《圆的面积》圆PPT课件6(1)

合集下载

新人教版小学六年级数学上册《圆的面积》教学课件

新人教版小学六年级数学上册《圆的面积》教学课件

1.已知圆的直径,求圆的面积:先根据r=d÷2求出
半径,再根据S=πr2
计算圆的面积。即
S
d 2
2 。
2.已知圆的周长,求圆的面积:先根据r=C÷2÷π
求出半径,再根据S=πr2 计算圆的面积。即
S
C 2
2

计算下面各圆的面积。
3.14×(10÷2)2=78.5(平方厘米)
3.14×32=28.26(平方厘米)
课前活动
课前活动二:
一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周 喷灌的面积大约是多少平方米?
3.14×52 =3.14×25 =78.5(平方米) 答:旋转一周喷灌的面积大约是78.5平方米。
与你的小伙伴交流你的做法、以及你的思考。
八 等 分
1.判断下列阴影部分的形状是不是圆环?
探究新知
S=πr2
=3.14×102 =314(m2) 答:它能喷灌的面积是314m2。
归纳总结
1.本节课你学习了什么? 2.本节课你有哪些收获? 3.通过今天的学习,你想进一步探究的问题是什么?
课后作业
完成练习册本 课时的习题.
谢谢聆听
3.14×(25²-5²) =3.14×600 =1884(m²)
要求草坪的占地面积, 也就是求圆环的面积。
答:草坪的占地面积是1884 m²。
课后作业
1.完成下表。
4.5cm 3cm
8cm 40cm
50.24cm2 63.585cm2 28.26cm2 1256cm2
课后作业
2、公园草地上有一个自动旋转喷灌装置的 射程是10米,它能喷灌的面积是多少?
1÷2=0.5(m) 3.14×0.5²=0.785(m²) 答:它的面积是0.785m²。

北师大版 六年级上册《圆的面积》公开课课件

北师大版 六年级上册《圆的面积》公开课课件
北师大版小学数学六年级上册
圆的面积
我被主人用一根2米长 的绳子拴在了这棵小树 上,你知道我走一圈的 路程是多少吗?
2米
我能吃到最大 的草地面积是
多少?
平行四边形的面 积公式是怎样得
到的呢?
推导过程: 长方形的面积=长×
C
2
=πr
r
返回
我的收获
45
3
6
2
7
1
8
r1166
99
1155
1100
1144 1133 12 1111
圆的面积=πr×r=πr2
长方形的面积=长×宽
长方形的长相当于
圆周的一半πr
?
1 2 34 5 6 7 8 1 6 15 14 13 12 11 10 9
长方形 的宽相 当圆的
半径 r
?
概括:
设圆的半径为r,面积为S,那么圆的
2、把边长为4厘米的正方形剪成一个最 大的圆,求这个圆的面积和周长?
能不能说这个圆的面积和周长相等呢?为什么?
本课小结
你今天的收获是什么?
今天我学习了圆的面积。我知道了
把一个圆平均分成若干等分,然后拼在一
起,可以拼成一个近似(长方)形。长方形
的宽是圆的(半径),长是圆的( 周长)一, 半 求圆面积用公式表示( S = π)r 。2
面积 S=πr2
例1. 马儿被主人用一根2米长的绳子拴在了 这棵小树上,它能吃到的草地的最大面积是
多少?
S=πr2 2米 = 3.14×2×2
=12.56 m2 答:它能吃到的草地的最大面积为12.56平 方米。
例2. 已知一个圆的直径为40分米,求这个圆的 面积?
d =40 dm

最新人教版数学六年级上册圆《圆的面积》优质课件

最新人教版数学六年级上册圆《圆的面积》优质课件
人教版数学六年级上册 圆
圆的面积
圆的面积
2
目录
01.课前导入 02.新课精讲 03.学以致用 04.课堂小结
3
01、课前导入
4
情景导入
在长满青草的草地上一 匹马被主人用一根两米长的 绳子栓在一棵树上,这匹马 最多能吃到多少青草?
2米
5
02、新课精讲
6
探索新知
探究点 1 圆的面积计算公式的推导
3.14 122-3.14 82 =251.2 cm2
20
典题精讲
7. 在你的生活里找找圆环形的物体,测量一下,再算算它的面积。
略。
21
典题精讲
8*. 在每个正方形中分别画一个最大的圆,并完成下表。
画图和填表略。 发现:正方形中与它当中最大圆的面积之比是一个定 值,为200∶157,或4∶π。
探索新知
把圆平均分的份数越 多,拼成的图形就越接近 于长方形,体现了极限思 想。所谓极限思想是指用 极限的概念分析和解决问 题的一种数学思想。
圆的面积计算
公式:S=πr2 。
11
探索新知
探究点 2 已知圆的半径(直径)求圆的面积
圆形草坪的直径是20 m,每平方米草皮8元,铺满草坪需要多少钱?
从题目中你都 知道了什么?
答:草坪的占地面积是1884 m²。
18
典题精讲
5. 完成下表。
半径 4cm 4.5cm 3cm 20cm
直径
8cm 9cm 6cm 40cm
圆面积
50.24cm2 63.585cm2 28.26cm2 1256cm2
19
典题精讲
6.计算下面左边图形的周长和右边圆环的面积。
3.14 12 2 3.14 8 2 12-8 =35.4cm

冀教版数学六年级上册第四单元《圆的面积》(课件29张)

冀教版数学六年级上册第四单元《圆的面积》(课件29张)

将圆分成若干等分
1 2 3 4C 5 6 7 8 2
1 2 34 567 8
r
16 15 14 13 12 11 10 9
16 15 14 13 12 11 10 9
分的份数越多,拼成的图形越接近长方形。 C 2
r
C 2
= πr
r
因为: 长方形面积 = 长 × 宽
所以: 圆 的 面 积 = πr × r = πr 2
圆的面积计算公式:
S = πr 2
例3 一个圆的半径是4厘米。它 的面积是多少平方厘米?
S = πr 2
3.14×42 =3.14×16 =50.24(平方厘米) 答:它的面积是50.24平方厘米。
例4 街心花园中圆形花坛的周长是18.84
﹋ 米。花坛的面积是多少平方米?
S = πr 2
第一步求花坛半径; 第二步求花坛面积;
冀教版六年级数学上册第四单元
圆的面积
记 忆 宝 库
面积指的是什么?
圆所占平面的大小叫做圆的面积。
返回
记 忆 宝 库
你还记得三角形、梯形 面积的推导过程吗?
记 忆 宝 库
你还记得三角形、梯形 面积的推导过程吗?
猜一猜:圆的面积和什么有关?
将圆分成若干等分
34 56
2
7
1
8
16
9
15
10
14 13 12 11
)厘米,圆的面积S=(
)平方厘米,半圆的
面积为( )平方厘米。
小力量得一棵树干的周 长是125.6厘米。这棵树干 的横截面积约是多少?
有一个圆环,它 的内圆直径是6米, 外圆直径是8米,如 果圆环部分种草, 种草的面积是多少?

《圆的面积》课件五年级

《圆的面积》课件五年级
2.长方形的长相当于圆的哪部分? 相当于圆周长的一半。
3.长方形的宽相当于圆的哪部分? 相当于圆的半径。
同学们: 知道哪些条件就可以求圆的面积?
c
r
d
o
一个自动旋转喷水器的最远喷水距离大约是5米。它旋转 一周喷灌的面积大约是多少平方米?
3.14×52
要先算52是多少。
=3.14×25
= 78.5 (平方米 )
也可以像下面这样计算: S = πr2 = π×52= 25π (平方米)
答:喷灌的面积大约是 78.5 平方米。
小松鼠的疑惑?
为什么呢? 一日小松鼠和朋友去披萨店里吃披萨,它
们想买一个12寸披萨,结果却被服务员告知, 12寸的披萨已经卖完了,但是可以出同样的 价钱,把12寸的换成厚薄一样,但是大小不 同的,两个6寸的披萨。朋友一听很是生气, 当场就拍桌子说,不行,太坑人了,服务员 当场就愣了。她让我们稍等片刻,她去把他 们店的经理请来。
20cm 0.2m
1.2 2 0.2 0.8(m)
3.14 0.82 2.0096 (m2 )
答:这块桌布的面积是2.0096平方米。
课堂小结
这节课你们都学会了哪些知识?
虽然我的知识在你们看
起来很高,但我认为人的学 习就像一个圆,学的东西越 多,则圆的周长越长,周长 越长则接触外面世界的机 会就越多——爱因斯坦
你能发现圆面积与它半 径有什么关系吗?
圆面积是它半径平 方的3倍多一些。
圆的面积大约等于 半径×半径×3。
如何推导圆的面积公式?
平行四边形面积的推导过程
平均分成32份
平均分成128份
边讨论、边思考:
1.原来的图形与所拼图形之间什么变了,什么没变? 形状虽变了 ,但面积没变 。

人教版小学六年级上册数学课件 《圆的面积》圆PPT教学课件

人教版小学六年级上册数学课件 《圆的面积》圆PPT教学课件

拓展运用
1. 图中的大圆半径等于小圆的直径,求阴影部分的面积。
大圆面积:S=πr²=3.14×6²=113.04cm²
小圆半径:r=6÷2=3cm
6 cm
小圆面积:S=πr²=3.14×3²=28.26cm²
阴影面积:113.04–28.26=84.78cm²
拓展运用
2. 一个运动场(如图所示),两端是
半径是6cm,圆环的面积是多少?
2c
m
6c
m
S=πR²﹣πr²
S=π(R²﹣r²)
=3.14×6²-3.14×2²
=3.14×(6²-2²)
=113.04-12.56
=3.14×32
=100.48(cm²)
=100.48(cm²)
教学新知
中国建筑中经常能见到“外方内圆”和“外圆内方”的设
计(如图所示),图中的两个圆半径都是1米,你能求出正方形
和圆之间部分的面积吗?
教学新知
“外方内圆”面积的计算
“外圆内方”面积的计算
正方形边长:1×2=2(米)
圆的直径:1×2 = 2(米)
正方形面积:2×2=4(平方米)
内圆面积:3.14×1²=3.14(平方米)
正方形面积: 1 ×(2×1)×2 = 2(平方米)
2
内圆面积:3.14×1² = 3.14 (平方米)
A. 1
B. 2
C. 3
D
D. 3π
(3)若A.B两个圆的直径比是2:1,则它们的面积比是多少?(
A. 2 : 4
B. 4 : 1
C. 1 : 2
D. 1 : 4


B
课堂练习
4. 解决问题
(1)一个直径是4米的圆形花坛种上玫瑰花。一平方米只能种5株,这个

《圆的面积》精品课件(通用版)

《圆的面积》精品课件(通用版)

S 3.14 202 3.14 152 549.5cm2
9
三、自主练习
1.求下面各圆的面积。
S r2 3.14 52 78.5dm 2
S r2 3.14 22 12.56m 2
S r2 3.14 (20 2) 2 314mm 2
圆的面积
一、新课导入
圆形中心舞台的直径是20米;其中有一个直径1.6米的
圆形升降舞台。
2
直径20米的 中心舞台
直径1.6米的 圆形升降舞台
圆所占平面的大 小叫做圆的面积
3
二、合作探索
(一)初步探索,独立尝试 (1)外切正方形。 (2)内接正方形。
以前咱们也接触过一平面图形面积的求
法,圆的面积怎么求?有什么好办法?
(3)转化成小扇形。
4
(二)逐步逼近,体验极限
割成正八边形 割成正十六边形
也就是说我们割的次数越多,所割成的多边形面积就越接近圆的
面积。同样的,从里面画正方形的面积也可以更接近圆的面积。
5
刘徽(约公元225年—295年),汉族,山东邹 平县人,魏晋期间伟大的数学家,中国古典数学理论 的奠基人之一。是中国数学史上一个非常伟大的数学 家,他的杰作《九章算术注》和《海岛算经》,是中 国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既 提倡推理又主张直观.他是中国最早明确主张用逻辑 推理的方式来论证数学命题的人.刘徽的一生是为数 学刻苦探求的一生.他虽然地位低下,但人格高 尚.他不是沽名钓誉的庸人,而是学而不厌的伟人, 他给我们中华民族留下了宝贵的财富。
10
2.将表格填写完整。
6
18.84 25.12
28.26 50.24 7.065

《圆的面积》ppt说课课件

《圆的面积》ppt说课课件
详细描述
设计一些综合性的题目,如结合圆的周长和面积的知识,或 者将圆的面积与其他数学知识(如比例、百分比等)结合起 来,让学生能够综合运用数学知识解决实际问题。
05 本课总结与回顾
本课知识点总结
圆的面积计算公式
S = πr²,其中S代表圆的面积,r代表圆的半径。
圆的面积与半径的关系
圆的面积随着半径的增大而增大,与半径的长度成正比。
解释圆面积与圆的半径和直径的关系,以及圆面积与圆 周长的关系。
回顾圆的性质和定义
圆的性质
回顾圆的性质,如圆心到圆上任 一点的距离相等、圆是中心对称 图形等。
圆的定义
强调圆的定义,即平面内到定点 (圆心)的距离等于定长(半径 )的点的轨迹。
引出本课学习目标
掌握圆面积的计算公式
通过本课学习,学生应能熟练掌握圆 面积的计算公式,并能运用公式解决 实际问题。
解决实际问题
计算体育场、广场等圆形场地的面积
01
结合实际情况,将圆形场地近似为多个小矩形或小三角形,再
例如计算球体、圆柱体的表面积,可以利用圆的面积公式进行
估算。
解决与圆相关的组合图形问题
03
将圆与其他几何图形结合,例如圆与三角形、圆与正方形等,
利用圆的面积公式进行求解。
圆的面积与直径的关系
圆的面积与直径的平方成正比,即直径扩大或缩小若干倍,圆的面 积也扩大或缩小相同的倍数。
学习方法总结
01
02
03
动手操作
通过剪切、拼接等操作, 直观感受圆的面积与长方 形面积的关系,从而推导 出圆的面积计算公式。
观察与思考
观察圆的面积与半径的关 系,思考如何利用圆的半 径计算其面积。
总结词

人教版数学六年级上册《圆的面积》教学课件

人教版数学六年级上册《圆的面积》教学课件

外圆的面积-内圆面积求=圆环的面积
3.14×6²-3.14×2² 3.14×(6²-2²)
=113.04-12.56
=3.14×32
=100.48(cm²)
=100.48(cm²)
答:圆环的面积是100.48 cm²。
练习
1. 一个圆形茶几桌面的直径是1m,它 的面积是多少平方米?
1÷2=0.5(m) 3.14×0.5²=0.785(m²) 答:它的面积是0.785m²。
S=πr²
知识讲授
圆形草坪的直径是20m,每平方米草皮8 元,铺满草坪需要多少钱?
20从÷题2目=中10你(都m知)道了什么? 3.14×10²=314(m²) 314×8=2512(元)
要求铺满草坪需要多少钱,先要求 出圆形答草:坪铺的满面草积皮是需多要少25平12方元米。。
知识讲授
光盘的银色部分是一个圆 环,内圆半径是2cm,外圆半 径是6cm。圆环的面积是多少?
圆的面积
课前导入
怎样计算一个圆 的面积呢?
能不能和学过的图形联系起来呢?
知识讲授
知识讲授
从上图中可以看出圆的半径是r,长方形的长近似
( 圆周长的一半 ),宽近似于( 圆的半径 )。 因为长方形的面积=( 长 )×( 宽 )
所以圆面积=( πr )×( r )=( πr²) 如用S 表示圆的面积,则圆的面积计算公式是:
练习
2. 一个圆形环岛的直径是50m,中间是一个
直径为10m的圆形花坛,其他地方是草坪。草
坪的占地面积是多少? 50÷2=25(m) 10÷2=5(m) 3.14×(25²-5²)
=Hale Waihona Puke .14×600 =1884(m²)

部编六年级数学《圆的面积》罗可PPT课件 一等奖新名师优质课获奖比赛公开北京

部编六年级数学《圆的面积》罗可PPT课件 一等奖新名师优质课获奖比赛公开北京

公主一块牛皮,说:“你们用这块牛皮圈土地,我会把圈到
的土地给你们的。”狄多公主欣然答应。雅布王暗喜,这下
不会损失太多的土地了。不一会儿,仆人来报告:“狄多公
主圈的地已经有整个国家的三分之一大了”。雅布王大吃一
惊,急忙赶去看,原来狄多公主并没有把牛皮直接铺在地上,
而是把牛皮搓成牛皮绳,用牛皮绳沿着海岸线圈出了一块很
“比赛PPT课件,适合公开课赛课!”
名师PPT课件
圆的面积
读故事 学数学
授课教师: 罗 可 苍溪县运山镇小学校
名师PPT课件
《狄多公主圈地》
狄多公主所在的国家发生了叛乱,国王被杀,狄多公主逃
离了家园。他们来到非洲,见到了非洲的雅布王。肯求雅布
王给他一些土地。雅布王很同情她们,想给他们一些土地,
但又怕他们索要更多的土地就想出了一个妙计。他给了狄多
名师PPT课件
长= r
名师PPT课件
长= r
名师PPT课件
长= r
名师PPT课件
长= r
名师PPT课件
长= r
名师PPT课件
长= r
名师PPT课件
长= r
名师PPT课件
= r
名师PPT课件
你能用“因为……所 以……”说出圆的面 积吗?
长= r
宽= r
名2师、PPT狄课件多公主命侍卫挖了两口水井, 分别要给这两口水井做大小两个 木井盖,小井盖的半径是1米,大 井盖的半径是小井盖的4倍。 (1)小井盖和大井盖半径各是多少?
(2)小井盖和大井盖各需要多少木 材? (3)大井盖的面积是小井盖的几倍?
名师P验PT课证件 :狄多公主圈的是什么形状的土地?
大的土地。雅布王很佩服她的智慧,心甘情愿的把土地给了

北师大版六年级数学上册第一单元《圆的面积(一)》课件

北师大版六年级数学上册第一单元《圆的面积(一)》课件

能否将圆转化成以前学过的图形呢?做一做。
能否将圆转化成以前学过的图形呢?做一做。
拼成的平行四边形与原来 的圆之间有什么联系?
r

C÷2 圆的面积
底 平行四边形的面积
平行四边形的面积=底×高
圆周长的一半 × r
圆的面积 S= r2 ×r
小试牛刀 1.数方格估算下面圆的面积。
28
50
(答Байду номын сангаас不唯一,合理即可)
第一单元 圆
圆的面积(一)
探究点 圆的面积计算公式
如何得到一个圆的面积呢?想一想,并与同伴交流。
如何得到一个圆的面积呢?想一想,并与同伴交流。
如何得到一个圆的面积呢?想一想,并与同 伴交流。
r
O
圆的面积是正方形面积(半径的平方)的3倍多一些。
能否将圆转化成以前学过的图形呢?做一做。
能否将圆转化成以前学过的图形呢?做一做。
3.求下列各圆的面积。 3.14×42=50.24(dm2)
3.14×(10÷2)2=78.5(cm2)
4.填空。 (1)一个圆形的半径是6 dm,直径是( 12 )dm,周长
是( 37.68 )dm,面积是( 113.04 )dm2。 (2)圆规两脚间的距离是5 cm,画出的圆的周长是
( 31.4 )cm,面积是( 78.5 )cm2。 (3)在一块边长是4 dm的正方形木板上锯下一个面积
易错辨析
5.“半径为2 cm的圆的周长和面积相等”这句话对 吗?为什么? 不对,周长和面积无法比较大小。
辨析:对圆的周长和面积的意义混淆不清。
作业
请完成课后习题。
最大的圆,这个圆的面积是( 12.56 )dm2。
归纳总结:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


五、一个人要实现自己的梦想,最重要的是要具备以下两个条件:勇气和行动。——俞敏洪

六、将相本无主,男儿当自强。——汪洙

七、我们活着不能与草木同腐,不能醉生梦死,枉度人生,要有所作为。——方志敏

八、当我真心在追寻著我的梦想时,每一天都是缤纷的,因为我知道每一个小时都是在实现梦想的一部分。——佚名
想一想:
1、要解决上面的实际生活中的问题,首先 知道的是什么?
2、在本节课数学课上,你最想知道的是 什么?
温馨提示
圆的面积应该怎样计算? 计算圆的面积有没有公式? 如果有,那么圆面积的计算公式 又是怎么得出来的? 下面请同学们自学教材。比一比: 看谁的书读得最认真,学习的效果最好。
说一说:
1、圆的面积指的是什么?
宽= r
如果圆的半径为r, 你能算出圆的面积 吗?
长= r
宽= r
练一练
一个圆的半径是4厘米。它的面积 是多少平方厘米? 圆的面积公式:S = πr 2
3.14 × 4 2 = 3.14 × 16 = 50.24 (平方厘米) 答:它的面积是50.24平方厘米。
练一练
1. 根据下面所给的条件,求圆的面积。 (1) 半径2分米 (2) 直径10厘米
答:它的面积是28.26,同学们已掌握了圆的 面积计算公式,并且知道了这个公式是怎么推 导出来的,现在请同学们各组之间说一说:
利用这一公式,我们还可以用来解答哪些类型 的应用题?请把具体的计算公式推导出来,并 写在本上。
实践:
1、观察生活中那些物体表面是圆形的, 测量并求出它们的面积。
2、请根据圆的面积计算公式,试着编写 几道实际应用这一计算公式的应用题,并 进行计算。
回顾整理
通过这节课的学习,我们学会了哪 些知识?
现在,老师通过大屏幕把我们推导 圆的面积计算公式的过程再给大家演示 一下,请一位同学帮助老师做一下解说 好吗?
»
一、我们因梦想而伟大,所有的成功者都是大梦想家:在冬夜的火堆旁,在阴天的雨雾中,梦想着未来。有些人让梦想悄然绝灭,有些人则细心培育维护,直到它安然度过困境,迎来光明和希望,而光明和希望总是降临在那些真心相信梦想一定会成真的人身上。——威尔逊
2、圆的面积计算公式是:
S=π r2
3、圆的面积计算公式推导的方法和步骤是: (1)切割 (2)拼接 (3)观察和比较 (4)推算和公式转换 ……
做一做:
按照课本上讲述的方法,小组同学合作,动 手做一做,亲自验证一下课本上介绍的圆面积
的推导方法是否正确。
注意以下几点:
1、圆的切割方法: 2、切割成的近似三角形的拼凑方法: 3、想一想:拼成的近似长方形的长相当于圆的什么, 宽相当圆的什么? 4、根据实际操作的结果,推导出圆的面积计算公式。
圆的面积
用一条2米长的绳子把羊拴 在桩子上(接头处不计),羊 在它活动的最大范围内走一周, 这一周的长是多少?
想一想:
这道题要求的是什么?计 算公式是什么?
求羊吃草的最大范围是多 大,要求的是什么?
圆的面积的计算,在生活中有广泛 的应用。请看下面的实例:
李师傅制作一只圆柱形水桶,需要一 块直径为40厘米的圆形白铁皮做铁桶的底 面,这种铁皮每平方米50元钱。你能帮李 师傅算一算买铁皮至少需要花多少钱吗?

十九、要想成就伟业,除了梦想,必须行动。——佚名

二十、忘掉今天的人将被明天忘掉。──歌德

二十一、梦境总是现实的反面。——伟格利

二十二、世界上最快乐的事,莫过于为理想而奋斗。——苏格拉底

二十三、“梦想”是一个多么“虚无缥缈不切实际”的词啊。在很多人的眼里,梦想只是白日做梦,可是,如果你不曾真切的拥有过梦想,你就不会理解梦想的珍贵。——柳岩
汇报与演示
请各组代表,将你们小组的做法和验 证的结果向同学和老师汇报一下:
1、怎样切割的圆?怎样重新拼成其他图 形的?
2、通过对重新拼成的图形的观察,你们 从中发现了什么 ?
3、圆的面积计算公式和长方形的面积公 式有什么相互联系?
长= r

二、梦想无论怎样模糊,总潜伏在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实才止;像种子在地下一样,一定要萌芽滋长,伸出地面来,寻找阳光。——林语堂

三、多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。——毛泽东

四、拥有梦想的人是值得尊敬的,也让人羡慕。当大多数人碌碌而为为现实奔忙的时候,坚持下去,不用害怕与众不同,你该有怎么样的人生,是该你亲自去撰写的。加油!让我们一起捍卫最初的梦想。——柳岩
2.小刚量得一棵树干的周长是125.6厘 米。这棵树干的横截面积约是多少?
练一练
街心花园中圆形花坛的周长是18.84米。 花坛的面积是多少平方米?
1.花坛的半径: 2.花坛的面积:
18.84 ÷ 3.14 ÷ 2
=6÷2 = 3 (米)
3.14×3 2 = 3.14 ×9 = 28.26 (平方米)

二十四、生命是以时间为单位的,浪费别人的时间等于谋财害命,浪费自己的时间,等于慢性自杀。——鲁迅

二十五、梦是心灵的思想,是我们的秘密真情。——杜鲁门·卡波特

二十六、坚强的信念能赢得强者的心,并使他们变得更坚强。——白哲特

二十七、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德

十四、信仰,是人们所必须的。什麽也不信的人不会有幸福。——雨果

十五、对一个有毅力的人来说,无事不可为。——海伍德

十六、有梦者事竟成。——沃特

十七、梦想只要能持久,就能成为现实。我们不就是生活在梦想中的吗?——丁尼生

十八、梦想无论怎样模糊,总潜伏在我们心底,使我们的心境永远得不到宁静,直到这些梦想成为事实。——林语堂

九、很多时候,我们富了口袋,但穷了脑袋;我们有梦想,但缺少了思想。——佚名

十、你想成为幸福的人吗?但愿你首先学会吃得起苦。——屠格涅夫

十一、一个人的理想越崇高,生活越纯洁。——伏尼契

十二、世之初应该立即抓住第一次的战斗机会。——司汤达

十三、哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅
相关文档
最新文档