特殊三角形专题练习(精.选)
【浙教版】八年级数学上:第二章-特殊三角形单元测试题(含答案)
第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M 是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
特殊三角形-练习题(含答案)
特殊三角形-练习题(含答案)特殊三角形-练习题(含答案)一、选择题1. 在直角三角形中,若一条直角边的长度为3,另一条直角边的长度为4,那么斜边的长度是:A. 5B. 7C. 9D. 122. 一个等腰三角形的两条等边分别为5,那么等腰三角形的底边长为:A. 2.5B. 4C. 5D. 103. 在等边三角形中,每个角的度数为:A. 45°B. 60°C. 90°D. 120°4. 若一个三角形有一条边长为2,另外两条边长为3和4,那么这个三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形5. 在等腰直角三角形中,两条直角边的长度分别为3和4,那么斜边的长度为:A. 5B. 7C. 9D. 12二、填空题1. 正三角形的每个角度数为__________。
2. 整数边长的直角三角形有__________组。
3. 锐角三角形的内角和为__________度。
4. 勾股定理可以用来判断一个三角形是否为__________。
5. 一个等腰三角形的两条等边分别为6,那么等腰三角形的底边长为__________。
三、解答题1. 证明等腰直角三角形的两条直角边相等。
解答思路:通过证明直角三角形两个角相等,并且直角三角形的两边长相等,可以得出等腰直角三角形的两条直角边相等。
2. 在等边三角形ABC中,边长为6。
连接点A和边BC的垂线段AD,求垂足D与点C之间的距离。
解答思路:利用等边三角形的性质,可以得出垂足D与点C之间的距离等于等边三角形的边长的一半。
四、答案选择题答案:1. A2. B3. B4. D5. A填空题答案:1. 60°2. 3组3. 180°4. 直角三角形5. 6解答题答案:1. 略2. 等边三角形的边长为6,所以垂足D与点C之间的距离为3。
结束语通过以上练习题的答案,我们可以对特殊三角形的性质和计算有更深入的了解。
专题训练(二) 特殊三角形中的折叠问题
专题训练(二) 特殊三角形中的折叠问题
介绍
本文档将讨论特殊三角形中的折叠问题。
特殊三角形包括等边
三角形和等腰三角形。
我们将深入探讨如何正确地折叠这些三角形,以及折叠过程中可能出现的问题和解决方案。
等边三角形的折叠问题
等边三角形的每一边都相等,并且每个角都是60度。
折叠等
边三角形时,我们需要确保折叠线与三角形的边相切,并且每个顶
点都重合。
这样才能确保折叠后形成一个三角形。
等腰三角形的折叠问题
等腰三角形有两条边相等,并且两个底角相等。
折叠等腰三角
形时,我们需要确保折叠线与底边重合,并且顶点位于底边的中垂
线上。
这样才能确保折叠后形成一个三角形。
折叠过程中可能出现的问题和解决方案
在折叠特殊三角形的过程中,可能会遇到以下问题和解决方案:
1. 无法准确地将折叠线与三角形的边相切时,可以使用尺子或直角工具来辅助确定折叠线的位置。
2. 折叠后形成的三角形不完整或变形时,可能是由于折叠线位置不准确或不规整造成的。
可以重新调整折叠线的位置,或者使用更精确的工具进行折叠。
结论
特殊三角形中的折叠问题需要注意折叠线的位置和准确性,以确保折叠后形成一个完整的三角形。
在折叠过程中遇到问题时,可以使用合适的工具和调整手法来解决。
折叠特殊三角形不仅可以提高我们的几何认知能力,还能培养我们的空间想象力。
专题2.16特殊三角形单元提升卷八年级数学上册举一反三系列(浙教版)[含答案]
第2章 特殊三角形单元提升卷【浙教版】考试时间:60分钟;满分:100分考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)(23-24八年级·重庆·期中)1.下列是一些图标,其中是轴对称图形的是( )A .B .C .D .(23-24八年级·浙江·期中)2.如图所示,已知D 为BC 上一点且AB AC BD ==,那么1Ð与2Ð之间满足的关系是( )A .122Ð=ÐB .132180Ð+Ð=°C .212180Ð+Ð=°D .312180Ð-Ð=°(23-24八年级·甘肃武威·阶段练习)3.已知ABC V 的三边长分别为a ,b ,c ,)2100c -=,则ABC V 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .等边三角形(23-24八年级·河北邯郸·期中)4.如图,将一直角三角形纸片沿斜边中线l 剪开,得到ABD △和A CD ¢¢△,下列不一定正确的是( )A .BD D C ¢=B .90AC Ð+Ð=°C .AB AD =D .D A B ¢Ð=+ÐÐ(23-24八年级·全国·单元测试)5.如图,在ABC V 中,90C Ð=°,AC BC =,AD 平分CAB Ð交BC 于D ,DE AB ^于E ,若7cm AB =,则AC CD +的长等于( )A .19cmB .8cmC .7cmD .6cm(23-24八年级·山东烟台·期中)6.如图,等腰三角形ABC 的底边BC 长为10,面积是125,腰AC 的垂直平分线EF 分别交,AC AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .15B .20C .25D .30(23-24八年级·云南昆明·期中)7.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图),后人称之为“赵爽弦图”,流传至今.如图“赵爽弦图”是由四个全等的直角三角形拼成的正方形,若大正方形的面积是61,小正方形的面积是1,设直角三角形较长的直角边为b ,较短的直角边为a ,则a b +的值是( )A .11B .10C .9D .8(23-24八年级·辽宁丹东·期中)8.如图,已知等边ABC V 和等边BPE V ,点P 在BC 的延长线上,EC 的延长线交AP 于点M ,连接BM ;下列结论:①AP CE =;②60PME Ð=°;③BM 平分AME Ð;④AM MC BP +=,其中正确的有( )A .1个B .2个C .3个D .4个(23-24八年级·山东烟台·期中)9.如图,已知等腰直角三角形ACB 中,90,1Ð=°==ACB AC BC ,过点C 作1CM AB ^,垂足为11,M CBM △的面积为1S ,过点1M 作12M M BC ^,垂足为212,M CM M △的面积为2S ,过点2M 作231M M CM ^,垂足为3123,M M M M △的面积为3S ,过点3M 作3412M M M M ^垂足为1234,M M M M △的面积为4S ,如此作下去,…,21n n n M M M --△的面积为n S ,则121n S S S S ++++=L ( )A .1122n æö+ç÷èøB .11122n +æö+ç÷èøC .1122n æö-ç÷èøD .11122n +æö-ç÷èø(23-24八年级·湖北荆门·期中)10.如图,在Rt ABC △中,90ACB Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,给出下列结论:① AB MG =;② ABC AFN S S =△△;③ 过点B 作BI EH ^于点I ,延长B 交AC 于点J ,则AJ CJ =.④ 若1AB =,则225EH FN +=.其中正确的结论个数是( )A .1个B .2个C .3个D .4个二.填空题(共6小题,满分18分,每小题3分)(23-24八年级·陕西榆林·期中)11.如图,在ABC V 中,AB AC =,AD 是ABC V 的角平分线,E 为AD 的中点,若6BC =,5AC =,则BDE V 的面积为 .(23-24八年级·山东烟台·期中)12.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再向北走到6km 处往东拐,仅走了1km ,就找到了宝藏,则门口A 到藏宝点B 的直线距离是 .(23-24八年级·河南开封·期中)13.如图,在四边形ABCD 中,90DAB BCD Ð=Ð=°,分别以四边形ABCD 的四条边为边向外作四个正方形,面积分别为a ,b ,c ,d .若12b c +=,则a d += .(23-24八年级·湖北孝感·期中)14.如图,在ABC V 中,90C Ð=°,30B Ð=°.点D 、E 、F 分别为边AC 、AB 、CB 上的点,且DEF V 为等边三角形,若34AD CD =.则AE BE的值为 .(23-24八年级·山东济宁·期中)15.等腰三角形一腰上的高与另一腰的夹角为16°,则顶角的度数为 .(23-24八年级·福建宁德·期中)16.如图,在ABC V 中,AB 边的垂直平分线PQ 与ABC V 的外角平分线交于点P ,过点P 作PD BC ^于点D ,PE AC ^于点E .若8BC =,4AC =.则CE 的长度是 .三.解答题(共7小题,满分52分)(23-24八年级·福建龙岩·阶段练习)17.如图,在ABC V 中,AB AC =,D 为AC 的中点,DE AB ^于点E ,DF BC ^于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =.(1)求证:ABC V 是等边三角形;(2)若3BF =,求CG 的长.(23-24八年级·浙江台州·期中)18.如图是边长为1的小正方形组成的58´网格,ABC V 的顶点均在格点上.(1)ABC V 为______三角形;(2)仅用无刻度的直尺画图(画图用实线,要体现过程并保留痕迹)①在图(1)中的AB 上画点D .连接CD ,使2CD AB =;②在图(2)中的网格上画格点E ,使ACE ACB S S =△△.(23-24八年级·山东济宁·期中)19.如图,ABC V 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动.(1)当点P 的运动速度是1cm /s ,点Q 的运动速度是2cm /s ,当Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),当2t =时,判断BPQ V 的形状,并说明理由;(2)当它们的速度都是1cm /s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为t (s ),则当t 为何值时,PBQ V 是直角三角形?(23-24八年级·北京海淀·期中)20.已知:在ABC V 中,作ABC Ð的平分线BM ,在BM 上找一点D ,使得DA DC =,过点D 作DE BC ^,交直线BC 于点E .(1)在图中,依题意补全图形;(2)用等式写出AB BC BE ,,之间的数量关系,并给出证明;(3)如果把作ABC Ð的平分线BM ,改为作ABC Ð的外角PBA Ð的平分线BM ,其他条件不变,直接用等式写出AB BC BE ,,之间的数量关系.(23-24八年级·山西运城·期中)21.问题情境:如图①,一只蚂蚁在一个长为80cm ,宽为50cm 的长方形地毛毯上爬行,地毯上堆放着一根正三棱柱的木块,它的侧棱平行且等于场地宽AD ,木块从正面看是一个边长为20cm 的等边三角形.求一只蚂蚁从点A 处到达点C 处需要走的最短路程.(1)数学抽象:将蚂蚁爬行过的木块的侧面“拉直”“铺平”,“化曲为直”.请在图②中用虚线补全木块的侧面展开图,并用实线连接AC .(2)线段AC 的长即蚂蚁从点A 处到达点C 处需要走的最短路程,依据是_____.(3)问题解决:如图②,展开图中AB =_____,BC =_____.(4)这只蚂蚁从点A 处到达点C 处需要走的最短路程是_____.(23-24八年级·广东湛江·期中)22.如图,在ABC V 中,AB AC =,60BAC Ð=°,过C 作直线CE ,B 关于直线CE 的对称点为D ,连接AD ,BD ,CD ,CE 与BD 的交点为E ,设()090BCE a a Ð=°<<°.(1)若15a =°,则请直接写出下列两个角的度数:ADC Ð= _______,ADB =∠ _______.(2)随着α的变化,ADB Ð的度数是否也发生变化,请说明理由;(3)当ABD △成为等腰三角形时,求α的值.(23-24八年级·广东广州·期中)23.在Rt ABC △中,90ACB Ð=°,30A Ð=°,BD 是ABC V 的角平分线,DE AB ^于点E .(1)如图1,连接EC ,求证:EBC V 是等边三角形;(2)点M 是AC 边上一个动点(不与点D 重合),以BM 为一边,在BM 的下方作60BMG Ð=°,MG 交射线DE 于点G ,请画出完整图形,探究MD DG ,与AD 数量之间的关系,并说明理由.1.B【分析】根据轴对称的定义:如果一个平面图形沿一个条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,逐一判断即可.【详解】解:A 、不是轴对称图形,故不符合题意;B 、是轴对称图形,故符合题意;C 、不是轴对称图形,故不符合题意;D 、不是轴对称图形,故不符合题意,故选:B .【点睛】本题考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.2.D【分析】本题考查了三角形内角和,等边对等角,三角形外角性质,根据AB AC BD ==可得180122B C °-Ð-ÐÐ=Ð=,1BDA Ð=Ð,结合三角形外角性质即可得到12C Ð=Ð+Ð,代入C Ð的值整理即可解题.【详解】解:AB AC BD ==Q ,180122B C °-Ð-Ð\Ð=Ð=,1BDA Ð=Ð,2BDA C Ð=Ð+ÐQ ,180121222C °-Ð-Ð\Ð=Ð+Ð=Ð+,整理得:312180Ð-Ð=°,故选:D .3.C【分析】本题考查三角形形状的确定,涉及非负式、非负式和为0的条件、勾股定理的逆定)2100c -=可得a ,b ,c 的值,再由勾股定理的逆定理列式求解即可得到答案,熟练掌握非负式和为0的条件、勾股定理的逆定理是解决问题的关键.【详解】解:Q )2100c -=,60,80,100a b c \-=-=-=,解得6,8,10a b c ===,22236,64,100a b c ===Q ,3664100\+=,即222a b c +=,\ABC V 是以c 为斜边的直角三角形,故选:C .4.C【分析】本题考查了直角三角形的斜边中线定理,三角形的外角性质,解题的关键是掌握直角三角形的斜边中线定理.由AD 是直角三角形斜边上的中线可得AD BC BD CD ¢===12,进而得到C A ¢Ð=Ð,根据三角形的外角性质可得D A B ¢Ð=+ÐÐ,即可求解.【详解】解:Q AD 是直角三角形斜边上的中线,\AD BC BD CD ¢===12,\C A ¢Ð=Ð,Q A A ¢Ð+Ð=°90,\90A C Ð+Ð=°,Q D ¢Ð是ABD △的外角,\D A B ¢Ð=+ÐÐ,故A 、B 、D 正确,不符合题意,故选:C .5.C【分析】根据角的平分线性质定理,等腰直角三角形的判定和性质,解答即可.本题考查了角的平分线性质定理,等腰直角三角形的性质,熟练掌握定理和性质是解题的关键.【详解】∵90C Ð=°,AD 平分CAB Ð,DE AB ^,∴DE DC =.∵DA DA =,∴()HL DAE DAC V V ≌.∴AE AC =.∵90C Ð=°,AC BC =,∴45B CAB Ð=Ð=°.∴45BDE B Ð=Ð=°.∴DE BE =.∴DE BE CD ==.∴7cm AC CD AE BE AB +=+==,故选C .6.D【分析】本题考查的是等腰三角形的性质,垂直平分线的性质,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于ABC D 是等腰三角形,点D 是BC 边的中点,故AD BC ^,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线,可知点C 关于直线EF 的对称点为点A ,故AD 的长为CM MD +的最小值,由此即可得出结论.【详解】解:如图,连接AD ,MA ,ABC QV 是等腰三角形,点D 是BC 边的中点,AD BC \^,111012522ABC S BC AD AD \=×=´´=V ,解得25AD =,EF Q 是线段AC 的垂直平分线,∴MC MA =,∴MC MD MA MD +=+,∵垂线段最短,且两点之间线段最短,∴MA MD +的最小值为AD 的长,即MC MD +的最小值为AD 的长,CDM \D 周长的最小值()1125103022CM MD CD AD BC =++=+=+´=.故选:D .7.A【分析】本题考查了勾股定理的证明,完全平方公式的变形,正确表示出大正方形与小正方形的面积是解题的关键.根据题意得出2261a b +=,()21b a -=,再根据()()224a b a b ab +=-+,即可得出结果.【详解】解:Q 大正方形的面积是61,小正方形的面积是1,2261a b \+=,()21b a -=,2221b a ab \+-=,261160ab \=-=,4120ab \=,()()2241120121a b a b ab \+=-+=+=,11a b +=∴(负值舍去),故选:A .8.C【分析】此题主要考查了全等三角形的判定与性质以及等边三角形的判定等知识,熟练掌握全等三角形的判定是解题关键.分别利用全等三角形的判定方法以及其性质得出对应角以及对应边关系进而分别分析得出答案.【详解】证明:①∵等边ABC V 和等边BPE V ,∴AB BC =,60ABC PBE Ð=Ð=°,BP BE =,在APB △和CEB V 中,AB BC ABP CBE BP BE =ìïÐ=Ðíï=î,∴()SAS APB CEB V V ≌,∴AP CE =,故①正确;②∵APB CEB V V ≌,∴APB CEB Ð=Ð,∵MCP BCE Ð=Ð,则60PME PBE Ð=Ð=°,故②正确;③作BN AM ^于N ,BF ME ^于F ,∵APB CEB V V ≌,∴BPN FEB Ð=Ð,在BNP △和BFE △中,BNP BFE NPB FEB PB EB Ð=ÐìïÐ=Ðíï=î,∴()AAS BNP BFE V V ≌,∴BN BF =,∴BM 平分AME Ð,故③正确;④在BM 上截取BK CM =,连接AK .由②知60PME Ð=°,∴120AMC Ð=°,由③知:BM 平分AME Ð,∴60BMC AMK BAC Ð=Ð=°=Ð,∴ACM ABK Ð=Ð,在ABK V 和ACM △中,AB AC ABK ACN BK CM =ìïÐ=Ðíï=î,∴()SAS ABK ACM V V ≌,∴AK AM =,∴AMK △为等边三角形,则AM MK =,故AM MC BM +=,∵BM BP ¹,∴AM MC BP +¹,故④错误;正确的有①②③,共3个.故选:C .9.D【分析】本题主要考查了等腰直角三角形的性质、三角形面积的计算,解题的关键是通过计算三角形的面积得出规律是解题的关键.先分别求出出123,,S S S L ,得出规律,再求出它们的和即可.【详解】解:∴等腰直角三角形ACB 中,90,1Ð=°==ACB AC BC ,111,B CM A B M A M \^=,∴2111112222ABC S S æö==´´1´1=ç÷èøV ,同理:3212S æö=ç÷èø,4312S æö=ç÷èø,……112n n S +æö=ç÷èø设121n S S S S S =++++L 234111112222n +æöæöæöæö=++++ç÷ç÷ç÷ç÷èøèøèøèøL ,则34512111111222222n n S ++æöæöæöæöæö=+++++ç÷ç÷ç÷ç÷ç÷èøèøèøèøèøL ,∴22111222n S S +æöæö-=-ç÷ç÷èøèø,22111222n S +æöæö=-ç÷ç÷èøèø11122n S +æö=-ç÷èø.故选D .10.D 【分析】本题考查勾股定理,全等三角形的性质和判定,解题的关键是正确作出辅助线.首先根据题意证明出()SAS ACB MCG V V ≌,进而得到AB MG =,即可判断①;过点F 作FO NA ^交NA 延长线于点O ,证明出()AAS AFO ABC V V ≌,得到OF BC =,然后利用三角形面积公式即可得到ABC AFN S S =△△,即可判断②;过点A 作AP BJ ^交BJ 的延长线于点P ,过点C 作CQ BJ ^,证明出()AAS ABP BEI V V ≌,得到AP BI =,同理得到CQ BI =,得到CQ AP =,然后证明出()AAS AJP CJQ V V ≌,得到AJ CJ =,即可判断③;根据全等三角形的性质得到2EH BJ =,然后利用勾股定理证明出2224EH AC BC =+,同理得到2224NF AC BC =+,然后得到22255EH NF AB +==,即可判断④.【详解】∵在Rt ABC △中,90ACB Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC MC =,BC GC =,90MCA GCB Ð=Ð=°∵90ACB Ð=°∴90MCG ACB Ð=Ð=°∴()SAS ACB MCG V V ≌∴AB MG =,故①正确;如图所示,过点F 作FO NA ^交NA 延长线于点O ,∵90FAO BAO CAB BAO Ð+Ð=Ð+Ð=°∴FAO CABÐ=Ð又∵90O ACB Ð=Ð=°,AF AB=∴()AAS AFO ABC V V ≌∴OF BC=∵AN AC=∵12ANB S AN OF =×V ,12ACB S AC BC =×V ∴ABC AFN S S =△△,故②正确;如图所示,过点A 作AP BJ ^交BJ 的延长线于点P ,过点C 作CQ BJ^∵90ABP BEI Ð+Ð=°,90EBI BEI Ð+Ð=°∴ABP BEIÐ=Ð又∵90P BIE Ð=Ð=°,AB BE=∴()AAS ABP BEI V V ≌∴AP BI=同理可证,()AAS BCQ HBI V V ≌∴CQ BI=∴CQ AP=∵90P CQJ Ð=Ð=°,AJP CJQÐ=Ð∴()AAS AJP CJQ V V ≌∴AJ CJ =,故③正确;∵()AAS ABP BEI V V ≌∴BP EI=∵()AAS BCQ HBI V V ≌∴BQ HI=∵()AAS AJP CJQ V V ≌∴PJ QJ=∵2EH EI HI PB BQ PJ QJ BQ BQ BJ=+=+=+++=∵AJ CJ=∴2222214BJ CJ BC AC BC =+=+∴()2222222124444EH BJ BJ AC BC AC BC æö===+=+ç÷èø同理可证,2224NF AC BC =+∴()22222222224455515EH NF AC BC AC BC AC BC AB +=+++=+==´=,故④正确.综上所述,正确的结论个数是4.故选:D .11.3【分析】本题考查了等腰三角形的性质,勾股定理,由等腰三角形的性质得3BD CD ==,AD BC ^,由勾股定理求得4=AD ,则得2DE =,由面积公式即可计算结果,熟练掌握等腰三角形的性质及勾股定理是解题的关键,【详解】解:∵AB AC =,AD 是ABC V 的角平分线,∴132BD CD BC ===,AD BC ^,∴90ADB ADC Ð=Ð=°,在Rt ADC V 中,由勾股定理得4AD ===,∵E 为AD 的中点,∴122AE ED AC ===,∴BDE V 的面积为11·32322BD DE =´´=,故答案为:3.12.10km【分析】根据题意先求A 、B 两地的水平距离和竖直距离,再利用勾股定理即可求解.【详解】解:过点B 作BC AC ^,垂足为C ,延长ND 交AC 于M ,如下图:观察图形可得:8316AC AF MF MC =-+=-+=(km ),628BC =+=(km ),在Rt ACB V 中,10AB (km ).故答案为:10km .【点睛】此题主要考查了矩形的性质以及勾股定理的运用,解题关键是结合图形找到需要的数量关系,运用勾股定理求线段的长度.13.12【分析】本题主要考查的是勾股定理的灵活运用,解答的关键是利用两个直角三角形公共的斜边.利用勾股定理的几何意义解答.【详解】解:如图,连接BD ,由题意可知:2a AB =,2b BC =,2c CD =,2d AD =.在直角ABD △和BCD △中,22222BD AD AB CD BC =+=+,即a d b c +=+,Q 12b c +=,12a d \+=.故答案为:1214.1117【分析】此题考查等边三角形的性质,全等三角形的判定和性质,设3,4AD m CD m ==,则214AB AC m ==,利用三角形外角性质推出31Ð=Ð,在BE 上截取3EG AD m ==,证明EFG DEA V V ≌,得到460A Ð=Ð=°,推出5B Ð=Ð,即可求出BG 的长度,由此得到答案,正确作出辅助线是解题的关键.【详解】设3,4AD m CD m ==,则214AB AC m ==,∵321BED A Ð+Ð=Ð=Ð+Ð,260Ð=Ð=°A ∴31Ð=Ð,在BE 上截取3EG AD m==∵=DE EF∴EFG DEAV V ≌∴460A Ð=Ð=°∴5430B BÐ=Ð-Ð=°=Ð∴1122AB EG BG FG AE m -====,∴172BE m =,∴1111217172m AE BE m ==,故答案为:1117.15.74°或106°【分析】本题考查了等腰三角形的性质,直角三角形的性质,三角形外角性质,当等腰三角形的顶角是钝角或锐角两种情况分析即可,熟练掌握等腰三角形的性质及理解分类讨论思想的应用是解题的关键.【详解】①当等腰三角形的顶角为锐角时,过B 作BD AC ^于点D ,如图所示,∴90BDA Ð=°,∵16ABD Ð=°,∴74A Ð=°;②当等腰三角形的顶角为钝角时,过B 作BD AC ^,交CA 延长线于点D ,如图所示,∴90BDA Ð=°,∵16ABD Ð=°,∴9016106BAC BDA ABD Ð=Ð+Ð=°+°=°,故答案为:74°或106°.16.2【分析】本题考查了角平分线的性质,垂直平分线的性质,解题的关键是掌握角平分线上的点到两边距离相等,垂直平分线上的点到两端距离相等.连接,AP BP ,通过证明()Rt Rt HL CPD CPE V V ≌,得出CD CE =,在证明()Rt Rt HL APE BPD V V ≌,得出AE BD =,即可解答.【详解】解:连接,AP BP ,∵CP 平分DCE Ð,PD BC ^,PE AC ^,∴PD PE =,在Rt CPD V 和Rt CPE △中,CP CP PD PE =ìí=î,∴()Rt Rt HL CPD CPE V V ≌,∴CD CE =,∵PQ 是AB 的垂直平分线,∴AP BP =,在Rt APE V 和Rt BPD △中,AP BP PD PE=ìí=î,∴()Rt Rt HL APE BPD V V ≌,∴AE BD =,∴()CE AE AC BD AC BC CD AC BC CE AC =-=-=--=--,整理得:2844CE BC AC =-=-=,∴2CE =,故答案为:2.17.(1)见解析(2)2【分析】(1)根据全等三角形的判定和性质定理得到A ACB Ð=Ð,求得AB BC =,根据等边三角形的判定定理即可得到结论;(2)由(1)知,ABC V 是等边三角形,求得60ACB Ð=°,易得30DBC Ð=°,得到BD GD =,求得3BF FG ==,根据直角三角形的性质即可得到结论.【详解】(1)证明:DE AB ∵⊥于点E ,DF BC ^于点F ,90AED CFD \Ð=Ð=°,D Q 为AC 的中点,AD CD \=,在Rt ADE V 与Rt CDF △中,AD CD DE DF =ìí=î,Rt Rt (HL)ADE CDF \V V ≌,A ACB \Ð=,AB BC \=,AB AC =Q ,AB AC BC \==,ABC \V 是等边三角形;(2)解:由(1)知,ABC V 是等边三角形,60ACB Ð=°∴,60ACB G CDG \Ð=Ð+Ð=°,CD CG =Q ,30G CDG \Ð=Ð=°,AD CD =Q ,∴30DBC Ð=°,BD GD \=,3BF FG \==,90DFC Ð=°Q ,60BCA Ð=°,30CDF \Ð=°,1122CF CD CG \==,2CG \=.【点睛】本题考查了直角三角形全等的判定和性质,等边三角形的判定和性质,等腰三角形的性质,含30°的直角三角形性质,熟练掌握全等三角形的判定和性质定理是解题的关键.18.(1)直角;(2)①作图见详解;②作图见详解【分析】(1)利用勾股定理分别求出222,,AC BC AB ,再利用勾股定理逆定理证明即可;(2)①根据矩形的性质得到点D 为AB 中点即可;②平行线间的距离处处相等,得到CEA V 与ABC V 等高同底,即可求解.【详解】(1)解:2222222223318,4432,1750AC BC AB =+==+==+=,∴222AC BC AB +=,∴90ACB Ð=°,∴ABC V 为直角三角形;(2)解:①如图,CD 即为所求:根据矩形对角线相等且互相平分得到点D 为AB 中点,∵90ACB Ð=°,∴2CD AB =;②如图,CEA V 即为所求:此时,BE AC 与水平线的夹角为45°,∴AC BE P ,∴根据平行线间的距离处处相等,得到CEA V 与ABC V 等高,又同底,∴ACE ACB S S =△△.【点睛】本题考查作图−应用与设计作图,勾股定理,勾股定理逆定理,直角三角形的性质,平行线的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.(1)BPQ V 是等边三角形,理由见解析(2)当点P 的运动时间为2s 或4s 时,BQP V 是直角三角形【分析】(1)分别求出BP BQ 、的长可知BP BQ =,再由等边三角形的性质得到=60B а,即可证明BPQ V 是等边三角形;(2)分当90PQB Ð=°时和当90BPQ Ð=°时两种情况利用含30度角的直角三角形的性质求解即可,本题主要考查了直角三角形的判定,等边三角形的性质和判定,几何动点问题,熟练掌握直角三角形含30度角的性质是关键.【详解】(1)解:BPQ V 是等边三角形,理由如下;由题意得,当2t =时,2cm 4cm AP BQ ==,,∴4cm BP AB AP =-=,∴BP BQ =,∵ABC V 是等边三角形,∴=60B а,∴BPQ V 是等边三角形;(2)解;∵运动时间为s t ,∴cm cm AP t BQ t ==,,∴()6cm BP AB AP t =-=-,如图1所示,当90PQB Ð=°时,∵=60B а,∴9030BPQ B =°-=°∠∠,∴2BP BQ =,∴62t t -=,解得2t =;如图2所示,当90BPQ Ð=°时,同理可得30BQP Ð=°,∴2BQ BP =,∴()26t t -=,解得4t =;综上所述,当点P 的运动时间为2s 或4s 时,BQP V 是直角三角形.20.(1)见解析(2)2AB BC BE +=,证明见解析(3)2AB BC BE-=【分析】根据题意补全图形即可.(2)在BC 上截取FB AB =,从而构造ABD FBD ≌△△,则DF DA DC ==,再利用等腰三角形CDF 的“三线合一”性质证得EF CE =,再结合AB FB =即可获得结论.(3)与(2)的思路类似.【详解】(1)补全图形如图所示:(2)2AB BC BE +=,证明如下:在BC 上取一点F ,使AB FB =,连接DF .(如图)∵AB FB ABD FBDBD BD =ìïÐ=Ðíï=î∴()SAS ABD FBD V V ≌∴DA DF =,∵DA DC=∴DF DC=∵DE BC ^,∴DE 为等腰三角形CDF 底边CF 上的高,∴EF CE =,由ABD FBD ≌△△得AB FB=∵BE BC CE BC EF BE FB EF AB EF =-=-ìí=+=+î①②∴+①②,得2BE AB BC=+即:2AB BC BE+=(3)结论:2AB BC BE -=.理由如下:在射线BP 上取一点F ,使FB AB =(如图)∵FB AB FBD ABDBD BD =ìïÐ=Ðíï=î∴()SAS FBD ABD V V ≌∴DF DA=又∵DA DC=∴DF DC=∵DE BC ^,即DE FC^∴EF CE =,即FB BE BC BE-=+∴AB BE BC BE-=+∴2AB BC BE-=【点睛】本题考查了全等三角形的判定和性质、利用等腰三角形“三线合一”证明,解题的关键是利用角平分线构造全等三角形.21.(1)见解析;(2)两点之间线段最短;(3)120cm ,50cm ;(4)130cm【分析】(1)根据题意画出三角锥木块的平面展开图,根据两点之间线段最短连接AC 即可;(2)根据题(1)即可求解;(3)根据题意可得,展开图中AB 等于长方形地毛毯的长和两个三角形边长之和,展开图中BC 等于长方形地毛毯的宽;(4)根据勾股定理计算AC 的长即可求解.【详解】(1)如图所示即为所求:(2)线段AC 的长即蚂蚁从点A 处到达点C 处需要走的最短路程,依据是两点之间线段最短,故答案为:两点之间线段最短;(3)根据题意可得:展开图中的802020120AB =++=cm ,50BC =cm .故答案为:120cm ,50cm ;(4)由题(1)可得:在Rt ABC V 中,由勾股定理可得:130AC ===cm ,故答案为:130cm .【点睛】本题考查平面展开—最短路径问题,两点之间线段最短,勾股定理,要注意培养空间想象能力,解题的关键是熟练掌握两点之间线段最短.22.(1)45°;30°(2)不变,理由见解析;(3)15°或30°或75°或60°【分析】(1)根据轴对称的性质得出15BCE DCE Ð=Ð=°,CB CD =,根据等腰三角形的性质求出()118030752CDB CBD Ð=Ð=°-°=°,证明ABC V 是等边三角形,得出60ACB Ð=°,AC CB CD ==,根据等腰三角形性质求出190452ADC Ð=´°=°,最后求出结果即可;(2)根据解析(1)的思路,利用等腰三角形的性质和三角形内角和定理,求出30ADB Ð=°即可证明结论;(3)分四种情况进行讨论,根据等腰三角形的定义,进行分类,分别画出图形,求出结果即可.【详解】(1)解:如图1中,∵B ,D 关于CE 对称,∴15BCE DCE Ð=Ð=°,CB CD =,∴30BCD Ð=°,∵CB CD =,∴()118030752CDB CBD Ð=Ð=°-°=°,∵AB AC =,60BAC Ð=°,∴ABC V 是等边三角形,∴60ACB Ð=°,AC CB CD ==,∴603090ACD Ð=°+°=°,∴190452ADC Ð=´°=°,∴754530ADB CDB ADC Ð=Ð-Ð=°-°=°,故答案为:45°;30°.(2)解:如图2中,结论:ADB Ð的度数不变,30ADB Ð=°.理由:∵CA CD =,602ACD a Ð=°+,∴()1180602602CDA CAD a a Ð=Ð=°-°-=°-,∵CB CD =,2BCD a Ð=,∴()11802902CDB CBD a a Ð=Ð=°-=°-,∴()906030ADB CDB CDA a a Ð=Ð-Ð=°--°-=°.(3)解:如图3中,当DA DB =时,∵CA CB =,DA DB =,∴AC ,BC 关于CD 对称,∴30BCD ACD Ð=Ð=°,∴1152BCD a =Ð=°;如图4中,当BA BD =时,BCD △是等边三角形,∴60DCB Ð=°,∴1302BCD a =Ð=°;如图5中,当DA DB =时,∵DA DB =,CA CB =,DC DC =,∴ADC BCD △≌△,∴()1360601502DCB DCA Ð=Ð=°-°=°,∴1752BCD a =Ð=°;如图6中,当DA AB =时,∵DA AB =,CD CB =,AC AC =,∴ADC ABC ≌△△,∴60ACD ACB Ð=Ð=°,∴6060120BCD Ð=°+°=°,∴1602BCD a =Ð=°,综上所述,满足条件的α的值为15°或30°或75°或60°.【点睛】本题主要考查了等腰三角形的判定和性质,等边三角形的判定和性质,轴对称的性质,三角形全等的判定和性质,三角形内角和定理的应用,解题的关键是数形结合,注意进行分类讨论.23.(1)见解析(2)MD AD DG +=,理由见解析【分析】(1)先证DA DB =,再证BC BE =,然后由等边三角形的判定即可得出结论;(2)延长BD 至H ,使得DH DM =,连接MH ,证MDH V 是等边三角形,得MH MD =,60H HMD HDM Ð=Ð=Ð=°,得H ADG Ð=Ð,然后证()ASA DMG HMB V ≌,得DG HB =,即可解决问题.【详解】(1)证明:Q 在Rt ABC △中,90ACB Ð=°,30A Ð=°,\60ABC Ð=°,12BC AB =,Q BD 平分ABC Ð,\30CBD DBA A Ð=Ð=Ð=°,\DA DB =,又Q DE AB ^,\12AE BE AB ==,\BC BE =,又Q 60ABC Ð=°,\EBC V 是等边三角形;(2)解:MD AD DG +=,理由如下:如图,延长BD 至H ,使得DH DM =,连接MH ,由(1)得DA DB =,30CBD DBA A Ð=Ð=Ð=°,Q 90ACB Ð=°,\90903060CDB CBD Ð=°-Ð=°-°=°,\60MDH CDB Ð=Ð=°,又Q DH DM =,\MDH V 是等边三角形,\MH MD =,60H HMD HDM Ð=Ð=Ð=°,Q DE AB ^,\90DEA Ð=°,\90903060ADG A Ð=°-Ð=°-°=°,\H ADG Ð=Ð,Q 60BMG Ð=°,\BMG BMD DMH BMD Ð+Ð=Ð+Ð,即DMG HMB Ð=Ð,在DMG V 和HMB V 中,DMG HMB DM HMMDG H Ð=Ðìï=íïÐ=Ðî,\()ASA DMG HMB V ≌,\DG HB =,Q HB HD DB MD AD =+=+,\MD AD DG +=.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的性质、含30度角的直角三角形的性质等知识,综合性强,熟练掌握等边三角形的判定与性质,正确作出辅助线构造全等三角形是解题的关键.。
初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析
特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。
专题训练(七) 四种特殊的等腰三角形的运用
专题训练(七) 四种特殊的等腰三角形的运用►类型一等腰直角三角形定义:有一个角是直角的等腰三角形叫做等腰直角三角形.性质:(1)两条直角边相等;(2)顶角是90°,底角是45°.判定:利用定义.1.如图7-ZT-1,轮船从B处以每小时50 n mile的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时后到达C处,在C处观测灯塔A 位于北偏东60°方向上,则C处与灯塔A的距离是________n mile.图7-ZT-12.如图7-ZT-2,△ABC是等腰直角三角形,∠BAC=90°,BE是角平分线,ED⊥BC 于点D.(1)请你写出图中所有的等腰三角形;(2)若BC=10,求AB+AE的长.图7-ZT-23.如图7-ZT-3,在△ABC中,AB=AC,D是BC的中点,BE⊥AC,垂足为E,∠ABE的平分线交AD于点F,判断△DBF的形状,并证明你的结论.图7-ZT-34.如图7-ZT-4,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形BCD和ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.图7-ZT-4►类型二等边三角形定义:三边都相等的三角形叫做等边三角形.性质:(1)三边都相等;(2)三个角都是60°.判定:(1)定义;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.5.如图7-ZT-5所示,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN 的长为()图7-ZT-5A.4 cm B.3 cm C.2 cm D.1 cm6.如图7-ZT-6,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6 cm,DE=2 cm,则BC=________cm.图7-ZT-67.如图7-ZT-7,△ABC是等边三角形,E是BC边上任意一点,∠AEF=60°,EF交△ABC的外角∠ACD的平分线于点F.求证:AE=EF.图7-ZT-7►类型三有一个角是30°的等腰三角形8.2017·荆州如图7-ZT-8,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l 交AC于点D,则∠CBD的度数为()图7-ZT-8A.30° B.45° C.50° D.75°9.如图7-ZT-9,在Rt△ABC中,∠C=90°,∠B=30°,BC=3,D是BC边上一动点(不与点B,C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B 落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为________.图7-ZT-910.如图7-ZT-10,在△ABC中,∠ABC=45°,D是△ABC的边BC上一点,DC=2DB,∠ADC=60°,CE⊥AD,垂足为E,连接BE.求证:EA=EB=EC.图7-ZT-10►类型四有一角是36°的等腰三角形有一角是36°的等腰三角形包括两种情况:(1)顶角是36°的等腰三角形,此时底角是72°;(2)底角是36°的等腰三角形,此时顶角是108°.这两类等腰三角形具有一些共性.11.如图7-ZT-11,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()图7-ZT-11A.30° B.36°C.38° D.45°12.2017·益阳如图7-ZT-12,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC 的垂直平分线,若BE=a,AE=b,则用含a,b的式子表示△ABC的周长为________.图7-ZT-1213.如图7-ZT-13所示,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,则∠BAC=________度.图7-ZT-1314.如图7-ZT-14,在△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)图7-ZT-14(1)在图①中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是________度和________度;(2)在图②中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在图③中画n条线段,则图中有________个等腰三角形,其中有________个黄金等腰三角形.教师详解详析1.[答案] 25[解析] 由题意知∠ABC =45°,∠ACB =90°,于是∠A =45°,∴△ABC 是等腰直角三角形.∴AC =BC =50×12=25(n mile).2.解:(1)如图,∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠ABC =∠8=45°. 又∵ED ⊥BC ,∴∠EDC =90°,∠7=∠8=45°.∴DE =DC , 故△DCE 为等腰三角形;∵BE 是∠ABC 的平分线,∠BAC =∠EDB =90°, ∴AE =DE ,故△ADE 为等腰三角形; ∵BE 是∠ABC 的平分线,∴∠1=∠2. 又∵∠BAE =∠EDB =90°,BE =BE , ∴△ABE ≌△DBE.∴AB =BD , 故△ABD 为等腰三角形.故图中所有的等腰三角形为△ABC ,△DCE ,△ADE ,△ABD ,共四个.(2)由(1)可知△ADE ,△ABD ,△DCE 均为等腰三角形, ∴AB =BD ,AE =DE =CD. ∴AB +AE =BD +CD =BC =10. 3.解:△DBF 是等腰直角三角形.证明:∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,AD 平分∠BAC. ∵BF 平分∠ABE ,BE ⊥AC ,∴∠DFB =∠DAB +∠ABF =12(∠BAE +∠ABE)=12(180°-∠AEB)=45°.∴∠DBF =90°-∠DFB =45°.∴DB =DF. ∴△DBF 是等腰直角三角形. 4.证明:∵AC =BC , ∴∠CAB =∠CBA.∵△ACE 和△BCD 均为等腰直角三角形, ∴∠CAE =∠CBD =45°.∴∠FAG =∠FBG. ∴AF =BF.在△ACF 和△BCF 中, ⎩⎪⎨⎪⎧AF =BF ,AC =BC ,CF =CF ,∴△ACF ≌△BCF(SSS). ∴∠ACF =∠BCF.∴AG =BG ,CG ⊥AB(三线合一), 即CG 垂直平分AB. 5.C 6.[答案] 8[解析] 延长AD 交BC 于点M.由AB =AC ,AD 平分∠BAC 可得AM ⊥BC ,BM =MC =12BC.延长ED 交BC 于点N ,则△EBN 是等边三角形,故EN =BN =BE =6 cm ,∴DN =6-2=4(cm).在Rt △DMN 中,∵∠MDN =90°-∠DNM =30°,∴MN =12DN =2 cm.∴BM =6-2=4(cm).∴BC =2BM =8 cm.7.证明:如图,在AB 上截取AG =CE ,连接EG.∵△ABC 是等边三角形,∴AB =BC ,∠B =∠ACB =60°.∴BG =BE. ∴△BEG 是等边三角形.∴∠BGE =60°. ∴∠AGE =120°. ∵CF 平分∠ACD ,∴∠ACF =12(180°-∠ACB)=60°.∴∠ECF =120°.∴∠AGE =∠ECF.∵∠AEC =∠B +∠GAE =∠AEF +∠CEF ,且∠AEF =∠B =60°, ∴∠GAE =∠CEF.∴△AGE ≌△ECF(ASA).∴AE =EF.8.[解析] B ∵AB =AC ,∠A =30°,∴∠ABC =∠ACB =75°.∵AB 的垂直平分线交AC 于点D ,∴AD =BD.∴∠A =∠ABD =30°.∴∠CBD =∠ABC -∠ABD =75°-30°=45°.故选B.9.[答案] 1或2[解析] 根据题意,得∠AEF =2∠B =60°.(1)若∠AFE =90°,如图①,则∠FAB =90°-∠AEF =30°,∴∠FAB =∠B.∴AF =BF.∵∠B =30°,∴∠BAC =60°.∴∠FAC =30°.在Rt △FAC 中,FC =12AF =12BF =13BC =1,∴BF =BC -FC =2.∴BD =12BF =1;(2)若∠EAF =90°,如图②,同理可得FC =12AF.在Rt △BAF 中,FA =12BF.∴FC =14BF =13BC =1.∴BF =BC +CF =4. ∴BD =12BF =2. 综上所述,BD 的长为1或2.10.证明:∵CE ⊥AD ,∠ADC =60°,∴∠DCE =30°.∴DC =2DE.∵DC =2DB ,∴DE =DB.∴∠EBC =12∠ADC =30°. ∴∠EBC =∠ECB =30°.∴EB =EC.∵∠DAB =∠ADC -∠ABC =15°,∠EBA =∠ABC -∠EBC =45°-30°=15°,∴∠DAB =∠EBA.∴EA =EB.∴EA =EB =EC.11.B12.[答案] 2a+3b[解析] 根据题意可知AC=AB=a+b.∵AB=AC,∠BAC=36°,∴∠B=∠ACB=72°.∵DE是线段AC的垂直平分线,∠BAC=36°,∴AE=CE.∴∠ACE=∠BAC=36°.∴∠B=∠BEC=72°.∴BC=CE=AE=b.∴△ABC的周长=2(a+b)+b=2a+3b.13.10814.解:(1)如图①所示(画图不唯一).空格处分别填:108,36.提示:当AE=BE时,∠A=∠ABE=36°,则∠AEB=108°,∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108°和36°.(2)答案不唯一,如图②所示.(3)空格处分别填:2n,n.提示:画1条线段可得到2个等腰三角形;画2条线段可得到4个等腰三角形;画3条线段可得到6个等腰三角形……∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.。
【期末复习提升卷】浙教版2022-2023学年八上数学第2章 特殊三角形 测试卷1(解析版)
【期末复习提升卷】浙教版2022-2023学年八上数学第2章特殊三角形测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.若以下列数组为边长,能构成直角三角形的是()A.4,5,6B.√2,√3,√5C.0.2,0.3 ,0.5D.13,14,15【答案】B【解析】A、42+52≠62,不能构成直角三角形;B、(√2)2+(√3)2=(√5)2,能构成直角三角形;C、0.22+0.32≠0.52,不能构成直角三角形;D、(15)2+(14)2≠(13)2,不能构成直角三角形.故答案为:B.2.下列命题中,逆命题错误的是()A.两直线平行,同旁内角互补B.对顶角相等C.直角三角形的两个锐角互余D.直角三角形两条直角边的平方和等于斜边的平方【答案】B【解析】A、逆命题是:同旁内角互补,两直线平行,符合题意,故本选项不符合题意;B、逆命题是相等的角是对顶角,为假命题,故本选项符合题意;C、逆命题是:若一个三角形两锐角互余,则为直角三角形,符合题意,故本选项不符合题意;D、逆命题是:若一个三角形两条直角边的平方和等于斜边的平方则为直角三角形,符合题意,故本选项不符合题意.故答案为:B.3.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根【答案】B【解析】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了,所以一共有8个,∴添加这样的钢管的根数最多是8根.故答案为:B.4.如图,在△ABC中,∠ACB=90°,点D在AC边上且AD=BD,M是BD的中点,若AC=8,BC=4,则CM等于()A.52B.3C.4D.5【答案】A【解析】∵∠ACB=90°,M 是BD 的中点,∴CM =12BD ,设CM =x ,则BD =AD =2x , ∵AC =8,∴CD =AC −AD =8−2x ,在Rt △BCD 中,根据勾股定理得, BC 2+CD 2=BD 2,即42+(8−2x)2=(2x)2,解得:x =52故答案为:A. 5.如图,在等边三角形ABC 中,BC=2,D 是AB 的中点,过点D 作DF ⊥AC 于点F ,过点F 作EF ⊥BC 于点E ,则BE 的长为( )A .1B .32C .54D .43【答案】C【解析】∵D 是AB 的中点,∴AD =12AB =1, ∵等边三角形ABC 中∠A=∠C=60°, 且DF ⊥AC ,∴∠ADF=180°-90°-60°=30°,在Rt △ADF 中,AF =12AD =12,∴FC =AC −AF =2−12=32,同理,在Rt △FEC 中,EC =12FC =12×32=34,∴BE =BC −EC =2−34=54.故答案为:C .6.以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .8 【答案】A【解析】∵两个正方形的面积分别为8和14,且它们分别是直角三角形的一直角边和斜边的平方, ∴正方形A 的面积=14-8=6. 故答案为:A .7.如图, △ABC 中, ∠BAC =90° , AB =3 , AC =4 ,点 D 是 BC 的中点,将 △ABC 沿 AD 翻折得到 △AED ,连 CE ,则线段 CE 的长等于( )A .75B .54C .53D .2【答案】A【解析】如图,连接 BE 交 AD 于 O ,作 AH ⊥BC 于 H .在Rt△ABC中,∵AC=4,AB=3,∴BC=√AC2+AB2=5,∴CD=DB,∴AD=DC= DB=52.又∵12BC⋅AH=12AB⋅AC,∴AH=125.又∵AE=AB,DE=DB=DC,∴AD垂直平分线BE,△BCE是直角三角形.∵12AD⋅BO=12BD⋅AH,∴OB=125,∴BE=2OB=245.在Rt△BCE中,EC=√BC2−BE2=75.故答案为:A.8.如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为()A.2B.3C.4D.5【答案】A【解析】∵A(a,0),B(0,a),∴OA=OB.∵△ODC是等腰直角三角形,∴OD=OC,∠D=∠DCO=45°.∵∠DOC=∠BOA=90°,∴∠DOB=∠COA.在△DOB和△COA中,∵OD=OC,∠DOB=∠COA,OB=OA,∴△DOB≌△COA(SAS),∴∠D=∠OCA=45°,S△DOB﹣S△AOE=S△EOC.∵OE⊥AC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴S△DOB﹣S△AOE=S△EOC=12×2×2=2.故答案为:A.9.如图,在ΔABD中,AD=AB,∠DAB=90°,在ΔACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①∠BDC=∠BEC;②FA平分∠DFE;③DC⊥BE;④DC=BE.其中,正确的结论有()A.①②③④B.①③④C.②③D.②③④【答案】D【解析】∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,∠BDA=∠ECA=45 °,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即:∠DAC=∠BAE,在△ABE和△ADC中,{AB=AD∠BAE=∠DACAE=AC,∴△ABE≌△ADC(SAS),∴BE=DC,故④正确;∠ADF=∠ABF,∴∠BDC=45 °−∠ADF,∠BEC=45 °−∠AEF,而∠ADF=∠ABF ≠∠AEF,∴∠BDC ≠∠BEC,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD⊥BE,故③正确;作AP⊥CD于P,AQ⊥BE于Q,∵△ABE≌△ADC,∴S△ABE=S△ADC,∵BE=DC,∴AP= AQ,∵AP⊥CD,AQ⊥BE,∴FA平分∠DFE,故②正确;综上,②③④正确;故答案为:D.10.如图,△ABC与△CDE都是等边三角形,连接AD,BE,CD=4,BC=2,若将△CDE绕点C顺时针旋转,当点A、C、E在同一条直线上时,线段BE的长为()A.2√3B.2√7C.√3或√7D.2√3或2√7【答案】D【解析】①当E在CA延长线上时,过A作AM⊥BE于M,如下图:∵△ABC与△CDE都是等边三角形,CD=4,BC=2,∴AE=CE−AC=4−2=2,∠BAC=60°,∴AE=AB,∴∠AEB=∠ABE=30°,EM=BM,在Rt△ABM中,AM=12AB=1,BM=√3AM=√3,∴BE=2BM=2√3;②当E在AC的延长线上时,过B作BN⊥AC于N,如下图:在Rt△BCN中,CN=12BC=1,由勾股定理得:BN=√3CN=√3,∴NE=CE+CN=4+1=5,在Rt△BNE中,BE=√BN2+NE2=√(√3)2+52=2√7.综上所述,线段BE的长为2√3或2√7.故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.【答案】3.75【解析】设这个湖的水深是x尺,则荷花的长为(x+0.5)尺,根据题意,得x2+22=(x+0.5)2,解得:x=3.75,∴这个湖的水深是3.75尺.故答案为:3.75.12.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、E,AD与BE交于点F,BF=AC,∠ABE=20°,则∠CAD的度数是.【答案】25°【解析】∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠BEC=∠ADC=90°,∴∠DAC+∠C=90°,∠DBF+∠C=90°,∴∠DBF=∠DAC,在△DBF和△DAC中,{∠BDF=∠ADC ∠DBF=∠DACBF=AC,∴△DBF≅△DAC(AAS),∴AD=BD,∵∠ADB=90°,∴∠ABD=∠DAB=45°,∵∠ABE=20°,∴∠CAD=∠DBF=∠ABD-∠ABE=45°-20°=25°.故答案为:25°.13.如图,在△ABC中,AB=20,AC=15,BC=7,则点A到BC的距离是.【答案】12【解析】过A作AD⊥BC交BC的延长线于D,∴∠D=90°,∴AB2−BD2=AD2=AC2−CD2,∵AB=20,AC=15,BC=7,∴202−(7+CD)2=152−CD2,∴CD=9,∴AD=√152−92=12,∴点A到BC的距离是12;故答案为:12.14.如图,在平面直角坐标系中,长方形AOBC的边OB、OA分别在x轴、y轴上,点D在边BC 上,将该长方形沿AD折叠,点C恰好落在边OB上的E处.若点A(0,8),点B(10,0),则点D 的坐标是.【答案】(10,3)【解析】∵A(0,8),点B(10,0),∴OA=BC=8,OB=AC=10,设BD=a,则CD=8﹣a,由题意可得,CD=DE=8﹣a,由对折知,AE=AC=10,∴OE=√AE2−AO2=√102−82=6,∴BE=OB﹣OE=10﹣6=4,∵∠DBE=90°,∴a2+42=(8﹣a)2,解得a=3,∴点D的坐标为(10,3),故答案为:(10,3).15.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,AB和FE交于点M,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AFB≌△ADC;②BE2+DC2=DE2;③AB﹣AD=ED﹣BE;④只有当∠AME=90°时,BF=BE,其中正确的有.【答案】①②④【解析】∵∠BAC=∠DAF=90°,∴∠CAD+∠BAD=∠F AB+∠BAD=90°,∴∠F AB=∠DAC,又∵AB=AC,AF=AD,∴△AFB≌△ADC(SAS),∠C=∠ABC=45°,故①说法符合题意∴AF=AD,BF=CD,∠C=∠ABF=45°,∴∠FBE=90°∵∠EAD=45°,∠F AD=90°,∴∠F AE=∠DAE=45°又∵AE=AE,∴△AFE≌△ADE(SAS),∴DE=FE,2BE2=EF2,∵BF+2BE2=DE2,故②说法符合题意;∴CD+如图所示,过点A作AH⊥BC于H,设AH=BH=x,则AB=√2x,当BE=CD时,即BE=BF,∴ED=EF=√2BE,∵AB=AC,∠B=∠C,∴△ABE≌△ACD,∴AD=AE,∴EH=DH=12ED∵BH=BE+EH=x,∴BE+√22BE=x ,∴BE=(2−√2)x,∴EH=(√2−1)x∴AD=AE=√AH2+EH2=√4−2√2x,∴AB−AD=√2x−√4−2√2x,ED−BE=(2√2−2)x−(2−√2)x=(3√2−4)x∴此时AB−AD≠ED−BE,故③不符合题意;当∠AME=90°时,∴∠BMF=∠BME=90°,又∵∠FBM=∠MBE=45°,∴BF=BE,故④符合题意,故答案为:①②④.16.如图所示,∠AOB=50°,∠BOC=30°,OM=11,ON=6.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是.【答案】√223【解析】如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P≥M′N′,∴当N′,P,Q,M′在同一条直线上时取最小值,连接ON′,OM′,过点N′作N′E⊥OM′交OM′的反向延长线于点E,∵∠AOB=50°,∠OC=30°,则∠N′OA=∠AOC=∠AOB−∠BOC=20°,∠BOM′=∠BOA=50°∴∠N′OM′=2∠N′OA+∠COB+∠BOM′=40°+30°+50°=120°,∴∠EON′=60°∵N′E⊥OM′∴∠EN′O=30°∵ON′=ON=6,OM=OM′=11∴EO=12N′O=3在Rt△EON′中,EN′=√ON′2−OE2=√62−32=3√3在Rt△EM′N′中,EM′=EO+OM′=3+11=14,∴M′N′=√EN′2+EM′2=√(3√3)2+142=√223故答案为:√223.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D是边AB上一点,DE与AC相交,AB=17.(1)求证:△BCD≌△ACE.(2)若BD=5,求DE的长.【答案】(1)证明:∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB-∠ACD=∠ECD-∠ACD,即∠ACE=∠BCD,∴△BCD≌△ACE;(2)解:∵AC=BC,∠ACB=90°,∴∠B=∠CAB=45°,∵△BCD≌△ACE,∴∠CAE=∠B=45°,AE=BD=5,∴∠EAD=90°,∵AB=17,BD=5,∴AD=12,∴DE=√AE2+AD2=√122+52=13.18.如图,在等腰△ABC中,点D在AB边上,点E是AC延长线上的点,DE交底边BC于点G,AE=3AD=3BD=3,(1)求CE的长度;(2)求证:AG是△ADE的中线.【答案】(1)解:∵AE=3AD=3BD=3,∴AE=3,AD=1,BD=1,∴AB=AD+BD=1+1=2,∴△ABC为等腰三角形,BC为底边,∴AC=AB=2,∴CE=AE-AC=3-2=1;(2)证明:过点E作EF∥AB交BC延长线于点F,∴∠F=∠ABC,∵△ABC为等腰三角形,∠ACB=∠FCE,∴∠ABC=∠ACB,∴∠FCE=∠F,∴CE=FE=1=BD,在△BDG 和△FEG 中{∠B =∠F∠DGB =∠EGF BD =FE,∴△BDG ≌△FEG (AAS ), ∴DG=EG ,∴AG 为△ADE 的中线.19.如图,在Rt △ABC 中,∠C =90°,AC =BC ,在Rt △ABD 中,∠D =90°,AD 与BC 交于点E ,且∠DBE =∠DAB .求证:(1)∠CAE =∠DBC ;(2)AC 2+CE 2=4BD 2. 【答案】(1)证明:如下图所示,标出∠1,∠2,∠3.∵∠ACB =90°,∠ADB =90°,∴∠1+∠3=90°,∠2+∠DBC =90°. ∵∠1和∠2是对顶角, ∴∠1=∠2.∴∠3=∠DBC ,即∠CAE =∠DBC .(2)证明:在(1)中图延长BD 交AC 延长线于点F . 由(1)可知∠3=∠DBC ,即∠3=∠DBE . ∵∠DBE =∠DAB , ∴∠3=∠DAB . ∵∠ADB =90°, ∴∠ADF =90°. ∴∠ADF =∠ADB . 在△ADF 和△ADB 中,∵{∠3=∠DAB ,AD =AD ,∠ADF =∠ADB ,∴△ADF ≌△ADB(ASA). ∴FD =BD . ∴BF =2BD .∵∠ACB =90°,即∠ACE =90°, ∴∠BCF =90°. ∴∠ACE =∠BCF .由(1)可知∠3=∠DBC ,即∠3=∠CBF . 在△ACE 和△BCF 中,∵{∠3=∠CBF ,AC =BC ,∠ACE =∠BCF ,∴△ACE ≌△BCF(ASA).∴AE =BF .∴AE =2BD∵在Rt △ACE 中,AC 2+CE 2=AE 2,∴AC 2+CE 2=(2BD)2=4BD 2.20.如图,△ABC 是等边三角形,延长BC 到点E ,使CE=12BC ,若D 是AC 的中点,连接ED 并延长交AB 于点F .(1)若AF=3,求AD 的长;(2)求证:DE=2DF .【答案】(1)解:∵△ABC 为等边三角形,∴AC=BC ,∠A=∠ACB=60°,∵D 为AC 中点,∴CD=AD=12AC , ∵CE=12BC , ∴CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠E=∠CDE=30°,∴∠ADF=∠CDE=30°,∵∠A=60°,∴∠AFD=180°-∠A-∠ADF=90°,∵AF=3,∴AD=2AF=6,(2)解:连接BD ,∵△ABC 为等边三角形,D 为AC 中点,∴BD 平分∠ABC ,∠ABC=60°,∴∠DBC=∠ABD=12∠ABC=30°, ∵∠BFD=90°,∴BD=2DF ,∵∠DBC=∠E=30°,∴BD=DE ,∴DE=2DF ,21.如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.(1)求证:∠EAC=∠BAD;(2)若∠EAC=42°,求∠DEB的度数.【答案】(1)证明:∵AB=AD,AC=AE,BC=DE,∴△ABC≌△ADE.∴∠BAC=∠DAE.∴∠BAC-∠BAE=∠DAE-∠BAE.即∠EAC=∠BAD;(2)解:∵AC=AE,∠EAC=42°,∴∠AEC=∠C=12×(180°-∠EAC)=12×(180°-42°)=69°.∵△ABC≌△ADE,∴∠AED=∠C=69°,∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.22.如图,在△ABC中,AB=AC.(1)若P为BC上的中点,求证:AB2−AP2=PB·PC;(2)若P为线段BC上的任意一点,(1)中的结论是否成立,并证明;(3)若P为BC延长线上一点,说明AB、AP、PB、PC之间的数量关系.【答案】(1)证明:连接AP,∵AB=AC,P是BC中点,∴AP⊥BC,BP=CP,在Rt△ABP中,AB2−AP2=BP2=PB·PC;(2)解:成立.如图,连接AP,作AD⊥BC,交BC于D,∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AB2=AD2+BD2,同理,AP2=AD2+DP2,∴AB2−AP2=AD2+BD2−(AD2+DP2)=BD2−DP2又∵BP=BD+DP,CP=CD-DP=BD-DP,∴BP•CP=(BD+DP)(BD-DP)=BD2−DP2,∴AB2−AP2=PB·PC;(3)解:AP2−AB2=PB·PC.如图,P是BC延长线任一点,连接AP,并作AD⊥BC,交BC 于D,∵AB =AC ,AD ⊥BC ,∴BD =CD ,在Rt △ABD 中,AB 2=AD 2+BD 2,在Rt △ADP 中,AP 2=AD 2+DP 2,∴AP 2−AB 2=(AD 2+DP 2)−(AD 2+DB 2)=PD 2−BD 2 又∵BP =BD +DP ,CP =DP -CD =DP -BD ,∴BP•CP =(BD +DP )(DP -BD )=DP 2−BD 2,∴AP 2−AB 2=BP ·CP . 23.已知:如图,△ABC 、△CDE 都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.(1)求证:AD =BE ;(2)求∠DOE 的度数;(3)求证:△MNC 是等边三角形.【答案】(1)证明:∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中{AC =BC ∠ACD =∠BCE CD =CE ,∴△ACD ≌△BCE(SAS),∴AD =BE .(2)解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵等边三角形DCE ,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°−(∠ADE +∠BED)=60°,答:∠DOE 的度数是60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE , ∴AM =BN ,在△ACM 和△BCN 中{AC =BC ∠CAM =∠CBN AM =BN,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.24.如果平面内一点到三角形的三个顶点的距离中,最长距离的平方等于另两个距离的平方和,则称这个点为该三角形的勾股点.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若PC>PA,PC>PB,且PC2=PA2+PB2,则点P就是△ABC的勾股点.(1)如图2,在3×2的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点(小正方形的顶点)上,格点P是△ABC的勾股点吗?请说明理由;(2)如图3,△ABC为等边三角形,过点A作AB的垂线,点E在该垂线上,以CE为边在其右侧作等边△CDE,连结AD.①求证:点A是△CDE的勾股点;②若AC=√3,AE=1,直接写出等边△CDE的边长.【答案】(1)解:格点P是△ABC的勾股点,理由:∵PA2=22+12=5,PB2=22=4,PC2=12=1,∴PA2=PB2+PC2,∴格点P是△ABC的勾股点;(2)解:①证明:∵△ABC和△CDE是等边三角形,∴AB=AC=BC,CD=CE=DE,∠B=∠ACB=∠DCE=60°,∴AB∥CE,∵AB⊥AE,∴∠BAE=90°,∴∠AEC=90°,∴AC2=AE2+CE2,∵∠BAC=60°,∠BAE=90°,∴∠CAE=30°,∴CE=12AC,∴AE=√AC2−CE2=√AC2−14AC2=√32AC过A作AH⊥BC于H,∴CH=BH=12BC=12AC,∠AHC=90°,∴DH=CD+CH=12AC+12AC=AC,∴AH2=AC2﹣CH2=AC2﹣14AC2=34AC2,∴AH=√32AC,∴AH=AE,∴AD2=AH2+HD2=AE2+AC2,∴点A是△CDE的勾股点;②√2.【解析】(2)②解:∵△ABC和△CDE是等边三角形,∴∠B=∠ACB=∠DCE=60°,∴AB∥CE,∵AB⊥AE,∴∠BAE=90°,∴∠AEC=90°,∴AC2=AE2+CE2,∵AC=√3,AE=1,∴CE=√AC2−AE2=√2,∴等边△CDE的边长为√2.。
特殊三角形培优专项训练(解析版)
【期末复习】浙教版八年级上册提分专题:特殊三角形培优专项训练一.选择题1.(等腰直角三角形“手拉手”模型)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断.【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.2.(共斜边的直角三角形+勾股定理)如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为()A.2B.C.8D.9【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=9,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=5,根据勾股定理计算即可.【解答】解:连接EF、DF,∵BD⊥AC,F为BC的中点,∴DF=BC=9,同理,EF=BC=9,∴FE=FD,又G为DE的中点,∴FG⊥DE,GE=GD=DE=5,由勾股定理得,FG==2,故选:A.3.(直角三角形勾股定理与面积)如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【分析】如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,根据△ACG,△BCH,△ABF是等边三角形,求得S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,根据勾股定理得到c2=a2+b2,于是得到结论.【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.(轴对称与勾股定理综合)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上,AD=AC,AE ⊥CD,垂足为F,与BC交于点E,则BE的长是()A.3B.5C.D.6【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【解答】解:连接DE,如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,∵AD=AC=6,AF⊥CD,∴DF=CF,∴CE=DE,BD=AB﹣AD=4,在△ADE和△ACE中,,∴△ADE≌△ACE(SSS),∴∠ADE=∠ACE=90°,∴∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,即x2+42=(8﹣x)2,解得:x=3;∴CE=3;∴BE=8﹣3=5.故选:B.5.(勾股定理+中点)如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=5,AD=,则AB的长为()A.10B.4C.D.8【分析】设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=25,在直角△ADC中,4x2+y2=AD2=55,解方程组可求得x、y,在直角△ABC中,根据勾股定理求得AB.【解答】解:设EC=x,DC=y,∠ACB=90°,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=25.在直角△ADC中,AC2+CD2=4x2+y2=AD2=55,解得x=,y=.在直角△ABC中,AB===8.故选:D.6.(勾股定理与面积规律)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于()A.4B.6C.8D.12【分析】过F作AM的垂线交AM于D,通过证明S2=S Rt△ABC;S3=S△FPT;S4=S Rt△ABC,进而即可求解.【解答】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=S Rt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S Rt△ABC.易证Rt△ABC≌Rt△EBN,∴S4=S Rt△ABC,∴S1﹣S2+S3+S4=(S1+S3)﹣S2+S4=S Rt△ABC﹣S Rt△ABC+S Rt△ABC=6﹣6+6=6,故选:B.7.(勾股定理与整体思想)如图,在等腰直角△ABC中,∠BAC=90°,AD是△ABC的高线,E是边AC上一点,分别作EF⊥AD于点F,EG⊥BC于点G,几何原本中曾用该图证明了BG2+CG2=2(BD2+DG2),若△ABD与△AEF的面积和为8.5,BG=5,则CG的长为()A.2B.2.5C.3D.3.5【分析】由S△AEF+S△ABD=8.5,得BD2+DG2=17,从而有BG2+CG2=34,即可得出答案.【解答】解:由题意知:△ABD,△AEF都是等腰直角三角形,∴S△AEF=,S,∵S△AEF+S△ABD=8.5,∴BD2+DG2=17,∵BG2+CG2=2(BD2+DG2),∴BG2+CG2=34,∵BG=5,∴CG==3,故选:C.8.(等边三角形“手拉手”模型)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列六个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤BD∥MN.⑥CP平分∠BPD其中,正确的有()A.3个B.4个C.5个D.6个【分析】①根据等边三角形的性质得CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,则∠ACE=60°,利用“SAS”可判断△ACD≌△BCE,则AD=BE;②由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,即可解决问题;③根据三角形内角和定理可得∠CAD+∠CDA=60°,而∠CAD=∠CBE,则∠CBE+∠CDA=60°,然后再利用三角形内角和定理即可得到∠BPD=120°,即可得到结论;④由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,所以AN=BM;⑤由△ACN≌△BCM得到CN=BM,加上∠MCN=60°,则根据等边三角形的判定即可得到△CMN为等边三角形,得到∠CMN=60°,所以∠CMN=∠BCM,于是根据平行线的判定即可得到MN∥BC;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,由△ACD≌△BCE得到CQ=CH,于是根据角平分线的判定定理即可得到CP平分∠BPD.【解答】证明:①∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②∵△ACD≌△BCE,∴∠CAD=∠CBE,在△ACN和△BCM中,,∴△ACN≌△BCM(ASA),∴AN=BM,∠BMC=∠ANC;故②④正确;③∵∠CAD+∠CDA=60°,而∠CAD=∠CBE,∴∠CBE+∠CDA=60°,∴∠BPD=120°,∴∠APM=60°;故③正确;⑤∵△ACN≌△BCM,∴CN=BM,而∠MCN=60°,∴△CMN为等边三角形;∴∠CMN=60°,∴∠CMN=∠BCM,∴MN∥BC;故⑤正确;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,∵△ACD≌△BCE,∴CQ=CH,∴CP平分∠BPD,故⑥正确.正确的有:①②③④⑤⑥,共6个.故选:D.9.(三角形与特殊三角形性质的综合)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.下列结论正确的有()个.①BF=AC;②CE=BF;③△DGF是等腰三角形;④BD+DF=BC;⑤;A.5B.4C.3D.2【分析】由“AAS”可证△BDF≌△CDA,可得BF=AC,故①正确.由等腰三角形的性质可得AE=EC=AC =BF,故②正确,由角的数量关系可求∠DGF=∠DFG=67.5°,可得DG=DF,即△DGF是等腰直角三角形,故③正确.由全等三角形的性质可得DF=DA,则可得BC=AB=BD+DF,故④正确;由角平分线的性质可得点F到AB的距离等于点F到BC的距离,由三角形的面积公式可求=,故⑤正确,即可求解.【解答】解:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,∴BA=BC,∵BE⊥AC,∴AE=EC=AC=BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDC=90°,BH=HC,∴∠BHG=90°,∴∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,∴△DGF是等腰直角三角形,故③正确.∵△BDF≌△CDA,∴DF=AD,∴BC=AB=BD+AD=BD+DF,故④正确;∵BE平分∠ABC,∴点F到AB的距离等于点F到BC的距离,∴=,故⑤正确,故选:A.10.(折叠与勾股定理求长度)如图,已知长方形纸片ABCD,点E在边AB上,且BE=2,BC=3,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F处,则线段FG的长为()A.B.C.D.1【分析】由将△CBE沿直线CE翻折,使点B落在点G,可得∠BEC=∠GEC,GE=BE=2,CG=BC=3,CF =EF,设FG=x,则CF=EF=x+2,根据勾股定理可得x2+32=(x+2)2,即可解得答案.【解答】解:∵将△CBE沿直线CE翻折,使点B落在点G,∴∠BEC=∠GEC,GE=BE=2,CG=BC=3,∵四边形ABCD是矩形,∴CD∥AB,∴∠BEC=∠FCE,∴∠GEC=∠FCE,∴CF=EF,设FG=x,则CF=EF=x+2,在Rt△CFG中,FG2+CG2=CF2,∴x2+32=(x+2)2,解得x=,∴FG=,故选:A.11.(三角形与特殊三角形性质的综合)如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC 内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是()①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.A.①②B.①③C.②③D.①②③【分析】由“ASA”可证△ADE≌△CDF,可得DE=DF,AE=CF,可得∠DEF=∠DFE=45°,EC=BF,可判断①,在直角三角形CEF中,由勾股定理可得BF2+AE2=EF2,可判断②,由特殊位置可求CD的范围,可判断③,即可求解.【解答】解:∵∠ACB=90°,CA=CB,D为斜边AB的中点,∴CD=AD=DB,∠A=∠B=∠ACD=∠BCD=45°,AB⊥CD,∵ED⊥FD,∴∠EDF=∠ADC=90°,∴∠ADE=△CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,AE=CF,∴∠DEF=∠DFE=45°,AC﹣AE=BC﹣CF,故①正确;∴EC=BF,∵CF2+CE2=EF2;∴BF2+AE2=EF2;故②正确;当点E与点A重合时,EF=AC=CD,当DE⊥AC时,则DF⊥BC,∴四边形DECF是矩形,∴EF=CD,∴CD≤EF<CD,故③错误,故选:A.二.填空题12.(中垂线性质定理与特殊角的应用)在△ABC中,∠A=15°,∠C=30°,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,DE=2,则AC的长为.【分析】利用线段垂直平分线的性质,说明△BCE和△ADB是等腰三角形,再利用等腰三角形的性质求出∠BEA和∠BDC的度数,利用特殊的直角三角形的性质求出BE、DB的长,最后利用线段的和差关系得结论.【解答】解:∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴CE=BE,BD=AD.∴∠C=∠CBE=30°,∠A=∠ABD=15°.∴∠BDC=∠A+∠ABD=30°,∠BEA=∠C+∠CBE=60°.∴∠EBD=90°.在Rt△BED中,∵ED=2,∠BDC=30°,∴BE=1,BD=.∴CE=BE,AD=BD.∴AC=CE+AD+ED=1+2+=3+.故答案为:3+.13.(特殊三角形的判定)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.【分析】首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.14.(赵爽弦图)如图由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNPQ的面积分别为S1,S2,S3,若S1+S2+S3=60,则S2的值是.【分析】先设一个直角三角形的面积为x,然后结合正方形ABCD,正方形EFGH,正方形MNPQ的面积关系和S1+S2+S3=60得到S2的值.【解答】解:设一个直角三角形的面积为x,∵图中的三角形全等,∴S1=S2﹣4x,S3=S2+4x,∵S1+S2+S3=60,∴S2﹣4x+S2+S2+4x=60,∴S2=20.故答案为:20.15.(直角三角形的分类讨论)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=.【分析】分两种情形:∠PCB′=90°,∠CPB′=90°,利用勾股定理构建方程求解即可.【解答】解:如图1中,当∠PCB′=90°时,设PB=PB′=x.∵AC=3,CB=4,∠ACB=90°,∴AB===5,由翻折的性质可知,AB=AB′=5,在Rt△PCB′中,PC2+CB′2=PB′2,∴(4﹣x)2+22=x2,∴x=,∴PB=.如图2中,当∠CPB′=90°,设PB=y.过点A作AT⊥B′P交B′P的延长线于点T,则四边形ACPT是矩形,∴PT=AC=3,AT=CP=4﹣y,在Rt△ATB′中,AB′2=AT2+B′T2,∴52=(4﹣y)2+(y+3)2,解得y=1或0(0舍弃),∴PB=1,综上所述,PB的值为:1或.16.(将军饮马)如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.【分析】如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.首先证明E,A,F共线,则PM+MN+PN=EM+MN+NF≥EF,推出EF的值最小时,PM+MN+PN的值最小,求出P A的最小值,可得结论.【解答】解:如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.∵∠BAC=90°,AB=4,AC=3,∴BC===5,由对称的性质可知,AE=AP=AF,∠BAP=∠BAE,∠CAP=∠CAF,∵∠P AB+∠P AC=∠BAC=90°,∴∠EAF=180°,∴E,A,F共线,∵ME=MP,NF=NP,∴PM+MN+PN=EM+MN+NF,∵EM+MN+NF≥EF,∴EF的值最小时,PM+MN+PN的值最小,∵EF=2P A,∴当P A⊥BC时,P A的值最小,此时P A==,∴PM+MN+PN≥,∴PM+MN+PN的最小值为.故答案为:.17.(角平分线与将军饮马)如图,BD是Rt△ABC的角平分线,点F是BD上的动点,已知AC=2,AE=2﹣2,∠ABC=30°,则:(1)BE=.(2)AF+EF的最小值是.【分析】(1)根据直角三角形的性质得到BC=2AC=4,由勾股定理得到AB===2,于是得到结论;(2)作点A关于BD的对称点A′,根据等腰三角形的性质得到点A′落在BC上,求得A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,根据勾股定理即可得到结论.【解答】解:(1)∵∠BAC=90°,AC=2,∠ABC=30°,∴BC=2AC=4,∴AB===2,∵AE=2﹣2,∴BE=2;故答案为:2;(2)作点A关于BD的对称点A′,∵BD是Rt△ABC的角平分线,∴点A′落在BC上,∴A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,∴EH=BE=1,BH==,∴A′H=,∴BH=A′H,∴A′E=BE=2,∴AF+EF的最小值是2,故答案为:2.18.(折叠与直角三角形分类讨论)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2,点D在AB上,连结CD,将△ADC沿CD折叠,点A的对称点为E,CE交AB于点F,△DEF为直角三角形,则CF=.【分析】分两种情况讨论,当∠EFD=90°时和当∠EDF=90°时,然后利用折叠的性质和含30°角的直角三角形三边关系求解.【解答】解:∵∠A=30°,∠ACB=90°,BC=2,∴AB=2BC=4,AC=2,∠B=60°,由折叠得,∠E=∠A=30°,①如图1,当∠EFD=90°时,∠BFC=90°,∵∠B=60°,∴∠BCF=30°,∴BF=BC=×2=1,CF=BF=;②如图2,当∠EDF=90°时,∵∠E=30°,∴∠EFD=60°,∴∠BFC=60°,∵∠B=60°,∴△BFC是等边三角形,∴CF=BC=2,综上所述,当△BFC为直角三角形时,CF=2或.故答案为:2或.三.解答题19.(“两定一动”型等腰三角形分类讨论)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.(1)当t=2时,CD=,AD=;(请直接写出答案)(2)当△CBD是直角三角形时,t=;(请直接写出答案)(3)求当t为何值时,△CBD是等腰三角形?并说明理由.【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC﹣CD代入数据进行计算即可得解;(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;(3)分①CD=BD时,过点D作DE⊥BC于E,根据等腰三角形三线合一的性质可得CE=BE,从而得到CD =AD;②CD=BC时,CD=6;③BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【解答】解:(1)t=2时,CD=2×1=2,∵∠ABC=90°,AB=8,BC=6,∴AC===10,AD=AC﹣CD=10﹣2=8;(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×10•BD=×8×6,解得BD=4.8,∴CD===3.6,t=3.6÷1=3.6秒;②∠CBD=90°时,点D和点A重合,t=10÷1=10秒,综上所述,t=3.6或10秒;故答案为:(1)2,8;(2)3.6或10秒;(3)①CD=BD时,如图1,过点D作DE⊥BC于E,则CE=BE,∴CD=AD=AC=×10=5,t=5÷1=5;②CD=BC时,CD=6,t=6÷1=6;③BD=BC时,如图2,过点B作BF⊥AC于F,则CF=3.6,CD=2CF=3.6×2=7.2,∴t=7.2÷1=7.2,综上所述,t=5秒或6秒或7.2秒时,△CBD是等腰三角形.20.(直角三角形判定与角度转化)如图,△ABC是等腰直角三角形,∠HAC=30°,∠ACD=α,点D是线段AH 上的一个动点,连接CD,将线段CD绕C点顺时针旋转90°至点E,连接DE交BC于点F.(1)连接BE,求证:△ACD≌△BCE;(2)当α=15°时,判断△BEF是什么三角形?并说明理由.(3)在点D运动过程中,当△BEF是锐角三角形时,求α的取值范围.【分析】(1)根据同角的余角相等得到∠ACD=∠BCE,利用SAS定理证明△ACD≌△BCE;(2)根据三角形内角和定理求出∠ADC,根据全等三角形的性质求出∠CEB,根据等腰直角三角形的性质求出∠CED,结合图形计算,得到答案;(3)根据三角形内角和定理求出∠ADC,用α表示出∠BEF,根据锐角的概念列式计算即可.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:△BEF是直角三角形,理由如下:∵∠HAC=30°,∠ACD=15°,∴∠ADC=180°﹣30°﹣15°=135°,∵△ACD≌△BCE,∴∠CEB=∠CDA=135°,∵CE=CD,∠DCE=90°,∴∠CED=∠CDE=45°,∴∠BEF=∠BEC﹣∠CED=135°﹣45°=90°,∴△BEF是直角三角形;(3)解:∵∠HAC=30°,∠ACD=α,∴∠ADC=180°﹣30°﹣α=150°﹣α,∵△ACD≌△BCE,∴∠CEB=∠CDA=150°﹣α,∠CBE=∠CAD=30°,∴∠BEF=∠BEC﹣∠CED=150°﹣α﹣45°=105°﹣α,由题意得:105°﹣α<90°,180°﹣30°﹣(105°﹣α)<90°,解得:15°<α<45°.21.(操作类等腰三角形分类讨论)我们数学八年级上册书本第64页作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形.你能办到吗?请画出示意图说明理由.小明在做此题时发现有多种剪法,图1为其中一种方法示意图.定义:如果我们用n条线段将一个三角形分成n+1个等腰三角形,我们把这种分法叫做这个三角形的n+1等分线图.显然,如图1所示的剪法是这个三角形的3等分线图.(1)如图2,△ABC为等腰直角三角形,请你画出一个这个△ABC的4等分线的示意图.(2)请你探究:如图3,边长为1的正三角形是否具有4等分线图.若无,请说明理由;若有,请画出所有符合条件的这个正三角形的4等分线图(若两种方法分得的三角形分别成4对全等三角形,则视为一种.)【分析】(1)取三边的中点D,E,F,并连接,即可画出一个这个△ABC的4等分线的示意图;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.【解答】解:(1)如图2,取三边的中点D,E,F,并连接,得4个等腰三角形;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②如图,作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,所以△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.22.(特殊三角形与方程思想)如图,在Rt△ABC中,AB=10,BC⊥AC,P为线段AC上一点,点Q,P关于直线BC对称,QD⊥AB于点D,DQ与BC交于点E,连结DP,设AP=m.(1)若BC=8,求AC的长,并用含m的代数式表示PQ的长;(2)在(1)的条件下,若AP=PD,求CP的长;(3)连结PE,若∠A=60°,△PCE与△PDE的面积之比为1:2,求m的值.【分析】(1)利用勾股定理求出AC,再根据对称性PQ=2PC,可得结论;(2)证明P A=PQ,构建方程求出m即可.(3)证明DE=EQ,设DE=EQ=x,根据BC=5,构建方程求出x,再求出AQ,PQ,可得结论.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AB=10,BC=8,∴AC===6,∵P,Q关于BC对称,∴PC=CQ=6﹣m,∴PQ=2PC=12﹣2m;(2)当AP=PD时,∠A=∠PDA,∵QD⊥AB,∴∠ADQ=90°,∴∠PDQ+∠ADP=90°,∠Q+∠A=90°,∴∠Q=∠PDQ,∴PD=PQ,∴P A=PQ,∴m=12﹣2m,∴m=4,∴CP=AC﹣AP=6﹣4=2;(3)∴CP=CQ,∴S△PEC=S△ECQ,∵S△PDE=2S△PEC,∴S△PDE=S△PEQ,∴DE=QE,设DE=EQ=x,∵∠A=60°,∠ACB=90°,∴∠B=90°﹣60°=30°,∴BE=2x,∵∠ADQ=90°,∴∠Q=90°﹣60°=30°,∴EC=EQ=x,∵BC=AB•=5,∴2x+x=5,∴x=2,∴DQ=2x=4,CQ=PC=EQ•=3,∵AQ=5+3=8,∴m=AP=AQ﹣PQ=8﹣6=2.23.(特殊三角形动点问题)如图,Rt△AOB中,∠AOB=90°,OA=OB=4,点P在直线OA上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)若AP=AB,则点P到直线AB的距离是;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,请直接写出OP的长;若不存在,请说明理由.【分析】(1)接BP,设点P到直线AB的距离为h,根据三角形的面积公式即可得到结论;(2)分P在x轴的正半轴和负半轴:①当P在x轴的正半轴时,求OP=O'P=AO'=4﹣4,根据三角形面积公式可得结论;②当P在x轴的负半轴时,同理可得结论;(3)分4种情况:分别以P、B、Q三点所成的角为顶角讨论:①当BQ=QP时,如图2,P与O重合,②当BP=PQ时,如图3,③当PB=PQ时,如图4,此时Q与C重合;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,根据图形和等腰三角形的性质可计算OP 的长.【解答】解:(1)连接BP,设点P到直线AB的距离为h,Rt△AOB中,∠AOB=90°,OA=OB=4,∴AB==4,∵AP=AB,∴AP=AB=4,∴S△ABP=AB•h=AP•OB,∴h=OB=4,即点P到直线AB的距离是4,故答案为:4;(2)存在两种情况:①如图1,当P在x轴的正半轴上时,点O′恰好落在直线AB上,则OP=O'P,∠BO'P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=4,∠OAB=45°,由折叠得:∠OBP=∠O'BP,BP=BP,∴△OBP≌△O'BP(AAS),∴O'B=OB=4,∴AO'=4﹣4,Rt△PO'A中,O'P=AO'=4﹣4=OP,∴S△BOP=OB•OP==8﹣8;②如图所示:当P在x轴的负半轴时,由折叠得:∠PO'B=∠POB=90°,O'B=OB=4,∵∠BAO=45°,∴PO'=PO=AO'=4+4,∴S△BOP=OB•OP=×4×(4+4)=8+8;(3)分4种情况:①当BQ=QP时,如图2,点P与点O重合,此时OP=0;②当BP=PQ时,如图3,∵∠BPC=45°,∴∠PQB=∠PBQ=22.5°,∵∠OAB=45°=∠PBQ+∠APB,∴∠APB=22.5°,∴∠ABP=∠APB,∴AP=AB=4,∴OP=4+4;③当PB=PQ时,如图4,此时Q与C重合,∵∠BPC=45°,∴∠PBA=∠PCB=67.5°,△PCA中,∠APC=22.5°,∴∠APB=45+22.5°=67.5°,∴∠ABP=∠APB,∴AB=AP=4,∴OP=4﹣4;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,∴此时OP=4;综上,OP的长是0或4+4或4﹣4或4.24.(特殊三角形综合题)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.【分析】(1)①要证明△BDF≌△ADC,如图,在△ABD中,∠ABC=45°,AD⊥BC,可证BD=AD,∠BDF =∠ADC;在△ADC中,可证得∠AFE=∠ACD,又∵∠AFE=∠BFD(对顶角相等),∴∠ACD=∠BFD;运用AAS,问题可证.②由△BDF≌△ADC可证得DF=DC;∵AD=AF+FD,∴AD=AF+DC;由GF∥BD,∠ABC=45°,可证得AF=GF;于是问题可证.(2)∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴FG=AF=AD+DF;DF=DC可通过证明△BDF≌△ADC得到,故可得:FG=DC+AD.【解答】解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴F A=FG;∴FG+DC=F A+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠F AE+∠DFB=∠F AE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.。
浙教版八上第2章特殊三角形专题2.8 最短路径问题专项训练(30道)(含解析)
最短路径问题专项训练(30道)考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,涵盖了平面直角坐标系中的规律问题所有类型!一.选择题(共12小题)1.(2022春•五华区期末)如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是( )A.cm B.4cm C.cm D.5cm2.(2022春•碑林区校级期末)如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是( )cm.A.14B.12C.10D.83.(2022春•洛阳期中)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cm.A.15B.C.12D.184.(2022秋•高州市期末)国庆节期间,茂名市一广场用彩灯带装饰了所有圆柱形柱子.为了美观,每根柱子的彩灯带需要从A点沿柱子表面缠绕两周到其正上方的B点,如图所示,若每根柱子的底面周长均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为( )A.米B.米C.米D.5米5.(2022秋•沈阳期末)如图,长方体的长为3,宽为2,高为4,点B离点C的距离为1,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是( )A.B.5C.D.6.(2022春•郾城区期末)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是( )cm.A.10B.50C.120D.1307.(2022秋•揭阳校级月考)如图,一个棱长为3的正方体,把它分成3×3×3个小正方体,小正方体的棱长都是1.如果一只蚂蚁从点A爬到点B,那么估计A,B间的最短路程d的值为( )A.4B.5C.6D.78.(2022秋•牡丹区月考)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )(π取3)m.A.30B.28C.25D.229.(2022春•靖西市期中)如图是放在地面上的一个长方体盒子,其中AB=7cm,BC=4cm,BF=6cm,点M在棱AB上,且AM=1cm,点N是FG的中点,一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为( )A.10cm B.C.D.10.(2022秋•芝罘区期中)某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为( )A.8cm B.10cm C.12cm D.15cm11.(2022秋•青岛期末)棱长分别为8cm,6cm的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱E1F1的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是( )A.B.C.D.12.(2022•广饶县一模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )厘米.A.8B.10C.12D.13二.填空题(共8小题)13.(2022春•德城区期末)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C的距离是5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是 cm.14.(2022•潍城区一模)云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的,如图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为m,其边缘AB=CD=24m,点E在CD上,CE=4m,一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为 m.15.(2022春•仁怀市月考)如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A 村、B村到河边的距离分别为2km和7km,且AB两村庄相距13km,则铺设水管的最短长度是 km.16.(2022秋•锦江区校级期末)在一个长6+2米,宽为4米的长方形草地上,如图堆放着一根三棱柱的木块,它的侧棱长平行且大于场地宽AD,木块的主视图的高是米的等腰直角三角形,一只蚂蚁从点A处到C处需要走的最短路程是 米.17.(2022秋•高新区校级期末)如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA =AB=5米,点P到AD的距离是3米,有一只蚂蚁要从点P爬到点B,它的最短行程是 米.18.(2022春•德州期中)如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是 .19.(2022秋•中原区校级期末)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是 cm.20.(2022秋•凤城市期中)如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm.在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处吃面包屑.则蚂蚁爬行的最短路线为 cm.三.解答题(共10小题)21.(2022春•宜城市期末)如图,某小区有两个喷泉A,B,两个喷泉的距离长为125m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为60m,BM的长为75m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)求喷泉B到小路AC的最短距离.22.(2022秋•原阳县期末)如图,一个正方体木箱子右边连接一个正方形木板,甲蚂蚁从点A出发,沿a,b,d三个面走最短路径到点B;同时,乙蚂蚁以相同的速度从点B出发,沿d,c两个面走最短路径到点A.请你通过计算判断哪只蚂蚁先到达目的地?23.(2022秋•江北区期末)在立方体纸盒的顶点A处有一只蚂蚁,在另一顶点E处有一粒糖,你能为这只蚂蚁设计一条最短路线,使它沿着立方体表面上的这一条路线爬行,最快捷吃到糖吗?以下提供三个方案:①A→B→C→E;②A→C→E;③A→D→E.(1)三种方案①、②、③中爬行路线最短的方案是 ;最长的方案是 .(2)请根据数学知识说明理由.24.(2022秋•二道区期末)如图,已知线段BC是圆柱底面的直径,圆柱底面的周长为10,圆柱的高AB=12,在圆柱的侧面上,过点A、C两点嵌有一圈长度最短的金属丝.(1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是 ;(2)求该金属丝的长.25.(2022秋•随县期末)如图1所示,长方形是由两个正方形拼成的,正方形的边长为a,对角线为b,长方形对角线为c.一只蚂蚁从A点爬行到C点.(1)求蚂蚁爬行的最短路线长(只能按箭头所示的三条路线走),并说明理由;(2)如果把右边的正方形EFBC沿EF翻转90°得到如图2所示的正方体相邻的两个面(实线表示),则蚂蚁从A点到C点的最短路线长是多少?请在图2中画出路线图,若与图中的线段有交点,则要标明并说明交点的准确位置.(可测量猜想判断)26.(2022秋•罗湖区期中)(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?27.(2022秋•元宝区校级期中)一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,问:丝带共有多长?28.(2022秋•东明县期中)东明县是鲁西南的化工基地,有东明石化集团,洪业化工集团,玉皇化工集团等企业,化学工业越来越成为东明县经济的命脉,化工厂里我们会经常看到如图储存罐,根据需要,在圆柱形罐的外围要安装小梯子,如果油罐的底面半径为6米,高24米,梯子绕罐体半圆到达罐顶,则梯子至少要多长?29.(2022秋•福田区期末)如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B′= cm,甲蚂蚁要吃到食物需爬行的路程长l1= cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2= cm(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3, 1.4)30.(2022秋•安岳县期末)勾股定理是解决直角三角形很重要的数学定理.这个定理的证明的方法很多,也能解决许多数学问题.请按要求作答:(1)选择图1或图2中任一个图形来验证勾股定理;(2)利用勾股定理来解决下列问题:如图3,圆柱形玻璃杯高为12cm,底面周长为16cm,在杯外离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁且与蜂蜜C相对的点A处,点A离杯口3cm.则蚂蚁到达蜂蜜的最短距离为多少?最短路径问题专项训练(30道)考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,涵盖了平面直角坐标系中的规律问题所有类型!一.选择题(共12小题)1.(2022春•五华区期末)如图,正方体的棱长为2cm,点B为一条棱的中点.蚂蚁在正方体表面爬行,从点A爬到点B的最短路程是( )A.cm B.4cm C.cm D.5cm【分析】正方体侧面展开为长方形,确定蚂蚁爬行的起点和终点,根据两点之间线段最短,根据勾股定理可求出最短路径长,【解答】解:如图,它运动的最短路程AB(cm).故选:C.2.(2022春•碑林区校级期末)如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是( )cm.A.14B.12C.10D.8【分析】首先画出圆柱的侧面展开图,根据底面周长为12cm,求出AB的值;再在Rt△ABD中,根据勾股定理求出AD的长,AD即为所求.【解答】解:圆柱侧面展开图如图所示,∵圆柱的底面周长为12cm,∴AB=6cm.∵BD=8cm,在Rt△ABD中,AD2=AB2+BD2,∴AD10(cm),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D的最短距离是10cm.故选:C.3.(2022春•洛阳期中)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm.在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cm.A.15B.C.12D.18【分析】将圆柱沿过A的母线剪开,由题意可知,需在杯口所在的直线上找一点F,使AF+CF最小,则先作出A关于杯口所在直线的对称点A',连接A'C与杯口的交点即为F,此时AF+CF=A'F+CF=A'C,再利用勾股定理求A'C的长即可.【解答】解:如图所示,将圆柱沿过A的母线剪开,由题意可知,需在杯口所在的直线上找一点F,使AF+CF最小,故先作出A关于杯口所在直线的对称点A',连接A'C与杯口的交点即为F,此时AF+CF=A'F+CF =A'C,根据两点之间线段最短,即可得到此时AF+CF最小,并且最小值为A'C的长度,如图所示,延长过C的母线,过A'作A'D垂直于此母线于D,由题意可知,A'D=18÷2=9(cm),CD=12﹣4+4=12(cm),由勾股定理得:A'C15(cm),故蚂蚁到达蜂蜜的最短距离为15cm,故选:A.4.(2022秋•高州市期末)国庆节期间,茂名市一广场用彩灯带装饰了所有圆柱形柱子.为了美观,每根柱子的彩灯带需要从A点沿柱子表面缠绕两周到其正上方的B点,如图所示,若每根柱子的底面周长均为2米,高均为3米,则每根柱子所用彩灯带的最短长度为( )A.米B.米C.米D.5米【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【解答】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故选:D.5.(2022秋•沈阳期末)如图,长方体的长为3,宽为2,高为4,点B离点C的距离为1,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是( )A.B.5C.D.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为2,高为4,点B离点C的距离是1,∴AB5;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为2,高为4,点B离点C的距离是1,∴AB;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为2,高为4,点B离点C的距离是1,∴AB;∵5,∴蚂蚁爬行的最短距离是5.故选:B.6.(2022春•郾城区期末)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是( )cm.A.10B.50C.120D.130【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵它的每一级的长宽高为20cm,宽30cm,长50cm,∴AB50(cm).答:蚂蚁沿着台阶面爬行到点B的最短路程是50cm,故选:B.7.(2022秋•揭阳校级月考)如图,一个棱长为3的正方体,把它分成3×3×3个小正方体,小正方体的棱长都是1.如果一只蚂蚁从点A爬到点B,那么估计A,B间的最短路程d的值为( )A.4B.5C.6D.7【分析】过B作BD⊥AC于D,根据勾股定理即可得到结论.【解答】解:过B作BD⊥AC于D,则AD=4,BD=3,∴A,B间的最短路程d5,故选:B.8.(2022秋•牡丹区月考)如图是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为2.5m的半圆,其边缘AB=CD=20m.小明要在AB上选取一点E,能够使他从点D滑到点E再滑到点C的滑行距离最短,则他滑行的最短距离约为( )(π取3)m.A.30B.28C.25D.22【分析】要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:其侧面展开图如图:作点C关于AB的对称点F,连接DF,∵中间可供滑行的部分的截面是半径为2.5m的半圆,∴BC=πR=2.5π≈7.5m,AB=CD=20m,∴CF=15m,在Rt△CDF中,DF25(m),故他滑行的最短距离约为25m.故选:C.9.(2022春•靖西市期中)如图是放在地面上的一个长方体盒子,其中AB=7cm,BC=4cm,BF=6cm,点M在棱AB上,且AM=1cm,点N是FG的中点,一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为( )A.10cm B.C.D.【分析】利用平面展开图有2种情况,画出图形利用勾股定理求出MN的长即可.【解答】解:如图1中,MN10(cm),如图2中,MN10(cm),∴一只蚂蚁要沿着长方形盒子的外表面从点M爬行到点N,它需要爬行的最短路程为10cm,故选:A.10.(2022秋•芝罘区期中)某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为( )A.8cm B.10cm C.12cm D.15cm【分析】画出三棱柱的侧面展开图,利用勾股定理求解即可.【解答】解:将三棱柱沿AA′展开,其展开图如图,则AA′15(cm).故选:D.11.(2022秋•青岛期末)棱长分别为8cm,6cm的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱E1F1的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是( )A.B.C.D.【分析】求出两种展开图PA的值,比较即可判断.【解答】解:如图,有两种展开方法:方法一:PA cm,方法二:PA cm.故需要爬行的最短距离是cm.故选:C.12.(2022•广饶县一模)如图,长方体的底面边长分别为2厘米和4厘米,高为5厘米.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )厘米.A.8B.10C.12D.13【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【解答】解:如图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴PA=4+2+4+2=12(cm),QA=5cm,∴PQ13cm.故选:D.二.填空题(共8小题)13.(2022春•德城区期末)如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C的距离是5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是 25 cm.【分析】画出长方体的侧面展开图,根据勾股定理求出AB的长即可.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=10+5=15(cm),AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB25(cm);只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=20+5=25(cm),AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB5(cm);只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30(cm),在直角三角形ABC中,根据勾股定理得:∴AB5(cm);∵25<55∴蚂蚁爬行的最短距离是25cm.故答案为:25.14.(2022•潍城区一模)云顶滑雪公园是北京2022年冬奥会7个雪上竞赛场馆中唯一利用现有雪场改造而成的,如图左右两幅图分别是公园内云顶滑雪场U型池的实景图和示意图,该场地可以看作是从一个长方体中挖去了半个圆柱而成,它的横截面图中半圆的半径为m,其边缘AB=CD=24m,点E在CD上,CE=4m,一名滑雪爱好者从点A滑到点E,他滑行的最短路线长为 4 m.【分析】根据题意可得,AD=12,DE=CD﹣CE=24﹣4=20,线段AE即为滑行的最短路线长.在Rt△ADE中,根据勾股定理即可求出滑行的最短路线长.【解答】解:将半圆面展开可得:AD=12m,DE=DC﹣CE=20m,在Rt△ADE中,AE4(m),即滑行的最短路线长为4m,故答案为:4.15.(2022春•仁怀市月考)如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A 村、B村到河边的距离分别为2km和7km,且AB两村庄相距13km,则铺设水管的最短长度是 15 km.【分析】作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置;利用了轴对称的性质可得AP=A′P,在Rt△AEB中利用勾股定理可以算出AE的长,再在Rt△A ′CB中利用勾股定理算出A′B的长,根据两点之间线段最短的性质即可求解.【解答】解:作点A关于河边所在直线l的对称点A′,连接A′B交l于P,则点P为水泵站的位置,此时,(PA+PB)的值最小,即所铺设水管最短;过B点作l的垂线,过A′作l的平行线,设这两线交于点C,过A作AE⊥BC于E,则四边形AA′CE和四边形AMNE是矩形,∴EN=AM=2,EC=AA′=2+2=4,A′C=AE,在Rt△ABE中,依题意得:BE=BN﹣EN=7﹣2=5,AB=13,根据勾股定理可得:AE12,在Rt△B A′C中,BC=BE+EC=5+4=9,A′C=12,根据勾股定理可得:A′B15,∵PA=PA′,∴PA+PB=A′B=15(km),故答案为:15.16.(2022秋•锦江区校级期末)在一个长6+2米,宽为4米的长方形草地上,如图堆放着一根三棱柱的木块,它的侧棱长平行且大于场地宽AD,木块的主视图的高是米的等腰直角三角形,一只蚂蚁从点A处到C处需要走的最短路程是 2 米.【分析】解答此题要将木块展开,然后根据两点之间线段最短解答.【解答】解:由题意可知,将木块展开,相当于是AB+等腰直角三角形的两腰,∴长为6+22+2﹣210(米);宽为4米.于是最短路径为2(米),故答案为:2.17.(2022秋•高新区校级期末)如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5米,点P到AD的距离是3米,有一只蚂蚁要从点P爬到点B,它的最短行程是 4 米.【分析】可将教室的墙面ADEF与地面ABCD展开,连接P、B,根据两点之间线段最短,利用勾股定理求解即可.【解答】解:如图,过P作PG⊥BF于G,连接PB,∵AG=3米,AP=AB=5米,∴PG=4米,∴BG=8米,∴PB4(米).故这只蚂蚁的最短行程应该是4米.故答案为:4.18.(2022春•德州期中)如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是 .【分析】根据题意画出图形,过A作EA⊥CD于E,连接AB,则AB长为最短距离,求出OD=OC,∠DAC=90°,根据直角三角形斜边上中线性质求出AE=DE=EC=1,根据勾股定理求出即可.【解答】解:如图展开:过A作EA⊥CD于E,连接AB,则AB长为最短距离,∵四边形DFGC是正方形,DC=BC=2,∴OD=OC,∠DAC=90°,∴∠ADE=∠ECA=45°,∵AE⊥DC,∴DE=EC,∵∠DAC=90°,∴AE=DE=EC DC=1,在△AEB中,∠AEB=90°,BE=1+2=3,EA=1,由勾股定理得:AB,故答案为:.19.(2022秋•中原区校级期末)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是 15 cm.【分析】将三棱柱侧面展开得出矩形,求出矩形对角线的长度即可.【解答】解:如图,右侧为三棱柱的侧面展开图,AA′=3+4+5=12cm,A′B=9cm,∠AA′B=90°,∴AB15cm,故答案为:15.20.(2022秋•凤城市期中)如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm.在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处吃面包屑.则蚂蚁爬行的最短路线为 100 cm.【分析】作出A关于BC的对称点A′,连接A′G,与BC交于点Q,此时AQ+QG最短;A′G 为直角△A′EG的斜边,根据勾股定理求解即可.【解答】解:如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A→Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80cm,EG=60cm,∴AQ+QG=A′Q+QG=A′G100cm.∴最短路线长为100cm.故答案为:100.三.解答题(共10小题)21.(2022春•宜城市期末)如图,某小区有两个喷泉A,B,两个喷泉的距离长为125m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为60m,BM 的长为75m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)求喷泉B到小路AC的最短距离.【分析】(1)根据勾股定理解答即可;(2)根据勾股定理的逆定理和垂线段解答即可.【解答】解:(1)在Rt△MNB中,BN45(m),∴AN=AB﹣BN=125﹣45=80(m),在Rt△AMN中,AM100(m),∴供水点M到喷泉A,B需要铺设的管道总长=100+75=175(m);(2)∵AB=125m,AM=100m,BM=75m,∴AB2=BM2+AM2,∴△ABM是直角三角形,∴BM⊥AC,∴喷泉B到小路AC的最短距离是BM=75m.22.(2022秋•原阳县期末)如图,一个正方体木箱子右边连接一个正方形木板,甲蚂蚁从点A出发,沿a,b,d三个面走最短路径到点B;同时,乙蚂蚁以相同的速度从点B出发,沿d,c两个面走最短路径到点A.请你通过计算判断哪只蚂蚁先到达目的地?【分析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解析展开a,b,c与d在同一平面内,如图所示.由题意可知,甲蚂蚁走的路径为A1B,(cm).乙蚂蚁走的路径为A2B,(cm).因为,所以A1B>A2B,故乙蚂蚁先到达目的地.23.(2022秋•江北区期末)在立方体纸盒的顶点A处有一只蚂蚁,在另一顶点E处有一粒糖,你能为这只蚂蚁设计一条最短路线,使它沿着立方体表面上的这一条路线爬行,最快捷吃到糖吗?以下提供三个方案:①A→B→C→E;②A→C→E;③A→D→E.(1)三种方案①、②、③中爬行路线最短的方案是 ③ ;最长的方案是 ① .(2)请根据数学知识说明理由.【分析】(1)根据“化曲面为平面”,且利用“两点之间线段最短”可知,爬行路线最短的方案是③;最长的方案是①;(2)分别求出三种方案蚂蚁爬行的路程,比较即可求解.【解答】解:(1)三种方案①、②、③中爬行路线最短的方案是③;最长的方案是①.故答案为:③;①;(2)爬行路线最短的方案是③;最长的方案是①.理由如下:‘’设立方体纸盒的棱长为a,则a>0.方案:①A→B→C→E蚂蚁爬行的路程为:AB+BC+CE=a+a+a=3a;方案;②A→C→E蚂蚁爬行的路程为:AC+CE a=(1)a;方案;③A→D→E蚂蚁爬行的路程为:a.∵a<(1)a<3a,∴爬行路线最短的方案是③;最长的方案是①.24.(2022秋•二道区期末)如图,已知线段BC是圆柱底面的直径,圆柱底面的周长为10,圆柱的高AB=12,在圆柱的侧面上,过点A、C两点嵌有一圈长度最短的金属丝.(1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是 C ;(2)求该金属丝的长.【分析】(1)由平面图形的折叠及立体图形的表面展开图的特点解题;(2)要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:(1)因为圆柱的侧面展开面为长方形,AC展开应该是两线段,且有公共点C.故答案为:C;(2)如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为10,圆柱的高AB=12,∴该长度最短的金属丝的长为2AC=226.25.(2022秋•随县期末)如图1所示,长方形是由两个正方形拼成的,正方形的边长为a,对角线为b,长方形对角线为c.一只蚂蚁从A点爬行到C点.。
2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简单答案)
(1)点A的坐标为;
(2)若射线 平分 ,求二次函数的表达式;
(3)在(2)的条件下,如果点 是线段 (含A、B)上一个动点,过点D作x轴的垂线,分别交直线 和抛物线于E、F两点,当m为何值时, 为直角三角形?
②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标.
14.如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).
(1)求抛物线的解析式及tan∠OBC的值;
(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P的坐标;
(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.
15.如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,已知抛物线的对称轴是直线 , . 为抛物线上的一个动点,过点 作 轴于点 ,交直线 于点 .
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求直线 的解析式.
6.已知抛物线 经过 、 两点,O为坐标原点,抛物线交正方形 的边 于点E,点M为射线 上一动点,连接 ,交 于点F.
(1)求b和c的值及点C的坐标;
(2)求证∶
(3)是否存在点M,使 为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
(1)求 , 的长(结果均用含 的代数式表示).
最新2019-2020年度浙教版八年级数学上册《特殊三角形》单元综合测试题及答案解析-精品试题
第二章特殊三角形单元检测一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°3.(3分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°4.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD 的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个5.(3分)(2016•贵阳模拟)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°6.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个7.(3分)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形 B.直角三角形C.等边三角形 D.非等腰三角形8.(3分)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30°B.30°或150°C.120°或150° D.30°或120°或150°9.(3分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.410.(3分)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2二、填空题(共8小题,满分32分,每小题4分)11.(4分)如图,已知△ABC中,AB=5,AC=7,AD⊥BC于点D,点M为AD上任意一点,则MC2﹣MB2等于______.12.(4分)(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.13.(4分)(2016春•高安市期中)如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=______.14.(4分)如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C 落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC=______度.15.(4分)(2016•迁安市一模)如图,在矩形ABCD 中,AB=12cm ,BC=6cm .点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则整个阴影部分图形的周长为______.16.(4分)(2016•湖州一模)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB=6,BC=4,则FD 的长为______.17.(3分)(2016春•乌拉特前旗期末)如图,以直角△ABC 的三边向外作正方形,其面积分别为S 1,S 2,S 3且S 1=4,S 2=8,则S 3=______.18.(4分)(2016•萧山区模拟)如图,将正方形ABCD 的边AD 和边BC 折叠,使点C 与点D 重合于正方形内部一点O ,已知点O 到边CD 的距离为a ,则点O 到边AB 的距离为______.(用a 的代数式表示)三.选择题(共12小题,满分90分)19.(6分)(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC 的平分线,求∠BDC的度数.20.(6分)(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?21.(6分)(2016春•芦溪县期中)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.22.(6分)(2016春•临清市期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.23.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.24.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.25.(8分)(2016春•十堰期末)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.26.(8分)(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.27.(8分)(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.28.(12分)(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.29.(14分)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD.第二章特殊三角形单元检测参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.3.(3分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°【分析】根据∠A=36°,AB=AC求出∠ABC的度数,根据角平分线的定义求出∠ABD 的度数,根据三角形的外角的性质计算得到答案.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C.【点评】本题考查的是三角形的外角的性质和等腰三角形的性质,掌握等腰三角形的两个底角相等和三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.4.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD 的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个【分析】根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.【解答】解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.【点评】此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.5.(3分)(2016•贵阳模拟)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:连接AC,设每个小正方形的边长都是a,根据勾股定理可以得到:AC=BC=a,AB=a,∵(a)2+(a)2=(a)2,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°,故选B.【点评】本题主要考查了勾股定理,利用勾股定理判断△ABC是等腰直角三角形是解决本题的关键.6.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.7.(3分)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形 B.直角三角形C.等边三角形 D.非等腰三角形【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.8.(3分)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30°B.30°或150°C.120°或150° D.30°或120°或150°【分析】题中没有指明等腰三角形一腰上的高是哪边长的一半,故应该分三种情况进行分析,从而不难求解.【解答】解:①如图,∵∠ADB=90°,AD=AB,∴∠B=30°,∵AC=BC,∴∠CAB=30°,∴∠ACB=180°﹣30°﹣30°=120°.②如图,∵∠ADB=90°,AD=AC,∴∠ACD=30°,∵AC=BC,∴∠CAB=∠B=15°,∠ACB=180°﹣30°=150°.③如图,∵∠ADB=90°,AD=BC,∴∠B=30°,∵AB=BC,∴∠CAB=∠C=75°,∴∠B=30°.故选D.【点评】此题主要考查等腰三角形的性质,三角形内角和定理及三角形外角性质的综合运用.9.(3分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(3分)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN 的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN =S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.二.选择题(共8小题,满分32分,每小题4分)11.(4分)如图,已知△ABC中,AB=5,AC=7,AD⊥BC于点D,点M为AD上任意一点,则MC2﹣MB2等于24 .【分析】在Rt△ABD及RtADC中可分别表示出BD2及CD2,在Rt△BDM及RtCDM 中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=72﹣52=24.故答案为:24.【点评】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.12.(4分)(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8 .【分析】本题由题意可知有两种情况,AB+AD=15或AB+AD=21.从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.【点评】本题主要考查等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验时符合三角形三边性质.分类讨论是正确解答本题的关键.13.(4分)(2016春•高安市期中)如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=25 .【分析】首先过点A作AD⊥BC于D,可得∠ADP=∠ADB=90°,又由AB=AC,根据三线合一的性质,可得BD=CD,由勾股定理可得PA2=PD2+AD2,AD2+BD2=AB2,然后由AP2+PB•PC=AP2+(BD+PD)(CD﹣PD),即可求得答案.【解答】解:过点A作AD⊥BC于D,∵AB=AC=5,∠ADP=∠ADB=90°,∴BD=CD,PA2=PD2+AD2,AD2+BD2=AB2,∴AP2+PB•PC=AP2+(BD+PD)(CD﹣PD)=AP2+(BD+PD)(BD﹣PD)=AP2+BD2﹣PD2=AP2﹣PD2+BD2=AD2+BD2=AB2=25.故答案为25.【点评】本题考查了勾股定理与等腰三角形的性质的正确及灵活运用.注意得到AP2+PB•PC=AP2+(BD+PD)(CD﹣PD)是解此题的关键.14.(4分)如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C 落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC= 63 度.【分析】首先连接OC,设∠OCE=x°,由折叠的性质易得:∠COE=∠OCE=x°,又由三角形三边的垂直平分线的交于点O,可得OB=OC,且O是△ABC外接圆的圆心,然后利用等边对等角与三角形外角的性质,可用x表示出∠OBC、∠BOE,∠OEB 的度数,又由三角形内角和定理,可得方程x+2x+2x=180,解此方程求得∠OCE的度数,继而求得∠ABC的度数.【解答】解:连接OC,设∠OCE=x°,由折叠的性质可得:OE=CE,∴∠COE=∠OCE=x°,∵三角形三边的垂直平分线的交于点O,∴OB=OC,且O是△ABC外接圆的圆心,∴∠OBC=∠OCE=x°,∠BOC=2∠A,∵∠OEB=∠OCE+∠COE=2x°,BE=BO,∴∠BOE=∠OEB=2x°,∵△OBE中,∠OBC+∠BOE+∠OEB=180°,∴x+2x+2x=180,解得:x=36,∴∠OBC=∠OCE=36°,∴∠BOC=180°﹣∠OBC ﹣∠OCE=108°,∴∠A=∠BOC=54°,∵AB=AC ,∴∠ABC=∠ACB==63°,故答案为:63.【点评】此题考查了折叠的性质、等腰三角形的性质、三角形内角和定理、三角形外角的性质以及三角形外接圆的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.15.(4分)(2016•迁安市一模)如图,在矩形ABCD 中,AB=12cm ,BC=6cm .点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则整个阴影部分图形的周长为 36cm .【分析】根据折叠的性质,得A 1E=AE ,A 1D 1=AD ,D 1F=DF ,则阴影部分的周长即为矩形的周长.【解答】解:根据折叠的性质,得A 1E=AE ,A 1D 1=AD ,D 1F=DF .则阴影部分的周长=矩形的周长=2(12+6)=36(cm ).【点评】此题要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.16.(4分)(2016•湖州一模)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB=6,BC=4,则FD 的长为 4 .【分析】根据点E 是AD 的中点以及翻折的性质可以求出AE=DE=EG ,然后利用“HL”证明△EDF 和△EGF 全等,根据全等三角形对应边相等可证得DF=GF ;设FD=x ,表示出FC 、BF ,然后在Rt △BCF 中,利用勾股定理列式进行计算即可.【解答】解:∵E 是AD 的中点,∴AE=DE ,∵△ABE 沿BE 折叠后得到△GBE ,∴AE=EG ,AB=BG ,∴ED=EG ,∵在矩形ABCD 中,∴∠A=∠D=90°,∴∠EGF=90°,在Rt △EDF 和Rt △EGF 中,,∴Rt △EDF ≌Rt △EGF (HL ),∴DF=FG ,设DF=x ,则BF=6+x ,CF=6﹣x ,在Rt △BCF 中,(4)2+(6﹣x )2=(6+x )2,解得x=4.故答案为:4.【点评】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG 是解题的关键.17.(3分)(2016春•乌拉特前旗期末)如图,以直角△ABC 的三边向外作正方形,其面积分别为S 1,S 2,S 3且S 1=4,S 2=8,则S 3= 12 .【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC 直角三角形,∴BC 2+AC 2=AB 2,∵S 1=BC 2,S 2=AC 2,S 3=AB 2,S 1=4,S 2=8,∴S 3=S 1+S 2=12.【点评】解决本题的关键是根据勾股定理得到三个面积之间的关系.18.(4分)(2016•萧山区模拟)如图,将正方形ABCD的边AD和边BC折叠,使点C与点D重合于正方形内部一点O,已知点O到边CD的距离为a,则点O到边AB 的距离为(3+2)a .(用a的代数式表示)【分析】作OG⊥CD于G,交AB于H,根据翻转变换的性质得到OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,根据直角三角形的性质和勾股定理求出DE、EF、FC,得到正方形的边长,计算即可.【解答】解:作OG⊥CD于G,交AB于H,∵CD∥AB,∴OH⊥AB于H,由翻转变换的性质可知,OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,∴△OAB是等边三角形,∠EOF=120°,∴∠OEF=30°,∴EO=2a,EG=a,∴DE=OE=2a,OF=FC=2a,EF=2EG=2a,∴DC=4a+2a,∴点O到边AB的距离为4a+2a﹣a=3a+2a=(3+2)a.故答案为:(3+2)a.【点评】本题考查的是翻转变换的性质和等边三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题(共12小题,满分88分)19.(6分)(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC 的平分线,求∠BDC的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C 的度数.20.(6分)(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.21.(6分)(2016春•芦溪县期中)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.【分析】由MD⊥BC,且∠B=90°得AB∥MD,∠BAD=∠D,再利用AD为∠BAC 的平分线得∠BAD=∠MAD,利用等量代换即可证明.【解答】证明:∵MD⊥BC,且∠B=90°,∴AB∥MD,∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD,∴∠D=∠MAD,∴MA=MD【点评】此题考查学生对等腰三角形的判定与性质和平行线段的判定与性质的理解和掌握,难度不大,是一道基础题.22.(6分)(2016春•临清市期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB ⊥CB 于B ,∴S △ABC =,S △DAC =,∵AB=CB=,DA=1,AC=2,∴S △ABC =1,S △DAC =1而S 四边形ABCD =S △ABC +S △DAC ,∴S 四边形ABCD =2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD 是直角三角形是解题的关键.23.(6分)如图,在△ABC 中,AB=AC ,AD 是BC 边上的中线,BE ⊥AC 于点E .求证:∠CBE=∠BAD .【分析】根据三角形三线合一的性质可得∠CAD=∠BAD ,根据同角的余角相等可得:∠CBE=∠CAD ,再根据等量关系得到∠CBE=∠BAD .【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.【点评】考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.24.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【分析】首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.【解答】证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.(8分)(2016春•十堰期末)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【分析】(1)利用勾股定理,找长为有理数的线段,画三角形即可.(2)画一个边长,2,的三角形即可;(3)画一个边长为的正方形即可.【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).【点评】考查了格点三角形的画法.本题需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.26.(8分)(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【分析】由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.27.(8分)(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.【分析】此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.【点评】本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.28.(12分)(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.29.(14分)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD.【分析】延长AM到F,使MF=AM,交CD于点N,构造平行四边形,利用条件证明△ABF≌△CAD,可得出∠BAF=∠ACD,再结合条件可得到∠ANC=90°,可证得结论.【解答】证明:延长AM到F,使MF=AM,交CD于点N,∵BM=EM,∴四边形ABFE是平行四边形,∴BF=AE,∠ABF+∠BAE=180°,∵∠BAC=∠DAE=90°,∴∠CAD+∠BAE=180°,∴∠ABF=∠CAD,∵BF=AE,AD=AE,∴BF=AD,在△ABF和△CAD中,,∴△ABF≌△CAD(SAS),∴∠BAF=∠ACD,∵∠BAC=90°,∴∠BAF+∠CAN=90°,∴∠ACD+∠CAN=90°,∴∠ANC=90°,∴AM⊥CD.【点评】本题主要考查全等三角形的判定和性质,通过辅助线构造平行四边形证明三角形全等得到∠BAF=∠ACD是解题的关键.。
九年级数学中考复习练习:课时14 特殊三角形
课时14 特殊三角形一、基础知识1.如图,在△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数为( )A.2 B.3C.4 D.52.如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=_______.3.如图,在△ABC中,AB=BC,∠C=60°,AD是BC边上的高,DE∥AC.若AE =3,则BC的长为( )A.3 B.4C.5 D.64.如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为( ) A.34° B.44°C.124° D.134°5.如图,在△ABC中,∠C=90°,∠A=15°,D是AC上一点,连接BD,∠DBC =60°,BC=4,则AD的长是( )A.4 B.6C.8 D.106.在Rt△ABC中,∠C=90°,如果∠A=45°,AB=12,那么BC=_________.7.在△ABC中,AB=AC.(1)在图①中,若BD是∠ABC的平分线,∠A=36°,则∠DBC=______;(2)在图①中,若E是BC延长线上一点,CD=CE,BD⊥AC于点D,∠ABD=50°,则∠E=______;(3)在图②中,若AD是BC边上的中线,BC=6,AB=5,则AD=____;(4)在图②中,若∠C=60°,AB=4,AD,BE是△ABC的高,则S△ABC=_____,∠AOB=_______,△BOD的周长为________.8在Rt△ABC中,∠ACB=90°,D为斜边AB的中点.(1)若AC=2,BC=4,则AB=_______,△ABC的周长为_________.(2)连接CD,若AB=5,则CD=________;(3)若CE⊥AB,∠B=30°,AC=4,则CE=_____,∠DCE=________;(3)在(3)的条件下,若DF⊥BC,则S△BCD=______.9.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰三角形ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为_______.10.如图①是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图②所示的四边形OABC.若AB=BC=1,∠AOB=30°,则点B到OC的距离为。
第17讲中考数学总复习(练习题) 特殊三角形
∴∠EAB=180°-40°-60°-60°=20°.
导航
2.(2021·广西)如图,☉O的半径OB为4,OC⊥AB于点D,∠BAC
=30°,则OD的长是( C )
A.
C.2
B.
D.3
导航
解析:如图,连接OA.
∵OC⊥AB,∠BAC=30°,
1
1
∴S△
= AC×PF,S△
= AB×PE,
ACP 2
ABP 2
又∵S△
=1,AB=AC=2,
ABC
1
1
∴1=2AC×PF+2AB×PE,
1
1
即 1= ×2×PF+ ×2×PE,∴PE+PF=1.
2
2
ACP
+S△
,
ABP
导航
能 力 提 升
8.(2021·温州)如图,BE是△ABC的角平分
线,在AB上取点D,使DB=DE.
∵∠C=90°,∴∠CBD=30°,
∵CD=1,∴BD=2CD=2,∴AD=2.
导航
7.(2021·娄底)如图,△ABC中,AB=AC=2,P是BC上任意一点,
PE⊥AB于点E,PF⊥AC于点F,若 △ =1,则PE+PF= 1
.
导航
解析:如图所示,连接 AP,则S△
ABC
=S△
∵PE⊥AB 于点 E,PF⊥AC 于点 F,
∴∠ACO=90°-30°=60°,
∵OA=OC,
∴△AOC为等边三角形,
∵OC⊥AB,
∴OD= OC=2.
导航
3.(2021·新疆)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,
初中数学精品试题:第2章 特殊三角形专题:等边三角形 2020-2021学年浙教版八年级上册
2020-2021学年浙教版八年级上册等腰三角形专题培优姓名班级学号基础巩固1.如图,△ABC是等边三角形,AQ= PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的平分线上;②AS= AR;③QP∥AR;④△BRP ≌△QSP.其中正确的有().A.1个B.2个C.3个D.4个第1题第2题第3题2.如图,∠AOB= 120°,OP平分∠AOB,且OP= 2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有().A.2个B.3个C.4个D.无数个3.如图,已知△ABC和△CDE都是正三角形,且∠EBD= 62°,则∠AEB的度数是().A.124°B.122°C.120°D.118°第4题第5题4.如图,一个等边三角形、一个直角三角形以及一个等腰三角形按如图放置,已知等腰三角形的底角∠3 = 64°,则∠1 + ∠2 = _________ .5.如图,六边形ABCDEF的六个角都是120°,边长AB = 1 cm,BC = 3 cm,CD =3 cm,DE = 2 cm,则这个六边形的周长是 _________ .6.在Rt△ABC中,∠ACB= 90°,∠CAB= 30°.分别以AB,AC为边,向外作等边△ABD和邻边△ACE.(1)如图1,连结线段BE,CD.求证:BE = CD.(2)如图2,连结DE交AB于点F.求证:点F为DE中点.7.已知△ABC是等边三角形,D是直线BC上一动点,连结AD,在线段AD的右侧作射线DP且使∠ADP = 30°,作点A关于射线DP的对称点E,连结DE,CE.(1)当点D在线段BC上运动时.①依题意将图1补全.②请用等式表示线段AB,CE,CD之间的数量关系,并证明.(2)当点D在直线BC上运动时,请直接写出AB,CE,CD之间的数量关系,不需证明.拓展提优1.如图,在等边三角形ABC 中,AD ⊥BC ,垂足为点D ,点E 在线段AD 上,∠EBC = 45°,则∠ACE 等于( ).A .15°B .30°C .45°D .60°第1题2.如图,在边长为4的等边三角形ABC 中,D ,E 分别为AB ,AC 的中点,则△ADE 的面积是( ).A .3B .23 C .433D .323.如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,∠BDC = 90°,连结AD ,过点D 作一条直线将△ABD 分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角的度数分别是 _________ .4.如图,∠MON = 30°,点B 1在边OM 上,且OB = 2,过点B 1作B 1A 1⊥OM 交ON 于点A 1,以A 1B 1为边在A 1B 1右侧作等边三角形A 1B 1C 1;过点C 1作OM 的垂线分别交OM ,ON 于点B 2,A 2,以A 2B 2为边在A 2B 2的右侧作等边三角形A 2B 2C 2;过点C 2作OM 的垂线分别交OM ,ON 于点B 3,A 3,以A 3B 3为边在A 3B 3的右侧作等边三角形A 3B 3C 3…按此规律进行下去,则△A n A n +1C n 的面积为 _________ (用含正整数n 的代数式表示).5.如图,在等边三角形ABC中,D,E分别是BC,AC上的点,且AB= CD,AD与BE相交于点F,CF⊥BE.求证:(1)BE = AD.(2)BF = 2AF.6.已知△ABC,△EFG是边长相等的等边三角形,D是边BC,EF的中点.(1)如图1,连结AD,GD,则∠ADC= _________ 度;∠GDF= _________ 度;AD与GD的数量关系是 _________ ;DC与DF的数量关系是 _________ .(2)如图2,直线AG,FC相交于点M,求∠AMF的大小.冲刺重高1.如图,在等边三角形ABC中,在AC边上取两点M,N,使∠MBN= 30°.若AM = m,MN = x,CN = n,则以x,m,n为边长的三角形的形状为().A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定2.如图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2 cm时,这个六边形的周长为().A.30 cmB.40 cmC.50 cmD.60 cm3.在等边三角形ABC所在的平面内求一点P,使△PAB,△PBC,△PAC都是等腰三角形,具有这样性质的点P有().A.1个B.4个C.7个D.10个4.如图,等边三角形RST的顶点R,S,T分别在等腰三角形ABC的边AB,BC,CA 上,设∠ART= x°,∠RSB= y°,∠STC= z°,用含y,z的代数式表示x是_________ .5.如图,点P是等边三角形ABC内部一点,且∠APC= 117°,∠BPC= 130°.求以AP,BP,CP为边的三角形的三内角的度数.参考答案2 3 4 567。
九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案
中考数学专题复习:二次函数综合题(特殊三角形问题)1.如图,已知抛物线经过点A (-1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到111A O C △,点A 、O 、C 的对应点分别是点1A 、1O 、1C 、若111A O C △的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点1A 的横坐标.2.如图,已知A (﹣2,0)、B (3,0),抛物线y =ax 2+bx +4经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一动点,点P 的横坐标为m .过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN ⊥BC ,垂足为点N .(1)直接写出抛物线的函数关系式 ;(2)请用含m 的代数式表示线段PN 的长 ;(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得⊥BCO +2⊥PCN =90°?若存在,请求出m 的值;若不存在,请说明理由;(4)连接AQ ,若△ACQ 为等腰三角形,请直接写出m 的值 .3.如图,抛物线2y ax bx =+过()4,0A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)求ABC 的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,当CMN △为等腰直角三角形时,点N 的坐标为______.4.如图,已知二次函数的图象经过点()3,3A 、()4,0B 和原点O .P 为二次函数图象上的一个动点,过点P 作x 轴的垂线,垂足为(),0D m ,并与直线OA 交于点C .(1)求出二次函数的解析式;(2)当点P 在直线OA 的上方时,求线段PC 的最大值;(3)当0m >时,探索是否存在点P ,使得PCO △为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线2y ax x m =++(a ≠0)的图象与x 轴交于A 、C 两点,与y 轴交于点B ,其中点B 坐标为(0,-4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D 是直线AB 下方抛物线上一个动点,连接AD 、BD ,探究是否存在点D ,使得⊥ABD 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点P 为该抛物线对称轴上的动点,使得⊥P AB 为直角三角形,请求出点P 的坐标.6.如图,在平面直角坐标系xOy 中,抛物线26y ax bx =++与x 轴交于点()2,0A -和点()6,0B ,与y 轴交于点C ,顶点为D ,连接BC 交抛物线的对称轴l 于点E .(1)求抛物线的表达式;(2)连接CD 、BD ,点P 是射线DE 上的一点,如果PDB CDB S S =△△,求点P 的坐标;(3)点M 是线段BE 上的一点,点N 是对称轴l 右侧抛物线上的一点,如果EMN 是以EM 为腰的等腰直角三角形,求点M 的坐标.7.已知抛物线经过A (-1,0)、B (0、3)、 C (3,0)三点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F(1)求抛物线的表达式;(2)求证:⊥BOF =⊥BDF :(3)是否存在点M 使⊥MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长8.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式;(2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.9.已知二次函数214y x bx c =-++图像的对称轴与x 轴交于点A (1,0),图像与y 轴交于点B (0,3),C 、D 为该二次函数图像上的两个动点(点C 在点D 的左侧),且90CAD ∠=.(1)求该二次函数的表达式;(2)若点C 与点B 重合,求tan⊥CDA 的值;(3)点C 是否存在其他的位置,使得tan⊥CDA 的值与(2)中所求的值相等?若存在,请求出点C 的坐标;若不存在,请说明理由.10.如图1,抛物线y =-x 2+bx +c 交x 轴于A ,B 两点,交y 轴于C 点,D 是抛物线上的动点,已知A 的坐标为(-3,0),C 的坐标为(0,3).(1)求该抛物线的函数表达式以及B 点的坐标;(2)在第二象限内是否存在点D 使得⊥ACD 是直角三角形且⊥ADC=90°,若存在请求出D 点的坐标,若不存在请说明理由;(3)如图2,连接AC ,BC ,当⊥ACD=⊥BCO ,求D 点的坐标.11.如图,在平面直角坐标系中,抛物线C 1:y =ax 2+bx ﹣1经过点A (﹣1,﹣2)和点B (﹣2,1),抛物线C 2:y =3x 2+3x +1,动直线x =t 与抛物线C 1交于点N ,与抛物线C 2交于点M .(1)求抛物线C 1的表达式;(2)求线段MN 的长(用含t 的代数式表达);(3)当⊥BMN 是以MN 为直角边的等腰直角三角形时,求t 的值.12.如图,二次函数23y ax bx =++的图象经过点A (-1,0),B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)第一象限内的二次函数23y ax bx =++图象上有一动点P ,x 轴正半轴上有一点D ,且OD =2,当S △PCD =3时,求出点P 的坐标;(3)若点M 在第一象限内二次函数图象上,是否存在以CD 为直角边的Rt MCD ,若存在,求出点M 的坐标,若不存在,请说明理由.13.如图,抛物线23y ax bx =+-与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()4,3-.(1)求抛物线的解析式;(2)若点P 是抛物线上的点,点P 的横坐标为()0m m ≥,过点P 作PM x ⊥轴,垂足为M .PM 与直线l 交于点N ,当点N 是线段PM 的三等分点时,求点P 的坐标;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.14.如图,抛物线23y ax bx =+-与x 轴交于()30A -,,()1,0B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 是线段AC 上一动点,过点E 的直线EF 平行于y 轴并交抛物线于点F ,当线段EF 取得最大值时,在x 轴上是否存在这样的点P ,使得以点E 、B 、P 为顶点的三角形是以EB 为腰的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.15.如图,抛物线2y x bx c =-++与x 轴相交于A ,B 两点(点A 位于点B 的左侧),与y 轴相交于点C ,M 是抛物线的顶点,直线1x =是抛物线的对称轴,且点C 的坐标为(0,3).(1)求抛物线的解析式;(2)已知P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若,PD m PCD =△的面积为S .⊥求S 与m 之间的函数关系式,并写出自变量m 的取值范围;⊥当S 取得最大值时,求点P 的坐标.(3)在(2)的条件下,在线段MB 上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出满足条件的点P 的坐标;如果不存在,请说明理由.16.如图,在平面直角坐标系中,已知抛物线y =ax 2+4x +c 与直线AB 相交于点A (0,1)和点B (3,4).(1)求该抛物线的解析式;(2)设C 为直线AB 上方的抛物线上一点,连接AC ,BC ,以AC ,BC 为邻边作平行四边形ACBP ,求四边形ACBP 面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,是否存在点E 使得△ADE 是以AD 为腰的等腰直角三角形?若存在,直接写出....点E 的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.18.如图,已知抛物线212y x bx c =++经过点B (4,0)和点C (0,-2),与x 轴的另一个交点为点A ,其对称轴l 与x 轴交于点E ,过点C 且平行x 轴的直线交抛物线于点D ,连接AD .(1)求该抛物线的解析式;(2)判断⊥ABD 的形状,并说明理由;(3)P 为线段AD 上一点,连接PE ,若△APE 是直角三角形,求点P 的坐标;(4)抛物线的对称轴上是否存在一点P ,使△APD 是直角三角形,若存在,求出P 点坐标;若不存在,请说明理由.19.如图,抛物线22y ax x c =-+与x 轴相交于A ,B 两点,与y 轴相交于点C ,点A 在点B 的左侧,()1,0A -,()0,3C -,点E 是抛物线的顶点,P 是抛物线对称轴上的点.(1)求抛物线的函数表达式;(2)当点P 关于直线BC 的对称点Q 落在抛物线上时,求点Q 的横坐标;(3)若点D 是抛物线上的动点,是否存在以点B ,C ,P ,D 为顶点的四边形是平行四边形.若存在,直接写出点D 的坐标__________;若不存在,请说明理由;(4)直线CE 交x 轴于点F ,若点G 是线段EF 上的一个动点,是否存在以点O ,F ,G 为顶点的三角形与ABC 相似,若存在,请直接写出点G 的坐标__________;若不存在,请说明理由.20.如图1,抛物线23y ax bx =++与x 轴交于点()3,0A 、()1,0B -,与y 轴交于点C ,点P 为x 轴上方抛物线上的动点,点F 为y 轴上的动点,连接PA ,PF ,AF .(1)求该抛物线所对应的函数解析式;(2)如图1,当点F 的坐标为()0,4-,求出此时AFP 面积的最大值;(3)如图2,是否存在点F ,使得AFP 是以AP 为腰的等腰直角三角形?若存在,求出所有点F 的坐标;若不存在,请说明理由.参考答案:1.(1)213222y x x =-++ (2)存在,Q (3,2)或Q (-1,0)(3)两个“和谐点”,1A 的横坐标是1或122.(1)222433y x x =-++ (2)22655PN m m =-+ (3)存在,741253.(1)24y x x =-+(2)3(3)(2,0)或(﹣4,0)或(﹣2,0)或(4,0).4.(1)y =-x 2+4x (2)94(3)存在,点P 的坐标为(3+或(3-或(5,-5)或(4,0)5.(1)2142y x x =+- (2)(-2,-4)(3)P 点坐标为:(-1,3),(-1,-5),(12--+,,(12--, 6.(1)21262y x x =-++ (2)()2,2(3)()4,2或(27.(1)2y x 2x 3=-++(2)见解析(3)存在,2或28.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)()3,4-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭9.(1)211342y x x =-++(2)1(3)()2,1-,()32,(12--10.(1)y =-x 2-2x +3,B (1,0)(2)存在,D (-2,3) (3)D (-52,74)或(-4,-5)11.(1)y =2x 2+3x ﹣1(2)t 2+2(3)t =012.(1)2+23y x x =-+(2)P 1(32,154),P 2(2,3)(3)存在点M 其坐标为1M 43539(,)或2M13.(1)y =14x 2−x −3 (2)(3,−154)或(0,−3) (3)(0,−133)或(0,9)14.(1)223y x x =+-(2)()4,-0,或10⎛⎫ ⎪ ⎪⎝⎭,或10⎛⎫ ⎪ ⎪⎝⎭15.(1)2y x 2x 3=-++ (2)⊥213(04)42S m m m =-+<≤;⊥S 有最大值为94,此时3,32P ⎛⎫ ⎪⎝⎭(3)存在,(6-+-或(42-+16.(1)241y x x =-++ (2)274(3)存在,E (4,3)或(-2,5)或(-3,2)或(3,0).17.(2)()11,-(3)()14-,或()25-,或⎝⎭或⎝⎭18.(1)213222y x x =-- (2)直角三角形,见解析(3)(1,-1)或(32,-54)(4)存在,( 32,-1+2 ),( 32,-1- 2,( 32,5),( 32,-5) 19.(1)223y x x =-- (2)11(3)存在,()2,3-或()4,5或()2,5-(4)存在,39,44⎛⎫-- ⎪⎝⎭或()1,2--20.(1)2y x 2x 3=-++ (2)323(3)存在,12(0,3),(0,1)F F --,32)F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊三角形专题练习
一.选择题(共9小题)
1.已知等腰三角形的周长为24,腰长为x,则x的取值范围是()
A.x>12 B.x<6 C.6<x<12 D.0<x<12
2.若实数x,y满足﹣40,则以x,y的值为两边长的等腰三角形的周长是()
A.12 B.16 C.16或20 D.20
3.如图,在△中,∠90°,,是经过A点的一条直线,且B,C 在的两侧,⊥于D,⊥于E,2,6,则的长为()
A.2B.3C.5D.4
4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣120的两个根,则k的值是()A.27 B.36 C.27或36 D.18
5.如图,在△中,,平分∠交于点D,∥交的延长线于点E.若∠35°,则∠的度数为()
A.40°B.45°C.60°D.70°
6.如图,△中,⊥于D,⊥于E,与相交于F,若,则∠的大小是()
A.40°B.45°C.50°D.60°
7.如图,,若∠80°,则∠()
A.80°B.100°C.140°D.160°
8.已知如图,∥,⊥,⊥,,2,3,则△的面积为()
A.1B.2C.5D.无法确定
9.如图,已知△的面积为102,为∠的角平分线,垂直于点P,则△的面积为()
A.62B.52C.42D.32
二.填空题(共8小题)
10.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形的顶点E、F、G、H分别在正方形的边、、、上.若正方形的面积=16,1;则正方形的面积= .
11.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,则每个直角三角形的
面积为;直角三角形中较小的锐角为θ,那么
θ=.
12.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠90°,∠30°,4.作△使得∠90°,点H在边上,点D,E在边上,点G,F在边上,那么△的周长等于.
13.如图,在梯形中,∥,∠∠90°,分别以、、为边向梯形外作正方形,其面积分别是S1、S2、S3,且S213,则线段与存在的等量关系是.
14.将一副三角尺如图拼接:含30°角的三角尺(△)的长直角边与含45°角的三角尺(△)的斜边恰好重合.已知2,E 是上的一点(>),且,则的长为.
15.如图,在四边形中,5,12,∠∠90°,M、N分别是对角线、的中点,则.
16.如图,在四边形中,,∠∠90°,⊥于点E,且四边形的面积为9,则.
17.如图所示,在△中,,∠80°,P在△内,∠10°,∠30°,则∠.
三.解答题(共3小题)
18.如图,在四边形中,1,1,2,,且∠90°,求四边形的面积.
19.如图,在△中,,D是上任意一点,过D分别向,引垂线,垂足分别为E,F,是边上的高.
(1),,的长之间存在着怎样的等量关系?并加以证明;
(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.
20.如图,在△中,,是过点A的直线,⊥于D,⊥于点E;(1)若B、C在的同侧(如图所示)且.求证:⊥;
(2)若B、C在的两侧(如图所示),其他条件不变,与仍垂直吗?若是请给出证明;若不是,请说明理由.
特殊三角形专题练习
参考答案
一.选择题(共9小题)
1.C 2.D 3.D 4.B 5.A 6.B 7.C 8.A 9.B
二.填空题(共8小题)
10.10 11.612.27+1313.2 14.15.2.5 16.3 17.70°
三.解答题(共3小题)
18. 19. 20.
最新文件仅供参考已改成word文本。
方便更改。