的基本知识的重视.又如,在空间向量的数量积运算后,教科书安排了证明直线与平面垂直的判定定理以及其他一些简单的立体几何问题;在空间向量基本定理后,安排了证明直线与直线垂直或平行以及求两条直线所成角的余弦值等简单立体几何问题;在完成空间向量体系的构建后,安排了运用空间向量研究空间直线、平面的位置关系和距离、夹角等度量的问题,这些安排都体现了“让学生知道如何用代数运算解决几何问题”的设计意图,为学生后续学习打下了基础.4.突出用向量方法解决立体几何问题向量方法是解决几何问题的常用方法.平面几何讨论的是平面上的点、直线等元素,它们可以与平面向量建立联系.由于平面向量可以表示平面上直线之间的平行,垂直关系以及两条直线夹角的大小,因此许多平面几何问题可以转化为平面向量问题,通过平面向量的运算得出几何结论.类似地,立体几何所讨论的是三维空间中的点、直线、平面等元素,由于它们可以与空间向量建立联系,许多立体几何问题可以转化为空间向量问题,通过空间向量的运算得出几何结论,解决这些问题,主要运用向量方法.向量方法有别于综合几何方法,综合几何方法是借助图形直观,从公理,定义和定理等出发,通过逻辑推理解决几何问题;而向量方法则是用向量表示几何元素,通过向量运算得到几何问题的解决.一般地,利用空间向量解决立体几何问题,有如下的“三步曲“:第一步,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二步,通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹角等问题:第三步,把向量运算的结果“翻译”成相应的几何结论.这种利用向量方法解决立体几何问题的“三步曲”.在解决几何问题时具有程序性、普适性.对于立体几何中的向量方法,教科书采取了先分放后集中的方式,即在学生系统学习空间向量知识的同时,安排利用空间向量解决简单的立体几何问题,渗透向量方法;而在建立空间向量的体系后,则集中围绕“使学生认识向量方法在解决立体几何问题中的作用,体会向量方法的“三步曲””这个中心来设计,结合具体问题明确给出利用空间向量解决立体几何问题的“三步曲”,安排用“三步曲”解决空间直线、平面的位置关系以及距离、夹角等度量问题的内容,进一步体会向量方法在解决立体几何问题中的普适作用.5.关注投影向量的意义及其在解决距离问题中的作用空间向量投影是《课程标准(2021年版)》新增加的内容,课程标准对空间向量投影的概念及其应用都有明确的要求,我们在编写教科书时.关注了课程标准的这一变化.向量的投影是高维空间到低维子空间的一种线性变换,得到的投影向量是变换的结果,是低维的空间向量.空间向量投影概念的建立对于学生利用投影向量研究立体几何问题有重要意义,教科书在引入向量数量积后,类比在必修课程中学习过的平面向量投影的概念,利用几何直观给出了空间向量投影的概念,距离是空间中的重要度量.本章涉及的距离问题主要有:两点间的距离,点到直线的距离,平行线之间的距离,点到平面的距离,直线到平面的距离,平行平面之间的距离等,分析上述距离的内容,可以得到如下认识:(1)除两点间距离外,垂直反映了距离的本质,因此借助勾股定理可以直观地研究距离问题.(2)无论是对于平面还是直线,法向量都是反映垂直方向的最为直观的表达形式,因此利用法向量可以刻画表示“距离”的线段的方向.法向量的方向和法向量上投影向量的长度既体现了几何直观,又提供了代数定量刻面,因此利用法向量和向量投影可以研究距离问题.由此可见,投影向量的几何意义和代数表示,不仅为研究立体几何的距离问题提供了便利,而且还提供了研究距离的方法,在研究距离问题时,参考向量、它的投影向量、三者的差,构成直角三角形.这样,利用勾股定理,结合空间向量的运算,距离问题也就迎刃而解.在本章,教科书注意尽可能地使用投影向量研究立体几何中的距离问题,在“142用空间向量研究距离、夹角问题”中,教科书采取了如下的对“距离”的研究顺序:首先,通过问题“已知直线的单位方向向量为u,A是直线上的定点,P是直线外一点,如何利用这些条件求点P到直线的距离?”引出对点到直线的距离的研究,进而利用投影向量得到求点到直线的距离的公式.这也为下一章利用投影向量,结合坐标法获得解析几何中的点到直线的距离公式进行了铺设.接下来,通过问题“类比点到直线的距离的求法,如何求两条平行直线之间的距离?”引导学生自己研究两条平行直线之间的距离.进而,利用投影向量研究点到平面的距离,并渗透利用法向量和投影向量研究距离问题的一般方法:第一步,确定法向量;第二步,选择参考向量(如图,向量即为参考向量);第三步,确定参考向量到法向量的投影向量;第四步,利用向量运算求投影向量的长度,最后,结合例题、习题,解决直线到平面、平行平面图问的距离问题(都可转化为点到平面的距离).6.关注用空间向量研究空间中直线、平面间的夹角问题与距离类似,角度是立体几何中的另一个重要的度量.空间直线、平面间的夹角问题,包括直线与直线所成的角、直线与平面所成的角、平面与平面所成的角,而直线、平面又都可以利用它的方向向量或法向量来刻画,因而空间直线、平面间的夹角问题就转化为求直线的方向向量、平面的法向量间的夹角问题,进而可以利用空间向量的数量积运算加以解决.。
人教A版高中数学教材目录(全)
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学_空间几何体的结构教学设计学情分析教材分析课后反思
普通高中课程标准实验教科书人教A版数学必修②第一章空间几何体 1.1节§1.1 空间几何体的结构(第一课时)教学设计山东省平度市第九中学姜尚鹏一、教学内容解析本节是“空间几何体的结构”的第一课时,是立体几何部分的起始课,也是义务教育阶段“空间与图形”课程的延续与提高。
主要内容为空间几何体、多面体的有关概念和棱柱、棱锥、棱台的结构特征。
与传统的立体几何体系相比,新课程采用从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面,故本节课的学习不能建立在严格的逻辑推理的基础上,要充分利用实物模型、图片等向学生展示具有典型几何结构特征的空间物体,增强直观感受,让学生按照由特殊到一般,由具体到抽象的思路来研究几何体的结构特征。
棱柱、棱锥、棱台是具有典型几何结构特征的空间几何体,是正确认识简单组合体的基础,因此本节课将重点研究棱柱的结构特征,并让学生在类比中自主研究棱锥和棱台的结构特征,从而为后续研究其它几何体提供一般性的思路和方法:直观感知、操作确认、思辨论证等。
本节课还蕴涵了丰富的数学思想方法,如借助于平面图形来研究立体图形,体现了类比及转化的数学思想;从棱柱的模型得到棱柱的定义与分类,体现了抽象概括与分类的思想;借助研究棱柱结构特征的方法研究棱锥、棱台,体现了类比的数学思想等.因此本节课是渗透数学思想,培养学生理性思维能力和数学应用意识的良好载体.基于此,确定本节课的教学重点为:让学生感受大量的空间实物及模型.概括出棱柱,棱锥,棱台的结构特征,逐步形成空间想象能力。
二、教学目标设置1.借助实物、模型及丰富多彩的图片,抽象出空间几何体的定义,能在感知多面体的基础上理解其定义及组成要素。
2.通过对棱柱这一类空间几何体的观察、分析、比较,抽象概括出棱柱的定义,依据定义,能判断一个几何体是否为棱柱。
理解棱柱的组成要素、表示方法、分类。
3.由探究棱柱结构特征的方法类比探究棱锥、棱台的结构特征,能判断一个几何体是否为棱锥、棱台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献阅读与数学写作 * 微积分的创立与发 展
选择性必修(第三册) (共计35课时) 章 节 6.1 分类加法计数原理与分步乘法计数原 理 第六章计数原理 探究与发现 (11) 6.2 子集的个数有多少
排列与组合 组合数的两个性质
探究与发现 6.3 数学探究(2)
二项式定理
杨辉三角的性质与应用 7.1 条件概率与全概率公式 阅读与思考 换还是不换?
第八章 立体几 8.1 基本立体图形 何初步(19) 8.2 立体图形的直观图 阅读与思考 画法几何与蒙日
8.3 简单几何体的表面积与体积 探究与发现 积 8.4 空间点、直线、平面之间的位置关系 8.5 空间直线、平面的平行 8.6 空间直线、平面的垂直 阅读与思考 方法 文献阅读与数学写作* 第 九 章 统 计 9.1 (13) 随机抽样 如何得到敏感性问题的诚实 几何学的发展 欧几里得《原本》与公理化 祖暅原理与柱体、锥体的体
2.3 直线的交点坐标与距离公式 阅读与思考 2.4 圆的方程 阅读与思考 坐标法与数学机械化 笛卡儿与解析几何
2.5 直线与圆、圆与圆的位置关系 3.1 椭圆 信息技术应用 用信息技术工具探究点的轨 迹:椭圆 3.2 双曲线 阅读与思考 第三章圆锥 曲线的方程 (12) 渐近线 3.3 抛物线 阅读与思考 为什么二次函数 y ax 图象是抛物线 阅读与思考 圆锥曲线的光学性质及其应用 解析几何的形成与
阅读与思考 反应
信息技术应用
统计软件的应用
9.2 用样本估计总体 阅读与思考 统计学在军事中的应用 —— 二战时德国坦克总量的估计问题 阅读与思考 9.3 大数据 公司员工的肥胖情况
统计分析案例
调查分析 第十章概率 (9) 10.1 随机事件与概率 10.2 事件的相互独立性 10.3 频率与概率 阅读与思考 孟德尔遗传规律
高中数学新教材框架 必修(第一册) (共计72课时) 章 1.1 集合的概念 1.2 集合间的基本关系 第 一 章 集 合 1.3 集合的基本运算 与常用逻辑用 阅读与思考 语(10) 集合中元素的个数 节
1.4 充分条件与必要条件 1.5 全称量词与存在量词 阅读与思考 命题及其关系
第二章 一元 二次函数、方 程和不等式 (8)
选择性必修(第一册) (共计 43 课时) 章 第一章 空间向量与 立 体 几 何 (15) 节 1.1 空间向量及其运算 1.2 空间向量基本定理 1.3 空间向量及其运算的坐标表示 阅读与思考 向量概念的推广与应用
1.4 空间向量的应用
2.1 直线的倾斜角与斜率 2.2 直线的方程 第二章 直线和圆的 方程(16) 阅读与思考 方向向量与直线的参数方程
6.2 平面向量的运算 6.3 平面向量基本定理及坐标表示 6.4 平面向量的应用
阅读与思考
海伦和秦久韶
数学探究(2) 用向量法研究三角形的性质 第 七 章 复 数 7.1 复数的概念 (8) 7.2 复数的四则运算 阅读与思考 代数基本定理
7.3* 复数的三角表示 探究与发现 1 的 n 次方根
文献阅读与数学写作 * 发展
数学建模(3) 建立函数模型解决实际问题
5.1 任意角和弧度制 5.2 三角函数的概念 阅读与思考 5.3 诱导公式 5.4 三角函数的图象与性质 探究与发现 第五章 三角 函数(23)
y A cos( x )
三角学与天文学
函数
y A sin( x )
3.4 函数的应用(一) 文献阅读与数学写作* 函数的形成与发展
4.1 指数 4.2 指数函数 阅读与思考 信息技术应用 4.3 对数 第 四 章 指 数 阅读与思考 函数与对数函 4.4 对数函数 数(16) 探究与发现 间的关系 4.5 函数的应用(二) 阅读与思考 中外历史上的方程求解 对数概念的形成和 互为反函数的两个函数图象 对数的发明 放射性物质的衰减 探究指数函数的性质
及函数
的周期 利用单位圆的性质研究正弦
探究与发现
函数、余弦函数的性质 5.5 三角恒等变换 信息技术应用 数表 5.6 函数 y Asin( x ) 5.7 三角函数的应用 阅读与思考 振幅、周期、频率、相位 利用信息技术制作三角函
必修(第二册) (共计69课时) 章 第六章 平面向 6.1 平面向量的概念 量 及 其 应 用 阅读与思考 (18) 向量及向量符号的由来 节
7.2 离散型随机变量及其分布列 第七章 随机变 7.3 离散型随机变量的数字特征
量及其分布 (10) 7.4 二项分布与超几何分布 探究与发现 二项分布的性质
7.5 正态分布 信息技术应用 概率分布图及概率计算
第 八 章 成 对 数 8.1 成对数据的相关关系 据 的 统 计 分 析 8.2 一元线性回归模型及其应用 (9) 数学建模(3) 8.3 分类变量与列联表 建立统计模型进行预测
2
x 为什么 y b x 是双曲线 a aBiblioteka 2 2y2 1的 b2
bx c(a 0)
的
文献阅读与数学写作 * 发展
选择性必修(第二册) (共计30课时) 章 4.1 数列的概念 阅读与思考 第 四 章 数 列 (14) 4.2 等差数列 4.3 等比数列 阅读与思考 方法 4.4 数学归纳法* 5.1 导数的概念及其意义 5.2 导数的运算 第五章一元函 数的导数及其 应用(16) 探究与发现 程的近似解 5.3 导数在研究函数中的应用 信息技术应用 图形技术与函数性质 牛顿法 ——用导数方法求方 中国古代数学家求数列和的 斐波那契数列 节
2.1 等式性质与不等式性质 2.2 基本不等式 2.3 二次函数与一元二次方程、不等式 3.1 函数的概念及其表示 阅读与思考 函数概念的发展历程
第三章 函数 概念与性质 (12)
3.2 函数的基本性质 信息技术应用 3.3 幂函数 探究与发现 探究函数 y x 1 的图象与性质 x 用计算机绘制函数图象