传递过程原理作业题解章

合集下载

中南大学冶金传递过程原理习题解答

中南大学冶金传递过程原理习题解答

1-1-8 50kg密度为1600 kg•m-3的溶液与50kg 25℃的水混合,问混合后溶液的密度为多少?(设混合前后溶液的体积不变)。

解:25°C时水的密度为996kg·m-3。

由得,解得,即混合后溶液的密度为。

1-1-9 如图所示为一平板在油面上作水平运动,已知运动速度u为0.8m•s-1,平板与固定板之间的距离,油的粘度为1.253Pa•s,由平板所带动的油运动速度呈现直线分布,问作用在平板单位面积上的粘性力为多少?解:单位面积上的粘性力即为τ,则即平板单位面积上的粘性力为1002.4 N 。

1-1-10 25℃水在内径为50mm的管内流动,流速为2m•s-1,试求其雷诺准数为若干?解:25°C时水的密度为996kg·m-3,粘度系数μ为89.5×10-5Pa·s。

则1-1-11 运动粘度为4.4cm2•s-1的油在内径为50mm的管道内流动,问:(1)油的流速为0.015m•s-1时,其流动型态如何?解:﹤2300所以其流动型态为层流。

(2)若油的流速增加5倍,其流动型态是否发生变化?解:若油的流速增加5倍,则Re*=5Re=8.5﹤2300所以其流动型态没有发生变化。

1-1-12 某输水管路,水温为20℃,管内径为200mm,试求:(1)管中流量达到多大时,可使水由层流开始向湍流过渡?解:20°C时水的密度为998.2kg·m-3,粘度系数μ为100.42×10-5Pa·s。

水由层流开始向湍流过渡时,Re=2300,则解得v=0.01157m·s-1所以管中流量达到时,可使水由层流开始向湍流过渡。

(2)若管内改送运动粘度为0.14cm2•s-1的某种液体,且保持层流流动,管中最大平均流速为多少?解:所以保持层流流动,管中最大平均流速为。

1-2-3 某地区大气压力为750mmHg。

传递过程原理第二章习题解

传递过程原理第二章习题解
解:

10求证流函数 和势函数 满足 方程
据流函数与势函数定义

分别对x y求偏导数
对应式相加可得
1.甘油在流道中心处的流速与离中心25mm处的流速:
2.通过单位管长的压力降:
3.管壁面处的剪应力。
2流体在两块无限大平板之间作一维稳态层流,试计算截面上等于主体流速 的点距板壁面的距离。又如流体在管内作一维稳态层流时,该点与壁面的距离为若干?
解:
两无限大平板之间 可得
分离变量并积分有: 得到流线方程得一般形式
当 、 、 时, ,过(1,3)点的流线方程为:
当 、 、 时, ,过(1,3)流线方程仍为:
8已知某不可压缩流体作平面流动时的速度 , ,试导出此情况下的流函数。
解:

9某不可压缩流体作二维流动时的流函数可用下式表示:
试导出点(2,1)处的速度值。
第二章
1温度为20℃的甘油以10kg/s的质量流率流过宽度为1m、高为0.1m的的矩形截面管道,流动已充分发展,试求算:
1.甘油在流道中心处的流速与离中心25mm处的流速;
2.通过单位管长的压力降;
3.管壁面处的剪应力。
已知20℃的甘油的密度 ,粘度为
解:
确定流型
流动为层流,处理为两大平板之间稳态层流流动
解:
流动为层流
中心处:
半径中点处:
壁面处:
5常压下,温度为45℃的空气以 的体积流率流过水平套管环隙,套管的内管外径为50mm,外管内径为100mm,试计算:
1.空气最大流速处的径向距离;
2.单位长度的压力降;
3.内外管间中点处的空气流量;
4.空气最大流速;
5. 及 处的壁面剪应力。

传递过程原理复习题最后报告

传递过程原理复习题最后报告

《传递工程基础》复习题第一单元传递过程概论本单元主要讲述动量、热量与质量传递的类似性以及传递过程课程的内容及研究方法。

掌握化工过程中的动量传递、热量传递和质量传递的类似性,了解三种传递过程在化工中的应用,掌握牛顿粘性定律、付立叶定律和费克定律描述及其物理意义,理解其相关性。

熟悉本课程的研究方法。

第二单元动量传递本单元主要讲述连续性方程、运动方程。

掌握动量传递的基本概念、基本方式;理解两种方程的推导过程,掌握不同条件下方程的分析和简化;熟悉平壁间的稳态层流、圆管内与套管环隙中的稳态层流流动情况下连续性方程和奈维-斯托克斯方程的简化,掌握流函数和势函数的定义及表达式;掌握边界层的基本概念;沿板、沿管流动边界层的发展趋势和规律;边界层微分和积分动量方程的建立。

第三单元热量传递本单元主要讲述热量传递基本方式、微分能量方程。

了解热量传递的一般过程和特点,进一步熟悉能量方程;掌握稳态、非稳态热传导两类问题的处理;对一维导热问题的数学分析方法求解;多维导热问题数值解法或其他处理方法;三类边界问题的识别转换;各类传热情况的正确判别;各情况下温度随时间、地点的分布规律及传热通量。

结合实际情况,探讨一些导热理论在工程实践中的应用领域。

第四单元传量传递本单元主要介绍传质的基本方式、传质方程、对流传质系数;稳定浓度边界层的层流近似解;三传类比;相际传质模型。

掌握传质过程的分子扩散和对流传质的机理;固体中的分子扩散;对流相际传质模型;熟悉分子扩散微分方程和对流传质方程;传质边界层概念;沿板、沿管的浓度分布,传质系数的求取,各种传质通量的表达。

第一部分 传递过程概论一、填空题:1. 传递现象学科包括 动量 、 质量 和 热量 三个相互密切关联的主题。

2. 化学工程学科研究两个基本问题。

一是过程的平衡、限度;二是过程的速率以及实现工程所需要的设备。

3. 非牛顿流体包括假塑性流体,胀塑性流体,宾汉塑性流体 (至少给出三种流体)。

传递过程原理作业题解(1-7章)

传递过程原理作业题解(1-7章)

第二章1. 对于在r θ平面的不可压缩流体的流动,r 方向的速度分量为2cos /r u A r θ=-。

试确定速度的θ分量。

解:柱坐标系的连续性方程为11()()()0r z ru u u r r r z θρρρρθθ∂∂∂∂+++='∂∂∂∂对于不可压缩流体在r θ平面的二维流动,ρ=常数,0,0z z u u z∂==∂,故有11()0r u ru r r r θθ∂∂+=∂∂ 即22cos cos ()()r u A A ru rr r r rθθθθ∂∂∂=-=--=-∂∂∂将上式积分,可得22cos sin ()A r A u d f r r θθθθ=-=-+⎰式中,()f r 为积分常数,在已知条件下,任意一个()f r 都能满足连续性方程。

令()0f r =,可得到u θ的最简单的表达式:2sin A u r θθ=-2.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。

(1)在矩形截面管道,可压缩流体作稳态一维流动; (2)在平板壁面上不可压缩流体作稳态二维流动; (3)在平板壁面上可压缩流体作稳态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向稳态流动; (5)不可压缩流体作球心对称的径向稳态流动。

解: ()0ρρθ∂+∇=∂u(1) 在矩形截面管道,可压缩流体作稳态一维流动0x z x y z u u u u u u x y z x y z ρρρρρθ∂∂∂∂∂∂∂++++++=∂∂∂∂∂∂∂⎛⎫⎪⎝⎭y 稳态:0ρθ∂=∂,一维流动:0x u =, 0y u = ∴ z 0z u u z z ρρ∂∂+=∂∂, 即 ()0z u zρ∂=∂ (2)在平板壁面上不可压缩流体作稳态二维流动()()()0y x z u u u xyzρρρρθ∂∂∂∂+++=∂∂∂∂稳态:0ρθ∂=∂,二维流动:0z u = ∴()()0y x u u xyρρ∂∂+=∂∂, 又cons t ρ=,从而0yx u u x y∂∂+=∂∂ (3)在平板壁面上可压缩流体作稳态二维流动 在此情况下,(2)中cons t ρ≠∴()()0y x u u xyρρ∂∂+=∂∂(4)不可压缩流体在圆管中作轴对称的轴向稳态流动()()()110r z r u u u r r r zθρρρρθθ∂∂∂∂+++='∂∂∂∂ 稳态:0ρθ∂='∂,轴向流动:0r u =,轴对称:0θ∂=∂ ∴()0z u z ρ∂=∂, 0z uz∂=∂ (不可压缩cons t ρ=) (5)不可压缩流体作球心对称的径向稳态流动22()(sin )()1110sin sin r r u u u r r r r θφρρθρρθθθθφ∂∂∂∂+++='∂∂∂∂ 稳态0ρθ∂='∂,沿球心对称0θ∂=∂,0φ∂=∂,不可压缩ρ=const ∴221()0r r u r r ∂=∂ ,即 2()0r d r u dr= 3.某粘性流体的速度场为22538=x y xyz xz +-u i j k已知流体的动力粘度0.144Pa s μ=⋅,在点(2,4,-6)处的法向应力2100N /m yy τ=-,试求该点处的压力和其它法向应力和剪应力。

过程控制作业答案分解

过程控制作业答案分解

作 业第二章:2-6某水槽如题图2-1所示。

其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求:(1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程;(2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。

图2-1解:1)平衡状态: 02010Q Q Q i +=2)当非平衡时: i i i Q Q Q ∆+=0;1011Q Q Q ∆+=;2022Q Q Q ∆+= 质量守恒:211Q Q Q dthd A i ∆-∆-∆=∆ 对应每个阀门,线性水阻:11R h Q ∆=∆;22R h Q ∆=∆ 动态方程:i Q R hR h dt h d A ∆=∆+∆+∆2113) 传递函数:)()()11(211s Q s H R R S A i =++ 1)11(1)()()(211+=++==Ts KR R S A s Q s H s G i2Q11这里:21121212111111R R A T R R R R R R K +=+=+=;2-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。

解:如图为三个单链单容对像模型。

被控参考△h 3的动态方程: 3233Q Q dth d c ∆-∆=∆;22R h Q ∆=∆;33R hQ ∆=∆; 2122Q Q dth d c ∆-∆=∆;11R h Q ∆=∆ 111Q Q dth d c i ∆-∆=∆ u K Q i ∆=∆ 得多容体动态方程:uKR h dth d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ∆=∆+∆+++∆+++∆333332211232313132322121333321321)()(传递函数:322133)()()(a s a s a s Ks U s H s G +++==; 这里:32132133213213321321332211232132131313232212111;c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a ==++=++=2-8已知题图2-3中气罐的容积为V ,入口处气体压力,P 1和气罐 内气体温度T均为常数。

流体力学 传递过程原理第三章

流体力学   传递过程原理第三章
2 2 2 ux ux ux ux ux ux ux 1 p ux uy uz X ( 2 2 2 ) x y z x x y z
ux
u y x
uy
u y y
uz
u y z

u y
Y
1 p
三、平均流速与流动压降
压降:
Δp f p Δp 3μub 2 L x L y0
范宁摩擦因子(推导过程?):
τs 12 μ 12 f 2 ρub / 2 y0 ρub Re
(2 y0 ) ρub Re = μ
第三章 动量传递变化方程的解
3.1 两平壁间的稳态层流
3.2 圆管与套管环隙间的稳态层流
1 p 2 2 ux ( y y0 ) 2 μ x
抛物线形
当 y 0 时速度最大 1 p 2 umax y0 2 μ x
y 2 ux umax [1 ( ) ] y0
三、平均流速与流动压降
在流动方向上,取单位宽度的流通截面 A 2 y0 1, 则通过该截面的体积流率为 y0
二、套管环隙中的轴向稳态层流
套管环隙中层流的变化方程与圆管相同,即
1 d duz r r dr dr 1 dpd 常数 μ dz
B.C. 为 (I)
r r1 , uz 0
du z , 0 dr
(II) r r2 , uz 0
(III) r rmax , u z umax
一、圆管中的轴向稳态层流
二、套管环隙中的轴向稳态层流
三、旋转黏度计的测量原理
一、圆管中的轴向稳态层流
流体在圆管中的流动问题许多工程科学中遇到。 设:不可压缩流体在 水平圆管中作稳态层流 流动,所考察的部位远 离管道进、出口,流动 为沿轴向的一维流动。 r

陈敏恒《化工原理》(第3版)课后习题(含考研真题)(热、质同时传递的过程 课后习题详解)

陈敏恒《化工原理》(第3版)课后习题(含考研真题)(热、质同时传递的过程  课后习题详解)

13.2 课后习题详解(一)习题过程的方向和极限13-1 温度为30℃、水汽分压为2kPa的湿空气吹过如表13-1所示三种状态的水的表面时,试用箭头表示传热和传质的方向。

表13-1解:已知:t=30℃,P=2kPa,与三种状态水接触。

求:传热、传质方向(用箭头表示)查水的饱和蒸汽压以Δt为传热条件,为传质条件,得:表13-213-2 在常压下一无限高的填料塔中,空气与水逆流接触。

入塔空气的温度为25℃、湿球温度为20℃。

水的入塔温度为40℃。

试求:气、液相下列情况时被加工的极限。

(1)大量空气,少量水在塔底被加工的极限温度;(2)大量水,少量空气在塔顶被加工的极限温度和湿度。

解:已知:P=101.3kPa,,逆流接触。

求:(1)大量空气,少量水,(2)大量水,少量空气,(1)大量空气处理少量水的极限温度为空气的湿球温度(2)大量水处理少量空气的极限温度为水的温度且湿度为查40℃下,过程的计算13-3 总压力为320kPa的含水湿氢气干球温度t=30℃,湿球温度为t w=24℃。

求湿氢气的湿度H(kg水/kg干氢气)。

已知氢-水系统的α/k H≈17.4kJ/(kg·℃)。

解:已知:P=320kPa,t=30℃,氢水-水系统,求:H(kg水/kg干氢气)查得24℃下,13-4 常压下气温30℃、湿球温度28℃的湿空气在淋水室中与大量冷水充分接触后,被冷却成10℃的饱和空气,试求:(1)每千克干气中的水分减少了多少?(2)若将离开淋水室的气体再加热至30℃,此时空气的湿球温度是多少?图13-1解:已知:P=101.3 kPa,求:(1)析出的水分W(kg水/kg干气)(1)查水的饱和蒸汽压(2)设查得与所设基本相符,13-5 在t1=60℃,H1=0.02kg/kg的常压空气中喷水增湿,每千克的干空气的喷水量为0.006kg,这些水在气流中全部汽化。

若不计喷入的水本身所具有的热焓,求增湿后的气体状态(温度t2和湿度H2)。

《传递过程原理》课后习题参考答案

《传递过程原理》课后习题参考答案

《传递过程原理》课程第一次作业参考答案(P56)1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示θθθsin ;cos 22⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-=D r C u D r C u r其中C ,D 为常数,说明此时是否满足连续方程。

2. 判断以下流动是否可能是不可压缩流动(1) ⎪⎩⎪⎨⎧-+=--=++=zx t u z y t u yx t u z y x 222 (2) ()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=22221211t tz u xy u x y u z y x ρρρρ3.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。

(1)在矩形截面流道内,可压缩流体作定态一维流动;(2)在平板壁面上不可压缩流体作定态二维流动;(3)在平板壁面上可压缩流体作定态二维流动;(4)不可压缩流体在圆管中作轴对称的轴向定态流动;(5)不可压缩流体作圆心对称的径向定态流动。

《化工传递过程导论》课程作业第三次作业参考P-573-1流体在两块无限大平板间作定态一维层流,求截面上等于主体速度u b的点距离壁面的距离。

又如流体在圆管内作定态一维层流,该点距离壁面的距离为若干?距离壁面的距离02(12d r =-3-2温度为20℃的甘油以10kg/s 的质量流率流过长度为1m ,宽度为0.1m 矩形截面管道,流动已充分发展。

已知20℃时甘油的密度ρ=1261kg/m 3,黏度μ=1.499Pa·s 。

试求算(1)甘油在流道中心处的流速以及距离中心25mm 处的流速; (2)通过单位管长的压强降;2max 012P u y xμ∂=-∂流动方向上的压力梯度Px∂∂的表达式为:max 22u Px y μ∂=-∂ 所考察的流道为直流管道,故上式可直接用于计算单位管长流动阻力:fP L∆,故: -1max 22022 1.4990.119142.7Pa m 0.1()2f P u P P L x L y μ∆∂∆⨯⨯=-=-===⋅∂ (3) 管壁处剪应力为:2max max 002[(1())]xy y y yu u yu yy y y μτμτμ==∂∂=-⇒=--=∂∂ max 2022 1.4990.119N 7.135m 0.12u y μτ⨯⨯⇒===故得到管壁处的剪应力为2N7.135m《化工传递过程导论》课程第四次作业解题参考(P122)2. 常压下,20℃的空气以5m/s 的速度流过一光滑的平面,试判断距离平板前缘0.1m 和0.2m 处的边界层是层流还是湍流。

传递过程原理__课后习题解答

传递过程原理__课后习题解答

【7-2】常压和30℃的空气,以10m/s 的均匀流速流过一薄平面表面。

试用精确解求距平板前缘10cm 处的边界层厚度及距壁面为边界层厚度一半距离时的x u 、y u 、x u y ∂∂、壁面局部阻力系数Dx C 、平均阻力系数D C 的值。

设临界雷诺数5510xc Re =⨯。

解:已知流速u =10m/s ;查表得30℃空气的密度ρ=1.165kg/m 3;30℃空气的粘度μ=1.86×10-5Pa·s4550.110 1.165Re 6.26105101.8610x xu ρμ-⨯⨯===⨯<⨯⨯ 所以流动为层流 1/241/235.0Re5.00.1(6.2610)2102x m mm δ---==⨯⨯⨯=⨯=在/21y mm δ==处,110 2.5η-==⨯= 查表得:当 2.5η=时,0.751, 0.217f f '''== 0100.757.51/x u u f m s '==⨯=)0.0175/y u f f m s η'=-=35.4310/x u u s y ∂''==⨯∂ 1/230.664Re2.6510Dx C --==⨯ 1/231.328Re 5.3010D C --==⨯【7-3】常压和303K 的空气以20m/s 的均匀流速流过一宽度为1m 、长度为2m 的平面表面,板面温度维持373K ,试求整个板面与空气之间的热交换速率。

设5510xc Re =⨯。

解: 已知u =20m/s 定性温度303373338K 652m T +===℃ 在定性温度(65℃)下,查表得空气的密度ρ=1.045kg/m 3;空气的粘度μ=2.035×10-5Pa·s ;空气的热导率222.9310/()W m K λ-⨯⋅=,普兰德准数Pr=0.695 首先计算一下雷诺数,以判断流型655220 1.045Re 2.053105102.03510L Lu ρμ-⨯⨯===⨯>⨯⨯,所以流动为湍流21/360.850.851/22.93100.03650.695[(2.05310(510)18.19(510)]2-⨯=⨯⨯⨯⨯-⨯+⨯⨯)242/()W m K =g4221(10030) 5.88m Q A T kW α=∆=⨯⨯⨯-=21/360.822.93100.03650.695(2.0531053/()2W m K -⨯=⨯⨯⨯⨯g )=5321(10030)7.42m Q A T kW α=∆=⨯⨯⨯-=【7-4】温度为333K 的水,以35kg/h 的质量流率流过内径为25mm 的圆管。

化工传递过程基础(第三版)习题答案详解_部分4

化工传递过程基础(第三版)习题答案详解_部分4

·105·第九章 质量传递概论与传质微分方程9-1 在一密闭容器内装有等摩尔分数的O 2、N 2和CO 2,试求各组分的质量分数。

若为等质量分数,求各组分的摩尔分数。

解:当摩尔分数相等时,O 2,N 2和CO 2的物质的量相等,均用c 表示,则O 2的质量为32 c ,N 2的质量为28 c ,CO 2的质量为44 c ,由此可得O 2,N 2和CO 2的质量分数分别为1320.308322844a cc c c==++ 2280.269322844a cc c c==++ 3440.423322844a cc c c==++ 当质量分数相等时,O 2,N 2和CO 2的质量相等,均用m 表示,则O 2的物质的量为m /32,N 2的物质的量为m /28,CO 2的物质的量为m /44,由此可得O 2,N 2和CO 2的摩尔分数分别为1/320.3484/32/28/44x m m m m ==++2/280.3982/32/28/44x m m m m ==++ 3/440.2534/32/28/44x m m m m ==++ 9-2 含乙醇(组分A )12%(质量分数)的水溶液,其密度为980 kg/m 3,试计算乙醇的摩尔分数及物质的量浓度。

解:乙醇的摩尔分数为A AA 1/0.12/460.05070.12/460.88/18(/)i i Ni a M x a M ====+∑溶液的平均摩尔质量为0.0507460.94931819.42M =×+×= kg/kmol乙醇的物质的量浓度为A A A 9800.0507 2.55819.42c C x x Mρ===×=kmol/m 39-3 试证明由组分A 和B 组成的双组分混合物系统,下列关系式成立:(1)A B AA 2A AB B d d ()M M x a x M x M =+;(2)A A 2A B A B A B d d a x aa M M M M = +。

传递过程原理作业题和问题详解

传递过程原理作业题和问题详解

《化工传递过程原理(Ⅱ)》作业题1. 粘性流体在圆管内作一维稳态流动。

设r 表示径向距离,y 表示自管壁算起的垂直距离,试分别写出沿r 方向和y 方向的、用(动量通量)=-(动量扩散系数)×(动量浓度梯度)表示的现象方程。

1.(1-1) 解:()d u dyρτν= (y ,u ,dudy > 0)()d u dr ρτν=- (r ,u , dudr< 0) 2. 试讨论层流下动量传递、热量传递和质量传递三者之间的类似性。

2. (1-3) 解:从式(1-3)、(1-4)、(1-6)可看出: AA ABd j D dyρ=- (1-3) ()d u dy ρτν=- (1-4) ()/p d c t q A dyρα=- (1-6)1. 它们可以共同表示为:通量 = -(扩散系数)×(浓度梯度);2. 扩散系数 ν、α、AB D 具有相同的因次,单位为 2/m s ;3. 传递方向与该量的梯度方向相反。

3. 试写出温度t 对时间θ的全导数和随体导数,并说明温度对时间的偏导数、全导数和随体导数的物理意义。

3.(3-1) 解:全导数:dt t t dx t dy t dzd x d y d z d θθθθθ∂∂∂∂=+++∂∂∂∂ 随体导数:x y z Dt t t t t u u u D x y zθθ∂∂∂∂=+++∂∂∂∂ 物理意义:tθ∂∂——表示空间某固定点处温度随时间的变化率;dt d θ——表示测量流体温度时,测量点以任意速度dx d θ、dy d θ、dz d θ运动所测得的温度随时间的变化率DtD θ——表示测量点随流体一起运动且速度x u dx d θ=、y u dy d θ=、z u dz d θ=时,测得的温度随时间的变化率。

4. 有下列三种流场的速度向量表达式,试判断哪种流场为不可压缩流体的流动。

(1)j xy i x z y x u )2()2(),,(2θθ--+= (2)y x z x x z y x )22()(2),,(++++-= (3)xz yz xy y x 222),(++=4.(3-3) 解:不可压缩流体流动的连续性方程为:0u ∇=(判据)1. 220u x x ∇=-=,不可压缩流体流动;2. 2002u ∇=-++=-,不是不可压缩流体流动;3. 002222()u y z x x y z =⎧⎨≠⎩∇=++=++=,不可压缩,不是不可压缩5. 某流场可由下述速度向量式表达:k z j y i xyz z y xyz z y xθθθ33),,,(-+=-+= 试求点(2,1,2,1)的加速度向量。

化工传递过程基础(第三版)习题答案详解_部分3

化工传递过程基础(第三版)习题答案详解_部分3
1 ∂t ∂ 2 t ∂ 2 t ∂ 2 t q = + + + α ∂ θ ∂ x 2 ∂ y 2 ∂z 2 k
∂t =0 ∂θ ∂t ∂2t ∂t ∂2t ② 一维导热, = 0 , = 0 , 2 = 0 , 2 = 0 ∂y ∂z ∂y ∂z
① 稳态导热,
于是式(7-1)变为
d 2t q + =0 2 k dx
(1)
(2)边界条件为
r = R , t = t0 r = ∞ , t = t∞
(3)式(1)积分两次,可得
t=−
C1 + C2 r
(2)
代入边界条件,可得温度分布表达式为 t − t∞ R = t 0 − t∞ r (4)根据傅里叶定律,可知
q / A = −k dt dr =k
r=R
(3)
t 0 − t∞ R
(1)
取中心面为 x = 0 ,则边界条件为 ① x = 0.2 , t1 = 70 ;② x = −0.2 , t1 = 70 式(1)积分两次,可得
2 1q x + C1 x + C2 2k 、k 数据分别代入式(2) 将边界条件①、②及已知 q ,可得 t=−
C1 = 0 , C2 = 133.66
7-3
在一无内热源的固体热圆筒壁中进行径向稳态导热。当 r1 = 1m 时, t1 = 200 ℃,
r2 = 2m 时, t2 = 100 ℃,其热导率为温度的线性函数,即
式中 k0 为基准温度下的热导率,其值为 k0 = 0.138 W/(m � K) , β 为温度系数,其值为
k = k0 (1 + β t )
(2)
于是此情况下的温度分布方程为

pdf版习题库200道_化工传递过程原理

pdf版习题库200道_化工传递过程原理

式中,p0 为饱和蒸气压,mmHg;t 为温度,℃ 试将上式换算成 SI 单位的表达式。 1-6. 黏性流体在圆管内做一维稳态流动,设 r 表示径向、y 表示由管壁指向中心 的方向。 已知温度 t 和组分 A 的质量浓度ρA 的梯度与流速 ux 的梯度方向相同, 试用 “通 量=-扩散系数³浓度梯度”形式分别写出 r 和 y 两个方向动量、热量和质量传 递三者的现象方程。 1-7. 运动黏度为ν、 热扩散系数α 和扩散系数 DAB 分别用下述微分方程定义:
的过程,导出 y 方向和 z 方向上的运动方程式,即
2-12. 某黏性流体的速度场为 u=5x2 yi+3xyzj−8xz2k 已知流体的动力黏度μ = 0.144 Pa² s , 在点 (2, 4, –6) 处的法向应力 τyy = −100N / m2,试求该点处的压力和其他法向应力与剪应力。 2-13. 试将柱坐标系下不可压缩流体的奈维-斯托克斯方程在 r、θ 、z 3 个方向 上的分量方程简化成欧拉方程(理想流体的运动微分方程)在 3 个方向上的分 量方程。 2-14. 某不可压缩流体在一无限长的正方形截面的水平管道中做稳态层流流动, 此正方 形截面的边界分别为 x= ±a 和 y= ±a。有人推荐使用下式描述管道中的速度分 布:
2
化 工 传 递 过 程 原 理
肖 国 民
(1)若加水的温度为 82℃,试计算混合后水的最终温度; (2)若加水温度为 27℃,如容器中装有蒸汽加热蛇管,加热器向水中的传热速 率为
式中 h =300W/(m2²℃) ;A =3 m2;tv=110℃,t 为任一瞬时容器内的水温。试 求水所达到的最终温度。 1-16. 处在高温环境下的立方形物体,由环境向物体内部进行三维稳态热传导, 试用微分热量衡算方法导出热传导方程。设物体的热导率为 k,其值不受温度变 化影响。 1-17. 流体流入圆管进口的一段距离内的流动为轴对称沿径向 r 和轴向 z 的二 维流动, 试采用圆环体薄壳衡算方法,导出不可压缩流体在圆管进口段稳态流动 的连续性方程。

北京化工大学化工传递过程原理总复习[优质PPT]

北京化工大学化工传递过程原理总复习[优质PPT]

13
第十一章 对流传质
1、浓度边界层及其厚度的定义。
2、对流传质分系数的定义式。
3、传递速率方程及湍流下三类传递过程的类似性。
4、传质雷诺类似律的定义式。
5、传质柯尔本类似律定义式。
6、传质jD因子和传热jH因子之间的关系。 7、本章的例题和作业题。
8、掌握3种传质理论模型,以及传质系数与扩散
系数之间的关系。
1、了解普兰德边界层学说。 2、速度边界层及其厚度的定义。 3、曳力系数的定义式。 4、范宁摩擦系数的定义式。 5、掌握普兰德边界层方程的推导。 6、掌握边界层积分动量方程的推导。 7、掌握本章的例题和习题。
2019/12/21
7
北 京 化 工 大 学 传
第五章 湍流
1、湍流的特点。 2、雷诺应力定义式。 3、了解雷诺方程的推导。 4、了解普兰德动量传递理论(雷诺方程)。 5、涡流粘度的定义式。 6、普兰德混合长的物理意义。 7、掌握本章的所有例题和习题。
有关考试
考试时间:2014年12月16日13:30 – 16:00 考场分配:待定
注意事项:
1、考试时把考试一卡通置于桌子的左上角。 2、自带计算器,铅笔、橡皮和直尺,考试时不能相互借用。 3、计算题采用科学计数法,小数点后保留两位有效数字。 4、考试期间不能打开手机。
2019/12/21
第九章 质量传递概论与传质微分方程
1、什么是分子传质? 2、什么是对流传质? 3、费克第一定律的四种表示方法。 4、费克第二定律的两种表示方法。
2019/12/21
12
北 京 化 工 大 学 传
第十章 分子传质
1、灵活应用费克第一定律, 掌握本章的例题和习题。
北 京 化 工 大 学 传

传递过程原理(化工原理)第2章习题及答案解析

传递过程原理(化工原理)第2章习题及答案解析

习题1.拟用一泵将碱液由敞口碱液槽打入位差为10m高的塔中,塔顶压强为5.88×104Pa(表压),流量20m3/h。

全部输送管均为φ57×3.5mm无缝钢管,管长50m(包括局部阻力的当量长度)。

碱液的密度ρ=1500kg/m3,粘度μ=2×10-3Pa·s。

管壁粗糙度为0.3mm。

试求:(1)输送单位重量液体所需提供的外功。

(2)需向液体提供的功率。

2.在图2-11所示的4B20型离心泵特性曲线图上,任选一个流量,读出其相应的压头和功习题1 附图率,核算其效率是否与图中所示一致。

3.用水对某离心泵作实验,得到下列实验数据:Q/(L·min-1)0 100 200 300 400 500H/m 37.2 38 37 34.5 31.8 28.5 若通过φ76×4mm、长355m(包括局部阻力的当量长度)的导管,用该泵输送液体。

已知吸入与排出的空间均为常压设备,两液面间的垂直距离为4.8m,摩擦系数λ为0.03,试求该泵在运转时的流量。

若排出空间为密闭容器,其内压强为1.29×105Pa(表压),再求此时泵的流量。

被输送液体的性质与水相近。

4.某离心泵在作性能试验时以恒定转速打水。

当流量为71m3/h时,泵吸入口处真空表读数2.993×104Pa,泵压出口处压强计读数3.14×105Pa。

两测压点的位差不计,泵进、出口的管径相同。

测得此时泵的轴功率为10.4kW,试求泵的扬程及效率。

5.用泵从江中取水送入一贮水池内。

池中水面高出江面30m。

管路长度(包括局部阻力的当量长度在内)为94m。

要求水的流量为20~40m3/h。

若水温为20℃,ε/d=0.001,(1)选择适当的管径(2)今有一离心泵,流量为45 m3/h,扬程为42m,效率60%,轴功率7kW。

问该泵能否使用。

6.用一离心泵将贮水池中的冷却水经换热器送到高位槽。

中南大学传递过程原理--习题---解答资料

中南大学传递过程原理--习题---解答资料

《传递过程原理》习题(部分)解答2014-12-19第一篇 动量传递与物料输送3、流体动力学基本方程P67. 1-3-12. 测量流速的pitot tube 如附图所示,设被测流体密度为ρ,测压管内液体的密度为ρ1,测压管中液面高度差为h 。

证明所测管中的流速为:v =√2gh(ρ1ρ−1)解:设点1和2的压强分别为P 1和P 2,则P 1+ρgh= P 2+ρ1gh ,即P 1- P 2=(ρ1-ρ)gh ①在点1和点2所在的与流体运动方向垂直的两个面1-1面和2-2面之间列Bernoulli equation:P 1ρ=P 2ρ+v 22, 即 P 1−P 2ρ=v 22 ② ( for turbulent flow)将式①代入式②并整理得:v =√2gh(ρ1ρ−1)1-3-15. 用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定。

各部分相对位置如附图所示。

管路直径均为φ76×2.5mm,在操作条件下,泵入口处真空表读数为24.66×103Pa;水流经吸入管和排出管(不包括喷头)的能量损失分别按∑h f,1=2υ2和∑h f,2=10υ2计,由于管径不变,故式中υ为吸入管和排出管的流速(m/s)。

排水管与喷头连接处的压力为9.807×104Pa(表压)。

试求泵的有效功率。

解:查表得,20℃时水的密度为998.2kg/m3;设贮槽液面为1-1面,泵入口处所在的与流体运动方向垂直的面为2-2面,排水管与喷头连接处的内侧面为3-3面,以贮槽液面为水平基准面,则(1) 在1-1面和2-2面之间列Bernoulli方程,有0=1.5g+−P真空ρ+v22+2v2( for turbulent flow)将已知数据带入:0=1.5×9.81-24660/998.2+2.5υ2得到υ2=3.996 (即υ=2 m/s)(2) 在1-1面和3-3面之间列Bernoulli方程:即W e=14g+Pρ+v22+∑ℎf,1+∑ℎf,2( for turbulent flow)代入已知数据得:W e=14×9.81+98070/998.2+12.5×3.996=285.54 J/kg(3) 根据泵的有效功率N e=ρQ v W e=ρ×υA×W e=998.2×2×(3.14×0.0712/4) ×285.54=2255.80 J/sRe=duρ/μ=0.071×2×998.2/(100.42×10-5)=1.41×105湍流假设成立!1-3-16. 用压缩空气将密度为1100kg/m3的腐蚀性液体自低位槽送到高位槽,设两槽的液面维持恒定。

西安交通大学17年9月课程考试《化工传递过程》作业考核试题满分答案

西安交通大学17年9月课程考试《化工传递过程》作业考核试题满分答案

西安交通大学17年9月课程考试《化工传递过程》作业考核试题
一、单选题(共30道试题,共60分。


1.爬流的条件是Re数()。

A.大于2000
B.小于2000
C.大于1
D.小于1
正确答案:D
2.以下与临界距离无关的因素是()。

A.壁面长度
B.壁面粗糙度
C.流速
D.流体性质
正确答案:A
3.流体绕过沉浸物体运动时,粘性力()。

A.可忽略
B.靠近物体需要考虑,远处不需考虑
C.靠近物体不需要考虑,远处需要考虑
D.全部需要考虑
正确答案:B
4.在水力光滑管中,阻力系数与()有关。

A.相对粗糙度
B.Re数
C.Re数和相对粗糙度
D.粗糙度和Re数
正确答案:B
5.给出所有时刻物体端面处的导热通量的边界条件类型是()
A.第一类边界条件
B.第二类边界条件
C.第三类边界条件
D.混合边界条件
正确答案:B
6.流体爬流流过球形固体时,流动阻力中形体阻力与表面阻力之比应为()。

A.1:1
B.2:1
C.1:2
正确答案:C
7.一流体以u0沿板层流流动,已知层流时的摩擦阻力系数为f=1.328Re-1/2,当流速增为2u0时(仍为层流),阻力增为原来的()倍。

中南大学传递过程原理_习题_解答

中南大学传递过程原理_习题_解答

《传递过程原理》习题(部分)解答2014-12-19第一篇动量传递与物料输送3、流体动力学基本方程P67. 1-3-12. 测量流速的pitot tube如附图所示,设被测流体密度为ρ,测压管液体的密度为ρ1,测压管中液面高度差为h。

证明所测管中的流速为:v=√2gh(ρ1ρ−1)解:设点1和2的压强分别为P1和P2,则P1+ρgh= P2+ρ1gh,即P1- P2=(ρ1-ρ)gh ①在点1和点2所在的与流体运动方向垂直的两个面1-1面和2-2面之间列Bernoulli equation:ρ1ρ=ρ2ρ+ρ22, 即ρ1−ρ2ρ=ρ22②( forturbulent flow)将式①代入式②并整理得:v =√2gh (ρ1ρ−1) 1-3-15. 用离心泵把20℃的水从贮槽送至水洗塔顶部,槽水位维持恒定。

各部分相对位置如附图所示。

管路直径均为φ76×2.5mm ,在操作条件下,泵入口处真空表读数为24.66×103Pa ;水流经吸入管和排出管(不包括喷头)的能量损失分别按∑h f,1=2υ2和∑h f,2=10υ2计,由于管径不变,故式中υ为吸入管和排出管的流速(m/s )。

排水管与喷头连接处的压力为9.807×104Pa (表压)。

试求泵的有效功率。

解:查表得,20℃时水的密度为998.2kg/m 3;设贮槽液面为1-1面,泵入口处所在的与流体运动方向垂直的面为2-2面,排水管与喷头连接处的侧面为3-3面,以贮槽液面为水平基准面,则(1) 在1-1面和2-2面之间列Bernoulli 方程,有 0=1.5g +−ρ真空ρ+ρ22+2ρ2( for turbulent flow)将已知数据带入:0=1.5×9.81-24660/998.2+2.5υ2 得到υ2=3.996 (即υ=2 m/s )(2) 在1-1面和3-3面之间列Bernoulli方程:即ρρ=14ρ+ρρ+ρ22+∑ρρ,1+∑ρρ,2( for turbulent flow)代入已知数据得:W e=14×9.81+98070/998.2+12.5×3.996=285.54 J/kg(3) 根据泵的有效功率N e=ρQ v W e=ρ×υA×W e=998.2×2×(3.14×0.0712/4) ×285.54=2255.80 J/sRe=duρ/μ=0.071×2×998.2/(100.42×10-5)=1.41×105湍流假设成立!1-3-16. 用压缩空气将密度为1100kg/m3的腐蚀性液体自低位槽送到高位槽,设两槽的液面维持恒定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传递过程原理作业题解章Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第二章1. 对于在r θ平面内的不可压缩流体的流动,r 方向的速度分量为2cos /r u A r θ=-。

试确定速度的θ分量。

解:柱坐标系的连续性方程为11()()()0r z ru u u r rr zθρρρρθθ∂∂∂∂+++='∂∂∂∂对于不可压缩流体在r θ平面的二维流动,ρ=常数,0,0z z u u z∂==∂,故有11()0r u ru r r r θθ∂∂+=∂∂ 即22cos cos ()()r u A A ru rrrr r θθθθ∂∂∂=-=--=-∂∂∂将上式积分,可得22cos sin ()A r A u d f r rθθθθ=-=-+⎰式中,()f r 为积分常数,在已知条件下,任意一个()f r 都能满足连续性方程。

令()0f r =,可得到u θ的最简单的表达式:2sin A u rθθ=-2.对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。

(1)在矩形截面管道内,可压缩流体作稳态一维流动; (2)在平板壁面上不可压缩流体作稳态二维流动; (3)在平板壁面上可压缩流体作稳态二维流动; (4)不可压缩流体在圆管中作轴对称的轴向稳态流动; (5)不可压缩流体作球心对称的径向稳态流动。

解:()0ρρθ∂+∇=∂u(1) 在矩形截面管道内,可压缩流体作稳态一维流动0x z x y zu u u u u u xyzx y z ρρρρρθ∂∂∂∂∂∂∂++++++=∂∂∂∂∂∂∂⎛⎫⎪⎝⎭y 稳态:0ρθ∂=∂,一维流动:0x u =, 0y u = ∴ z 0z u u z z ρρ∂∂+=∂∂, 即 ()0z u zρ∂=∂ (2)在平板壁面上不可压缩流体作稳态二维流动()()()0y x z u u u xyzρρρρθ∂∂∂∂+++=∂∂∂∂稳态:0ρθ∂=∂,二维流动:0z u = ∴()()0y x u u xyρρ∂∂+=∂∂, 又cons t ρ=,从而0yx u u x y∂∂+=∂∂ (3)在平板壁面上可压缩流体作稳态二维流动 在此情况下,(2)中cons t ρ≠∴()()0y x u u xyρρ∂∂+=∂∂(4)不可压缩流体在圆管中作轴对称的轴向稳态流动()()()110r z r u u u r r r zθρρρρθθ∂∂∂∂+++='∂∂∂∂ 稳态:0ρθ∂='∂,轴向流动:0r u =,轴对称:0θ∂=∂ ∴()0z u z ρ∂=∂, 0z uz∂=∂ (不可压缩cons t ρ=) (5)不可压缩流体作球心对称的径向稳态流动22()(sin )()1110sin sin r r u u u r r r r θφρρθρρθθθθφ∂∂∂∂+++='∂∂∂∂ 稳态0ρθ∂='∂,沿球心对称0θ∂=∂,0φ∂=∂,不可压缩ρ=const ∴221()0rr u r r ∂=∂ ,即 2()0r d r u dr= 3.某粘性流体的速度场为22538=x y xyz xz +-u i j k已知流体的动力粘度0.144Pa s μ=⋅,在点(2,4,-6)处的法向应力2100N /m yy τ=-,试求该点处的压力和其它法向应力和剪应力。

解: 由题设 25x u x y =,3y u xyz =,28z u xz =-10316xy xz xz ∇⋅=+-u10x u xy x∂=∂,3y u xz y∂=∂,16zu xz z∂=-∂ 因 22()3y y x zyy u u u u p y x y z τμμ∂∂∂∂=-+-++∂∂∂∂故 22()3y y x z yy u u u u p y xyzτμμ∂∂∂∂=-+-++∂∂∂∂在点(2,4,-6)处,有22(100)20.144(36)0.14423667N /m 3p =--+⨯⨯--⨯=⨯所以 2()32y x zx xx u u u x y zu p x μτμ∂∂∂++∂∂∂∂=-+∂- 226720.144800.144236366.6N /m =-+⨯⨯-⨯⨯=- 2()32y x zz zz u u u x y zu p z μτμ∂∂∂++∂∂∂∂=-+∂-234.4N /m =-()yx xy yx u u y xττμ∂∂==+∂∂ 220.144[527.5N /m 34(6)]=⨯⨯-+⨯⨯-=()yz yz zy u u y zττμ∂∂==+∂∂ 20.144 3.5N /m 324=⨯⨯⨯=()x zzx xz u u z xττμ∂∂==+∂∂ 20.144(41.5N /m 836)=⨯-⨯=-4. 某不可压缩流体在一无限长的正方形截面的水平管道中作稳态层流流动,此正方形截面的边界分别为x a =±和y a =±,有人推荐使用下式描述管道中的速度分布222[1()][1()]4z a px y u z a a μ∂=---∂ 试问上述速度分布是否正确,即能否满足相关的微分方程和边界条件。

解: 在壁面处,即x a =±和y a =±时,0z u =,故满足壁面不滑脱条件;在管道中心,0x y ==时,可得2max 4z a p u zu μ∂=-∂=(1)将所给速度分布式代入不可压缩流体连续性方程(2-20),因0x y u u ==可得0zu z∂=∂ 将不可压缩流体的运动方程(2-45c )化简,可得2222()z z u u pz x y μ∂∂∂=+∂∂∂(2)将所给速度分布式分别对x 和y 求偏导数,得 2222[1()]()4z a p y x z a au x μ∂=---∂∂∂ 2221[1()]2z p yz a u x μ∂=-∂∂∂(3)2221[1()]2z p xz a u y μ∂=-∂∂∂(4)将式(3)和(4)代入式(2)可知,仅当2222x y a +=时才满足运动方程。

因此所给速度分布式不能完全满足运动方程。

5.某一流场的速度向量可以下式表述(,)55x y x y =-u i j试写出该流场随体加速度向量D D θu 的表达式。

解:y xDu Du D D D D θθθ=+u i j ()()y y y y x x x x x y z x y z u u u u u u u uu u u u u u x y z x y zθθ∂∂∂∂∂∂∂∂=+++++++∂∂∂∂∂∂∂∂i j 25[(5)(5)]x -y =+⋅-i j 2525x y =+i j第三章1. 如本题附图所示,两平行的水平平板间有两层互不相溶的不可压缩流体,这两层流体的密度、动力粘度和厚度分别为1ρ、1μ、1h 和为2ρ、2μ、2h ,设两板静止,流体在常压力梯度作用下发生层流运动,试求流体的速度分布。

解:将直角坐标下的连续性方程和运动方程化简,可得221x d u pdy xμ∂=∂积分得 21212x p u y C y C xμ∂=++∂ 因此,两层流体的速度分布可分别表示为2112112x p u y C y C xμ∂=++∂ (1)2212212x p u y D y D xμ∂=++∂ (2)由下列边界条件确定积分常数: (1)11;,0x y h u == (2)22;,0x y h u =-= (3)12;0,x x y u u == (4)12120,x x du duy dy dyμμ== 将以上4个边界条件代入式(1)与(2),得122111120p C h C xh μ∂++∂=;122222120p D h D xh μ∂++∂=;22C D =;1122C C μμ=解得 2122121112121121h h h p C h x h μμμμμ-∂=∂+1121222121211212221221h h h h p p C h x x h D μμμμμμ-∂∂=-∂∂+-=2212212121122121h h h p D h x h μμμμμ-∂=-∂+2212122212212222221221h h h h p p D h x xh C μμμμμμ-∂∂=-∂∂+-=最后得速度分布方程为212221121212121211121[1(1)]x h h h p h x h y yu h h μμμμμ-∂=-∂+-+-22121221212222222212[1(1)]1x h h h p h x h y y u h h μμμμμ-∂=-∂-+++2. 粘性流体沿垂直圆柱体的外表面以稳态的层流液膜向下流动,如本题附图所示。

试求该流动的速度分布。

该液体的密度和粘度分别为ρ和μ。

解: 由题给条件,有0θ∂='∂,0r u u θ==,z X g =由柱坐标系连续性方程11()()()0r z ru u u r rr zθρρρθ∂∂∂++=∂∂∂简化得0z u z∂=∂由柱坐标系N-S 方程()z z z rz u u u uu u r r zθρθ∂∂∂++∂∂∂ 2222211()z z z u u u p g r z r r r r z ρμθ⎡⎤∂∂∂∂∂=-+++⎢⎥∂∂∂∂∂⎣⎦ 简化得 1()0zg u r r r rρμ+∂∂=∂∂ 由于0z u z∂=∂,0z u θ∂=∂(轴对称),故()z z u u r =,即1()0zg du d r r dr drρμ+= 积分得 212ln 4z r C gu r C ν+=-+(1)边界条件为 (1) 0,0z r r u == (2) ,0zR du r dr== 将边界条件代入式(1),得212g C R ρμ=2020(ln )22r g C R r ρμ=- 故速度分布为222001[ln ()]22z g r u R r r r ρμ=+-3. 半径为r 0的无限长圆柱体以恒定角速度ω在无限流体中绕自身轴作旋转运动。

设流体不可压缩,试从一般柱坐标系的运动方程出发,导出本流动问题的运动方程,并求速度分布与压力分布的表达式。

解:柱坐标系的运动方程为r 方向: 2r r r r r z u u u u u uu u r r r zθθθθ∂∂∂∂++-+'∂∂∂∂ 2222221112()r r r r u u u pX ru r r r r r r z θνρθθ∂∂∂∂∂∂=-++-+∂∂∂∂∂∂⎧⎫⎡⎤⎨⎬⎢⎥⎣⎦⎩⎭ (2-47a ) θ方向:r r z u u u u u u uu u r r r zθθθθθθθθ∂∂∂∂++++'∂∂∂∂ 22222211112()r u u u pX ru r r r r r r z θθθθνρθθθ∂∂∂∂∂∂=-++++∂∂∂∂∂∂⎧⎫⎡⎤⎨⎬⎢⎥⎣⎦⎩⎭(2-47b )z 方向:z z z z r z u u u u uu u r r zθθθ∂∂∂∂+++'∂∂∂∂ 22222111()z z z z u u u pX r z r r r r z νρθ∂∂∂∂∂=-+++∂∂∂∂∂⎡⎤⎢⎥⎣⎦ (2-47c )由于该流动具有稳态、对称及一维特性,故有0z θθ∂∂∂==='∂∂∂,0r z u u == 利用上述特点,运动方程(2-47)简化为2u pr rθρ∂=∂ 22210u u u r r r rθθθ∂∂+-=∂∂ 由于流动为一维,上式可写成常微分方程2u dpdr rθρ= (1)22210d u du u dr r dr rθθθ+-= (2)式(2)的通解为112u C r C r θ-=+利用边界条件00,r r u r θω== ,0r u θ=∞=可得 21200,C C r ω== 因此 20r u rθω=如果令 20r Γπω=2 则 2u rθΓπ=压力分布为2228p C rρΓπ=-+由 0,r p p =∞= 可得 0C p =因此 222081p p rρΓπ=-4. 试求与速度势2534x xy y ϕ=-++相对应的流函数ψ,并求流场中点(-2,5)的压力梯度(忽略质量力)。

相关文档
最新文档